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Abstract
We find a new sharp trace Gagliardo-Nirenberg-Sobolev inequality on convex cones, as

well as a sharp weighted trace Sobolev inequality on epigraphs of convex functions. This
is done by using a generalized Borell-Brascamp-Lieb inequality, coming from the Brunn-
Minkowski theory.

Keywords: Sobolev inequality, Gagliardo-Nirenberg-Sobolev inequality, Hamilton-Jacobi
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1 Introduction and main results
The classical Sobolev inequality states that, for any function f sufficiently smooth and decaying
fast enough at infinity, defined on the Euclidean space Rn with n ≥ 2 (for instance, f ∈ C∞c (Rn)),
and for any p ∈ [1, n),

‖f‖Lp∗ (Rn) ≤ C‖∇f‖Lp(Rn), p∗ =
pn

n− p
, (1)

Furthermore, equality is reached in inequality (1) if f can be written

f(x) =
(

1 + ‖x‖p/(p−1)
) p−n

p

,

up to a translation, a rescaling, and multiplication by a constant, where ‖.‖ is the Euclidean norm.
This was proved by Talenti [14] and Aubin [1] independently for p = 2. The Sobolev inequality
can be seen as a corollary of a more general inequality, the Gagliardo-Nirenberg inequality, which
states that

‖f‖Lq(Rn) ≤ C‖∇f‖
θ
Lp(Rn)‖f‖

1−θ
Lr(Rn), (2)

for any p ∈ [1, n), q, r ∈ [1,+∞], θ ∈ [0, 1] such that

1

q
=

(
1

p
− 1

n

)
θ +

1− θ
r

;

whence the case θ = 1 is exactly the Sobolev inequality. This family of inequalities has been
notably investigated by del Pino and Dolbeault [8], who, studying the 1-parameter sub-family
given by p = 2 and r = q/2 + 1, have not only found an explicit sharp constant, but also proved
that there is equality if, and only if, f has the form

f(x) =
(

1 + ‖x‖2
) 2

2−q
,
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up to, once again, a translation, a rescaling, and multiplication by a constant.
As Bobkov and Ledoux [2] showed, these sharp inequalities can be reached within the frame-

work of the Brunn-Minkovski theory [12]. With this approach, the sharp inequality follows in
the more general case where the Euclidean norm is replaced by a generic norm on Rn, which
is a result already proved by Cordero-Erausquin, Nazaret, and Villani using optimal transport
[7]. This makes sense, since the Brunn-Minkovski inequality directly implies the isoperimetric
inequality, which is famously equivalent to the sharp Sobolev inequality with p = 1 (for a nice
overview on this subject, see Osserman’s article on the isoperimetric inequality [11]).

The key tool Bobkov and Ledoux use is an extended Borell-Brascamp-Lieb inequality, a quick
proof of which using optimal transport is given by Bolley, Cordero-Erausquin, Fujita, Gentil and
Guillin [3]. For a bit of context, let us state the Brunn-Minkoski inequality: for any compact
nonempty subsets A and B in Rn, and any t ∈ [0, 1]

|tA+ (1− t)B|1/n ≥ t|A|1/n + (1− t)|B|1/n,

where |.| denotes the Lebesgue measure on Rn. This is to say that the volume, to the power 1/n,
is concave with respect to the Minkowski sum, defined by A+B = {a+ b, (a, b) ∈ A×B}. The
classical Borell-Brascamp-Lieb inequality [4][5], just like the isoperimetric inequality, follows from
the Brunn-Minkowski inequality. It is, in some sense, its functional counterpart: let t ∈ [0, 1]
and u, v, w : Rn → (0; +∞] such that for all x, y ∈ Rn,

w((1− t)x+ ty) ≤
(

(1− t)(u(x))−1/n + t(v(y))−1/n
)−n

,

then ∫
w ≥ min

(∫
u,

∫
v

)
.

Playing with the exponents and normalizing this inequality gives the following reformulation of
the Borell-Brascamp-Lieb inequality: let g, W , and H : Rn → (0,+∞], and t ∈ [0, 1], such that∫
g−n =

∫
W−n = 1 and

∀x, y ∈ Rn, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y)

then ∫
H−n ≥ 1. (3)

Applying this inequality to the greatest function H meeting these criteria allows us to prove that∫
W ∗(∇g)g−n−1 ≥ 0, (4)

where W ∗ is the Legendre transform of W . This inequality, as we will see in the next section,
turns out to be equivalent to the Borell-Brascamp-Lieb inequality we use here. This might look
like it is to be expected, because of the semigroup structure that underlies the theorem, but
is actually a little bit surprising, because said semigroup is not quite linear. The equivalence
between the more general theorems with which we work here remains an open question.

Inequality (4) can, in turn, be used to prove sharp Sobolev-type inequalities, but in the end
proves to be limited as it does not allow to reach the full range of Gagliardo-Nirenberg inequalities
showcased by del Pino and Dolbeault [8]. Thus, a better inequality to work with is the following
extension of the Borell-Brascamp-Lieb inequality, which was proved by Bolley et al. [3].
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Theorem 1.1. Let n ≥ 2, and t ∈ [0, 1]. Let g, W , and H : Rn → (0,+∞] be measurable
functions such that

∫
g−n =

∫
W−n = 1 and

∀x, y ∈ Rn, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y) (5)

then ∫
H1−n ≥ (1− t)

∫
g1−n + t

∫
W 1−n.

With this theorem, we are able to prove sharp trace-Sobolev inequalities on convex do-
mains. More specifically, we prove sharp trace Sobolev in some convex domains, and sharp trace
Gagliardo-Nirenberg inequalities in convex cones. In what follows, ‖.‖ is a norm on Rn, and ‖.‖∗
is the dual norm, defined by ‖x‖∗ = sup‖y‖=1 x · y. In Lq norms of vector functions, the dual
norm ‖.‖∗ will be used. Let ϕ : Rn−1 → R be a convex function such that ϕ(0) = 0. We consider
functions defined on ϕ’s epigraph, that is Ω = {(x1, x2) ∈ Rn−1 × R, x2 ≥ ϕ(x1)}. We say that
Ω is a convex cone whenever ϕ is positive homogeneous of degree 1: for all t > 0 and x1 ∈ Rn−1,
ϕ(tx1) = tϕ(x1).

Theorem 1.2 (Sharp trace Gagliardo-Nirenberg inequality). Let a ≥ n > p > 1, and Ω =
{(x1, x2) ∈ Rn−1 × R, x2 ≥ ϕ(x1)} be a convex cone. There exists a positive constant Dn,p,a(Ω)
such that for any non-negative function f ∈ C∞c (Ω),(∫

Rn−1

fq(x, ϕ(x))dx

)1/q

≤ Dn,p,a(Ω)‖∇f‖θLp(Ω)‖f‖
1−θ
Lq(Ω), (6)

where
θ =

a− p
p(a− n− 1) + n

, q = p
a− 1

a− p
.

Furthermore, when f(x) = ‖(x1, x2 + 1)‖−
a−p
p−1 , then (6) is an equality.

The fact that there exists a function for which the equality is reached means that the constant
Dn,p,a(Ω) may be computed explicitly. Choosing a = n, Theorem 1.2 immediately yields the
sharp trace Sobolev inequality as a corollary:

Corollary 1.3 (Sharp trace Sobolev inequality). Let n > p > 1, and Ω = {(x1, x2) ∈ Rn−1 ×
R, x2 ≥ ϕ(x1)} be a convex cone. There exists a positive constant Dn,p(Ω) = Dn,p,n(Ω) such that
for any non-negative function f ∈ C∞c (Ω),(∫

Rn−1

fp
n−1
n−p (x, ϕ(x))dx

) n−p
p(n−1)

≤ Dn,p(Ω)‖∇f‖Lp(Ω), (7)

Furthermore, when f(x) = ‖(x1, x2 + 1)‖−
n−p
p−1 , then (7) is an equality.

The case Ω = Rn+ has already been studied by Nazaret [10].
If we only assume Ω to be convex, we prove, under some growth criteria on Ω, the following

sharp weighted trace Sobolev inequality:

Theorem 1.4 (Sharp trace Sobolev inequality). Let n > p > 1, and Ω = {(x1, x2) ∈ Rn−1 ×
R, x2 ≥ ϕ(x1)} be a convex set. There exists a positive constant D′n,p(Ω) such that for any
nonnegative function f ∈ C∞c (Ω),∫

Rn−1

fp
n−1
n−p (x1, ϕ(x1))P (x1)dx1 ≤ D′n,p(Ω)

(∫
Ω

‖∇f‖p∗

) n−1
n−p

(8)
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where P (x1) = 1 +ϕ(x1)−x1 ·∇ϕ(x1). Furthermore, when f(x) = ‖(x1, x2 + 1)‖−
n−p
p−1 , then (8)

is an equality.

Once again, D′n,p(Ω) can be computed explicitly. This inequality may be surprising, since
the weight P can (and usually is, whenever Ω is not a cone) negative outside a compact neigh-
bourhood of 0, but it is still sharp. For instance, with the set defined by ϕ(x) = ‖x‖2, the weight
becomes P (x) = 1− ‖x‖2, which happens to be negative outside the unit ball. One may define
∂Ω+ ⊂ ∂Ω such that ∂Ω+ = {(x1, ϕ(x1)), P (x1) > 0}. In that case, inequality (8) restricted to
functions f ∈ C∞c (Ω̊ ∪ ∂Ω+) becomes a regular weighted inequality, with a positive weight.

In the next section, we first study the infimal convolution, which is the key tool in the proof of
Theorems 1.2 and 1.4. Once some crucial properties are established, we prove the claimed equiva-
lence between the classical Borell-Brascamp-Lieb inequality (3) and its differentiated formulation
(4), within some limitations. Next, in section 3, we move on to prove the main Theorems 1.2 and
1.4, starting from an improved version of the Borell-Brascamp-Lieb inequality. The technical
details, which will be glided over in these sections, can be found in the comprehensive appendix
A, at the end of the paper.

2 Generalities
Let t ∈ [0, 1). To use Theorem 1.1, instead of considering any H such that

∀x, y ∈ Rn, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y),

we may well choose the greatest such function. That is,

H(z) = inf
x,y∈Rn

(1−t)x+ty=z

{(1− t)g(x) + tW (y)},

or, writing h = t/(1− t),

H(z)

1− t
= inf
y∈Rn

{
g

(
z

1− t
− hy

)
+ hW (y)

}
.

This formula, being explicit, allows for some properties to be brought to light. It motivates the
definition, and the study, of the so-called infimal convolution:

Definition 2.1. Let f, g : Rn → R ∪ {+∞}. Their infimal convolute f 2 g : Rn → R ∪ {+∞} is
defined by

(f 2 g)(x) = inf
y,z∈Rn

{f(y) + g(z), y + z = x} = inf
y∈Rn
{f(y) + g(x− y)}.

The infimal convolution of f with g is said to be exact at x if the infimum is achieved, and exact
if it is exact everywhere.

With this definition, and whenever h = t/(1 − t) > 0, the greatest function H in Theorem
1.1 is given by

H(z) = (1− t) inf
y∈Rn

{
g

(
z

1− t
− y
)

+ hW (y/h)

}
= (1− t) (g 2 hW (./h)) (z/(1− t)),

we thus define

QWh (g) = g 2 hW (./h) = x 7→ inf
y∈Rn
{g(x− y) + hW (y/h)}.
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Using QWh in Theorem 1.1, inequality (5) becomes∫
QWh (g)1−n ≥

∫
g1−n + h

∫
W 1−n (9)

but there exists a slightly more general version of this inequality, namely Theorem 3.1, which we
will use in section 3.

To begin with, let us first showcase some properties of the infimal convolution.

2.1 The general infimal convolution
This subsection is here to build some intuition about infimal convolution, before proving specific
results useful for the study of QWh .

Definition 2.2. With any function f : Rn → R ∪ {+∞}, we associate its

• essential domain (usually shortened to domain), dom f = {x ∈ Rn, f(x) < +∞};

• epigraph, epi f = {(x, α) ∈ Rn × R, f(x) ≤ α};

• strict epigraph, epis f = {(x, α) ∈ Rn × R, f(x) < α}.
Furthermore, the function f is said to be proper if it is not equal to the constant +∞.

With these definitions, we highlight in the next proposition the link between infimal convo-
lution of functions and Minkowski sum of sets, classically defined for two sets A,B by A+B =
{a+ b, (a, b) ∈ A×B}.
Proposition 2.3. Let f, g : Rn → R ∪ {+∞}. Then

• dom f 2 g = dom f + dom g;

• epis f 2 g = epis f + epis g;

• epi f 2 g ⊃ epi f + epi g, and equality holds if, and only if, the infimal convolution is exact
at each x ∈ dom f 2 g.

Proof of this proposition and more in-depth details on infimal convolutions can be found
in Thomas Strömberg’s thesis [13]. The more delicate question of regularity of the infimal
convolution is only addressed in subsection 2.2 in the particular study of QWh (g). That is because
there is not one natural set of assumptions ensuring regularity, so it really depends on the goal,
which, here, is that QWh (g) should be smooth enough to prove Sobolev inequalities. We only
prove the following lemma in the most general case, since it is very useful.

Lemma 2.4. Let f, g : Rn → R∪ {+∞} be lower semicontinuous functions. If f is nonnegative
and g is coercive, that is,

lim
‖x‖→+∞

g(x) = +∞,

then f 2 g is exact.

Proof. Fix x ∈ Rn. Consider ψ : Rn → R ∪ {+∞}, y 7→ f(x − y) + g(y) and assume that there
exists y0 such that ψ(y0) < +∞: ψ is lower semicontinuous, and greater than g, thus tends to
+∞ as ‖y‖ goes to +∞. As such, {y ∈ Rn, ψ(y) ≤ ψ(y0)} is closed and bounded, thus compact.
Now, let (yn) ⊂ {ψ ≤ ψ(y0)} be a minimizing sequence, limn→+∞ ψ(yn) = infy∈Rn{ψ(y)}. By
compactness, we can assume that the sequence (yn) converges towards z ∈ Rn, and by lower
semicontinuity, −∞ < ψ(z) ≤ limn→+∞ ψ(yn) = infy∈Rn{ψ(y)}, thus the infimum is finite and
is actually a minimum. If such a y0 does not exist, then f 2 g(x) = +∞, and the infimum is also
reached.
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2.2 Regularity of the inf-convolution QW
h (g)

We begin here the specific study of QWh (g) = g2hW (./h). The study of the regularity of QWh (g)
with respect to h > 0 is crucial, because we would like to differentiate inequality (9) with respect
to h. Let us first state some classical results about the Legendre transform. The proofs can be
found in Evans’ book, [9, p.120], and Brézis’ book, [6, p.10].

Definition 2.5. The Legendre transform of W is defined by

W ∗(y) = sup
x∈Rn
{x · y −W (x)} ∈ R.

By definition, W ∗ is a lower semicontinuous convex function, but it is not always proper. For
W ∗ to be well behaved, we have to assume a little bit more about W . In fact, it is enough to
assume W to be lower semicontinuous: indeed, if W : Rn → R∪{+∞} is a lower semicontinuous
proper convex function, then W ∗ is also a lower semicontinuous proper convex function, and
(W ∗)∗ = W . The infimal convolution is not only closely related to Minkovski sums, but also to
Legendre transforms, as the next lemma shows.

Lemma 2.6. Let g,W : Rn → (−∞,+∞] be two measurable functions. If g is nonnegative and
almost everywhere differentiable on its domain dom g = Ω0 (with nonempty interior), and W
grows superlinearly,

lim
|x|→+∞

W (x)

|x|
= +∞,

then for almost every x ∈ Ω̊0, h 7→ QWh (g)(x) is differentiable at h = 0, and

∂

∂h

∣∣∣∣
h=0

QWh (g)(x) = −W ∗(∇g(x)),

where W ∗ is the Legendre transform of W .

Proof. Let Ω1 = domW , and fix x ∈ Ω̊0 such that the differential of g at x exists. Let y ∈ Ω1.
For h > 0 sufficiently small, x− hy ∈ Ω0, and we get, by definition of QWh (g),

QWh (g)(x)− g(x)

h
≤ g(x− hy)− g(x)

h
+W (y).

Taking the superior limit when h→ 0 yields

lim sup
h→0

QWh (g)(x)− g(x)

h
≤ −∇g(x) · y +W (y).

This being true for any y ∈ Ω1, we may take the infimum to find that

lim sup
h→0

QWh (g)(x)− g(x)

h
≤ −W ∗(∇g(x)).

Conversely, fix e ∈ Ω1, and h0 > 0 such that B(x, h0‖e‖) ∈ Ω̊0. For h ∈ (0, h0), define

Ωx,h = {y ∈ Ω1, hW (y) ≤ g(x− he) + hW (e)};

note that e ∈ Ωx,h. We claim that lim suph→0{h‖y‖, y ∈ Ωx,h} = 0. Indeed, if y ∈ Ωx,h, then

h‖y‖W (y)

‖y‖
≤ g(x− he) + hW (e) ≤ sup

z∈B(x,h0‖e‖)
g(z) + h0W (e).
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Now, when h goes to 0, either lim sup‖y‖ < +∞, or lim sup‖y‖ = +∞; in both cases, since
lim|y|→+∞

W (y)
‖y‖ = +∞, the claim is proved. Notice now that for all h ∈ (0, h0), QWh (g)(x) ≤

g(x− he) + hW (e), hence QWh (g)(x) = infy∈Ωx,h{. . . }. Thus,

QWh (g)(x)− g(x)

h
= inf
y∈Ωx,h

{
g(x− hy)− g(x)

h
+W (y)

}
= inf
y∈Ωx,h

{−∇g(x) · y + y · εx(hy) +W (y)}

where εx(z) → 0 when ‖z‖ → 0. Let 1 ≥ η > 0; the claim proves that there exists hη ∈ (0, h0)
such that for all 0 < h < hη, ∀y ∈ Ωx,h, ‖εx(hy)‖ ≤ η. Thus,

QWh (g)(x)− g(x)

h
≥ inf
y∈Ωx,h

{−∇g(x) · y − η‖y‖+W (y)}

= inf
y∈Ωx,h
y∈B(0,R)

{. . . }

≥ inf
y∈Ωx,h

{−∇g(x) · y +W (y)} −Rη

≥ −W ∗(∇g(x))−Rη,

where R was chosen such that ‖y‖ ≥ R =⇒ W (y) ≥ (‖∇g(x)‖ + 1)‖y‖ + W (e) − ∇g(x) · e.
Finally, taking the inferior limit of this inequality, and noticing that the result stays true for any
0 < η ≤ 1, we may conclude (since R is independent from η) that

lim
h→0

QWh (g)(x)− g(x)

h
= −W ∗(∇g(x)).

This differentiation result is enough to prove the main theorems contained in section 3, but
we can go a little bit further with more assumptions on g and W . Assuming W to be convex
bestows upon QWh a semigroup structure:

Lemma 2.7. Assume that g : Rn → [0,+∞] is lower semicontinuous, and that W is a lower
semicontinuous proper convex function such that lim‖x‖→+∞W (x) = +∞. Then, for all x ∈ Rn
and 0 < s < h,

QWh (g)(x) = min
y∈Rn
{g(x− hy) + hW (y)}

= QWh−s(Q
W
s (g))(x).

Proof. Exactness was already proved in Lemma 2.4. Notice that

QWh−s(Q
W
s (g))(x) = inf

y∈Rn
inf
z∈Rn
{g(x− (h− s)y − sz) + (h− s)W (y) + sW (z)}

≤ inf
y∈Rn
{g(x− hy) + hW (y)} = QWh (g)(x).

Conversely, let y ∈ Rn, and choose z ∈ Rn such that

QWs (g)(x− (t− s)y) = g(x− sz) + sW (z).
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Then, by convexity,

QWt (g)(x) ≤ g(x− (t− s)y − sz) + tW

(
t− s
t

y +
s

t
z

)
≤ g(x− (t− s)y − sz) + (t− s)W (y) + sW (z)

= (t− s)W (y) +QWs (g)(x− (t− s)y).

Taking the infimum over y ∈ Rn proves that QWt (g)(x) ≤ QWh−s(Q
W
s (g))(x), and thus there is

equality.

We want to investigate if some kind of regularity is preserved under the operation of infimal
convolution. The answer is yes, under certain specific conditions. We will also provide an example
showcasing regularity loss, emphasizing the delicate nature of this question. Work on this subject
already exists, notably in Evans’ book [9, p. 128], where there is a global Lipschitz assumption, or
in Villani’s book [15, Theorem 30.30], where functions are bounded. However, such assumptions
are at odds with the goals we aim for here, as ultimately, we want g−α to be integrable for some
exponant α > 0.

Let us study the case where g and W are finite everywhere.

Lemma 2.8. Let g,W : Rn → R. If g is nonnegative, locally Lipschitz continuous, and W is
convex and coercive, then (h, x) 7→ QWh (g) is locally Lipschitz continuous.

Proof. In order to prove the full local Lipschitz continuity, we must first localize the arginf of
the infimal convolution. Fix ρ > 0, η > 0, and let x, x′ ∈ B(0, ρ) and 0 < h < η. Consider the
set

Ωx,h := {y ∈ Rn, g(x− y) + hW (y/h) ≤ g(x) + hW (0)}.

We claim that, by positivity of g, and convexity of W , the set is bounded. Indeed, since W is
convex and coercive, there exists R > 0 and m > 0 such that

‖y‖ > R =⇒ W (y) ≥ m‖y‖.

If y ∈ Ωx,h, then either ‖y‖ ≤ hR ≤ ηR, or ‖y‖ > hR and then g(x) + hW (0) ≥ hW (y/h) ≥
m‖y‖. Invoking continuity of g, we may prove the claim, and conclude that there exists Rρ,η,
independent from x and h, such that Ωx,h ⊂ B(0, Rρ,η).

Let us now prove the local Lipschitz continuity with respect to x. The functions g and W
are assumed continuous, and so the infimal convolution is exact, and there exists y ∈ Rn such
that QWh (g)(x) = g(x− y) + hW (y/h). Necessarily, ‖y‖ ≤ Rρ,η, so

QWh (g)(x′)−QWh (g)(x) = inf
y′∈Rn

{g(x′ − y′) + hW (y′/h)} − g(x− y)− hW (y/h)

≤ g(x′ − y)− g(x− y)

≤
(

LipB(0,ρ+Rρ,η) g
)
‖x− x′‖,

where LipA f := supx6=x′∈A{|f(x)− f(x′)|/‖x− x′‖}. By symmetry, we conclude that∣∣QWh (g)(x′)−QWh (g)(x)
∣∣ ≤ (LipB(0,ρ+Rρ,η) g

)
‖x− x′‖,

hence the local Lipschitz continuity with respect to x.
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Now,

QWh (g)(x)− g(x) = inf
y∈B(0,Rρ,n)

{g(x− y)− g(x) + hW (y/h)}

≥ inf
y∈B(0,Rρ,η)

{
−(LipB(0,ρ+Rρ,η) g)‖y‖+ hW (y/h)

}
= h inf

z∈B(0,Rρ,η/h)
{−λ‖z‖+W (z)}

≥ −h sup
z∈Rn

{λ‖z‖ −W (z)}

≥ −h sup
t∈B(0,λ)

W ∗(t),

where λ = LipB(0,ρ+Rρ,η) g. Conversely, by definition,

QWh (g)(x)− g(x) ≤ hW (0),

and thus
∣∣QWh (g)(x)− g(x)

∣∣ ≤ Ch, where C = max{W (0), supt∈B(0,λ)W
∗(t)}. Note that C is

finite because W ∗ is, by definition, convex and finite on Rn, thus continuous. Finally, using
the semigroup property QWh+s(g) = QWh (QWs (g)) and the fact that the Lipschitz constant with
respect to x is uniformly bounded by LipB(0,ρ+Rρ,η) for 0 < h < η, we may conclude for the full
local Lipschitz continuity.

The above lemma is a slight generalization of the following proposition:

Proposition 2.9. Let f, g : Rn → R be lower semicontinuous functions. If f is nonnegative,
locally Lipschitz continuous, and g is coercive, then f 2 g is locally Lipschitz continuous.

Here, we do not need any convexity assumption, which was only used to prove Lipschitz
continuity with respect to the (n + 1)th variable, h. Also, note here that it is important for
f and g to be finite everywhere, which will not be the case in sections 3 and appendix A. In
order for f 2 g to be locally Lipschitz continuous, further assumptions are needed on f and g,
in particular on their domain. For example, if dom f = {x0}, then f 2 g = f(x0) + g( .− x0), so
it already seems necessary that both f and g be at least locally Lipschitz continuous. However,
this is not sufficient. Consider for example the following functions f and g, defined on R2 by

f(x1, x2) =


1 if x1 ∈ [0, 1], x2 = 0,

1− x2 if x1 = 0, x2 ∈ [0, 1],

+∞ otherwise,
and g(x1, x2) =

{
0 if x1 ∈ [0, 1], x2 = 0,

+∞ otherwise,

then

(f 2 g)(x1, x2) =


1 if x1 ∈ (0, 1], x2 ∈ [0, 1],

1− x2 if x1 = 0, x2 ∈ [0, 1],

0 if x1 = 0, x2 ∈ [1, 2],

+∞ otherwise

is not a continuous function. This example can easily be adapted to obtain a discontinuous
infimal convolution for smooth functions f and g. We conjecture that if the domain is assumed
convex, and if both functions are Lipschitz continuous, and their domain is of non-empty interior,
then their infimal convolution is Lipschitz continuous.

Lemma 2.8, together with Lemma 2.6 and Rademacher’s theorem, prove the following propo-
sition:

9



Proposition 2.10 (Hamilton-Jacobi). Let g,W : Rn → R. If g is nonnegative, locally Lipschitz
continuous, and W is convex and grows superlinearly,

lim
|x|→+∞

W (x)

|x|
= +∞,

then, for almost every h ≥ 0 and x ∈ Rn,
∂

∂h
QWh (g)(x) = −W ∗(∇QWh g(x)).

2.3 An equivalent formulation of the classical Borell-Brascamp-Lieb
inequality

In this subsection, we prove an interesting equivalence between the classical Borell-Brascamp-
Lieb inequality and its differentiated expression, as announced in the introduction. It is also a
good presentation of what is to come in the following sections.

Proposition 2.11. Let g,W : Rn → R. If g is nonnegative, locally Lipschitz continuous, and
W is convex and grows superlinearly,

lim
|x|→+∞

W (x)

|x|
= +∞,

and are such that
∫
g−n =

∫
W−n = 1, and if (g,W ) is admissible in the sense of Definition

A.1, then the following statements are equivalent:

a. The Borell-Brascamp-Lieb inequality holds: for every t ∈ [0, 1] and H : Rn → R such that

∀x, y ∈ Rn, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y),

there holds ∫
H−n ≥ 1.

b. The following inequality stands: ∫
W ∗(∇g)

gn+1
≥ 0.

Proof. By definition of the infimal convolution QWh (g), it is actually sufficient to only consider
the function H = (1− t)QWh (g)( . /(1− t)), where h = t/(1− t), in statement a. In fact, this leads
to the statement a′.: ∫

QWh (g)−n ≥ 1,

which we prove is equivalent to b.
Let us consider the function φ : h 7→

∫
QWh (g)−n, which is continuous and almost everywhere

differentiable in light of Lemma 2.8 and Theorem A.2 in the Appendix. Its derivative is given by

φ′(h) = n

∫
W ∗(∇g)

gn+1
.

The implication a′. =⇒ b. follows from the fact that φ(0) = 1, and φ(h) ≥ 1 for h ≥ 0. Then,
necessarily, φ′(0) ≥ 0.

Conversely, assume that b. holds. Then, whenever h > 0 is such that φ(h) =
∫
QWh (g)−n = 1,

statement b. applied to the function g̃ = QWh (g) and the corresponding function φ̃ implies that
φ̃′(0) = φ′(h) ≥ 0 thanks to the semigroup property proved in Lemma 2.7. This, together with
the fact that φ(0) = 1, proves that φ stays above 1, which is exactly statement a.

10



Once again, we insist on the fact that the semigroup QWh is not linear, and not Markov, which
means, in particular, that there is no mass conservation. As such, this result stands as a bit
unusual among similar results.

3 Sharp Gagliardo-Nirenberg-Sobolev inequalities

3.1 Borell-Brascamp-Lieb
Let us start from Theorem 8 in the recent paper by Bolley et al. [3], the dynamical formulation
of Borell-Brascamp-Lieb inequality.

Theorem 3.1 ([3]). Let a > 1 and n ∈ N∗ such that a ≥ n, and g,W : Rn → (0,+∞] be
measurable functions such that

∫
g−a =

∫
W−a = 1. Then, for any h ≥ 0,

(1 + h)a−n
∫
Rn
QWh (g)1−a ≥

∫
Rn
g1−a + h

∫
Rn
W 1−a, (10)

where
QWh (g)(x) = inf

y∈Rn
{g(x− hy) + hW (y)} ∈ (0,+∞].

Furthermore, when g is equal to W and is convex, there is equality.

To see that there is equality whenever g = W is convex, fix x ∈ Rn. For any y ∈ Rn, since
x

1+h = 1
1+h (x− hy) + h

1+hy,

(1 + h)

(
W (x− hy)

1 + h
+

h

1 + h
W (y)

)
≥ (1 + h)W

(
x

1 + h

)
.

Conversely, QWh (g)(x) is achieved at y = x/(1 + h). In particular, for all x ∈ Rn, h ≥ 0,

QWh (W )(x) = (1 + h)W

(
x

1 + h

)
,

and equality in (10) is a straightforward computation.
In [3], subsection 3.2, Bolley, Cordero-Erausquin, Fujita, Gentil, and Guillin use Theorem 3.1

to prove optimal Sobolev and Gagliardo-Nirenberg-Sobolev type inequalities in the half-space
R+
n = Rn−1 × R+. We want to extend these results to more general domains Ω in Rn, where

n ≥ 2. Let us assume that Ω is the epigraph of a continuous function ϕ : Rn−1 → R such that
ϕ(0) = 0. In other words,

Ω = {(x1, x2) ∈ Rn−1 × R, x2 ≥ ϕ(x1)}.

Let e = (0, 1) ∈ Rn−1 × R, and for h ≥ 0, define

Ωh = Ω + {he} = {(x1, x2) ∈ Rn−1 × R, x2 ≥ ϕ(x1) + h}.

Let a ≥ n, and consider g : Ω→ (0,+∞) and W : Ω1 → (0,+∞), two measurable functions such
that

∫
Ω
g−a =

∫
Ω1
W−a = 1. After extending these functions by +∞ outside of their respective

domain, inequality (10) yields

(1 + h)a−n
∫
Bh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a (11)

11



where
Bh = dom(QWh (g)).

When g(x) = W (x+ e) and W is convex, then

QWh (g)(x) = (1 + h)W

(
x+ e

1 + h

)
and equality is reached in the inequality above.

To get a sense of what is to follow, notice that there is equality in inequality (11) when h = 0.
Now, when Ω = Rn+, the interesting fact that Ωh = Bh allows us, under certain admissibility
criteria for W and g, to compute the derivative of inequality (11) with respect to h, at h = 0.
By doing so, the term

∫
∂Rn+

QW0 (g)1−a =
∫
∂Rn+

g1−a appears in the left hand side, thus leading to
trace inequalities.

Before going any further, let us investigate under which condition the two sets Ωh and Bh
coincide. We have the following lemma:

Lemma 3.2. There exists h0 > 0 such that for all h ∈ (0, h0), Bh = Ωh if, and only if, Ω is a
convex cone. In that case, Bh and Ωh coincide for all h ≥ 0.

Proof. First, note that QWh (g)(x) < +∞ if, and only if, there exists y ∈ Ω1 such that x−hy ∈ Ω.
By definition of Ω, this is equivalent to

∃ (y1, y2) ∈ Rn−1 × R s.t.

{
y2 ≥ ϕ(y1) + 1

x2 − hy2 ≥ ϕ(x1 − hy1)

⇐⇒
(
∃ y1 ∈ Rn−1 s.t. x2 ≥ ϕ(x1 − hy1) + hϕ(y1) + h)

)
.

If x ∈ Ωh, then choosing y1 = 0 proves that x ∈ Bh, so Ωh ⊂ Bh. If h > 0, Ωh = Bh if, and only
if, for all x1, y1 ∈ Rn−1,

ϕ

(
x1 − y1

h

)
≥ ϕ(x1)− ϕ(y1)

h
. (12)

Indeed, if Ωh ⊃ Bh, then, for any x1, y1 ∈ Rn−1,

x2 := ϕ(x1 − hy1) + hϕ(y1) + h ≥ ϕ(x1) + h

and thus, replacing y1 by (x1− y1)/h, we get the stated inequality. The reciprocal is immediate.
Now, let z ∈ Rn−1, |z| = 1. Inequality (12), for y1 = 0, becomes

ϕ(z) ≥ 1

h
ϕ(hz)

for any h smaller than h0. Let α = lim suph→0 ϕ(hz)/h. Using inequality (12) once again, we
get, for any s ≥ 0,

ϕ(sz) ≥ s

sh
ϕ(shz),

for any sufficiently small h > 0. Taking the inferior limit when h→ 0 proves that for any s ≥ 0

ϕ(sz) ≥ sα. (13)
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The set {s ≥ 0, ϕ(sz) = sα} is non-empty because it contains 0, and it is closed by continuity.
Let s ≥ 0 be such that ϕ(sz) = sα. Then, invoking inequality (12), and then inequality (13), we
get

ϕ

(
(1 + h)sz − sz

h

)
= ϕ(sz) = sα ≥ ϕ((1 + h)sz)− ϕ(sz)

h

=
ϕ((1 + h)sz)− sα

h

≥ (1 + h)sα− sα
h

= sα

so there is actually equality, and ϕ((1 + h)sz) = (1 + h)sα for any sufficiently small h > 0. This
shows that the connected component of {s ≥ 0, ϕ(sz) = sα} containing 0 is open in R+. Since
it is also closed, it is the half real line R+. Thus, ϕ is linear over half-lines with initial point 0.
Inequality (12) then becomes

ϕ(x1 − y1) ≥ ϕ(x1)− ϕ(y1)

for any x1, y1 ∈ Rn−1. Let t ∈ [0, 1]; replacing x1 by (1 − t)x1 + ty1 and y1 by ty1, and using
linearity, the inequality becomes exactly the convexity inequality, that is

ϕ((1− t)x1 + ty1) ≤ (1− t)ϕ(x1) + tϕ(y1).

The reciprocal is trivial. It is also clear that in this case, Bh = Ωh for any h ≥ 0.

This lemma will be used in section 3.2 to prove the trace Sobolev and the trace Gagliardo-
Nirenberg-Sobolev inequalities in convex cones. We can go a bit further, and impose only ϕ to
be convex.

Lemma 3.3. If ϕ is convex, then

Bh =

{
(x1, x2) ∈ Rn, x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)}
.

Proof. One may notice that setting ω(x) = 0 if x ∈ Ω and +∞ if x ∈ Ωc, and W (x) = ω(x− e),
then ω is convex, thus

Bh = dom(QWh (ω)) = dom

(
x 7→ (1 + h)W

(
x+ e

1 + h

))
,

and

W

(
x+ e

1 + h

)
< +∞ ⇐⇒ x+ e

1 + h
− e ∈ Ω

⇐⇒ x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)
.

3.2 Convex cones
In this subsection, we assume that Ω is a convex cone. In that case, invoking Lemma 3.2,
inequality (10) becomes

(1 + h)a−n
∫

Ωh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a, (14)
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for any h > 0, and there is equality when h = 0. Taking the derivative of this inequality with
respect to h, under the admissibility conditions for g andW exposed in full details in Appendix A,
and evaluating at h = 0, we prove that

(a− n)

∫
Ω

g1−a + (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rn−1

g1−a(x1, ϕ(x1))dx1 ≥
∫

Ω1

W 1−a. (15)

There, we used Lemma 2.6, and the fact that

1

h

(∫
Ωh

QWh (g)1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h
+

1

h

(∫
Ωh

g1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h
− 1

h

(∫
Rn−1

∫ h+ϕ(x1)

ϕ(x1)

g1−a(x1, x2)dx2 dx1

)

−−−→
h→0

(1− a)

∫
Ω

W ∗(∇g)

ga
−
∫
Rn−1

g1−a(x1, ϕ(x1))dx1,

see Theorem A.2.
Let p ∈ (1, n), and q its conjugate exponent, 1/p+ 1/q = 1. Applying inequality (15) to the

function W defined by W (x) = C‖x‖q/q, where C > 0 is such that
∫
W−a = 1, which happens

to be admissible for this choice of q, in the sense of Definition A.1 in the Appendix. We find

(a− n)

∫
Ω

g1−a + C1−p a− 1

p

∫
Ω

‖∇g‖p∗
ga

−
∫
Rn−1

g1−a(x1, ϕ(x1))dx1 ≥
∫

Ω1

W 1−a

for any admissible g, where ‖x‖∗ = sup‖y‖=1 x · y is the dual norm of x. Next, we extend the
above inequality to all functions g such that f = g(p−a)/p ∈ C∞c (Ω). This can be done by
approximation by admissible functions, we refer to the Appendix A. Rewriting the quantities in
terms of f = g−(a−p)/p yields∫

Rn−1

fp
a−1
a−p (x, ϕ(x))dx ≤ C1−p a− 1

p

(
p

a− p

)p ∫
Ω

‖∇f‖p∗ −
∫

Ω1

W 1−a + (a− n)

∫
Ω

fp
a−1
a−p .

We may then remove the normalization to find that inequality (15) becomes∫
Rn−1

fp
a−1
a−p (x, ϕ(x))dx ≤ C1−p a− 1

p

(
p

a− p

)p(∫
Ω

‖∇f‖p∗

)
βp

p−1
a−p −

(∫
Ω1

W 1−a
)
βp

a−1
a−p

+ (a− n)

∫
Ω

fp
a−1
a−p

(16)
where

β =

(∫
Ω

f
pa
a−p

) a−p
ap

.

Now, define u = a−1
a−p and v = u′ = a−1

p−1 , so that u, v > 1 and 1/u + 1/v = 1. By Young’s
inequality, we find

A

∫
Ω

‖∇f‖p∗β
p p−1
a−p −

(∫
Ω1

W 1−a
)
βp

a−1
a−p = Bv

(
A

Bv

∫
Ω

‖∇f‖p∗β
p p−1
a−p − 1

v
βp

a−1
a−p

)
≤ D

(∫
Ω

‖∇f‖p∗

)u
,

(17)
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where

A = C1−p a− 1

p

(
p

a− p

)p
, B =

∫
Ω1

W 1−a and D =
Au

(Bv)u−1

1

u
.

In order to find a more compact inequality, we consider, for λ > 0, fλ : x 7→ f(λx). By
linearity of ϕ, applying (17) to fλ leads to∫

Rn−1

fp
a−1
a−p (x, ϕ(x))dx ≤ λ(a−n) p−1

a−p
Au

(Bv)u−1

1

u

(∫
Ω

‖∇f‖p∗

)u
+
a− n
λ

∫
Ω

fp
a−1
a−p .

Optimizing this inequality with respect to λ > 0 finally yields inequality (6) of Theorem 1.2
It remains to show that inequality (6) is optimal. The function for which equality is reached

does not have compact support, but this technicality does not bear much relevance. To prove
optimality, note that there is equality in (15) when g(x) = W (x + e), which implies equality in
(16) when f(x) = ‖x+ e‖−

a−p
p−1 . If Young’s inequality (17) is an equality, then the optimization

with respect to parameter λ necessarily preserves the equality. Thus, it is enough to show that
for f(x) = ‖x+ e‖−

a−p
p−1 , there is equality in (17). This is the case if, and only if,

A

Bv

∫
Ω

‖∇f‖p∗ =
(
βp

p−1
a−p

)v−1

.

Let us now write, for α > 0

Iα :=

∫
Ω

‖x+ e‖−α.

Then,

C = q

(∫
Ω

‖x+ e‖−qa
) 1
a

=
p

p− 1
I

1/a
ap/(p−1)

hence

A =
(a− 1)(p− 1)p−1

(a− p)p
I

(1−p)/a
ap/(p−1), B = I

(1−a)/a
ap/(p−1)Ip(a−1)/(p−1), and

(
βp

p−1
a−p

)v−1

= I
(a−p)/a
ap/(p−1).

Claim. For γ ∈ R, let δ : Rn\{0} → ]0,+∞[ , x 7→ ‖x‖γ . Then, almost everywhere, δ is
differentiable, and ‖∇δ(x)‖p∗ = |γ|‖x‖γ−1.

Using this, we conclude that there is indeed equality in (17), since then∫
Ω

‖∇f‖p∗ =

(
a− p
p− 1

)p
Ip(a−1)/(p−1).

Proof of the claim. Consider φ : x 7→ ‖x‖ and ψ : ρ 7→ ργ . φ is convex, hence almost everywhere
differentiable by Rademacher’s theorem, and ψ smooth on ]0,+∞[, hence the claimed regularity
of δ = ψ ◦ φ. For almost every x, ∇δ(x) = γ∇φ(x)‖x‖γ−1, so

‖∇δ(x)‖∗ = |γ|‖x‖γ−1‖∇φ(x)‖∗
If x 6= 0 is a point of differentiability of φ, and t > 0, then

1 =
‖x+ tx/‖x‖‖ − ‖x‖

t
−−−→
t→0

∇φ(x) · x

‖x‖
,

so ‖∇φ(x)‖∗ ≥ 1. Conversely, if ‖v‖ = 1, then

∇φ(x) · v = lim
t→0+

‖x+ tv‖ − ‖x‖
t

≤ lim
t→0+

‖v‖ = 1,

so ‖∇φ(x)‖∗ = 1 and the claim is proved.
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3.3 Convex sets
Let us now assume that Ω is the epigraph of a convex function ϕ, with ϕ(0) = 0. Then, according
to Lemma 3.3, for h ≥ 0,

Bh = dom(QWh (g)) =

{
(x1, x2) ∈ Rn, x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)}
.

Inequality (10) becomes

(1 + h)a−n
∫
Bh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a, (18)

and there still is equality for all h > 0 whenever g(x) = W (x + e) and is convex. However,
it is slightly trickier to compute the derivative at h = 0, since Bh 6= Ωh, and their symmetric
difference depends heavily on ϕ. Effectively, a third term appears when trying to differentiate∫
Bh
QhW (g)1−a:

1

h

(∫
Bh

QWh (g)1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h
− 1

h

∫
Ω\Ωh

g1−a +
1

h

∫
Bh\Ωh

QWh (g)1−a.

Taking the derivative at h = 0, when possible, yields

(a− n)

∫
Ω

g1−a + (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rn−1

g1−a(x1, ϕ(x1))P (x1)dx1 ≥
∫

Ω1

W 1−a, (19)

where
P (x1) = 1 + ϕ(x1)− x1 · ∇ϕ(x1).

Using inequality (19) with W = C‖.‖q/q, and extending it for all f = g−(a−p)/p ∈ C∞c (Ω)
just like we did for convex cones, and finally invoking Young’s inequality, we get the theorem

Theorem 3.4. Let a ≥ n > p > 1, and Ω = {(x1, x2) ∈ Rn−1 × R, x2 ≥ ϕ(x1)} be a convex set.
There exists a positive constant D′n,p,a(Ω) such that for any positive function f ∈ C∞c (Ω),∫

Rn−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1 ≤ D′n,p,a(Ω)

(∫
Ω

‖∇f‖p∗

) a−1
a−p

+ (a− n)

∫
Ω

fp
a−1
a−p , (20)

where P (x1) = 1 + ϕ(x1) − x1 · ∇ϕ(x1). Furthermore, when f(x) = ‖x+ e‖−
a−p
p−1 , then (20) is

an equality.

Applying this theorem for a = n, we find a new version of the trace Sobolev inequality,
Theorem 1.4, with D′n,p(Ω) = D′n,p,n(Ω). It is important to note that in Theorem 1.4, as well
as in Theorem 3.4, the left-hand side can be negative. The weight P itself generally is negative
outside of a compact neighbourhood of the origin, but the inequality is still optimal.

A Admissibility
In this section, we prove that the results are true for a class of admissible functions, and we
extend these results to the appropriate, more general setting, by approximation by admissible
functions. The difficulty here lies in that g must not be bounded or even Lipschitz, since g−a
has to be integrable. The case of the half-plane has already been investigated (in [3]), and easily
extends to convex cones. Here, we will only tackle convex sets, which, although more technical,
follows the same general idea.

Throughout this section, ϕ : Rn−1 → [0,+∞) is a convex function such that ϕ(0) = 0,
g : Ω→ (0,+∞) is assumed to be locally Lipschitz continuous, andW : Ω1 → (0,+∞) is convex.
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A.1 Differentiating the Borell-Brascamp-Lieb inequality
Inequality (18),

(1 + h)a−n
∫
Bh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a,

is trivially an equality for h = 0, we thus ask compute its derivative. Let us first give a non-
rigorous proof for clarity. The most difficult part is computing the derivative of

∫
Bh
QWh (g)1−a,

so let us start with that. Notice that Ωh ⊂ Bh ∩ Ω, thus

1

h

(∫
Bh

QWh (g)1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h︸ ︷︷ ︸
(i)

− 1

h

∫
Ω\Ωh

g1−a

︸ ︷︷ ︸
(ii)

+
1

h

∫
Bh\Ωh

QWh (g)1−a

︸ ︷︷ ︸
(iii)

.

Recalling Lemma 2.6, almost everyhere,

lim
h→0

QWh (g)(x)− g(x)

h
= −W ∗(∇g(x)),

thus (i) should converge towards

(a− 1)

∫
Ω

W ∗(∇g)

ga
.

Next, (ii) can be rewritten in a way such that the convergence is quite clear:

(ii) =

∫
Rn−1

(
1

h

∫ ϕ(x1)+h

ϕ(x1)

g1−a(x1, x2)dx2

)
dx1 −−−→

h→0

∫
Rn−1

g1−a(x1, ϕ(x1))dx1

as h→ 0. Finally, giving (iii) the same treatment,

(iii) =

∫
Rn−1

(
1

h

∫ h+ϕ(x1)

h+(1+h)ϕ(x1/(1+h))

QWh (g)1−a(x1, x2)dx2

)
dx1

−−−→
h→0

∫
Rn−1

g1−a(x1, ϕ(x1))(x1 · ∇ϕ(x1)− ϕ(x1))dx1,

since QW0 (g) = g and

lim
h→0

1

h

(
ϕ(x1)− (1 + h)ϕ

(
x1

1 + h

))
= x1 · ∇ϕ(x1)− ϕ(x1).

Summing these results up, we find the claimed derivative at h = 0. Whenever Ω is a convex
cone, Bh\Ωh = ∅, and thus (iii) = 0. In that case, the argument is much more succinct, but
since it is also a corollary of the more general case, we will not address it. The conditions for
the convergence to play out nicely are summed up in the following definition. They are mostly
growth conditions on g and W , and will come into play later on.

Definition A.1. The couple of functions (g,W ) is said to be admissible if the following condi-
tions are satisfied for some constant γ:

(C0) γ > max
(

a
n−1 , 1

)
;

(C1) there exists A1 > 0 such that W (x) ≥ A1‖x‖γ for all x ∈ Ω1;
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(C2) there exists A2 > 0 such that W (x) ≤ A2(1 + ‖x‖γ) for all x ∈ Ω1;
(C3) there exists A3 > 0 such that g(x) ≥ A3(1 + ‖x‖γ) for all x ∈ Ω;

(C4) there exists A4 > 0 such that ‖∇g(x)‖ ≤ A4(1 + ‖x‖γ−1
) for all x ∈ Ω.

The challenge is to prove that under these conditions, QWh (g) converges towards g in a
controlled manner as h→ 0. The main result of this section is the following:

Theorem A.2. Assume that the couple (g,W ) is admissible, and that there exist some constants
C > 0 and R > 0 such that

∀ ‖x1‖ > R, |x1 · ∇ϕ(x1)| ≤ C‖(x1, ϕ(x1))‖. (21)

Then

lim
h→0

1

h

(∫
Bh

QWh (g)1−a(g)−
∫

Ω

g1−a
)

= (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rn−1

g1−a(x1, ϕ(x1))P (x1)dx1,

(22)
where P (x1) = 1 + ϕ(x1)− x1 · ∇ϕ(x1).

In what follows, we will use a good number of different positive constants, which will all be
written C for convenience. They will not depend on x ∈ Rn, or h > 0, but might depend on Ai,
i ∈ {1, 2, 3, 4}, γ.

A.1.1 Convergence of (i) and (ii)

Lemma A.3. If (g,W ) is admissible, there exist constants C > 0 and h0 > 0, such that for all
0 < h < h0, and x ∈ Ωh, ∣∣QWh (g)(x)− g(x)

∣∣ ≤ Ch(1 + ‖x‖γ).

Proof. First, let x′, x ∈ Ω. Then, we may estimate |g(x′)− g(x)| using hypothesis (C4):

|g(x′)− g(x)| ≤
∫ 1

0

∥∥∥∥ ∂∂θ g(x+ θ(x′ − x))

∥∥∥∥dθ

≤ ‖x′ − x‖
∫ 1

0

A4(1 + ‖x+ θ(x′ − x)‖γ−1
)dθ

≤ C‖x′ − x‖
(

1 + ‖x‖γ−1
+ ‖x′ − x‖γ−1

)
. (23)

Now, let 0 < h ≤ 1 and x ∈ Ωh. Then, x− he ∈ Ω, so

QWh (g)(x)− g(x) ≤ g(x− he) + hW (e)− g(x)

≤ Ch(1 + ‖x‖γ−1
+ hγ−1) + hW (e)

≤ Ch(1 + ‖x‖γ−1
).

For the converse inequality, we will of course use hypotheses (C1) and (C3), but we first have to
localize the point where the infimum QWh (g)(x) is reached. Let y ∈ Ω1 be such that QWh (g)(x) =
g(x− hy) + hW (y). Then, invoking hypothesis (C1) and inequality (23),

hA1‖y‖γ ≤ hW (y) = QWh (g)(x)− g(x− hy)

= QWh (g)(x)− g(x) + g(x)− g(x− hy)

≤ Ch(1 + ‖x‖γ−1
) + Ch‖y‖(1 + ‖x‖γ−1

+ (h‖y‖)γ−1).
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We thus choose h0 ∈ (0, 1) such that for any h ∈ (0, h0), A1 − Chγ−1 > hγ−1. Then, for any
h ∈ (0, h0),

hγ−1‖y‖γ < (A1 − Chγ−1)‖y‖γ

≤ C(1 + ‖y‖)(1 + ‖x‖γ−1
),

which implies that
hγ−1‖y‖γ−1 ≤ C(1 + ‖x‖γ−1

),

since ‖y‖γ−1 ≤ max
(

1, 2 ‖y‖
γ

1+‖y‖

)
. Now, using inequality (23) once again,

|g(x− hy)− g(x)| ≤ Ch‖y‖(1 + ‖x‖γ−1
+ hγ−1‖y‖γ−1

)

≤ Ch‖y‖(1 + ‖x‖γ−1
).

Plugging this in the definition of QWh (g)(x), we find

QWh (g)(x)− g(x) ≥ inf
y∈Ω1

{
−Ch‖y‖(1 + ‖x‖γ−1

) + hA1‖y‖γ
}

≥ inf
y∈Rn
{. . . } = −Ch(1 + ‖x‖γ).

To conclude, it is enough to notice that 1 + ‖x‖γ−1 ≤ 2 + ‖x‖γ since γ > 1.

Now that we have this estimation, we may estimate the speed of convergence of QWh (g)1−a

towards g1−a.

Proposition A.4. If (g,W ) is admissible, there exist constants C > 0 and h0 > 0, such that
for all 0 < h < h0, and x ∈ Ωh,∣∣QWh (g)1−a(x)− g1−a(x)

∣∣
h

≤ C

1 + ‖x‖γ(a−1)
.

Proof. First, let α, β > 0. Then,∣∣∣∣∣
∫ β

α

t−adt

∣∣∣∣∣ =

∣∣∣∣ 1

1− a
(β1−a − α1−a)

∣∣∣∣ ≤ max(α−a, β−a)|α− β|,

implying that ∣∣α1−a − β1−a∣∣ ≤ (a− 1)|α− β|(α−a + β−a). (24)

Then, according to Lemma A.3, there exists h0 > 0 such that for any h ∈ (0, h0), and any
x ∈ Ωh, ∣∣QWh (g)1−a(x)− g1−a(x)

∣∣
h

≤ C
∣∣QWh (g)(x)− g(x)

∣∣
h

(
QWh (g)−a(x) + g−a(x)

)
≤ C(1 + ‖x‖γ)

(
QWh (g)−a(x) + g−a(x)

)
. (25)

Now, hypotheses (C1) and (C3) and a straightforward computation yield

QWh (g)(x) ≥ inf
y∈Ω1

{A3(1 + ‖x− hy‖γ) + hA1‖y‖γ}

≥ inf
y∈Rn
{A3(1 + |‖x‖ − h‖y‖|γ) + hA1‖y‖γ}

≥ C(1 + ‖x‖γ).
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Using (C3) once again, we know that

g−a(x) ≤ (A3(1 + ‖x‖γ))
−a

;

putting these two inequalities together with inequality (25), we finally obtain∣∣QWh (g)1−a(x)− g1−a(x)
∣∣

h
≤ C 1 + ‖x‖γ

(1 + ‖x‖γ)a

≤ C

1 + ‖x‖γ(a−1)
.

Proposition A.4, together with Lemma 2.6, proves the dominated convergence, and

lim
h→0

(i) = (a− 1)

∫
Ω

W ∗(∇g)

ga
,

as claimed. The convergence of (ii) is straightforward, as it is a direct implication of the local
Lipschitz continuity of g and hypothesis (C3).

A.1.2 Convergence of (iii)

This term is a bit trickier, because comparing QWh (g) to g is not possible on the entirety of Bh,
g being defined only on Ω. For many functions ϕ, Bh 6⊂ Ω as is showcased on figure 1 below.
Thus, we prove the following result:

x1

x2

Ω
Ωh

Bh

Figure 1: Graph of Ω, Ωh, and Bh for ϕ(x1) = ‖x1‖2 and h = 0.5

Lemma A.5. If (g,W ) is admissible, there exist constants C > 0 and h1 > 0, such that for all
0 < h < h1, and (x1, x2) ∈ Bh\Ωh,∣∣QWh (g)(x1, x2)− g(x1, ϕ(x1))

∣∣ ≤ hC(1 + ‖(x1, ϕ(x1))‖γ + |x1 · ∇ϕ(x1)|γ). (26)

The proof follows the same logic as the proof of Lemma A.3.

Proof. Recall that, according to Lemma 3.3

Ωh = {(x1, x2) ∈ Rn, x2 ≥ h+ ϕ (x1)} , Bh =

{
(x1, x2) ∈ Rn, x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)}
,

and that
|g(x′)− g(x)| ≤ C‖x′ − x‖

(
1 + ‖x‖γ−1

+ ‖x′ − x‖γ−1
)

(23 revisited)
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for any x′, x ∈ Ω.
1. Fix h ∈ (0, 1), x = (x1, x2) ∈ Bh\Ωh, and define p(x1, x2) = (x1, ϕ(x1)), its projection

onto ∂Ω. Letting y =
(
x1

1+h , 1 + ϕ
(
x1

1+h

))
, we find that y ∈ Ω1, and also that x− hy ∈ Ω, thus,

with hypothesis (C2) and inequality (23),

QWh (x)− g(p(x)) ≤ g(x− hy)− g(p(x)) + hW (y)

≤ C‖x− hy − p(x)‖
(

1 + ‖p(x)‖γ−1
+ ‖x− hy − p(x)‖γ−1

)
+ hA2(1 + ‖y‖γ).

For brevity, let us write u = ‖p(x)‖ = ‖(x1, ϕ(x1)‖, and v = x1 · ϕ(x1) = |x1 · ϕ(x1)|. Now,
notice that

‖x− hy − p(x)‖ = h

∥∥∥∥( x1

1 + h
,
x2 − h− ϕ(x1)

h
− ϕ

(
x1

1 + h

))∥∥∥∥.
From the definition of Ωh and Bh, we find out that

0 ≤ h+ ϕ(x1)− x2

h
≤ ϕ(x1)− (1 + h)ϕ(x1/(1 + h))

h
≤ x1 · ∇ϕ(x1) = v,

since ϕ is convex and nonnegative. Thus,

‖x− hy − p(x)‖ ≤ h
∥∥∥∥( x1

1 + h
, ϕ

(
x1

1 + h

))∥∥∥∥+ h|x1 · ∇ϕ(x1)|

≤ h(‖p(x)‖+ |x1 · ∇ϕ(x1)|) = h(u+ v),

so, since h < 1,

1 + ‖p(x)‖γ−1
+ ‖x− hy − p(x)‖γ−1 ≤ 1 + uγ−1 + (h(u+ v))γ−1

≤ C(1 + uγ−1 + vγ−1).

Finally,

A2(1 + ‖y‖γ) = A2

(
1 +

∥∥∥∥ x1

1 + h
, 1 + ϕ

(
x1

1 + h

)∥∥∥∥γ) ≤ C(1 + uγ).

Putting all these inequalities together, we find

QWh (x)− g(p(x)) ≤ hC(u+ v)(1 + uγ−1 + vγ−1) + hC(1 + uγ)

≤ hC(1 + uγ + vγ). (27)

2. Conversely, let y ∈ Ω1 be such that QWh (g)(x) = g(x−hy)+hW (y). As before, we localize
y. Using hypothesis A1 and inequalities (23) and (27),

hA1‖y‖γ ≤ hW (y) = QWh (g)(x)− g(p(x)) + g(p(x))− g(x− hy)

≤ hC(1 + uγ + vγ) + C‖x− hy − p(x)‖
(

1 + uγ−1 + ‖x− hy − p(x)‖γ−1
)

≤ hC(1 + uγ + vγ) + hC(‖y‖+ v)
(
1 + uγ−1 + hγ−1(‖y‖+ v)γ−1

)
≤ hC(1 + uγ + vγ) + hC(‖y‖+ v)

(
1 + uγ−1 + hγ−1‖y‖γ−1

+ vγ−1
)
.

Rearranging the terms and dividing by h yields

A1‖y‖γ − Chγ−1‖y‖γ−1
(‖y‖+ v) ≤ C(1 + uγ + vγ) + C(‖y‖+ v)

(
1 + uγ−1 + vγ−1

)
≤ C(1 + u+ v + ‖y‖)

(
1 + uγ−1 + vγ−1

)
.
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We must now split the reasoning in two cases: either ‖y‖ ≤ v, in which case the conclusion
follows, or ‖y‖ ≥ v, and then A1‖y‖γ − Chγ−1‖y‖γ−1

(‖y‖ + v) ≥ A1‖y‖γ − 2Chγ−1‖y‖γ . We
thus choose 0 < h1 < 1 such that for all h ∈ (0, h1), A2 − 2Chγ−1 ≥ hγ−1. Then, we have, for
any h ∈ (0, h1),

hγ−1‖y‖γ

1 + u+ v + ‖y‖
≤ C

(
1 + uγ−1 + vγ−1

)
.

Once again, either ‖y‖ ≤ 1 + u+ v, or

hγ−1‖y‖γ−1 ≤ 2hγ−1‖y‖γ

1 + u+ v + ‖y‖
.

Taking the greatest of the constants in those two cases, we may conclude that

hγ−1‖y‖γ−1 ≤ C(1 + uγ−1 + vγ−1). (28)

3. We may now proceed with the converse inequality. Invoking once again inequality (23),
and then inequality (28),

|g(x− hy)− g(p(x))| ≤ hC(‖y‖+ v)(1 + uγ−1 + hγ−1‖y‖γ−1
+ vγ−1)

≤ hC(‖y‖+ v)(1 + uγ−1 + vγ−1).

Finally,

QWh (g)(x)− g(p(x)) = g(x− hy)− g(p(x)) + hW (y)

≥ −hC(‖y‖+ v)(1 + uγ−1 + vγ−1) + hA2‖y‖γ

≥ h inf
y∈Rn
{−C(‖y‖+ v)(1 + uγ−1 + vγ−1) +A2‖y‖γ}

≥ −hC
(
1 + uγ−1 + vγ−1

)γ/(γ−1)
,

and we may conclude.

We may now prove Theorem A.2: using the same notations as in the proof above, that is
u = ‖p(x)‖ = ‖(x1, ϕ(x1)‖, and v = x1 ·ϕ(x1) = |x1 · ϕ(x1)|, hypothesis (C2) immediately yields,
for all h > 0 and all x ∈ Bh\Ωh,

g−a(p(x)) ≤ C

(1 + uγ)a
.

Furthermore, inequality (26) and hypothesis (C2) yield

QWh (g)(x) ≥ −hC(1 + uγ + vγ) + C(1 + uγ)

for all x ∈ Bh\Ωh and 0 < h < h1. Now, assumption (21) reads: for all x1 ∈ Rn−1 such that
‖x1‖ > R,

v ≤ Cu.

Since both u and v are bounded functions of x on the set {(x1, x2) ∈ Bh\Ωh, ‖x1‖ ≤ R}, there
exists h2 > 0 such that, for all 0 < h < h2,

QWh (g)(x) ≥

{
C > 0 whenever ‖x1‖ ≤ R
C(1 + uγ) whenever ‖x1‖ > R
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Thus, for all 0 < h < h2 and all x ∈ Bh\Ωh,

QWh (g)−a(x) ≤ C

(1 + uγ)a
.

Finally, invoking inequality (24) together with assumption (21) yields, for any 0 < h < h2

and x = (x1, x2) ∈ Bh\Ωh,∣∣QWh (g)1−a(x)− g1−a(p(x))
∣∣

h
≤ C

∣∣QWh (g)(x)− g(p(x))
∣∣

h

(
QWh (g)−a(x) + g−a(p(x))

)
≤ C(1 + uγ + vγ)

1

(1 + uγ)a

≤ C 1

1 + u(a−1)γ
.

Note that u ≥ ‖x1‖, and we chose a such that (a− 1)γ > n, hence q(a− 1)γ − q > q(n− 1),
thus the dominated convergence theorem applies, and we may conclude that

lim
h→0

∫
Bh\Ωh

1

h
QWh (g)1−a = lim

h→0

∫
Rn−1

(
1

h

∫ h+ϕ(x1)

h+(1+h)ϕ(x1/(1+h))

g1−a(x1, ϕ(x1))dx2

)
dx1

=

∫
Rn−1

(x1 · ∇ϕ(x1)− ϕ(x1))g1−a(x1, ϕ(x1))dx1,

this last equality also being a dominated convergence result, using the hypotheses on g.

A.2 Extending the differentiated inequality
We just proved that whenever (g,W ) is admissible, with

∫
Ω
g−a =

∫
Ω1
W−a = 1, and ϕ satisfies

the asymptotic growth condition (21), then

(a− n)

∫
Ω

g1−a + (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rn−1

g1−a(x1, ϕ(x1))P (x1)dx1 ≥
∫

Ω1

W 1−a. (29)

Let q > 1. We want to use this inequality with W (x) = C‖x‖q/q, where C > 0 is such that∫
Ω1
W−a = 1. The goal being to prove Sobolev-type inequalities, we may consider only the real

q such that their conjugate exponent p = q/(q−1), which will appear in W ∗, is strictly less than
n. Thus, we assume that q > n/(n − 1), and conditions (C0), (C1) and (C2) are automatically
satisfied with γ = q.

We now compute W ∗:

W ∗(y) = sup
x∈Ω1

{x · y − C‖x‖q/q} ≤ sup
x∈Rn
{x · y − C‖x‖q/q} (30)

= sup
R≥0

sup
‖x‖=R

{x · y − C‖x‖q/q}

= sup
R≥0
{R‖y‖∗ − CR

q/q}

= C1−p‖y‖p∗/p.

It is important to note that (30) becomes an equality for y = ∇g(z) whenever g( . ) = W ( .+ e),
since in that case,

W ∗(∇g(z)) = sup
x∈Ω1

{x · ∇g(z)−W (x)} = sup
x∈Ω
{(x+ e) · ∇g(z)− g(x)} = e · ∇g(z) + g∗(∇g(z))
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and the supremum is indeed reached inside the right set. Optimality is not lost, and inequality
(29) then becomes

(a−n)

∫
Ω

g1−a+C1−p
(
a− 1

p

)∫
Ω

‖∇g‖p

ga
−
∫
Rn−1

g1−a(x1, ϕ(x1))P (x1)dx1 ≥
∫

Ω1

W 1−a. (31)

The next step is to lift the restrictions on the function g, extending the results to more general
functions. Our tool here will be approximation by admissible functions.

A.2.1 f = g(p−a)/p is a smooth function with compact support

Let f ∈ C∞c (Ω) be a nonnegative function such that
∫

Ω
fap/(a−p) = 1. Let us fix some

γ > max{1, a/(n− 1)} and consider, for ε > 0,

fε(x) =
(
ε‖x+ e‖−γ(a−p)/p

+ Cεf
)
,

where Cε is such that
∫

Ω
f
ap/(a−p)
ε = 1, whenever ε is small enough for Cε to exist. It is

not difficult to see that the corresponding functions gε = f
p/(p−a)
ε satisfy conditions (C3) and

(C4), and that
∫

Ω
g−aε = 1. Furthermore, Cε increases strictly as ε decreases towards 0, and

an argument of continuity shows that limε→0 Cε = 1, meaning that, pointwise, limε→0 gε =

f (p−a)/p =: g. Finally, the dominated convergence theorem, applied to g1−a
ε = f

(a−1)p/(a−p)
ε ,

proves that inequality (31) is indeed valid for g. Rewriting it with f yields

(a− n)

∫
Ω

fp
a−1
a−p + C1−p

(
a− 1

p

)(
p

a− p

)p ∫
Ω

‖∇f‖p −
∫
Rn−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1

≥
∫

Ω1

W 1−a.

(32)

A.2.2 Ω is the epigraph of a general convex function

Finally, we may lift the growth condition on ϕ (21) and prove theorem 1.4 in its full generality.
Let ϕ be a convex function with ϕ(0) = 0, and let Ω be its epigraph. The subdifferential of

ϕ at point x ∈ Rn−1 is the convex set

∂ϕ(x) = {v ∈ Rn−1 | ∀x′ ∈ Rn−1, ϕ(x)− ϕ(x′) ≥ v · (x− x′)}.

Whenever ϕ is differentiable, the subdifferential coincides with the gradient. Next, given x ∈ Rn−1

and v ∈ ∂ϕ(x), we consider the tangent half-space

Hx,v = {(y1, y2) ∈ Rn−1 × R, y2 − ϕ(x) ≥ v · (y1 − x)}.

For R > 0, define
ΩR =

⋂
x∈B(0,R)
v∈∂ϕ(x)

Hx,v.

ΩR is the epigraph of a convex function ϕR that coincides with the function ϕ on the ball
B(0, R) ∈ Rn−1, and its gradient is uniformly bounded by supx∈B(0,R)|∇ϕ(x)| < +∞, so that it
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verifies the condition (21). Now, fix a function f ∈ C∞c (Ω). The support of f is inside a ball of
radius R0, so for any R ≥ R0, we may apply inequality (32) to the function f :

(a− n)

∫
ΩR

fp
a−1
a−p +AR

∫
ΩR

‖∇f‖p −
∫
Rn−1

fp
a−1
a−p (x1, ϕR(x1))PR(x1)dx1

=(a− n)

∫
Ω

fp
a−1
a−p +AR

∫
Ω

‖∇f‖p −
∫
Rn−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1 ≥

∫
ΩR,1

W 1−a
R .

where PR, ΩR,1, and WR are the usual definition of P , Ω, and W respectively, with function

ϕR instead of ϕ. The constants are given by AR = C1−p
R

a−1
p

(
p

a−p

)p
and CR > 0 is such that∫

ΩR,1
W−aR = 1, i.e.

CR = qa
∫

ΩR,1

‖x‖−qadx.

It is now easy to verify that limR→+∞ CR = qa
∫

Ω1
‖x‖−qadx = C; AR, and

∫
Ω1,R

W 1−a
R also

converge towards the right constants, so that equation (32) is still valid for the function ϕ,
without any growth condition.

Optimality remains to be shown. Let f be the optimal function (which does not have compact
support) given in theorem 3.4. First, note that

lim
R→+∞

∫
ΩR

fp
a−1
a−p =

∫
Ω

fp
a−1
a−p , lim

R→+∞

∫
ΩR

‖∇f‖p =

∫
Ω

‖∇f‖p,

and also that for all R, f is an optimal function for inequality (32) on domain ΩR. Then, by
approximation by smooth functions with compact support, inequality (32) is true for f , so that,
writing A = limR→+∞AR, and putting these facts together,∫
Rn−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1 ≤ (a− n)

∫
Ω

fp
a−1
a−p +A

∫
Ω

‖∇f‖p −
∫

ΩR

W 1−a

= lim
R→+∞

(
(a− n)

∫
ΩR

fp
a−1
a−p +AR

∫
ΩR

‖∇f‖p −
∫

ΩR,1

W 1−a
R

)

= lim
R→+∞

(∫
Rn−1

fp
a−1
a−p (x1, ϕR(x1))PR(x1)dx1

)
.

We can decompose that last integral as a sum of the two following integrals∫
Rn−1

fp
a−1
a−p (x1, ϕR(x1))dx1 −

∫
Rn−1

fp
a−1
a−p (x1, ϕR(x1)) (x1 · ∇ϕR(x1)− ϕR(x1)) dx1.

By monotone convergence, the first term converges to the integral of the pointwise limit of its
integrand. Furthermore, by convexity, for all x1 ∈ Rn−1, x1 · ∇ϕR(x1)− ϕR(x1) ≥ 0, so Fatou’s
lemma applied to the second term yields

lim
R→+∞

(∫
Rn−1

fp
a−1
a−p (x1, ϕR(x1))PR(x1)dx1

)
≤
∫
Rn−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1,

which finishes to prove equality in the previous inequalities, whence optimality.
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