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Robust, real-time generic detector based on a
multi-feature probabilistic method

M. Doyen, D. Ge, Member, IEEE, A. Beuchée, G. Carrault and A.l. Herndndez, Member, IEEE.

Abstract—Objective: Robust, real-time event detection from
physiological signals acquired during long-term ambulatory mon-
itoring still represents a major challenge. In this paper, we pro-
pose an original and generic multi-feature probabilistic detector
(MFPD) and apply it to real-time QRS complex detection. Meth-
ods: The proposed method first derives relevant features from
one or more physiological signals and estimates their probability
distributions. Bayesian probabilities are then calculated for each
feature before being merged through a data fusion node, with
regard to the Kullback-Leibler divergence measure. To this end,
we derived a KLD estimation method between two Generalized
Normal Distributions (GND), in the general case. The efficiency
of our method is validated on two noisy ECG databases : 1)
a benchmark database by adding noise recordings[23] to the
entire MIT-BIH arrhythmia database with noise levels ranging
from —6dB to 24dB, 2) an exercise stress test database composed
of 54 real ECG recordings (17.8 hours). Results: In both cases
significant improvements in detection performance are obtained
compared with reference methods. For the benchmark noise
stress database, performance gains are consistent for all noise
type and SNR levels, and are increasing in low SNR levels. For
the exercise stress database, detection error criterion is lowered
to 20.91%, as compared with Pan-Tompkins-based (33.08%) and
wavelet-based QRS detector (29.02%). Conclusion: Thanks to its
multi-feature aspect and its KLD-based decision method (able
to adaptively adjust the relative contribution of each feature
to the final decision in real-time), the proposed method yields
some interesting results, especially on highly-artifacted signals.
Significance: Robust, easy to implement and with a reasonable
computational cost, MFPD offers some promising perspectives
for various challenging monitoring situations.

Index Terms—Robust probabilistic detection, Centralized fu-
sion, QRS detection, Kullback-Leibler divergence (KLD).

I. INTRODUCTION

VENT detections from physiological signals are often

faced with important noise perturbations, especially in
clinical monitoring context. Main strategy is often focused on
finding an efficient feature reliable in most cases. Generally,
these methods get interesting results under low- to mid-level
noise conditions [1], but performances decrease significantly
with the signal-to-noise ratio (SNR) diminution or with a
change in the noise type since all features have vulnerabilities
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to specific distortions. To circumvent this weakness, multi-
feature detectors were proposed [2] but the decentralized
fusion method does not permit to fully exploit feature infor-
mations. The objective of this paper is to propose a centralized
event detection method using multiple features’ distributions
and to apply it to real-time QRS complex detection from
electrocardiogram (ECG) signals.

QRS complex is the most prominent deflection in ECG
signal and corresponds to the electrical depolarization of
ventricles. The detection is often the first analysis performed
on ECG signal processing, in order to estimate basic cardiac
markers, such as heart rate or to perform further ECG seg-
mentation and analysis. The QRS complex detection has been
investigated for many decades [1] and yet remains a challenge
[3] as an event detection problem from physiological signals.
Many different methods have been proposed and a number
of review publications have been dedicated to this subject [4]
[5]. The main proposed methods are based on filtering and
non linear transformations [1], fuzzy hybrid neural networks
[6], S-Transform [7] or wavelet analysis [8], [9], [10], [11].
Although these QRS detection methods perform well in low-
to mid-level noise conditions, their applications on long-term
periods of ECG recordings in ambulatory care or in intensive
care units still pose a significant challenge. Indeed, these ECG
recordings are often prone to episodes of strong signal non-
stationarity, sudden modifications of beat morphologies and
most importantly the presence of several types of noise (base-
line drift, saturation, power-line pickup, muscular contractions
and motion artifacts [12]). Recent publications [13] [14] [15]
and a recent PhysioNet challenge [3] have been focused on
the specific problem of robust QRS detection. Furthermore,
the emergence of wearable cardiac monitors, with a limited
number of leads [16] [17] for long-term daily-life recordings
[18] further revives the research interests on this subject.

In our previous works, we have proposed different methods
to improve the robustness of QRS detection, through multi-
sensor fusion [2], adaptive selection of QRS detectors as a
function of the signal context [19] or through optimal detector
parameter configuration, using evolutionary methods [20] [21].
More recently, we revisited this optimization process in order
to identify optimal parameter configurations with respect to
changes in signal noise [22].

In this paper, we propose and evaluate a novel, generic
event detector, that provides improved robustness through the
probabilistic combination of a set of signal features. Section II
presents the general architecture of the proposed Multi-Feature
Probabilistic Detector (MFPD) and a specific implementation
adapted to robust QRS detection. Section III evaluates the



reliability of MFPD on two databases: the MIT noise stress
database [23] and an exercise stress test database composed
of 54 real ECG signals. Performance obtained by MFPD is
compared with a wavelet-based [24] [22] and a Pan-Tompkins-
based [20] QRS detectors, using both the default detector pa-
rameters and optimized versions of these parameters, obtained
through evolutionary algorithm [20].

II. METHODS
A. General architecture of the detector

The general architecture of the MFPD is depicted in Fig. 1.
It is based on the following steps:

1) Pre-processing: Raw signals are processed in order to
improve the SNR and to pre-select potential candidates
(to be validated by the detector) of the events of interest
at instants .

2) Feature extraction: For every event candidate selected at
instant ¢, a vector C(t) = {C;(t)|é € I} is created, where
T is a set of complementary features extracted from the
preprocessed signals.

3) Probability density estimation: The probability density
functions (pdf), noted as P;(C;(t); ©;o/1,-#4,1) are used
to model feature ¢ on the observed candidate C(t), with
the 2 hypothesis :

4 D(t) =0,

24 :D(t) =1,
where D(t) is the final detection decision (D(t) = 1
for positive detection and D(t) = 0 otherwise) and

©j0/1 the parameter set for each hypothesis. Note that for
each feature, the two pdf belong to the same distribution
family, whose parameters ©;y,; are initialized at the
beginning of the recording and updated throughout the
detection process.

4) Probabilistic characterization: The posterior probability
P;(s#1|C;(t)) is calculated by applying the Bayes law.
Moreover, the Kullback-Leibler divergence (KLD) be-
tween each pdf pair characterizing feature i, Di, is
calculated.

5) Decision fusion: The posterior probabilities, weighted
by their respective KLD, are combined to build a binary
decision D(t) on whether candidate C(¢) is a valid event
(D(t) = 1) or not (D(t) = 0). According to the decision
for the current candidate, distribution parameters are
updated to complete the real-time learning process.

In the following, we detail the realization of the above-
mentioned MFPD, adapted for real-time detection of QRS
complexes. From the generic approach of Fig. 1, the specific
adaptions to QRS complex detection concern mainly the
preprocessing (step 1) and the feature extraction (step 2), they
are depicted in Fig. 2.

B. Pre-processing the ECG signal

As in many other QRS detection methods, the first step
consists in applying to the raw ECG signal different transfor-
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Figure 1: Diagram representing the global architecture of the
MFPD. In process step, data coming from ECG (raw and
filtered) are converted into features. P;(.|547) and P;(.|76))
are probabilistic parametric models of feature i, representing
valid and invalid detections.
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Figure 2: Specification of signal pre-processing and feature
extraction (steps 1 and 2 in Figure 1), for the application of
robust QRS detection.

mations. Typically, a band-pass filter, a derivative filter, a non-
linear transformation and a final smoothing filter are applied.
Fig. 2 represents a diagram of these signal processing steps
and Fig. 3 shows a representative example. In the following,
the band-pass filtered (low-pass then high-pass filter) ECG
signal will be denoted SAecg; and the output of a squared
transformation followed by a derivative then a smoothing
filter on signal SAecg will be denoted SFecg. Each local
maximum (or positive peak) detected at an instant ¢ on SFecg
is considered as a potential QRS candidate. It is a common
pre-processing method previously used in [1] [25]. A set of
features (7) is extracted from signals SAecg and SFecg around
instant ¢ in order to estimate, through the proposed MFPD, if
the candidate at time ¢ is a valid QRS (D(¢t) = 1) or not
(D(t) = 0).

C. Feature extraction and probability distributions

In the proposed QRS detection application, each candidate
is characterized by a set of 3 features Z = {s,a,c}. The



following features and probability distribution functions have
been selected for this application:
o The squared slope of the peak (s) is the value of SFecg
signal at instant ¢. This feature is represented with the
Gamma distribution with two degrees of freedom, defined

as: -
zFle %

WHQDO,

where k € R™ is the shape parameter, and § € R™ the
scale parameter. The indicator function 1l,-¢ typically
limits the function support to R™T.

Py(z; k,0) = )]

o The peak amplitude (a) is the value of SAecg signal
at instant ¢. We characterized it using the Generalized
Normal Distribution (GND) defined as:

1) _(lz—ul)B
Po(z;0;851) = =7 2
where I is the gamma function
F@:/ v le " da 3)
0

i € R is the position parameter, o € R the scale
parameter and 3 € R™ the shape parameter. Note that
both positive and negative peak values are considered
with the GND model.

« the Bravais-Pearson correlation (c) is calculated between
the candidate peak (represented by 50 ms of raw ECG
signal centered 20 ms before the peak) at instant ¢ and
an adaptive template. In order to model this feature, we
have chosen the Beta distribution, defined as:

F(a+ﬂ) a—1 -1
:W;C (1—x)? L1y ().

“

This can also be considered as a special case of the
Dirichlet distribution, with two positive shape parameters
a and (. Parameters are estimated using maximum a
posteriori (MAP) method, further details are reported in
section III-B.

Pe(z;, )

Note again that, for each feature, the same probability
model structure is proposed for both .74 and 7] while model
parameters ©;q,; are initialized during the heating-up period
then updated throughout the detection process according to the
final decision.

D. Probabilistic characterization of the the candidates

According to the probability distributions defined in II-C,
two probabilistic markers are calculated for each feature: the
posterior probability and the KLD. The posterior probability
of validating 7] for a given feature C;(¢) is given by

P;(C;(t)|747) Pi(A7)

FAICO) = g mmabs) + BG4 B

using the Bayes rule.

The KLD is a non-negative measure defined by:

Do) = | P()

— 00

oo

p(x) log dx

q(x) ®
for continuous distributions. It is particularly well-suited
to assess the distance between each distribution pair
P;(Ci(t); ©40/1; H5,1)- Analytic expressions for (5) can be
found in the literature in the case of Beta [26] and Gamma
distributions [27]. However for the GND case and to our best
knowledge, no analytic expression can be found in the general
case, especially when ji,, # /14. One theoretical contribution of
this article is to efficiently calculate the KLD between 2 GND
distributions in the case of general settings. While detailed
derivation is reported in the appendix B, we give a summary
of the main results here:
1) Analytic expressions for 3, € NT U {0} have been
derived;
2) We demonstrated that equation (5) is monotonous with
respect to 34;
3) The computational complexity requires 2 x (5, + 1)
gamma function evaluations.
Thus, we are able to obtain a close approximation of the KLD
value for all 5, € RT. Note that the other parameters (v, oy,
Bps Hp» q) have no effect on the calculation method.

E. Decision fusion

Based on the probabilistic markers, the following decision
rule is applied

D(t) = 1 iff
Z ﬁKL-B(%|Ci(t))
ieT Zjel’ Di{L

where the normalized ﬁkL is calculated by letting *
argmax{D%} and :

>\ (6)

o min{D}(LJZD’}(L}, j=7i*
KL = hi*

D, j#ir

such that the most significant contributor should not exceed
2/3 after normalization.

Intuitively, the decision rule represents the sum of all
posterior probabilities, weighted by their normalized KLD,
such that features that are better separated in distributions

(between 77 and 7#1) have more weight in the final decision
making.

F. Evaluation methodology

1) Database: Two noisy ECG databases were used:

a Simulation database: three noise types (baseline wander,
muscle artifact and electrode motion artifact) from record-
ings acquired on physically active volunteers in the MIT
noise stress database [23] were added to the first lead of
the 48 ECG of the MIT-BIH Arrhythmia Database, with
SNR levels from —6dB to 24dB and a constant step of



6dB. We thus created a benchmark simulated database
composed of 864 noisy signals !, for which the reference
annotations are simply copies of those for the original
clean ECGs in the MIT-BIH Arrhythmia Database. The
purpose of this database is to provide a ground truth for
detection performance comparison with different levels
and types of noises.

b Test database: A real exercise stress test database com-
posed of real ECG signals (17.8 hours) of 54 patients
recorded using an ergocycle (sampling frequency 1000
Hz using a Cardionics system) at the University Hospital
of Rennes in France was also used for validation. Manual
QRS complex annotations were realized by a trained op-
erator. We aimed at further validating the method on real
ECG signals acquired under ambulatory situations with a
dominance of muscle and electrode motion artifacts.

2) Comparison methods: As in recent publications [28§]
[13], performance of the proposed MFPD was compared with
the following QRS detection methods:

- WBD: a wavelet-based QRS detector [24] for the test

database

- PTM: an improved Pan-Tompkins detector with opti-
mized Remez-based filter coefficients[20] for both the
simulation and test database.

The performance of all three detectors (MFPD, WBD
and PTM) are impacted by the tuning of several parameters
(threshold adjustments, cutoff frequencies, order of filters,
window sizes, etc). All these parameters were optimized by
an evolutionary algorithm [20] on a subpart of the simulation
database (25% for MFPD and PTM, see [22] for WBD).
Detectors with the obtained optimal parameters are noted
WBD*, PTM* and MFPD*. Note that the 3 detectors with
default and optimized parameters were evaluated on the test
database.

3) Performance criterion: To compare the reliability of our
detector to others, we used the detection error criterion defined
as:

Corr = /(1 —Se)2+ (1 — PPV)2 (7

where Se is the sensitivity and PPV is the positive predictive
value [22]. This criterion is preferred to overall accuracy, the
latter being inappropriate in this case due to the very low
prevalence of the QRS complex event [29]. Knowing that
a QRS complex normally lasts 90 — 100 ms in adults [30],
a detection is considered as a true positive (TP) when it is
located within a 50 ms window centered in the reference QRS
complex annotation. All the other detections are considered as
false positives (FP). Moreover, the ROC curve (with 1-PPV
in abscissa) is depicted for experimental results to provide a
complete comparison of the performances.

III. RESULTS

In addition to the global performance evaluation and com-
parison summarized in ITII-D, we also provide here some inter-

IFor reproducibility, we provide a quick access to this benchmark test
database ( https://physionet.org/physiobank/database/nstdb/) though it can also
be constructed using the method described in [23]

mediate results to illustrate the multi-feature complementarity
in III-A, their distribution estimation results in III-B, and
the importance of KLD weighting in the centralized decision
making in ITI-C.

A. Multi-feature complementarity

Figure 3 shows an example of the processed ECG signals
and the features extracted in this paper. Panel (a) shows an
ECG segment from record MIT-101, with added electrode
noise at 6 dB. Panels (b) and (c) represent, respectively, the
SAecg and SFecg signals obtained from the ECG in panel (a).
Each peak (QRS candidate) detected from the SFecg signal is
marked with a symbol (either x or o) and these symbols have
been projected to the other signals in the figure. Features s and
a are directly computed for each candidate as the values of
signals SFecg and SAecg at the instant of the corresponding
peak. Panel (d) represents the Bravais-Pearson correlation
(feature c), calculated for each detected peak. Using these
features for each candidate, a global detection is performed.
Peaks with symbol x are the ones that have been invalidated
by our method as a QRS, while symbol o represents the
candidates that have been selected as QRS detections. In this
example, all validated candidates were TP and all invalidated
candidates were TN.

The vertical box in Figure 3 shows a set of features that,
if analyzed individually with simple thresholds, would have
produced a false positive. This example shows the utility of
the proposed MFPD in this complex signal context.

B. Distribution estimation

Estimated and empirical distributions for each fea-
ture are depicted in Fig. 4. The dashed line represents
P;(Ci(t); ©i0/1, #)1), depicted jointly with their normalized
histogram in grey. In some cases, because of the high stability
of the QRS complex morphology on mildly-artifacted signals,
C.(t) can tend to 1 for most of valid candidates. Thus
large « values are obtained for P.(C;(t);©.1,.94) yielding
a rapid convergence towards a dirac-like distribution around
I, and a net separation in distribution (large D%-;) from
P.(C;(t); ©g, %) (cf third column in Fig. 4). As a conse-
quence, future candidates must have a very high correlation
(above 0.9999) to be validated, giving a decision with a high
PPV, but with a low sensitivity in the case of sudden noise
artifacts or even mild morphology change. In order to obtain
a better trade-off between PPV and sensitivity, we propose to
limit the estimated « parameter by imposing a conjugate prior
law on the parameters:

P(a,B) o B(a, B)Ke e tP

for K,a,b € NT. The exp % term indeed forbids large
values in estimating « to control the distribution shape of 7.
Numerical implementation is detailed in appendix A .

C. KLD weighting

In this section, we present results showing the relevance of
the proposed MFPD method, integrating a KLD, with respect
to mono-featured method.
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Figure 3: Example of the processed ECG signals and the
features extracted from each QRS candidate. a) Raw ECG
segment from record MIT-101 with added electrode noise
(SNR=6 dB). The raw ECG is processed to obtain signals
SAecg and SFecg, represented respectively in (b) and (c).
Symbols x and o represent QRS candidates, detected as peaks
in signal SAecg. Events annotated as true positives are marked
with symbol (o). Features a and s are computed for each
candidate from signals SAecg and SFecg, while the values
of feature c (the Bravais-Pearson correlation) are presented
in panel (d). In this example, all validated candidates are TP
and all invalidated candidates are TN. The vertical box shows
a temporal support during which the application of a simple
threshold to each feature independently would have caused FP
or FN.
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Figure 4: Distribution estimation extracted from record MIT-
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Each column corresponds to a particular feature; at the top,
distributions for validated candidates (741) and at the bottom,
distributions for invalidated candidates ().
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Figure 6: Performance of PTM* and MFPD* on the whole
MIT noise stress database, with different types of noise and
with different SNR levels.

Fig. 5a represents the time series of Ef(L during 60 s
obtained from record MIT-109 (baseline noise added with
SNR=18 dB). 5; 1, values (bold line) are higher than those
of 5(;( 1, (dash line) and close to 52 1, values (solid line).
In this example, the performance of the PTM* detector,
which only exploits the square slope feature, (PPV = 100%,
sensitivity= 97.67%) is close to that obtained by the proposed
MFPD* (PPV = 99.56%, sensitivity= 99.09%). This result
was expected, since the values of 5; 1, are high in this case.
On the contrary, in Fig. 5b (MIT-102, muscle artifact with
SNR=6 dB), 52 1, values are lower than those of EGK 1, and
5} 1, leading to a degraded performance of the PTM* detector
(PPV = 88.66%, sensitivity = 70.10%) in comparison with
the MFPD* method (PPV = 91.36%, sensitivity = 91.65%).
These examples further prove the concept of multi-feature
complementarity to confront different noise types and the
importance of KLD weighting in the centralized decision
making to improve the overall detection performance.

D. Performance evaluation
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1) Evaluation I on the simulation database: A first per-
formance analysis of MFPD* and PTM* was applied using
the simulation database. Fig. 6 compares the detection error
criterion (Cl¢,) for different noise types and noise levels.
Firstly, results show that MFPD* performances are always
higher than that of PTM* for all noise types and SNR levels.
Secondly, for all noise types, its performance gain increases
with decreasing SNR, especially in the case of muscle artifact
(Cerr = 51.37% for PTM* vs 30.84% for MFPD*). Finally,
we can notice that performances on baseline wander noise are
higher than with other kinds of noise for both detectors since
QRS complex morphology is less affected. These preliminary
results demonstrate the MFPD viability and highlight its
efficiency in noisy context.

2) Evaluation 2 on the test database: The objective here
is to further validate the MFPD* detector on an independent
database with ECG signals recorded using different materials
on different subjects and under different clinical settings. The
ROC curves were plotted for MFPD* and PTM* in Fig. 7
(information not provided in [22] for WBD™*). This figure
clearly shows the better performance of the proposed MFPD
method, especially when high PPV values are considered.
Indeed, the PTM* method cannot be used for PPV higher
than 85% without sacrificing heavily on the sensitivity. Finally
in table I, all detection performances in C,,, were compared
using the test database before and after parameter optimization
obtained with the experimental database. MFPD provides

Detector (=
PTM 38.46%
PTM* 33.08%
WBD 30.84%
WBD* 29.02%
MFPD 22.52%
MFPD* 20.91%

Table I: C,,, computed on the whole test database.

always a better performance than PTM and WBD detectors,
with or without parameter optimization.

IV. DISCUSSION

In this paper, a novel, generic and robust detector combining
different features extracted from the signal of interest has

been proposed. The original aspects of this method concern
particularly 1) the probabilistic approach with online learning
ii) the multi-feature design iii) the centralized fusion method
based on KLD.

In the proposed method, the pdf of each feature is patient,
device and even experience specific, a particular attention has
been paid to find an appropriate online estimation method.
Parametric probability models are particularly suited with
regard to the real-time constraints of our application. It avoids
both the tuning of the number of bins and widths as in
histogram based approaches, and the increasing evaluation
costs, inherent to variable-bandwith kernel density estimation
[31]. Our proposed online learning method requires a small
data sample (40 validated candidates) to initiate the parametric
estimation, given the appropriate prior laws of the statistical
models. Among the wide variety of pdf families, the GND
seems well-suited for uncentered features, but to our best
knowledge, no analytic expression of the KLD between 2
GND can be found in the general case. Existing solutions
[32] are limited to cases where the mean values (u) are equal
(see ITI-D). We proposed in this paper an innovative estimation
method of the KLD in the general case. With a reasonable
computational cost, it can be used in real-time context.

The proposed MFPD QRS detector has been evaluated using
two different databases and compared with two other detectors
from the literature. Results show that the selected features
provide complementary information to improve detection per-
formance compared with other single featured QRS detectors
in the literature (see Fig. 5), particularly under noisy condi-
tions. This is essentially due to the fact that different kinds of
noise or uncommon pathological phenomena affect extracted
features in different ways. Previously proposed methods based
on decentralized fusion [2] and algorithm-switching [19] also
prove the relevance of multi-feature approaches.

The proposed KLD weighting method is able to adaptively
adjust the relative contribution of each feature to the final
decision. To our knowledge, this is the first real-time QRS
detection method integrating such an adaptive, multi-feature,
centralized decision fusion. Furthermore, MFPD method is
more compact and easy to implement than [2] or [19]. Quan-
titative comparisons with the well-known Pan & Tompkins
detector, as well as a wavelet-based detector, have shown that
the proposed approach provides the best performance in all
noise conditions. These results are particularly encouraging for
challenging monitoring situations, in which the heterogeneity
and levels of noise may be particularly high.

Even though this method was implemented in the case of a
single-lead application, it can be easily extended to the multi-
lead and multi-source case. Indeed, further improvements in
detection robustness are expected from the combined use of
multiple ECG leads, but also by integrating other physiological
signals (pulse oximetry, phonocardiography, etc..) or other
sensors sensitive to noise (accelerometers for movement noise,
etc..). Future works will be directed towards the extension and
evaluation of the method in these multi-channel, multi-source
contexts. Finally, in addition to the qualitative results of the
selected features’ relevance shown in Fig. 3 and III-D2, an
independence measure/test of the features shall be performed



quantitatively to further improve the detector robustness under
noise conditions.

V. CONCLUSION

We proposed an original multi-feature probabilistic detector
working in real-time and applicable to different physiological
signal applications. The method, illustrated on QRS complex
detection, has been compared to two common detectors of
the the literature, using the MIT noise stress database and
an exercise stress test database. Parameters of all detectors
were optimized using an evolutionary algorithms [21] [22].
The proposed MFPD has achieved significant performance
improvements compared with reference detectors, especially
on highly-artifacted signals. These performance improvements
are mainly due to the multi-feature aspect and the probabilistic
approach using a KLLD-based decision method that adaptively
adjust the relative contribution of each feature in real-time.

Besides the theoretical contribution and experimental vali-
dation, this new approach boasts a reasonable computational
cost and thus can be embedded into low-power devices offer-
ing interesting possibilities in the current context of connected
health applications.

APPENDIX A
APPLICATION OF THE KARUSH-KUHN-TUCKER ON THE
MAP OF BETA DISTRIBUTION

1) About the KKT: Consider the non-linear optimization
problem: maximize f(z), R™ — IR (the cost function) subject
to m inequality constraints and [ equality constraints :

gi(z) <0, fori=l,..., m
hj(x) =0, for j=1, ..., 1.

Suppose further that both the objective function f(z) and the
constraint functions g;(x), h;(x) are continuously differen-
tiable at a point Z. If Z is a local maximum of f(z) that
satisfies some regularity conditions, then there exist the KKT
multipliers:

i €R,i=1,...,mand \; € R,j =1,...,[, such that:

V@) =D Vi@ + Y\ Vhy(@); ®)
gl(:E)SO, ,LLZ‘ZO, ,UJigi(CE)ZOfOI' alli:l,...,m (9)
hj(@)=0forall j=1,...,1 (10)

We note that in the particular case of m = 0, the KKT
conditions are reduced to the Lagrange conditions. Typically,
if both g; and h; are affine functions (the case of MLE for
the beta distribution), then no other condition is needed.

2) MAP for the Beta distribution: We derive here the nu-
merical method to achieve the maximum-likelihood estimator
(MLE) and MAP estimator given N independent samples
of the Beta distribution, whose probability density function
writes:

.T,ail(l — x)Bil]longl.

P(z;a, ) = Blad)

where B(«, /3) is a normalization constant. For the MLE, the
function to maximize is the joint log-likelihood function:

N
fla,B) = Zlog P(ziia,B) = (a — 1)X

+ (ﬂ - 1)Y—N10gB(O[, B)?

where the sufficient statistics (X,Y) are :

N N
X = Zlog:ci, Y = Zlog(l — ;).
i=1 i=1

In a Bayesian setting to avoid the dirac-like shape of the beta
distribution, a prior law can be added :

P(a, B) o B(a, B)Ke e for K < N,a,bc R".
(1)
The objective function to achieve the MAP estimator becomes:
J*(a, B) = a( X—a)}+B(Y -b)~(N—K )log B(a, B1C" (12)
for which inequality constraints are :
gg=€e—a<0,g0=e—5<0

where € > 0 is close to zero to form a closed space. Note that
these constraints are affine functions to satisfy the regularity
conditions in the KKT. We thus search the solution of :

Fi(2) = (X —a) = (N = K) (¥(@) — ¥(G+5)) + fn = 0,
Fy(2) = (Y =) = (N = K) (¥(8) = v(@+ ) + iz = 0,

e—a<0, iy >0, Fy(2) = ji(e — &) =0, (13)
e~ F<0, fin >0, Fu(2) = fis(e — ) =0, (14)
where 1 (-) represents the di-gamma function.
We apply the Newton Raphson method on F(z) =
[Fy, Fy, F3, Fy]t by updating iteratively :
2 _ 20 = (2R (), (15)

and checking the inequality constraints in (13) and (14).

We next show that J(z) is always invertible given the
oF,

inequality constraints. The Jacobian J(z) = | azj] writes:
[ 1!
[ v (a4 8) — v (a) (D (a + 5) |
(N — K) Iz
» (D (a + ) D (o + ) — M (a)| !
Jz)=p — — =4 - DL - — — — — -
— 0 | —a 0
| 0 —hng : o -8

where 11 () is the tri-gamma function (second derivative of
the log-gamma). Its determinant is :

det J(z) = det [ g :- g ] =det AD — BC = (N — K)?af
(¥ D@ B) = @D (@) + D (@D (@ + )
+ (N = K)u B (8) — M (a+ 8))

+ (N = K)psa(@™ (a) =M (a + 8))
The second equality is due to the fact that C' and D commute
(i.e. CD = DC(C). From the relation

(@)@ () > V() + 1 (B))w D (a + 8)
it can be verified that det J(z) > 0. Thus the Jacobian matrix
is always invertible.



APPENDIX B
KULBACK-LEIBER DIVERGENCE FOR GENERALIZED
NORMAL DISTRIBUTIONS
Recall that the probability density of the generalized normal
distribution writes:

. B
Pz, B, 1) = 2aT(1/B)

Thus, the Kullback-Leibler divergence is:

B;D —(lx— Bp
Dier (P || P :/ _Pp = (lz—ppl/e)
a(F1|F) R 2050 (1/5p)

L ef(lmfﬂpl/o‘p)ﬁp
2a,T'(1/Byp)

|I7Nq|/aq)ﬁq

e~ (lz=nl/@)” gor a,f>0

x log dz

Tt €
Bpaqr(l/ﬂq)> Bp
:1 ——e —_—
o8 (Bqapr(l/ﬂp) N /]R 2F(1/ﬂp) ¢
d
(I = gl fe)) ==.
P

7(|I7Np|/o‘p)ﬁp

X ( —(lz - N;D|/O‘p)ﬁp +

Let t = “5 & do = aydt. Since a;, > 0, we have:
o (Bpaqr(l/ﬂq)>
Bqpl'(1/Bp)
e 117 1t )Pr at

Dy (P ||P2) =1
_/ By
r 2T(1/8p)
Bp
" /R 2T(1/5,)
*)

With the definition of the gamma function in (3) and T'(z +
1) = z I'(2), the second term of the above equation can be

further simplified :
/g, +1) 1

| e "5

o T(/5) L(1/Bp) By

In the following, we treat the term in (x). First define @ =
% and it can be written as :

ap\* B oIt By
(*):(a_Z) gy o
:kl/ e 117 |t + )P dt
R

t'=t/u

= kl/ e~ @ a4+ 1)Pa dt!
R

—1#1%7

([tap + pp — Nq|/aq)5th

e Pt =

=k u5q+1/ L R T
R

= kz/ et | 4 1)% gt
R

g m, g = 1151’ and k'z = k'l ’ELB‘I+1 > 0.
Since both |¢| and |¢ + 1| exist in the expression, we further
decompose the integral into :

(%) :kz/l e &t [(t+1)ﬁq+(1—t)5q} dt

0

with ky = (ﬁ)ﬁq by

+oo s
+k2/ et [(H— 1% 4 (t— 1)5q] dt
1

Notice that when 3, is even, the two functions inside the
integrals are identical since (¢t—1)#s = (1—t)%. For instance,
it By =2:

1 oo
b [ e dk [ SR @
0 1
zzkz/ T2 4]t = 2% (F(3/ﬁp) m/gp)),
0 p

63/5;0 61/517
by exploiting the relation :

teo . 1 1
/ &t 1Ba gy — T (Bqﬂ—F ) '
0 ﬁp £ D

This result applies also for 3, = 0 though it is supposed to be
strictly positive by definition. Let’s then investigate the case
of B4 = 2n+ 1 with n € N. First, for g, = 1,

1 +oo
(%) =ko / e €17 (2) dt + ky / e~ (2 dt
® ) i
=2ky [/ e St dt+/ e dt]
0
Bp 2 % 3 ﬁl 2 _
y=gtr 2k ()/eyy dy+(> eyypldy
Bp & 0

2ks

@) e () w]

in which
v(s,x) = / t*"letdt, T(s,z)= / ts~letdt
0 T

are the lower and upper incomplete gamma functions respec-
tively. Similarly, for 3, = 3, we can develop (1+)3+(1—¢)3

(16)

and (1 + )% + (t — 1) respectively to get :
1 s +oo s
(%) = ks (/ e ST (2 4 6t2)dt+/ e St (6t + 2t3)dt> ,
0 1

so that the same technique using y = &tP» can be applied to
coerce () into a sum of lower and upper incomplete gamma
functions. In a similar manner as (16), we obtain the following
relations for the incomplete gamma integrals:

1 - 1 1
/ e € Pt — Bat1l | (Bq - »§> )
0 Bpé‘ Bp ﬂp

e 1 1
/ e 4Ba gt — — r (ﬁqﬂ-k ,§> '
! Bp& Fr P

To generalize, (*) is a sum of weighted gamma functions
using (16) for even 3, whereas for odd 3, it is a sum of
weighted upper and lower incomplete gamma functions using
(17) and (18). In both cases, binomial coefficients of 3,-degree
polynomials are needed to weight the sum.

Next we show that (%) is monotonously increasing with
respect to 3, or :

O(x)
0B,

A7)

(18)

k/ e~ 11 4 ¢)Pa log |1 + t|dt > 0



in which ky and e €Y1 |1 + ¢|% are positive for ¢ € R.
log |1 + ¢| is negative for t € [—2,0], and positive otherwise.
A sufficient condition is :

2

/.
By splitting the integral into 2 parts and letting y = —¢ in the
first part, the integral of the above inequality becomes

efftﬁp|1_|_t|5q log|1—|—t| dt >0 (19)

2 2
/efgyﬁjl — y|Pdog|1 — yldy+/€7§yﬁp(1 +y) dog(1 + y)dy
0 0

2
- / (|1 — ylP log |1 — | + (1 +9)% log(1 +y)) dy
0
Gpq(y)

Note that the function G'g, (y) is a continuous function of i and
differentiable by piece. It can be shown that G, (y) > 0 for
all y € [0, 2], 84 > 0, which validates the condition in (19). It
is then evident that (x) is a monotonously increasing function

of 3.
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