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Abstract

A method is given of determining analytically the driving-point resistance between any pair of vertices
of: () ahomogeneous conducting cube, (if)a N x N x N cubic lattice of identical resistors. For the
latter, the limit N — oo is considered and the condition of the ohmic equivalence between these two
systems is investigated.

Introduction

We intend to compute the electrical resistance between different pairs of vertices of a homogeneous ohmic cube.
To the author’s knowledge, such a calculation deceptively simple cannot be found anywhere except the
unwieldy Fourier series-based formula for the potential at any point of the cube, obtained by Weiss et alin [1]
from which the authors discussed the derivation of the van der Pauw formula. The van der Pauw technique is
commonly used in the semiconductor industry for electrical transport measurements on solid materials [2]. It
permits for instance to obtain the conductivity of infinitely thin samples of arbitrary shape from measurements
of current and voltage difference considering four points along the periphery of the sample. However, the van
der Pauw method is valid only for infinitely thin samples so that the effects of sample thickness on the accuracy of
results may be significant requiring that the van der Pauw formula be corrected and generalized (see [1, 3]).
Beyond its theoretical aspects, the calculations laid down in the paper and the exact determination of driving-
point resistances between any pair of vertices of a cube may contribute to improve this experimental technique.

Apart the known resistance between two distinct points of an infinite ohmic medium (see e.g. [4], page 297),
the problem for the conducting cube is usually addressed in the literature as the continuum limit of a cubic
resistor network (see e.g. [5, 6]). For both cases, the equations to be solved are well-known and related to
Poisson-type equations such as encountered in electrostatics. But the difficulty both for the cubic medium and
the finite network is to take in account the boundary conditions for deriving the exact analytical solution as
simply as possible and readily usable in applications.

The bulk of this paper is devoted to the conducting cube (section 1 and followings) while the continuum
limit of the cubic resistor network will be discussed in the 4th and last section. The results reported here will
show that, in a largely classical context, there exists a very deep connection between the condensed matter
physics and the analytic number theory.

1. Electrostatic model

Letahomogeneous conducting cube C of edge a and of conductivity 0. Connecting a battery between a pair of
vertices (say, O and A, see figure 1) a current I is inserted (or extracted) at the point O and similarly —1I at the
point A. The sign of I is for now unspecified and will be suitably fixed later on. Knowing the voltage difference
Vo — Vy, theresistance may be in principle obtained as the ratio

©2017 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Geometry of the cube.

Vo — V,
Roa = ‘ 9 A (D
1
If J denotes the electric current density at the point r € C, one has
V.J=1{6(r) - 6(r — ra)}, 2
where ¢ is the Dirac distribution on R3. Hence, in virtue of the Ohm’slaw J] = —o V'V and in the absence of
other current sources or fields, the potential is solution of the following Poisson equation
vV = —Lisw) — s — )}, rec 3)
o

which must be solved given Neumann boundary conditions which ensure that no current can flow through the
faces of the cube, nor electric charges can accumulate on the faces. Hence, analogy with the electrostatics is
immediate considering a cube of dielectric constant ¢ holding two opposite point charges £1.

Asitisknown (see e.g. [7]), the equation (3) may have an exact closed-form solution but this requires to
formulate the latter boundary value problem on the 3-flat torus T> = R3/ A where A is the Bravais lattice
(2aZ)*. Itamounts thus, by the so-called method of images [8], to periodize the problem in the three coordinate
directions (period 2a x 2a x 2a)and to consider a charge distribution of type body-centered cubic (bcc) for a
crystal lattice, the cube C being thus a (quarter of) unit cell which contains two point sources 81 taking in
account their coordination number.

So doing, we have thus led to solve on T3,

VW=_%W®—6u—mH=ﬂﬂ @

where this time, § denotes a Dirac distribution on T? (i.e. a 3D Dirac comb on R?, of period 2a x 2a x 2a)and
jq‘r , f (¥)dr = 0inaccordance with the Gauss theorem. Roughly speaking, the boundary value problem posed
for the cube has been thereby redrafted by periodization for the whole space making it more convenient to solve.

2. Fundamental solution for the Laplacian

2.1.Integral representation
Let the 3-dimensional theta function,

ol = | iv| = o[ 22 | v |ou| 2 | iv |0 =
k( W) k(Za )k 2a v k2a

2a
¥ denoting the kth Jacobi theta function (k = 1, 2, 30r4) [9].
Thus, it is easy to verify that the fundamental solution for the Laplacian V2 on the torus T? i.e. one solution
of the Poisson equation

iv), r=(x Y, 2) (5)

V26 = —6() + -, ©)
8a
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can be expressed by the following integral

1 oo T
G@) = — 6, —
® 8ma Jo {3(2a

Indeed, recall that (5) is the exponentially convergent series

iv) — 1} dv. (7)

7r | . A
@3 — || = Z efﬂ’lklzvelﬂ'kl/ﬂ, k = (7’[, m, p) (8)
2a keZ?
or also, by application of the Poisson summation formula, a sum of periodized Gaussians as,
O3 ™ w|= 1 z e~ (r+2ak)/4ay ©)
2a v3/2 keZz?

In addition, (5) is solution of the heat equation V?©; = (7/a?)9,0; such that in a distributional sense [9],
lim 65 =1 and lim Os; = 84 §(v).

v—+00 v—0-+
Moreover, one can show that the integral (7) is absolutely convergent on any compact not containing the origin.
Hence, since

1 +00 1 +00

ViG=— [ Viedv=— [ 9,0,
8ma Jo 8a® Jo

it follows well after integration the identity (6).

This fundamental solution is given up to an arbitrary constant (chosen equal to zero) and is of mean value 0,
both conditions allowing to fix a zero potential reference at any point of the torus in the absence of current. In
the context of electrostatics, the Poisson equation (6) shows that G (r) may correspond to the electrostatic
potential at the point r due to unit point charges at lattice points 2ak, all of 3-space being negatively and
uniformly charged (of density —1/8a) for an overall electroneutrality, a such charge distribution being
sometimes called a jellium crystal and G (r) the jellium potential [10].

As already mentioned, the fundamental solution given by (7) is well-defined anywhere on the torus except at
the origin r = 0 (mod A) where it possesses a singularity. Indeed, since (see (9)),

O3(0]iv) = 3#{1 + O(e ™M)}, (10)
v3/2
the integrand in (7) is O(v)~3/2 as v tends to zero and it ensues that the integral (7) is well divergent at the origin.
Nevertheless, it is quite interesting for the rest of the paper to notice that when r = 0 it is possible to extract from
the integral (7) a finite part in the Hadamard sense denoted Gp and equal to [11],

8ma —0+

Goi= —— f>{03() — 1}dv = —— lim (fm (63Gv) — 1jdv — 2 + O(s)) an
8ma 2 g

using here and in the sequel, as it is usual for these modular functions, the following notation
I (0liv) = Gi(iv).

For the electrostatic problem, the regularization term (1/4mea) + O(e) which removes the singularity from the
jellium potential (7) at r = 0 may be viewed as the 3-Coulomb potential, at the distance €4, due to a solitary unit
charge located at the origin of R?, plus the (null) contribution of the uniformly charged ‘jelly’. As a result, the
finite part Go may be thus interpreted as the electrostatic potential due to the crystal and seen by the charge origin, its
self-contribution being removed, result which can be thus linked with the lattice sum arising from the related
Poisson equation by summing all 3-Coulomb terms as follows

1 L1 1 .
— — =—a(l) with a(l) = Y(n? + m? + p?)~1/2, (12)
8ma oz |kl 8ma 2 P
the prime on the summation sign indicating omission of the term k = 0 (the notation a(1) is those introduced
by Zucker, see [12, 13]).
One can check that (11) and (12) are numerically identical: through an elementary numerical integration by
means of the Mathematica software (fixing for instance, € = 0.01), one finds thereby the value

+0o0o 2
lim (f (03(iv) — 1)dv — —) — 2837295727 ... = a(l) (13)
e—0+ \Je? €

which agrees up to the fifth decimal with the Zucker’s result tabulated in his outstanding work [12]. We can hope
to find a more accurate result by using more refined numerical integration procedure (see for instance [14]).

At first glance, it seems that there is a contradiction between the latter negative result and the sum of positive
terms (12) butitis a long-known fact that such an infinite series is purely formal and cannot converge as it is (see

3
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e.g.[10, 13, 15]). We see briefly below that the correct comprehension of (12) whose physical sense is undeniable
must be found in analytic number theory using tools of complex analysis.

Let us indicate that the Hadamard finite-part (11) and relatives are already implicitly considered in the finite-
size scaling theory for defining in an ad hoc way some Madelung-type constants describing different physical
situations (geometry system, interparticle interaction, etc) (see [16, 17]).

2.2. Series representation
A standard approach (detailed in [10], see also [15]) is indeed to consider the following 3-dimensional zeta
function

eiﬂk.u /a

Zsu,v) =y ——— (14)
ez |k —v/2af

with u, v € T3, which is an analytic function for s > 3 (again, the prime means that any singularities are to be
ignored in the sum). First, (14) is realized through the Mellin transform of the generalized ‘theta function’

@g(u’ v; V) — Z efﬂ'lkfv/ZalZveiﬂk.u/a

v=2ak

as
+0o0
M(s;u, V) = 75T (s/2) Z(s; u, V) = f V2710, (u, v; v)dv (15)
0

and then, applying the Poisson summation to ©, leads to the reflection formula

'3 —5)/2)
T'(s/2)

where I is the Gamma function. In addition, it is well-known in analytic number theory (see e.g. [18]) that the
function (15) has a meromorphic continuation in the entire s-plane beyond the line 9&s = 3, except for simple
polesats = Oands = 3.

Asaresult, takings = 2, u = rand v = 0, itensues for our purposes that Z(2; r, 0) = m Z(1; 0, r) whilst
M(2; r, 0) is identical to the integral (7) (up to the factor 1/8ma). We have thereby established the following
series representations for the fundamental solution in both forms,

Z(s; u, v) = eimuv/2a’ps=3/2 Z(3 — s; —v, u), (16)

1 , eiﬂ'k.r/u 1 , 1

G(r) = =— —
8m%a o7 |k 4 (o7 Ir — 2ak]

17)

these equalities being in principle not everywhere pointwise, but understood through the analytic continuation
of relevant zeta functions for any r € T°. Nevertheless, it is noteworthy that

+ thefirst series (denoted X)) is the formal Fourier series of G we may directly derived by solving (6) considering
the usual trigonometric expansion for § (r) on T?,
6(1.) _ L Z ei7rk.r/a_

3
Sa kEZ3

Asitis, 3; is obviously divergent at the origin (mod A), otherwise it is conditionally convergent.

+ While the second one (denoted 33,) simply corresponds to the electrostatic superposition of 3-Coulomb
potentials at point r due to all lattice point charges if r = 0, otherwise the self-potential of the single origin
charge is removed.

So doing, notice from 3, and (12) that one has here G(0) = Go = (8ma)~'a(1) showing, as already emphasized
by Crandall and Buhler [10], that the analytic continuation leading to the previous results, by removing the
singularity due to the origin charge, allots to the fundamental solution G when divergent the finite-part value
(11) equal to the lattice sum (12).

3. Resistance calculation

3.1. Resistance between the vertices O and A
The fundamental solution (7) or (17) being now available, the potential V at any point r of the torus T* (and
thus, of the cube C) may be exactly obtained from (4) via the triple convolution product

4
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V) = G+ f= %{G(r) ~ G — ), (18)

i.e. using for instance the integral representation (7) and a translation property for O,

Vi(r) = o {@3(2 iv) — @4(2 iv)}dv. (19)
woa Jo 2a 2a

It is easy to verify that (19) satisfies well to the Neumann boundary conditions. Since G is even, notice that holds
the reflection formula V (r) = —V (x4 — 1).

In the light of the regularization procedure discussed previously, the voltage difference felt by the electric
current flowing between the points O and A is thus equal to

Ve — Vo) = —2v©0) = LGy - coy: =Lam, (20)
o mToa

where the constant 91 depending on the formula used for G, is equally expressed as
+ the finite-part integral

M = £ (03(iv) — O3Giv)}dv = lim (fm (63(Gv) — 03(Gv)}dv + E)
e—0+ &2 g
—2.0353615 ..., Q1)

numerical value obtained through a simple numerical integration,

+ or the following first lattice sum

1 —1 n+m-+p 1 2
m:—(zl%— /—2]=—— > P md4p?)! (22)
T \kez? k| xez: Kl T ntm+pe2Z+1
« orthesecond one,
m = 2( Z ; _ Z' L)
k€Z3 |2k + 1| kEZs |2k|
=21 Y @+ mr+p) V2= S+ m? 4 py 2 (23)
ke(2Z+1)° ke(2zy?

Considering the related Zucker’s lattice sums as tabulated in [ 12], one thus obtains respectively
M = l(0(2) —a(2) = %(c(l) — a(l)) = 2.035 361 509 ... (24)
T

and we can note that the agreement between all these numerical results is highly satisfactory. This constant 91 is
well-known in electrostatics of ionic crystals as the Madelung constant for the bee crystal structure built with the
cube C (for instance, a CsCl crystal [7, 13]). Moreover, 90 is found positive meaning for consistency that the
current must be considered flowing through the cube from A to O. Finally, denotingby R = 1/0a a standard
resistance value (this is for instance the very known electric resistance between two opposite faces of the cube),
the driving-point resistance (also called, two-point resistance) between the vertices O and A has exactly the value

_ V(@) - V(O _ 2R
1 s
Forasilver cube ofedgea = 1 cm,at20 °C, 0 = 6.30 x 107 Q@ 'm ' onefinds Ros =~ 2.06 x 1076 Q.

Roa M ~ 1.296 x R. (25)

3.2. Other resistances

In a similar way, the driving-point resistance between the vertices O and B on the face diagonal, and between O
and C on one edge are obtained by solving the Poisson equation (3) on the torus T? with the current densities
J=1{6() — 6(xr — rp)}and ] = I {6(x) — 6(r — rc)} respectively. Details of calculation are now omitted
since similar to previous ones. Thus, defining the following Madelung-type constants

5
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N =3

Figure 2. A N° cubic resistor network and nodes 0 = (0, 0, 0), 4 = (N — 1, N — I, N — 1), 5= (N — 1, 0, N — 1),
ve=(N-1,0,0).

M = £ °{05(v) — 03(iv)} 05(iv)dv = i( N % - ’% = l(c(2) —a(2)
Vs ke7? |k| keZ? |k| s
= 2 (1 + 1/ + mP 4 (p+ 1/2H7V2 = 372 4 m? o+ p2)2 = —(b(1) + ¢(1)
keZ? ke7?
=2.2547759 ... (26)

and
M := £7°{0u(iv) — 05(iv)} 03 (iv)dv
= i(Z’ﬂ - ’L] = (0@ - a@)

T \kez? |k|2 keZ? |k|2

=Y ((n+1/22+m>+p*) V2= Y2+ m?+ p2) /2= —%(b(l) + 2¢(1) + 0(1))
keZ? keZzZ?
=2.7413651 ... (27)

for the first and the other configuration respectively, it is straightforward to derive the following resistances

— / _ "
:MZE%%UL%xR and ROC:MZE%
1 T oa 1 T oa

Rop ~ 1.745 X R.

(28)

For asilver cube ofedgea = 1 cm,at20 °C, o = 6.30 x 107 Q~'m ' onefinds Rop ~ 2.28 x 1075
and Roc =~ 2.77 x 107 Q.

4, Cubic resistor network

Considera N x N x N cubic lattice formed from equal resistors R(N) with nodes ¥ = (n, m, p) and integers
n, m, p =0, ..., N — 1(seefigure 2). We intend in this section to find the driving-point resistance between
vertices of this cubic network, and to discuss when N tends to infinity, the continuum limit and conditions for
the ohmic equivalence with the previous conducting cube C.

4.1. Resistance between two diagonally opposite nodes
Let R the driving-point resistance between the diagonally opposite nodes 0 = (0, 0, 0)
andyy=IN-L,LN-1,N-1)=NN—- DL

Assuming a current I flowing from the node 0 to v, and in the absence of other external current sources, the
electric potential V () atany node v can be obtained by applying the Ohm’s and Kirchhoff’s laws. Hence, the
desired resistance is readily given by the ratio

RN V(0) — V(va)
A= [

This is a classical problem of multilinear algebra which has been recently solved by Wu [19] in an elegant manner
using the formalism of dyadic algebra or, in a more abstract form, by Jafarizadeh et al [20] whose calculation is
based on stratification of the underlying graph and the Stieltjes transform of the spectral distribution associated
with the network.

Here, we prefer an alternative approach using the lattice Green’s function method appearing in many
problems of solid state physics [5, 6, 21], and which can be likened to a discrete formulation of problems

6
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Figure 3. An infinite square lattice of identical resistors with an appropriate 2N -periodic, even current distribution (here, even means
symmetrical on either side of theaxes n = —1/2 and m = —1/2). Such a current distribution ensures by the superposition theorem
that no current can flow through the sides of the finite square network {0, ..., N — 1}? surrounded in dashed lines.

discussed in the previous sections. Indeed, according to the superposition theorem of current distributions, the
physical situation is identical to those for an infinite 3-dimensional cubic lattice with the following current
distribution, even and 2N -periodic along each lattice principal direction of vector e; = (1, 0, 0), e; = (0, 1, 0)
and e; = (0, 0, 1) (noticethat: e; + e, + e; = 1),

J(w) = I{ > Aw-Nk - > Aw- Nk)}, (29)

ke(2z)? ke(2Z+1)°
where A denotes the octuplet,

AW)=6(v) +o6(v+e) +6(v+e) + 6V + e + e)
+o6(w+e)+oé(w+e +e)+o(w+e+e)+ow+1) (30)

and 4 is the Kronecker unit impulsion,

1 v=yp
0 otherwise’

6(v — 1y = {

Figure 3 displays for simplicity the corresponding two dimensional configuration where the periodicity and
evenness of current distributions ensure that no current can enter or exit from the sides of the primitive cell
{0, ..., N — 1}?of side-length N. Thus, the problem posed for the infinite lattice is equivalent to the Neumann
problem for a single square N x Nresistor network.

Thus, we are led to solve on the 3-dimensional discrete torus (Z/2N Z)? the difference equation

3
VW)= (Vv +e) - V)} = —RWN)J ()
i=1

= —R(NMI{A@W) — A(w + N1)}, 31)

where the finite-difference operator V'2 is the so-called lattice Laplacian, the latter equation being thus the
discrete analog of the Poisson equation (4).
The related lattice Green function G’ (v) i.e. the solution on (Z/2NZ)? of equation (to be compared with
6))
1

12 —
V26 = —6W) + —— T (32)
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Table 1. Some exact values of the two-point resistance RSy in units of R(N).

N 2 3 4 5 6
R(()IX) a(N) 5 43 401 1888 231 92 427 683
R(N) N 6 42 357 1593 834 75 366 720

is easily obtained using the discrete Fourier transform and shift properties, knowing that
1
3
(2N) ke{—-N, ..., N—-1}?

Hence, one finds the well-known result (see e.g. [5] and references therein) given up to a constant,

1 >

16N? ke (mp)e{ N, .., N—1 3 — cos(nm/N) — cos (mm/N) — cos(pm/N) ’

ob(v) = e™v/No e {-N,..,N — 1).

eirkv/N

G) = (33)

the prime on the summation indicating as usual that the term k = 0 must be omitted.
Therefore, from (31), the electric potential at any node v € (Z/2NZ)?is derived as
Vw)=RMNI{GW)+Gw+e)+GWw+e)+GW+e+e)
+GWw+e)+GwW+e+e)+GW+e+e)+ G+ 1)
—GW+N1)—GW+N1+e)—GWw+Nl+e)— Gw-+ N1+e +e)
—GW+Nl+e)—GW+N1+e +e3) —Gw+N1l+e +e)— G+ N1+ 1)},

i.e. after simplification,

B R(N)I , ei'/rk.u/N(l _ (_1)n+m+p)
16N> \_mpein, . n—1p 3 — cos(nm/N) — cos(mm/N) — cos(prm/N)
X (1 + eiwn/N + ei7rm/N + ei7Tp/N + eiw(n+m)/N + eiw(n+p)/N + ei7r(m+p)/N + ei7r(n+m+p)/N)_

(34)
Since V(1) = V((N — 1)1) = —V*(0), itis thus immediate to deduce that
V(0) — V(1) = 2RV (0)
_ RN)I 1
4N3 mmp)e(~N, ..., N—1p» 3 — cos(nm/N) — cos(mn/N) — cos(pm/N)
n+m-+p odd
X (1 4 cos(mn/N) + cos(mm/N) + cos(mp/N) + cos(m(n + m)/N)
+ cos(m(n + p)/N) + cos(n(m + p)/N) + cos(w(n + m + p)/N))
or using a trigonometric identity for the latter term in brackets,
R(N)I
v - v = S0, (35)
where
a(N) = iz > cos (mn/2N) cos (mm/2N) cos (mp /2N) cos (m(n + m —|—p)/2N)' (36)
N? Gmp)e (=N, ..., N=1}3 3 — cos(nw/N) — cos(mm/N) — cos(pm/N)
n+m+p odd

Notice that the latter voltage difference is positive in agreement with the fact that, above, the current has been
chosen flowing into the network from the node 0 to 1. Thus, the expected two-point resistance Ry is

RS = %a(m (37)

and some exact values for 2 < N < 6 arelisted in table 1. In particular, we actually found the value 5/6 for
N = 2 which is the well-known solution of the ‘12 resistors cube’ problem.

Further numerical tests show also that a«(N) /N, N > 2, thusalso «(IN), is a positive increasing sequence.
Moreover, by the Rayleigh’s Monotonicity Law [22], the following exact bounds can be obtained for N > 2,

5 1 alN) _ 5
= < < =N - D). 38
P N 6( ) (38)

Indeed, let us remark that «(IN') /N is a normalized two-point resistance between O and A for any N > 2 (which
amounts equivalently to set R(N) = 1forall N). Then, cutting three adjacent faces of the cubic network except
the 12 resistors cell at the common vertex (see figure 4) yields to

8
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(N —-1,N—-1,N —1)

A= = = = AN

(0,0,0) (N —2,0,0) (N—Vl,n‘w

Figure 4. Cutting is electrical edge deletion and the two-point resistance between the nodes (0, 0, 0)and (N — 1, N — 1, N — 1)
increases.

a(N) < a(N—-1) n E) N> 2,
N N-—-1 6
thus the upper bound holds recalling that «(2) /2 = 5/6. Conversely, shorting the same latter faces and
diminishing if necessary all resistance values to 1 /2 leads to
a(N) S 1 a(N —1)
N ~ 2 N-1

» N =22,

thus the lower bound holds.
What precedes show that by summing over expanding cubes, the series (36) is O(N?) at most as N increases,
and obviously limy_,  », «(IN') does not exist by such a summation method. But, notice that forany N > 2

10
0<alN) < 2 (n? + m* + p?)! (39)
T (n,mp)e{—N, ..., N—1)
n+m+p odd

since

2
x
1—cosx>? for 0<|x] <

Taking thelimit N — 4-00, the series in the RHS of (39) is still not convergent, but we have seen in section 3.1
that such an infinite lattice sum, considered as the analytic continuation evaluation of a relevant zeta function, is
related to the Madelung constant (22). As a result, it appears reasonable to conjecture that (36) by an appropriate
rearrangement of terms may retain a finite value as N increases, viz.

lim «a(N) ~ ——fm < 0. (40)
N—+o0

Surprisingly, this limit value is negative. The change of sign made to av(4-00) and originating in the analytic
continuation machinery implemented for making convergent (36) as N tends to +00, means that the current
asymptotically must flow, for mathematical consistency, from the node v, to 0 i.e. V(0) — V (v4) < 0(orI
changed to —I). Nevertheless, from a physical point of view, it is fortunate that such an adjustment does not
affect the definition of the driving-point resistance RJ. Recall that a similar result was found in section 3.1
concerning the conducting cube C. Therefore, from (37), one writes,

lim R(N) ~ gﬁﬁ X lim m (41)
N—+4o0 s N—+oo N
Assume that R(N) = O(N®)as N — +oo.Hence, if 3 < 1or 3 > 1, the two-point resistance RgX) tends to 0
or 400 respectively.
More interesting is the case 3 = 1where R}’ has asymptotically a finite nonzero value. Thus, if we set

R(N) = 1N for Nsufficientlylarge, r, > Oa constant, it ensues that,

. 2
lim R(N )~ S0, (42)
N—+o0 m

Comparing (42) and (25) shows that the cubic resistor network formed from equal resistor R(N) = N /oais
asymptotically ‘ohmically’ equivalent to an homogeneous conducting cube of edge a and conductivity o.

Since o' is a resistance per unit length, the resistance R(N) connecting two nodes is thus the resistance for a
segment of length a/N which can be viewed as a fictitious distance separating these two nodes. This is consistent

9
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Table 2. Some exact values of two-point resistances R4y and RGQY in units of R(N).

N 2 3 4 5 6

RY  o/(N) 3 34 12 403 26 702 084 20 760 877 553
RN) N 4 35 11 424 23 110 593 17 267 675 040
RY (N 7 179 11 411 16 762 677 57 233 476 829
RN) N 12 210 11 424 15 407 062 49 884 394 560

with the fact that each edge of the cubic network has Nnodes (thus N — 1 resistances) whose fictitious total
length is asymptotically a i.e. the actual side of the equivalent cube C.

4.2. Other resistances
The driving-point resistance between the nodes 0 = (0, 0, 0) and
vg=(N—1,0, N — 1) = (N — 1)(e; + e3) on the face diagonal, and between 0 and
vc= (N —1,0,0) = (N — 1)e; ononeedge of the network are similarly obtained by solving the difference
equation (31) on the discrete torus (Z /2N Z)* with the current distributions
Jw) =T1{AWw) — A(v + Ne; + Nes)}and J(v) = I {A(w) — A(v + Ney)} respectively, A being the
octuplet (30).
Hence, analogously to the previous section, it is direct to show that on the one hand,

R(%) _ V(0) — V(vp) _ R(N)a’(N) (43)
1 N
with
o (N) = 2 cos (mn/2N) cos (mm/2N) cos (mp/2N) cos (m(n + m + p) /2N) (44)
N2 (ump)e (SN, oy N—1P 3 — cos(nm/N) — cos(mn/N) — cos(pr/N)
n+p odd
and on the other hand,
Rgé) _ V(0) — V(ve) _ R(N)a”(N) 5)
1 N
with
2N 2 2 2N
a"(N) = 2 Z cos(mn/2N) cos (mm/2N) cos (mp/2N) cos(m(n + m + p)/ )‘ (46)
N? Gompe (SN, .. N=1] 3 — cos(nm/N) — cos(mn/N) — cos(pn/N)
n odd
Table 2 give some exact values of these two-point resistances for 2 < N < 6.
Again, we can reasonably conjecture that
lim o/ (N) ~ —293?’ and lim o’(N) ~ —Esm”, (47)
N—+oo e N—+oo s
leading to the same conclusions as above viz. if R(N) = N /oa for Nsufficientlylarge,
! "
lim RYY ~ 29 and lim R ~ 2m (48)
N—+o0 ™ oa N—+oo ™ oa

which show, comparing with (28), that the continuum limit of such a cubic resistor network is exactly the
conducting cube C.

5. Perspectives and conclusions

First, all results presented in this paper both for the cubic medium, the finite cubic resistor network and its
continuum limit may be easily generalized in any spatial dimensionality # > 3. Thecasen = 2 (i.e.ina
3-dimensional approach, the electrical resistance between two edges of a square prism) is more delicate to study
owing to the existence of logarithmic singularities for the potentials and the impossibility to fix a zero potential
reference at infinity for a 2D Coulomb potential. Nevertheless, these difficulties may be overcome as already
discussedin[7,23].

Secondly, we leave it to the reader to adjust the calculations of sections 2 and 3 when considered a cuboid, for
instanceacuboid a x a x b.In that case, setting the axial ratio v = a/b and defining the Madelung-type
constant
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+0o0 2
M() :== lim ( f {03(iv) 05 (ia®v) — 03(iv)04(ia®v)}dv — —), (49)
e—0+ \J&? aeg
itis not difficult to derive the following two-point resistance between the vertices Oand A = (g, a, b),
2 M
Roa(a) = — (@)
™ ob

allowing some interesting extensions and applications regarding the asymptotics o > 1 (case of a wire of length
band of square cross-section a> < 1) or a < 1(case of a square sheet of side a and thickness b < 1).

Atlast, as already mentioned in Introduction, the application of computational methods presented in this
work should allow to generalize the van der Pauw technique to 3-dimensional samples.

We shall not pursue here any further these questions which will be the subject of future works.

Acknowledgments

The author is grateful to the reviewers for their constructive comments and suggestions.

ORCID iDs

Malik Mamode ® https://orcid.org/0000-0003-0868-8762

References

[1] Weiss] D, Kaplar R J and Kambour K E 2008 A derivation of the van der Pauw formula from electrostatics Solid-State Electron. 52 91-8
[2] vander Pauw L] 1958 A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape Philips Tech. Rev. 20
2204
[3] Kasl Cand Hoch M J R 2005 Effects of sample thickness on the van der Pauw technique for resistivity measurements Rev. Sci. Instrum.
76 033907
[4] Chaikin P M and Lubenskii T C 1995 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
[5] Cserti] 2000 Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors Am. J. Phys. 68
896-906
[6] Asad]H 2013 Exact evaluation of the resistance in an infinite face-centered cubic network J. Stat. Phys. 150 1177-82
[7]1 Mamode M 2016 Computation of the Madelung constant for hypercubic crystal structures in any dimension J. Math. Chem. 55 734-51
[8] Morse P M and Feshbach H 1953 Methods of Theoretical Physicsvol 1 (New York: McGraw-Hill)
[9] Olver EWJ, Lozier D W, Boisvert R F and Clark CW (ed) 2010 NIST Handbook of Mathematical Functions (New York, NY: Cambridge
University Press) print companion to [24]
[10] Crandall RE and Buhler J P 1987 Elementary function expansions for Madelung constants J. Phys. A: Math. Gen. 20 5497
[11] Blanchet L and Faye G 2000 Hadamard regularization J. Math. Phys. 41 7675714
[12] Zucker 1] 1975 Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures J. Phys. A:
Math. Gen. 8 1734
[13] ZuckerI]J 1976 Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants J. Phys. A: Math.
Gen. 9499
[14] Monegato G 1994 Numerical evaluation of hypersingular integrals J. Comput. Appl. Math. 50 9-31
[15] Crandall R E 1998 Fast evaluation of Epstein zeta functions (http://www.reed.edu/physics/faculty/crandall /papers/epstein.pdf)
[16] Chamati Hand Tonchev N S 2000 Exact results for some Madelung-type constants in the finite-size scaling theory J. Phys. A: Math.
Gen. 33167
[17] Brankov] G and Tonchev N S 1988 On the finite-size scalling equation for the spherical model J. Stat. Phys. 52 143-59
[18] Apostol T M 1976 Introduction to Analytic Number Theory (Berlin: Springer)
[19] WuFY 2004 Theory of resistor networks: the two-point resistance J. Phys. A: Math. Gen. 37 6653
[20] Jafarizadeh M A, Sufiani R and Jafarizadeh S 2007 Calculating two-point resistances in distance-regular resistor networks J. Phys. A:
Math. Theor. 40 4949
[21] Inawashiro S, Horiguchi T, Katsura S, Morita T and Abe Y 1971 Lattice Green’s function. Introduction J. Math. Phys. 12 892-5
[22] Doyle P G and Snell L 1984 Random Walks and Electric Networks (Carus Mathematical Monographs Series 22) (Washington, DC: The
Mathematical Association of America) 83—149
[23] Mamode M 2014 Fundamental solution of the Laplacian on flat tori and boundary value problems for the planar Poisson equation in
rectangles Bound. Value Problems 1221
[24] NIST Digital Library of Mathematical Functions. Online companion to [9], see http://dlmf.nist.gov/

11


https://orcid.org/0000-0003-0868-8762
https://orcid.org/0000-0003-0868-8762
https://orcid.org/0000-0003-0868-8762
https://orcid.org/0000-0003-0868-8762
https://doi.org/10.1016/j.sse.2007.07.029
https://doi.org/10.1016/j.sse.2007.07.029
https://doi.org/10.1016/j.sse.2007.07.029
https://doi.org/10.1063/1.1866232
https://doi.org/10.1119/1.1285881
https://doi.org/10.1119/1.1285881
https://doi.org/10.1119/1.1285881
https://doi.org/10.1119/1.1285881
https://doi.org/10.1007/s10955-013-0716-x
https://doi.org/10.1007/s10955-013-0716-x
https://doi.org/10.1007/s10955-013-0716-x
https://doi.org/10.1007/s10910-016-0705-9
https://doi.org/10.1007/s10910-016-0705-9
https://doi.org/10.1007/s10910-016-0705-9
https://doi.org/10.1088/0305-4470/20/16/024
https://doi.org/10.1063/1.1308506
https://doi.org/10.1063/1.1308506
https://doi.org/10.1063/1.1308506
https://doi.org/10.1088/0305-4470/8/11/008
https://doi.org/10.1088/0305-4470/9/4/006
https://doi.org/10.1016/0377-0427(94)90287-9
https://doi.org/10.1016/0377-0427(94)90287-9
https://doi.org/10.1016/0377-0427(94)90287-9
https://doi.org/10.1088/0305-4470/33/19/101
https://doi.org/10.1007/BF01016408
https://doi.org/10.1007/BF01016408
https://doi.org/10.1007/BF01016408
https://doi.org/10.1088/0305-4470/37/26/004
https://doi.org/10.1088/1751-8113/40/19/002
https://doi.org/10.1063/1.1665662
https://doi.org/10.1063/1.1665662
https://doi.org/10.1063/1.1665662
https://doi.org/10.1186/s13661-014-0221-4
http://dlmf.nist.gov/

	Introduction
	1. Electrostatic model
	2. Fundamental solution for the Laplacian
	2.1. Integral representation
	2.2. Series representation

	3. Resistance calculation
	3.1. Resistance between the vertices O and A
	3.2. Other resistances

	4. Cubic resistor network
	4.1. Resistance between two diagonally opposite nodes
	4.2. Other resistances

	5. Perspectives and conclusions
	Acknowledgments
	References



