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MATHEMATICAL ANALYSIS OF THE MOTION OF A RIGID BODY IN

A COMPRESSIBLE NAVIER-STOKES-FOURIER FLUID.

BERNHARD H. HAAK, DEBAYAN MAITY, TAKÉO TAKAHASHI, AND MARIUS TUCSNAK

Abstract. We study an initial and boundary value problem modelling the motion of a rigid
body in a heat conducting gas. The solid is supposed to be a perfect thermal insulator. The
gas is described by the compressible Navier-Stokes-Fourier equations, whereas the motion
of the solid is governed by Newton’s laws. The main results assert the existence of strong
solutions, in an Lp-Lq setting, both locally in time and globally in time for small data. The
proof is essentially using the maximal regularity property of associated linear systems. This
property is checked by proving the R-sectoriality of the corresponding operators, which in
turn is obtained by a perturbation method.

Key words. Compressible Navier-Stokes-Fourier System, fluid-particle interaction, strong
solutions, R-sectorial operators, maximal regularity.

AMS subject classifications. 35Q30, 76D05, 76N10

Contents

Part 1. Introduction and Statement of the Main Results 1
1. Introduction 1
2. Statement of the Main Results 2
3. Notation 6

Part 2. Local in Time Existence and Uniqueness 7
4. Lagrangian Change of Variables 7
5. Maximal Lp − Lq Regularity for a Linear Problem. 11
6. Estimating the Nonlinear Terms 15

Part 3. Global in Time Existence 23
7. Linearization and Lagrangian Change of Variables 23
8. Some Background on R Sectorial Operators 26
9. Linearized Fluid-Structure Interaction System 27
9.1. Linearized compressible Navier-Stokes-Fourier system 28
9.2. Rewriting (9.1) in an operator form 31
9.3. R-sectoriality of the operator AFS 33
9.4. Exponential stability of the semigroup etAFS 33
10. Maximal Lp-Lq Regularity for the Linearized Fluid-Structure System 37
11. Estimates of the Nonlinear Terms 40
12. Proof of the Global Existence Theorem 45
References 47

Date: October 19, 2017.

1



2 BERNHARD H. HAAK, DEBAYAN MAITY, TAKÉO TAKAHASHI, AND MARIUS TUCSNAK

Part 1. Introduction and Statement of the Main Results

1. Introduction

The purpose of this work is to provide existence and uniqueness results for a coupled PDEs-
ODEs system which models the motion of a rigid body in a viscous heat conducting gas. The
rigid body is assumed to be a perfect insulator. As far as we know, this system has not been
studied in the literature in three space dimensions. A related problem in one space dimension,
the so-called adiabatic piston problem has been studied in [15].

Let us now mention some related works from the literature. The one-dimensional piston
problem with homogenous boundary conditions has been studied by Shelukhin [23, 24]. Maity,
Takahashi and Tucsnak [20] proved existence and uniqueness of global in time strong solutions
with nonhomogeneous boundary conditions in a Hilbert space setting. Local in time existence
and uniqueness of a heat conducting piston in Lp-Lq framework is studied by Maity and
Tucsnak [21]. Concerning three-dimensional models, global existence of weak solutions for
compressible fluid and rigid body interaction problems was studied by Desjardins and Esteban
[10] and Feireisl [14]. Boulakia and Guerrero [5] proved global existence and uniqueness of
strong solutions for small initial data within the Hilbert space framework. Hieber and Murata
[17] proved local in time existence and uniqueness in a Lp-Lq setting. Let us also mention that
an important influence on the methods in this work comes from several recent advances on
the Lp-Lq theory of viscous compressible fluids (without structure), see Enomoto and Shibata
[13] and Murata and Shibata [25].

In this work we are interested in strong solutions and the main novelties we bring in are:

• The full nonlinear free boundary system coupling the compressible Navier-Stokes-
Fourier system with the ODE system for the solid has not, at our knowledge, been
studied in the literature.
• The existence and uniqueness results are proved in a Lp-Lq setting, which, at least as

global existence is concerned, is new even in the case when the fluid is barotropic.

The methodologies we employ for the local in time, versus the global in time (for small
data), existence results are quite different. More precisely, in the proof of the local existence
theorem, we begin by considering a linear “cascade” system. The corresponding operator is
proved to have the maximal regularity property in appropriate spaces by combining various
existing maximal Lp-Lq regularity results for parabolic equations. This allows us to develop
a quite simple fixed point procedure to obtain the local in time existence and uniqueness of
solutions. More precisely, using this associated linear system we estimate the nonlinear terms
with a coefficient involving the length of the considered time interval, see Proposition 6.4
below. This is why this method is suitable for local existence results (but not relevant if we
are interested in global existence for small data).

The strategy developed in proving global existence and uniqueness for small initial data
is more involved. More precisely, in this case it is essential to linearize around a stationary
solution and to prove that the corresponding linear system is exponentially stable. To prove
this property we use a “monolithic” approach, which means that the linear system preserves
the coupling between fluid and structure. However, in order to obtain the maximal regularity
property we repeatedly use a perturbation argument. Roughly speaking, this means we deduce
the maximal regularity property for the coupled system from the corresponding properties of
the linearized fluid equations with homogeneous boundary conditions.
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The plan of the paper is as follows. In the next section, we introduce the governing
equations and we state our main results. Section 3 is devoted to notation, which introduces,
in particular, several function spaces playing an important role in the remaining part of this
work.

Part 2 is devoted to the proof of a local in time existence result. More precisely, in Section 4
we rewrite the governing equations in Lagrangian coordinates, in Section 5 we prove the
maximal Lp-Lq regularity for an associate “cascade” type linear system, whereas in Section 6,
we derive the required estimates and Lipschitz properties of the nonlinear terms in order to
apply a fixed-point procedure.

In Part 3 we prove global existence and uniqueness of solutions for small initial data. This
is divided into several sections. In Section 7, we linearize the system around a constant steady
state and we rewrite the system in the reference configuration. In Section 8 we recall some
results concerning maximal Lp regularity for abstract Cauchy problems and its connections
with the R-sectoriality property. In Section 9 and in Section 10 we prove the maximal Lp-Lq

regularity of a linearized coupled fluid-structure interaction problem on time interval [0,∞).
We prove Lipschitz properties of the nonlinear terms in Section 11 and finally in Section 12
we prove the global existence theorem.

2. Statement of the Main Results

We consider a rigid structure immersed in a viscous heat conducting gas and we denote by
ΩS(t) the domain occupied by the solid at time t > 0. We assume that the fluid and rigid
are contained in a smooth bounded domain Ω ⊂ R3. Moreover, we suppose that ΩS(0) has a
smooth boundary and that

dist(ΩS(0), ∂Ω) > ν > 0. (2.1)

For any time t > 0, ΩF (t) = Ω \ ΩS(t) denotes the region occupied by the fluid. The motion
of the fluid is given by

∂tρ+ div(ρu) = 0 in (0, T )× ΩF (t),

ρ(∂tu+ (u · ∇)u)− div σ(u, p) = 0 in (0, T )× ΩF (t),

cvρ (∂tϑ+ u · ∇ϑ) + p div u− κ∆ϑ = α(div u)2 + 2µDu : Du in (0, T )× ΩF (t),

(2.2)

where

σ(u, p) = 2µDu+ (α div u− p)I3,

Du =
1

2
(∇u+∇u>),

µ > 0 and α+
2

3
µ > 0, (2.3)

A : B =
∑
i,j

aijbij is the canonical scalar product of two n× n matrices,

p = Rρϑ, R is the universal gas constant.

Note that we denote by M> the transpose of a matrix M .
At time t > 0, let a(t) ∈ R3, Q(t) ∈ SO3(R) and ω(t) ∈ R3 denote the position of the center

of mass, the orthogonal matrix giving the orientation of the solid and the angular velocity of
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the rigid body. Therefore we have,

Q̇(t)Q(t)−1y = A(ω(t))y = ω(t)× y, ∀y ∈ R3,

where the skew-symmetric matrix A(ω) is given by

A(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω ∈ R3

and where ḟ denotes the time derivative of f .
Without loss of generality we can assume that

a(0) = 0 and Q(0) = I3. (2.4)

Thus the domain occupied by the structure ΩS(t) is given by

ΩS(t) = a(t) +Q(t)y, t > 0, y ∈ ΩS(0). (2.5)

We denote by m > 0 the mass of rigid structure and J(t) ∈ M3×3(R) its tensor of inertia at
time t. The equations of the structures are given by

m
d2

dt2
a = −

∫
∂ΩS(t)

σ(u, p)n dγ in (0, T ),

J
d

dt
ω = (Jω)× ω −

∫
∂ΩS(t)

(x− a(t))× σ(u, p)n dγ in (0, T ),
(2.6)

where n(t, x) is the unit normal to ∂ΩS(t) at the point x directed toward the interior of the
rigid body. We assume that the fluid velocity satisfies the no-slip boundary conditions:

u(t, x) = 0, x ∈ ∂Ω,

u(t, x) = ȧ(t) + ω(t)× (x− a(t)) (x ∈ ∂ΩS(t)). (2.7)

We also suppose that the structure is thermally insulating:

∂ϑ

∂n
(t, x) = 0 (t ∈ (0, T ), x ∈ ∂ΩF (t)). (2.8)

The above system is completed by the following initial conditions

ρ(0, ·) = ρ0, u(0, ·) = u0, ϑ(0, ·) = ϑ0 (in ΩF (0)),

a(0) = 0, ȧ(0) = `0, Q(0) = I3, ω(0) = ω0. (2.9)

To state our main results we introduce some notation. Firstly W s,q(Ω), with s > 0 and
q > 1, denote the usual Sobolev spaces. Let k ∈ N. For every 0 < s < k, 1 6 p < ∞,
1 6 q <∞, we define the Besov spaces by real interpolation of Sobolev spaces

Bs
q,p(Ω) = (Lq(Ω),W k,q(Ω))s/k,p .

We refer to [1] and [28] for a detailed presentation of Besov spaces. We also need some
notation specific to our problem.

Let 2 < p <∞ and 3 < q <∞ such that
1

p
+

1

2q
6= 1

2
. We set

Ip,q =
{

(ρ0, u0, ϑ0, `0, ω0) | ρ0 ∈W 1,q(ΩF (0)), u0 ∈ B2(1−1/p)
q,p (ΩF (0))3,

ϑ0 ∈ B2(1−1/p)
q,p (ΩF (0)), `0 ∈ R3, ω0 ∈ R3, min

ΩF (0)
ρ0 > 0
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u0 = 0 on ∂Ω, u0(y) = `0 + ω0 × y y ∈ ∂ΩS(0)}
}
. (2.10)

Such a definition has a sense since from the Sobolev embedding we have

W 1,q(ΩF (0)) ⊂ C(ΩF (0)).

Moreover since
1

p
+

1

2q
< 1, if f ∈ B2(1−1/p)

q,p (ΩF (0)), then (see, for instance, [28, p.200]), f

admits a trace on ∂ΩF (0) with f|∂ΩF (0) ∈ B
2(1−1/p)−1/q
q,p (∂ΩF (0)).

The norm of Ip,q is the norm of

W 1,q(ΩF (0))×B2(1−1/p)
q,p (ΩF (0))3 ×B2(1−1/p)

q,p (ΩF (0))× R6.

We introduce the set of initial data

Iccp,q =


Ip,q if

1

2
<

1

p
+

1

2q
< 1,{

(ρ0, u0, ϑ0, `0, ω0) ∈ Ip,q |
∂ϑ0

∂n
= 0, on ∂ΩF (0)

}
if

1

p
+

1

2q
<

1

2
.

(2.11)

Again, the normal derivative in the above definition is well-defined due to the trace theorem
for Besov spaces (see, for instance [28, p.200]).

We also need a definition of Sobolev spaces in the time dependent domain ΩF (t). Let Λ(t, ·)
be a C1-diffeomorphism from ΩF (0) onto ΩF (t) such that all the derivatives up to second
order in space variable and all the derivatives up to first order in time variable exist. For all
functions v(t, ·) : ΩF (t) 7→ R, we denote v̂(t, y) = v(t,Λ(t, y)) Then for any 1 < p, q < ∞ we
define

Lp(0, T ;Lq(ΩF (·))) = {v | v̂ ∈ Lp(0, T ;Lq(ΩF (0)))} ,
Lp(0, T ;W 2,q(ΩF (·))) =

{
v | v̂ ∈ Lp(0, T ;W 2,q(ΩF (0)))

}
,

W 1,p(0, T ;Lq(ΩF (·))) =
{
v | v̂ ∈W 1,p(0, T ;Lq(ΩF (0)))

}
,

C([0, T ];W 1,q(ΩF (·))) =
{
v | v̂ ∈ C([0, T ];W 1,q(ΩF (0)))

}
,

C([0, T ];B2(1−1/p)
q,p (ΩF (·))) =

{
v | v̂ ∈ C([0, T ];B2(1−1/p)

q,p (ΩF (0))
}
.

We are now in a position to state our first main result.

Theorem 2.1. Let 2 < p <∞ and 3 < q <∞ satisfying the condition
1

p
+

1

2q
6= 1

2
. Assume

that (2.1) is satisfied and (ρ0, u0, ϑ0, `0, ω0) belongs to Iccp,q. Let M > 0 be such that

‖(ρ0, u0, ϑ0, `0, ω0)‖Ip,q 6M,
1

M
6 ρ0(x) 6M for x ∈ ΩF (0). (2.12)

Then, there exists T > 0, depending only on M and ν such that the system (2.2) - (2.9)
admits a unique strong solution

ρ ∈W 1,p(0, T ;W 1,q(ΩF (·))) ∩ C([0, T ];W 1,q(ΩF (·))),

u ∈ Lp(0, T ;W 2,q(ΩF (·))3) ∩W 1,p(0, T ;Lq(ΩF (·))3) ∩ C([0, T ];B2(1−1/p)
q,p (ΩF (·))3),

ϑ ∈ Lp(0, T ;W 2,q(ΩF (·))) ∩W 1,p(0, T ;Lq(ΩF (·))) ∩ C([0, T ];B2(1−1/p)
q,p (ΩF (·))),

a ∈W 2,p(0, T ;R3), ω ∈W 1,p(0, T ;R3).
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Moreover, there exists a constant MT > 0 such that
1

MT
6 ρ(t, x) 6MT for all t ∈ (0, T ), x ∈

ΩF (t) and dist(ΩS(t), ∂Ω) > ν/2 for all t ∈ [0, T ].

Our second main result asserts global existence and uniqueness under a smallness condition
on the initial data.

Theorem 2.2. Let 2 < p <∞ and 3 < q <∞ satisfying the condition
1

p
+

1

2q
6= 1

2
. Assume

that (2.1) is satisfied. Let ρ > 0 and ϑ > 0 be two given constants. Then there exists η0 > 0
such that, for all η ∈ (0, η0) there exist two constants δ0 > 0 and C > 0, such that, for all
δ ∈ (0, δ0) and for any (ρ0, u0, ϑ0, `0, ω0) in Iccp,q with

1

|ΩF (0)|

∫
ΩF (0)

ρ0 dx = ρ, (2.13)

and

‖(ρ0 − ρ, u0, ϑ0 − ϑ, `0, ω0)‖Ip,q 6 δ,
the system (2.2) - (2.9) admits a unique strong solution (ρ, u, ϑ, `, ω) in the class of functions
satisfying

‖(ρ− ρ)‖L∞(0,∞;W 1,q(ΩF (·))) + ‖eη(·)∇ρ‖W 1,p(0,∞;Lq(ΩF (·))) + ‖eη(·)∂tρ‖Lp(0,∞;Lq(ΩF (·)))

+ ‖eη(·) u‖Lp(0,∞;W 2,q(ΩF (·))3) + ‖eη(·)∂tu‖Lp(0,∞;Lq(ΩF (·))3) + ‖eη(·)u‖
L∞(0,∞;B

2(1−1/p)
q,p (ΩF (·))3)

+ ‖eη(·)∂tϑ‖Lp(0,∞;Lq(ΩF (·))) + ‖eη(·)∇ϑ‖Lp(0,∞;Lq(ΩF (·))) + ‖eη(·)∇2ϑ‖Lp(0,∞;Lq(ΩF (·)))

+ ‖(ϑ− ϑ)‖
L∞(0,∞;B

2(1−1/p)
q,p (ΩF (·))) + ‖eη(·)ȧ‖Lp(0,∞;R3) + ‖eη(·)ä‖Lp(0,∞;R3)

+ ‖a‖L∞(0,∞;R3) + ‖eη(·) ω‖W 1,p(0,∞;R3) 6 Cδ. (2.14)

Moreover, ρ(t, x) >
ρ

2
for all t ∈ (0,∞), x ∈ ΩF (t) and dist(ΩS(t), ∂Ω) > ν/2 for all

t ∈ [0,∞).

As shown in Section 12, a simple consequence of the above theorem is:

Corollary 2.3. With the assumptions and notation in Theorem 2.2 we have

‖u(t, ·)‖
B

2(1−1/p)
q,p (ΩF (t))3

+ ‖ȧ(t)‖R3 + ‖ω(t)‖R3 6 Cδe−ηt,

‖ρ(t, ·)− ρ‖W 1,q(ΩF (·)) 6 Cδe
−ηt, (2.15)

where the constant C is independent of t > 0.

To prove Theorem 2.1 and Theorem 2.2 we follow a strategy which is widely used in the
literature on existence and uniqueness of solutions for fluid-solid interaction models, which is:

• Step 1. Since the domain of the fluid equation is one of the unknowns, we first rewrite
the system in a fixed spatial domain. This can be achieved either by a “geometric”
change of variables (see [5]), by using Lagrangian coordinates (see [20]) or by combin-
ing these two change of coordinates (see [17]). In the present work, we found more
convenient to use Lagrangian variables. Apart from allowing to rewrite the coupled
system in a fixed cylindrical domain this allows us to tackle the term u · ∇ρ in the
density equation.
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• Step 2. Next we associate to the original nonlinear problem a linear one, involving
source terms. A crucial step here is to establish the Lp-Lq regularity property for
this linear problem. This is done by proving that the associated linear operators are
R-sectorial in an appropriate Banach spaces.
• Step 3. We estimate the nonlinear terms in the governing equations and we use the

Banach fixed point theorem to prove existence and uniqueness results in the reference
configuration.
• Step 4. In the final step we come back to the original configuration.

3. Notation

In this section, we fix some notations that we use throughout this paper. For s ∈ (0, 1)
and a Banach space U, F sp,q(0, T, U) stands for U valued Lizorkin-Triebel space. For precise
definition of such spaces we refer to [28, 22]. If T < ∞, this spaces can be characterised as
follows (see [31])

F sp,q(0, T ;U) =
{
f ∈ Lp(0, T, U) | |f |F sp,q(0,T ;U) <∞

}
,

where

|f |F sp,q(0,T ;U) =

(∫ T

0

(∫ T−t

0
h−1−sq‖f(t+ h)− f(t)‖qU dh

)p/q
dt

)1/p

.

These spaces endowed with the natural norm

‖f‖F sp,q(0,T ;U) = ‖f‖Lp(0,T ;U) + |f |F sp,q(0,T ;U). (3.1)

If T ∈ (0,∞], we set QFT = (0, T )× ΩF (0) and

W 2,1
q,p (QFT ) = Lp(0, T ;W 2,q(ΩF (0))) ∩W 1,p(0, T ;Lq(ΩF (0))),

with

‖u‖
W 2,1
q,p (QFT )

= ‖u‖Lp(0,T ;W 2,q(ΩF (0))) + ‖u‖W 1,p(0,T ;Lq(ΩF (0))).

For T ∈ (0,∞], the space ST,p,q is defined by

ST,p,q =
{

(ρ, u, ϑ, `, ω) | ρ ∈W 1,p(0, T ;W 1,q(ΩF (0))), u ∈
(
W 2,1
q,p (QFT )

)3
,

ϑ ∈W 2,1
q,p (QFT ), ` ∈W 1,p(0, T ;R3), ω ∈W 1,p(0, T ;R3)

}
(3.2)

and

‖(ρ, u, ϑ, `, ω)‖ST,p,q = ‖ρ‖W 1,p(0,T ;W 1,q(ΩF (0))) + ‖u‖
W 2,1
q,p (QFT )

+ ‖ϑ‖
W 2,1
q,p (QFT )

+‖`‖W 1,p(0,T ) + ‖ω‖W 1,p(0,T ).

For any T <∞ or T =∞ we define BT,p,q as follows

BT,p,q =
{

(f1, f2, f3, h, g1, g2) | f1 ∈ Lp(0, T,W 1,q(ΩF (0))), f2 ∈ Lp(0, T ;Lq(ΩF (0)))3,

f3 ∈ Lp(0, T ;Lq(ΩF (0))), h ∈ F (1−1/q)/2
p,q (0, T ;Lq(∂ΩF (0))) ∩ Lp(0, T ;W 1−1/q,q(∂ΩF (0))),

g1 ∈ Lp(0, T ), g2 ∈ Lp(0, T ) with h(0, y) = 0 for all y ∈ ∂ΩF (0) if
1

p
+

1

2q
<

1

2

}
, (3.3)
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with

‖(f1, f2, f3, h, g1, g2)‖BT,p,q = ‖f1‖Lp(0,T ;W 1,q) + ‖f2‖Lp(0,T ;Lq) + ‖f3‖Lp(0,T ;Lq)

+‖h‖
F

(1−1/q)/2
p,q (0,T ;Lq(∂ΩF (0)))∩Lp(0,T ;W 1−1/q,q(∂ΩF (0)))

+ ‖g1‖Lp(0,T ) + ‖g2‖Lp(0,T ).

Part 2. Local in Time Existence and Uniqueness

4. Lagrangian Change of Variables

In this section, we describe a change of variables, obtained by a slight variation of the
usual passage to Lagrangian coordinates, which allows us to rewrite the governing equations
in a fixed spatial domain and to preserve the linear form of the transmission condition for
the velocity field. More precisely, we consider the characteristics X associated to the fluid
velocity u, that is the solution of the Cauchy problem{

∂tX(t, y) = u(t,X(t, y)) (t > 0),

X(0, y) = y ∈ ΩF (0).
(4.1)

Assume that X(t, ·) is a C1-diffeomorphism from ΩF (0) onto ΩF (t) for all t ∈ (0, T ) (see
(6.17)). For each t ∈ (0, T ), we denote by Y (t, ·) = [X(t, ·)]−1 the inverse of X(t, ·). We
consider the following change of variables

ρ̃(t, y) = ρ(t,X(t, y)), ũ(t, y) = Q−1(t)u(t,X(t, y)),

ϑ̃(t, y) = ϑ(t,X(t, y)), p̃ = Rρ̃ϑ̃, (4.2)˜̀(t) = Q−1(t)ȧ(t), ω̃(t) = Q−1(t)ω(t),

for (t, y) ∈ (0, T )× ΩF (0). In particular,

ρ(t, x) = ρ̃(t, Y (t, x)), u(t, x) = Q(t)ũ(t, Y (t, x)), ϑ(t, x) = ϑ̃(t, Y (t, x)), (4.3)

for (t, x) ∈ (0, T )× ΩF (t). This change of variables implies that (ρ̃, ũ, ϑ̃, ˜̀, ω̃, a,Q) satisfies{
∂tρ̃+ ρ0 div ũ = F1 in (0, T )× ΩF (0),
ρ̃(0, ·) = ρ0 in ΩF (0),

(4.4)
∂tũ−

µ

ρ0
∆ũ− α+ µ

ρ0
∇(div ũ) = F2 in (0, T )× ΩF (0),

ũ = 0 on (0, T )× ∂Ω,

ũ = ˜̀+ ω̃ × y on (0, T )× ∂ΩS(0),
ũ(0, ·) = u0 in ΩF (0),

(4.5)


m
d

dt
˜̀= G1 in (0, T ),

J(0)
d

dt
ω̃ = G2 in (0, T ),˜̀(0) = `0, ω̃(0) = ω0.

(4.6)


∂tϑ̃−

κ

ρ0cv
∆ϑ̃ = F3 in (0, T )× ΩF (0),

∂ϑ̃

∂n
= H · n on (0, T )× ∂ΩF (0),

ϑ̃(0, ·) = ϑ0 in ΩF (0),

(4.7)



9 ȧ = Q˜̀ in (0, T ),

Q̇ = QA(ω̃) in (0, T ),
a(0) = 0, Q(0) = I3,

(4.8)

where

X(t, y) = y +

∫ t

0
Q(s)ũ(s, y) ds, and ∇Y (t,X(t, y)) = [∇X]−1(t, y), (4.9)

for every y ∈ ΩF (0) and t > 0. Using the notation

Z(t, y) = (Zi,j)16i,j63 = [∇X]−1(t, y) (t > 0, y ∈ ΩF (0)), (4.10)

the remaining terms in (4.4)–(4.7) are defined by:

F1(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = −(ρ̃− ρ0) div ũ− ρ̃(∇ũ) :
[
(ZQ)> − I3

]
, (4.11)

(F2)i(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = − ρ̃

ρ0
(ω̃ ×Qũ)i +

(
1− ρ̃

ρ0

)
(∂tũ)i −

ρ̃

ρ0
[(Q− I)∂tũ]i

+
µ

ρ0

∑
l,j,k

∂2(Qũ)i
∂yl∂yk

(Zk,j − δk,j)Zl,j +
µ

ρ0

∑
l,k

∂2(Qũ)i
∂yl∂yk

(Zl,k − δl,k)

+
µ

ρ0
[(Q− I)∆ũ]i +

µ

ρ0

∑
l,j,k

Zl,j
∂(Qũ)i
∂yk

∂Zk,j
∂yl

+
µ+ α

ρ0

∑
l,j,k

∂2(Qu)j
∂yl∂yk

(Zk,j − δk,j)Zl,i +
µ+ α

ρ0

∑
l,j

∂2(Qu)j
∂yl∂yj

(Zl,i − δl,i)

+
α+ µ

ρ0

∂

∂yi

[
∇ũ : (Q> − I3)

]
+
α+ µ

ρ0

∑
l,j,k

Zl,i
∂(Qu)j
∂yk

∂Zk,j
∂yl

−R ϑ̃

ρ0

(
Z>∇ρ̃

)
i
−R ρ̃

ρ0

(
Z>∇ϑ̃

)
i
, (4.12)

F3(ρ̃, ũ, ϑ̃, ˜̀, ω̃) =

(
ρ0 − ρ̃
cvρ0

)
∂tϑ̃−

Rϑ̃ρ̃

cvρ0
[ZQ]> : ∇ũ+

κ

cvρ0

∑
l,j,k

Zl,j
∂ϑ̃

∂yk

∂Zk,j
∂yl

+
κ

cvρ0

∑
j,k,l

∂2ϑ̃

∂yk∂yl
(Zk,j − δk,j)Zl,j +

κ

cvρ0

∑
k,l

∂2ϑ̃

∂yk∂yl
(Zl,k − δl,k)

+
α

cvρ0

(
[ZQ]> : ∇ũ

)2
+

µ

2cvρ0

∣∣∣∇ũZQ+ (∇ũZQ)>
∣∣∣2 , (4.13)

H(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = 1∂ΩHF + 1∂ΩS(0)HS , (4.14)

HF (ρ̃, ũ, ϑ̃, ˜̀, ω̃) = (I3 − Z>)∇ϑ̃ HS(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = (I3 − (ZQ)>)∇ϑ̃,

G0(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = µ
[
∇ũZQ+ (∇ũZQ)>

]
+ α

(
[ZQ]> : ∇ũ

)
I3 +Rρ̃ϑ̃I3, (4.15)

G1(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = −m(ω̃ × ˜̀)− ∫
∂ΩS(0)

G0n dγ, (4.16)
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G2(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = J(0)ω̃ × ω̃ −
∫
∂ΩS(0)

y × G0n dγ. (4.17)

Using the above change of variables, our main result in Theorem 2.1 can be rephrased as:

Theorem 4.1. Let 2 < p <∞ and 3 < q <∞ satisfying the condition
1

p
+

1

2q
6= 1

2
. Assume

that (ρ0, u0, ϑ0, `0, ω0) belongs to Iccp,q such that (2.12) holds. Then, there exists T̃ > 0 such

that for any T ∈ (0, T̃ ), the system (4.4) - (4.17) admits a unique strong solution

ρ̃ ∈W 1,p(0, T ;W 1,q(ΩF (0))),

ũ ∈ Lp(0, T ;W 2,q(ΩF (0))3) ∩W 1,p(0, T ;Lq(ΩF (0))3) ∩ C([0, T ];B2(1−1/p)
q,p (ΩF (0))3),

ϑ̃ ∈ Lp(0, T ;W 2,q(ΩF (0))) ∩W 1,p(0, T ;Lq(ΩF (0))) ∩ C([0, T ];B2(1−1/p)
q,p (ΩF (0))),˜̀∈W 1,p(0, T ;R3), ω̃ ∈W 1,p(0, T ;R3), (4.18)

a ∈W 2,p(0, T ;R3), Q ∈W 2,p(0, T ;SO(3)),

X ∈W 1,p(0, T ;W 2,q(ΩF (0))) ∩W 2,p(0, T ;Lq(ΩF (0))),

X(t, ·) : ΩF (0)→ ΩF (t) is a C1 − diffeormorphim for all t ∈ [0, T ].

Moreover, there exists a constant MT > 0, such that
1

MT
6 ρ̃(t, y) 6 MT , for all t ∈

(0, T ), y ∈ ΩF (0).

The proof of the above theorem relies on a fixed point theorem and a linearization. We
describe below the main steps of the proof using the maximal regularity of an associated linear
problem and some estimates of the non linear terms involved in the fixed point procedure. For
the clarity of the presentation , we postpone the detailed proofs of the maximal regularity and
the estimates of the non linear terms technical results in Section 5 and Section 6 respectively.

Proof of Theorem 4.1. Assume

(ρ0, u0, ϑ0, `0, ω0) ∈ Iccp,q,

is given (see (2.11)) and (2.12) holds with M > 0.
We consider the following linear problem.{

∂tρ̃+ ρ0 div ũ = f1 in (0, T )× ΩF (0),
ρ̃(0, ·) = ρ0 in ΩF (0),

(4.19)
∂tũ−

µ

ρ0
∆ũ− α+ µ

ρ0
∇(div ũ) = f2 in (0, T )× ΩF (0),

ũ = 0 on (0, T )× ∂Ω,

ũ = ˜̀+ ω̃ × y on (0, T )× ∂ΩS(0),
ũ(0, ·) = u0 in ΩF (0),

(4.20)


m
d

dt
˜̀= g1 in (0, T ),

J(0)
d

dt
ω̃ = g2 in (0, T ),˜̀(0) = `0, ω̃(0) = ω0.

(4.21)
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∂tϑ̃−

κ

ρ0cv
∆ϑ̃ = f3 in (0, T )× ΩF (0),

∂ϑ̃

∂n
= h on (0, T )× ∂ΩF (0),

ϑ̃(0, ·) = ϑ0 in ΩF (0).

(4.22)

where
(ρ0, u0, ϑ0, `0, ω0) ∈ Iccp,q, (f1, f2, f3, h, g1, g2) ∈ BT,p,q

are given (see (2.11) and (3.3)) and such that the initial conditions satisfy (2.12) with M > 0.

In the following we shall denote for each T∗ ∈ (0, T ], by B̃T∗ the closed unit ball in BT∗,p,q.
In Section 5 we will construct a solution to (4.19)—(4.22) providing a bounded ’solution

operator’

F :

{
BT,p,q → ST,p,q

(f1, f2, f3, h, g1, g2) 7→ (ρ̃, ũ, ϑ̃, ˜̀, ω̃),

where we recall that BT,p,q and ST,p,q are defined in (3.3) and in (3.2).
In Section 6 we then prove norm estimates for the nonlinear terms, F1,F2,F3,HF ,HS ,G1,G2.

More precisely, assuming that

T ∈ (0, T̃ ), with T̃ < 1 small enough,

we show that the obtained norm bounds here depend, up to a constant, on T δ where δ depends
on p, q only. This allows us to define the operator

N :

{
BT,p,q → BT,p,q

(f1, f2, f3, h, g1, g2) 7→ (F1,F2,F3,H,G1,G2),

and to show that, for sufficiently small T̃ , it becomes a self-map of the closed ball

{(f1, f2, f3, h, g1, g2) ∈ BT,p,q | ‖(f1, f2, f3, h, g1, g2)‖BT,p,q 6 1}.
Finally, in Proposition 6.5 a Lipschitz estimate for N is proved, again with a Lipschitz

constant depending on T δ, provided that T ∈ (0, T̃ ). This allows us to enforce a strict
contraction on the above closed ball and hence a fixed point, that provides a solution to
(4.4)—(4.17) satisfying (4.18). The bound of ρ̃ will be obtained from the estimate (6.8). �

From Theorem 4.1 we can now deduce Theorem 2.1.

Proof of Theorem 2.1. Let us assume that (ρ0, u0, ϑ0, `0, ω0) ∈ Iccp,q satisfies the condition
(2.12).

Let T < T̃ with T̃ as in Theorem 4.1. In particular, there exists a unique solution

(ρ̃, ũ, ϑ̃, g̃, ω̃) to the system (4.4) - (4.15) satisfying

ρ̃ ∈W 1,p(0, T ;W 1,q(ΩF (0)))

ũ ∈ Lp(0, T ;W 2,q(ΩF (0))3) ∩W 1,p(0, T ;Lq(ΩF (0))3)

ϑ̃ ∈ Lp(0, T ;W 2,q(ΩF (0))) ∩W 1,p(0, T ;Lq(ΩF (0)))˜̀∈W 1,p(0, T ;R3), ω̃ ∈W 1,p(0, T ;R3).

Since T 6 T̃ , X(t, ·) is C1− diffeomorphism from ΩF (0) into ΩF (t), we set Y (t, ·) = X−1(t, ·)
and for x ∈ ΩF (t), t > 0

ρ(t, x) = ρ̃(t, Y (t, x)),
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u(t, x) = Q(t)ũ(t, Y (t, x)),

ϑ(t, x) = ϑ̃(t, Y (t, x)),

ȧ(t) = Q(t)˜̀(t), ω(t) = Q(t)ω̃(t).

We can then check that (ρ, u, ϑ, a, ω) satisfies the original system (2.2) - (2.9) and

ρ ∈W 1,p(0, T ;W 1,q(ΩF (·))) ∩ C([0, T ];W 1,q(ΩF (·))),

u ∈ Lp(0, T ;W 2,q(ΩF (·))3) ∩W 1,p(0, T ;Lq(ΩF (·))3) ∩ C([0, T ];B2(1−1/p)
q,p (ΩF (·))3),

ϑ ∈ Lp(0, T ;W 2,q(ΩF (·))) ∩W 1,p(0, T ;Lq(ΩF (·))) ∩ C([0, T ];B2(1−1/p)
q,p (ΩF (·))),

a ∈W 2,p(0, T ;R3), ω ∈W 1,p(0, T ;R3).

The uniqueness for the solution of (2.2) - (2.9) follows from uniqueness of solution to the
system (4.4) - (4.15). Since a(t) and ω(t) belongs to C([0, T ];R3), using (2.1) we obtain
dist(ΩS(t), ∂Ω) > ν/2 for all t ∈ [0, T ] if T is small enough. This completes the proof of
Theorem 2.1. �

5. Maximal Lp − Lq Regularity for a Linear Problem.

In this section, we fix T̃ > 0, and 1 < p, q <∞ such that
1

p
+

1

2q
6= 1 and

1

p
+

1

2q
6= 1

2
. We

also take T ∈ (0, T̃ ]. We consider the linear system (4.19)—(4.22) associated with (4.4)–(4.7),
where we replace the terms in the right-hand side by given source terms. The initial data for
the system (4.19)—(4.22) satisfies the following properties:

ρ0 ∈W 1,q(ΩF (0)) ∩ C(ΩF (0)), min
ΩF (0)

ρ0 >M,

u0 ∈ B2(1−1/p)
q,p (ΩF (0))3, ϑ0 ∈ B2(1−1/p)

q,p (ΩF (0)), `0 ∈ R3, ω0 ∈ R3, (5.1)

u0 = 0 on ∂Ω, u0(y) = `0 + ω0 × y y ∈ ∂ΩS(0) if
1

p
+

1

2q
< 1,

∂ϑ0

∂n
= 0, on ∂ΩF (0) if

1

p
+

1

2q
<

1

2
.

Observe that the linear system can be solved “in cascades”: Equation (4.21) can be solved
independently and admits a unique solution

(˜̀, ω̃) ∈W 1,p(0, T )3 ×W 1,p(0, T )3.

Moreover there exists a constant C = C(T̃ ) independent of T such that

‖˜̀‖W 1,p(0,T )3 + ‖ω̃‖W 1,p(0,T )3 6 C
(
‖`0‖R3 + ‖ω0‖R3 + ‖g1‖Lp(0,T )3 + ‖g2‖Lp(0,T )3

)
. (5.2)

We also note that if we show that system (4.20) admits a unique solution ũ ∈W 2,1
q,p (QFT )3,

we can use the Sobolev embedding to prove that system (4.19) admits a unique solution

ρ̃ ∈W 1,p(0, T ;W 1,q(ΩF (0))). There exists again a constant C = C(T̃ ) independent of T such
that

‖ρ̃‖W 1,p(0,T ;W 1,q(ΩF (0))) 6 C
(
‖ũ‖

W 2,1
q,p (QFT )3

+ ‖f1‖Lp(0,T ;W 1,q(ΩF (0))) + ‖ρ0‖W 1,q(ΩF (0))

)
.

(5.3)
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Consequently, in order to solve (4.19)–(4.22), we need to solve the two parabolic systems
(4.20) and (4.22). This is done below by using [9, Theorem 2.3].

Proposition 5.1. With the above notation, assume T ∈ (0, T̃ ] and u0 ∈ B2(1−1/p)
q,p (ΩF (0))3

with

u0 = 0 on ∂Ω, u0 = `0 + ω0 × y on ∂ΩS(0) if
1

p
+

1

2q
< 1. (5.4)

Then for any f2 ∈ Lp(0, T ;Lq(ΩF (0)))3, system (4.20) admits a unique strong solution ũ ∈
W 2,1
q,p (QFT )3. Moreover, there exists a constant C > 0 depending only on M , T̃ and ΩF (0)

such that

‖ũ‖
W 2,1
q,p (QFT )3

6 C
(
‖u0‖B2(1−1/p)

q,p (ΩF (0))3
+ ‖`0‖R3 + ‖ω0‖R3

+ ‖g1‖Lp(0,T )3 + ‖g2‖Lp(0,T )3 + ‖f2‖Lp(0,T ;Lq(ΩF (0)))3

)
. (5.5)

Proof. We take η ∈ C∞(ΩF (0)) such that

η = 0 on ∂Ω, η = 1 on ∂ΩS(0).

For (t, y) ∈ (0, T ) × ΩF (0), we set w(t, y) = η(y)(˜̀(t) + ω̃(t) × y). Therefore, using (5.2) we

see that there exists a positive constant C depending on T̃ and ΩF (0) such that

‖w(0, ·)‖
B

2(1−1/p)
q,p (ΩF (0))3

+ ‖w‖
W 2,1
q,p (QFT )3

6 C
(
‖`0‖R3 + ‖ω0‖R3 + ‖g1‖Lp(0,T )3 + ‖g2‖Lp(0,T )3

)
.

(5.6)

We look for the solution of (4.20) of the form ũ = v + w, where v is the solution of
∂tv −

µ

ρ0
∆v − α+ µ

ρ0
∇(div v) = f̂2, in (0, T )× ΩF (0),

v = 0 on (0, T )× ∂ΩF (0),
v(0, ·) = v0 in ΩF (0),

(5.7)

with v0 = u0 − w(0, ·) and with

f̂2 = f2 − ∂tw +
µ

ρ0
∆w +

α+ µ

ρ0
∇(div w).

We can check that f̂2 belongs to Lp(0, T ;Lq(ΩF (0)))3 and that there exists a constant de-
pending only on M such that

‖f̂2‖Lp(0,T ;Lq(ΩF (0)))3 6 C
(
‖f2‖Lp(0,T ;Lq(ΩF (0)))3 + ‖w‖

W 2,1
q,p (QFT )3

)
. (5.8)

Moreover, since v0 ∈ B2(1−1/p)
q,p (ΩF (0))3 with v0 = 0 on ∂ΩF (0) if

1

p
+

1

2q
< 1, we can apply

[9, Theorem 2.3] and deduce that (5.7) admits unique solution v ∈W 2,1
q,p (QFT )3.

More precisely, here the ellipticity of the interior symbol can be checked since ρ0(y) > 1
M >

0 for all y ∈ ΩF (0), µ > 0 and α + 2
3µ > 0. The Lopatinsky-Shapiro condition also can be

verified (see [2, Section 6]).
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This yields that (4.20) admits a unique solution ũ ∈W 2,1
q,p (QFT )3. In order to prove estimate

(5.5), we apply again [9, Theorem 2.3] on the system
∂tv̂ −

µ

ρ0
∆v̂ − α+ µ

ρ0
∇(div v̂) = f̂T , in (0, T̃ )× ΩF (0),

v̂ = 0 on (0, T̃ )× ∂ΩF (0)
v̂(0) = v0 in ΩF (0).

In particular, for any f̂ ∈ Lp(0, T̃ ;Lq(ΩF (0))3), there exists a unique solution

v̂ ∈ Lp(0, T̃ ;W 2,q(ΩF (0))3) ∩W 1,p(0, T̃ , Lq(ΩF (0))3)

of the above system and by the closed graph theorem, there exists a constant C
T̃
> 0 such

that

‖v̂‖
Lp(0,T̃ ;W 2,q(ΩF (0))3)

+ ‖v̂‖
W 1,p(0,T̃ ,Lq(ΩF (0))3)

6 C
T̃

(
‖v0‖B2(1−1/p)

q,p (ΩF (0))3
+ ‖f̂‖

Lp(0,T̃ ;Lq(ΩF (0))3)

)
.

Then we take

f̂ =

{
f̂2 if 0 < t 6 T,

0 if T < t 6 T̃ ,

and by the uniqueness of the solution, we note that v̂ = v for all t ∈ [0, T ]. Thus the above
estimate, (5.6) and (5.8) yield (5.5). �

Next we consider system (4.22).

Proposition 5.2. With the above notation, assume T ∈ (0, T̃ ], ϑ0 ∈ B2(1−1/p)
q,p (ΩF (0)) and

h ∈ F (1−1/q)/2
p,q (0, T ;Lq(∂ΩF (0)))∩Lp(0, T ;W 1−1/q,q(∂ΩF (0))) with the compatibility condition

∂ϑ0

∂n
= h(0, ·) = 0 on ∂ΩF (0) if

1

p
+

1

2q
<

1

2
. (5.9)

Then for any f3 ∈ Lp(0, T ;Lq(ΩF (0))), system (4.22) admits a unique strong solution ϑ̃ ∈
W 2,1
q,p (QFT ). Moreover, there exists a constant C > 0, depending only on M and T̃ , such that

‖ϑ̃‖
W 2,1
q,p (QFT )

6 C
(
‖ϑ0‖B2(1−1/p)

q,p (ΩF (0))
+ ‖f3‖Lp(0,T ;Lq(ΩF (0))) + ‖h‖

F
(1−1/q)/2
p,q (0,T ;Lq(∂ΩF (0)))

+ ‖h‖Lp(0,T ;W 1−1/q,q(∂ΩF (0)))

)
. (5.10)

Proof. The existence and the regularity results follow from [9, Theorem 2.3].

Since we need a constant C in (5.10) independent of T ∈ (0, T̃ ] and this fact is not explicitly
stated in [9], we provide below a short argument showing that the constant C can indeed be

chosen to be uniform for T ∈ (0, T̃ ]. To this aim, we decompose ϑ̃ in the form ϑ̃ = ϑ̃1 + ϑ̃2,

where ϑ̃1 solves 
∂tϑ̃1 −

κ

ρ0cv
∆ϑ̃1 = f3 in (0, T )× ΩF (0),

∂ϑ̃1

∂n
= 0 on (0, T )× ∂ΩF (0),

ϑ̃1(0) = ϑ0 in ΩF (0),

(5.11)
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and ϑ̃2 solves 
∂tϑ̃2 −

κ

ρ0cv
∆ϑ̃2 = 0 in (0, T )× ΩF (0),

∂ϑ̃2

∂n
= h on (0, T )× ∂ΩF (0),

ϑ̃2(0) = 0 in ΩF (0).

(5.12)

Proceeding as in the proof of Proposition 5.1, we first obtain

‖ϑ̃1‖W 2,1
q,p (QFT )

6 C
(
‖ϑ0‖B2(1−1/p)

q,p (ΩF (0))
+ ‖f3‖Lp(0,T ;Lq(ΩF (0)))

)
, (5.13)

where the constant C may depend on T̃ but is independent of T . Let us set

ĥ =

{
h if 0 < t 6 T,

0 if T − T̃ < t 6 0.

We first verify that

ĥ ∈ F (1−1/q)/2
p,q (T − T̃ , T ;Lq(∂ΩF (0))) ∩ Lp(T − T̃ , T ;W 1−1/q,q(∂ΩF (0))).

Obviously ĥ belongs to Lp(T−T̃ , T ;W 1−1/q,q(∂ΩF (0))). The fact that ĥ belongs to F
(1−1/q)/2
p,q (T−

T̃ , T ;Lq(∂ΩF (0))) follows from [28, Remark 2, Section 3.4.3, p.211]. Moreover

‖ĥ‖
F

(1−1/q)/2
p,q (T−T̃ ,T ;Lq(∂ΩF (0)))

+ ‖ĥ‖
Lp(T−T̃ ,T ;W 1−1/q,q(∂ΩF (0)))

= ‖h‖
F

(1−1/q)/2
p,q (0,T ;Lq(∂ΩF (0)))

+ ‖h‖Lp(0,T ;W 1−1/q,q(∂ΩF (0))).

We consider the system
∂tϑ̂2 − κ

ρ0cv
∆ϑ̂2 = 0 in (T − T̃ , T )× ΩF (0),

∂ϑ̂2
∂n = ĥ on (T − T̃ , T )× ∂ΩF (0),

ϑ̂2(T − T̃ ) = 0 in ΩF (0).

(5.14)

Note that, ϑ̂2 = 0 for all t ∈ [T − T̃ , 0] and ϑ̂2 = ϑ̃2 for all t ∈ [0, T ]. Therefore, we have

‖ϑ̃2‖Lp(0,T ;W 2,q(ΩF (0))) + ‖ϑ̃2‖W 1,p(0,T,Lq(ΩF (0)))

= ‖ϑ̂2‖Lp(T−T̃ ,T ;W 2,q(ΩF (0)))
+ ‖ϑ̂2‖W 1,p(T−T̃ ,T,Lq(ΩF (0)))

6 C
T̃

(
‖ĥ‖

F
(1−1/q)/2
p,q (T−T̃ ,T ;Lq(∂ΩF (0)))

+ ‖ĥ‖
Lp(T−T̃ ,T ;W 1−1/q,q(∂ΩF (0)))

)
6 C

T̃

(
‖h‖

F
(1−1/q)/2
p,q (0,T ;Lq(∂ΩF (0)))

+ ‖h‖Lp(0,T ;W 1−1/q,q(∂ΩF (0)))

)
.

This completes the proof of the proposition. �

Combining Proposition 5.1 and Proposition 5.2, we obtain the following result

Theorem 5.3. Let T̃ be an arbitrary fixed given time. Let 1 < p < ∞ and 1 < q < ∞
satisfying the conditions

1

p
+

1

2q
6= 1 and

1

p
+

1

2q
6= 1

2
. Let (ρ0, u0, ϑ0, `0, ω0) satisfy the

assumptions (5.1). Then for any (f1, f2, f3, h, g1, g2) ∈ BT,p,q and T ∈ (0, T̃ ) the system

(4.19)–(4.22) admits a unique solution (ρ̃, ũ, ϑ̃, ˜̀, ω̃) ∈ ST,p,q and there exists a constant C > 0

depending on p, q,M, T̃ and independent of T such that

‖(ρ̃, ũ, ϑ̃, ˜̀, ω̃)‖ST,p,q 6 C
(
‖(ρ0, u0, ϑ0, `0, ω0)‖Ip,q + ‖(f1, f2, f3, h, g1, g2)‖BT,p,q

)
. (5.15)
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6. Estimating the Nonlinear Terms

In order to prepare the forthcoming fixed point argument, we provide in this section es-
timates of F1, F2, F3,G1,G2, HF and HS defined in (4.11)-(4.17) where (f1, f2, f3, h, g1, g2)

are given and where (ρ̃, ũ, ϑ̃, ˜̀, ω̃) is the corresponding solution of (4.19)—(4.22) given by
Theorem 5.3.

Assume 2 < p < ∞ and 3 < q < ∞ satisfy
1

p
+

1

2q
6= 1

2
. Let p′ denote the conjugate of

p, i.e., 1
p + 1

p′ = 1. We will frequently use the following immediate consequences of Hölder’s

inequality.

‖f‖Lp(0,T ) 6 T
1/p−1/r‖f‖Lr(0,T ), for all f ∈ Lr(0, T ), r > p, (6.1)

‖f‖L∞(0,T ) 6 T
1/p′‖f‖W 1,p(0,T ), for all f ∈W 1,p(0, T ), f(0) = 0. (6.2)

In the following, when no confusion is possible, we will use the notation

‖ · ‖W r,p(0,T ;W s,q) = ‖ · ‖W r,p(0,T ;W s,q(ΩF (0))).

We next recall three estimates which play an essential role in the remaining part of this
section. For the first two estimates we refer to the relevant literature, whereas for the third
one we provide a short proof.

Proposition 6.1. [25, Lemma 4.2] Let 1 < p, q < ∞ and T be any positive number. Let Ω

be a smooth domain in Rn. Then for any u ∈W 2,1
q,p ((0, T )× Ω),

sup
t∈(0,T )

‖u(t)‖
B

2(1−1/p)
q,p (Ω)

6 C
(
‖u(0)‖

B
2(1−1/p)
q,p (Ω)

+ ‖u‖
W 2,1
q,p ((0,T )×Ω)

)
, (6.3)

where the constant C is independent of T .

To state the second estimate, we use the Lizorkin-Triebel space F sp,q(0, T ;X) defined in
(3.1).

Proposition 6.2. [9, Proposition 6.4] Let 1 < p, q < ∞ and T be any positive number.

Let Ω be a smooth domain in Rn. Then for any u ∈ W 2,1
q,p ((0, T ) × Ω), ∇u|∂Ω belongs to

F
(1−1/q)/2
p,q (0, T ;Lq(∂Ω)) ∩ Lp(0, T ;W 1−1/q,q(∂Ω)). Moreover,∥∥∇u · n∥∥

F
(1−1/q)/2
p,q (0,T ;Lq(∂Ω))∩Lp(0,T;W 1−1/q,q(∂Ω))

6 C
(
‖u(0)‖

B
2(1−1/p)
q,p (Ω)

+ ‖u‖
W 2,1
q,p ((0,T )×Ω)

)
,

(6.4)

where the constant C is independent of time T .

The third one of the estimates mentioned above is given in the following result.

Proposition 6.3. Let U1, U2 and U3 be three Banach spaces and Φ : U1×U2 → U3 a bounded
bilinear map. Let us assume that f ∈ F sp,q(0, T ;U1) and g ∈W 1,p(0, T ;U2) for some s ∈ (0, 1),

p > 2 and q > 3. Let us assume that g(0) = 0. If s+ 1
p < 1, then we have

‖Φ(f, g)‖F sp,q(0,T ;U3) 6 CT
δ‖g‖W 1,p(0,T ;U2)‖f‖F sp,q(0,T ;U2), (6.5)

for some positive constant δ depending only on p, q and s and the constant C is independent
of time T .
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Proof. From the boundedness of Φ and (6.2) we infer

‖Φ(f, g)‖Lp(0,T ;U3) 6 C‖f‖Lp(0,T ;U1)‖g‖L∞(0,T ;U2) 6 CT
1/p′‖f‖Lp(0,T ;U1)‖g‖W 1,p(0,T ;U2), (6.6)

since g(0) = 0. Using again the boundedness of Φ,

|Φ(f, g)|pF sp,q(0,T ;U3) =

∫ T

0

(∫ T−t

0
h−1−sq‖Φ(f(t+ h), g(t+ h))− Φ(f(t), g(t))‖qU3

dh

)p/q
dt

6 Cp,q

∫ T

0

(∫ T−t

0
h−1−sq‖(f(t+ h)− f(t)‖qU1

‖g(t+ h)‖qU2
dh

)p/q
dt

+ Cp,q

∫ T

0

(∫ T−t

0
h−1−sq‖f(t)‖qU1

‖g(t+ h)− g(t)‖qU2
dh

)p/q
dt

= I1 + I2.

We estimate I1 using (6.2)

I1 6 Cp,q‖g‖pL∞(0,T ;U2)|f |
p
F sp,q(0,T ;U1) 6 Cp,qT

p/p′‖g‖p
W 1,p(0,T ;U2)

‖f‖pF sp,q(0,T ;U1).

Since g ∈W 1,p(0, T ;U2), by using Hölder’s inequality we have

‖g(t+ h, ·)− g(t, ·)‖U2 6 h
1/p′‖g‖W 1,p(0,T ;U2), for all h ∈ (0, T − t), t ∈ (0, T ).

Using the above estimate and the fact that 0 < s+ 1/p < 1, we get

I2 6 Cp,q‖g‖pW 1,p(0,T ;U2)

∫ T

0
‖f(t)‖pU1

(∫ T−t

0
h−1−sq h

q/p′ dh

)p/q
dt

6 Cp,q‖g‖pW 1,p(0,T ;U2)

∫ T

0
‖f(t)‖pU1

(
(T − t)q(1−1/p−s)

q(1− 1/p− s)

)p/q

dt

6 Cp,q,sT
p(1−1/p−s)‖g‖p

W 1,p(0,T ;U2)
‖f‖pLp(0,T ;U1).

Combining the above estimates, we obtain (6.5). �

Our aim is to estimate the non linear terms in (4.11)-(4.17):

Proposition 6.4. Let 2 < p < ∞ and 3 < q < ∞ satisfying the condition 1
p + 1

2q 6=
1
2 . Let

(ρ0, u0, ϑ0, `0, ω0) ∈ Iccp,q such that (2.12) holds. There exist T̃ < 1, a constant δ > 0 depending

only on p and q, and a constant C > 0 depending only on p, q,M, T̃ such that for T ∈ (0, T̃ ]
and for (f1, f2, f3, h, g1, g2) ∈ BT,p,q satisfying

‖(f1, f2, f3, h, g1, g2)‖BT,p,q 6 1,

the solution of (ρ̃, ũ, ϑ̃, ˜̀, ω̃) ∈ ST,p,q of (4.19)—(4.22) verifies

‖(F1,F2,F3,H,G1,G2)‖BT,p,q 6 CT
δ.

Proof. We consider T̃ < 1 and we assume that T ∈ (0, T̃ ]. The constants C appearing in this
proof depend only on M .

From (5.15) in Theorem 5.3, we first obtain

‖(ρ̃, ũ, ϑ̃, ˜̀, ω̃)‖ST,p,q 6 C. (6.7)
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Combining (6.2) and (6.7), we deduce

‖ρ̃− ρ0‖L∞(0,T ;W 1,q(ΩF (0))) 6 CT
1/p′ (6.8)

and
‖ρ̃‖L∞(0,T ;W 1,q) 6 C. (6.9)

In a similar manner, we can obtain

‖ω̃‖L∞(0,T ), ‖˜̀‖L∞(0,T ) 6 C, (6.10)

and combining these estimates with (6.1) yields

‖ρ̃‖Lp(0,T ;W 1,q) + ‖ω̃‖Lp(0,T ) + ‖˜̀‖Lp(0,T ) 6 CT
1/p. (6.11)

Since 2 < p < ∞, one has B
2(1−1/p)
q,p (ΩF (0)) ↪→ W 1,q(ΩF (0)). Therefore, using Proposi-

tion 6.1 and (6.7) we get

‖ũ‖L∞(0,T ;W 1,q) + ‖ϑ̃‖L∞(0,T ;W 1,q) 6 C. (6.12)

For all s ∈ (0, 1) we have by complex interpolation

‖ũ(t, ·)‖W 1+s,q(ΩF (0)) 6 C‖ũ(t, ·)‖(1+s)/2
W 2,q(ΩF (0))

‖ũ(t, ·)‖(1−s)/2Lq(ΩF (0)),

and thus

‖ũ‖Lp(0,T,W 1+s,q(ΩF (0)) 6 CT
(1−s)/2p‖ũ‖1−s/2L∞(0,T ;Lq(ΩF (0))‖ũ‖

1+s/2
Lp(0,T ;W 2,q(ΩF (0)))

.

Therefore, using (6.1), (6.7) and (6.12), we get

‖ũ‖Lp(0,T ;W 1+s,q) + ‖ϑ̃‖Lp(0,T ;W 1+s,q) 6 CT
(1−s)/2p, s ∈ (0, 1). (6.13)

Combining the above estimate with the fact that L∞(ΩF (0)) ↪→W s,q(ΩF (0))) for s ∈ (3/q, 1),
we deduce

‖ũ‖Lp(0,T,L∞) + ‖∇ũ‖Lp(0,T,L∞) + ‖∇ϑ̃‖Lp(0,T,L∞) 6 CT
(1−s)/2p, s ∈ (3/q, 1). (6.14)

The solution of (4.8) satisfies Q ∈ SO(3) and thus |Q(t)| = 1 for all t. In particular,

|Q̇| 6 C|ω̃| and we deduce from (6.2) and (6.7)

‖Q‖L∞(0,T ;R3×3) 6 C and ‖Q− I3‖L∞(0,T ;R3×3) 6 CT
1/p′ . (6.15)

Let X be defined as in (4.9). Then

sup
t∈(0,T )

‖∇X(t, ·)− I3‖W 1,q(ΩF (0)) 6 C
∫ T

0
‖∇ũ‖W 1,q(ΩF (0)) 6 CT

1/p′‖∇ũ‖Lp(0,T ;W 1,q).

Now using W 1,q(ΩF (0)) ⊂ L∞(ΩF (0)) and (6.7) we deduce from the above estimate

sup
t∈(0,T )

‖∇X(t, ·)− I3‖L∞(ΩF (0)) 6 CT
1/p′ (6.16)

In particular, there exists T̃ such that

‖∇X(t, ·)− I3‖L∞(ΩF (0)) 6
1

2
(6.17)

for all 0 < t < T 6 T̃ . This implies that ∇X(t, ·) is invertible and we can thus define
Z = [∇X]−1. More precisely, combining

∂t∇X(t, y) = Q(t)∇ũ(t, y),
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and (6.7) and (6.15) we get

‖∂t∇X‖Lp(0,T ;W 1,q) 6 ‖Q‖L∞(0,T )‖∇ũ‖Lp(0,T ;W 1,q) 6 C,

where C depends only on M . The above estimate and (6.16) yield

‖∇X‖W 1,p(0,T ;W 1,q(ΩF (0))) + ‖∇X‖L∞(0,T ;W 1,q(ΩF (0))) 6 C.

Since W 1,p(0, T ;W 1,q(ΩF (0))) and L∞(0, T ;W 1,q(ΩF (0))) are algebras for p > 2 and q > 3,
this implies

‖ det∇X‖W 1,p(0,T ;W 1,q(ΩF (0))) + ‖ det∇X‖L∞(0,T ;W 1,q(ΩF (0))) 6 C, (6.18)

‖Cof∇X‖W 1,p(0,T ;W 1,q(ΩF (0))) + ‖Cof∇X‖L∞(0,T ;W 1,q(ΩF (0))) 6 C. (6.19)

From (6.17), we deduce that det∇X > C > 0 in (0, T )× ΩF (0) and thus from

Z =
1

det∇X
(Cof∇X)>,

we deduce
‖Z‖W 1,p(0,T ;W 1,q(ΩF (0))) + ‖Z‖L∞(0,T ;W 1,q(ΩF (0))) 6 C. (6.20)

‖∇X‖W 1,p(0,T ;W 1,q(ΩF (0))) + ‖∇X‖L∞(0,T ;W 1,q(ΩF (0))) 6 C, (6.21)

The above estimate combined with (6.15) and with (6.7) implies

‖QZ‖W 1,p(0,T ;W 1,q(ΩF (0))) + ‖QZ‖L∞(0,T ;W 1,q(ΩF (0))) 6 C. (6.22)

We are now in position to estimate the non linear terms in (4.11)-(4.17):
Estimate of F1.

‖F1‖Lp(0,T ;W 1,q(ΩF (0))) 6 CT
1/p′ . (6.23)

Since W 1,q(ΩF (0)) is an algebra for q > 3, we can write

‖F1‖Lp(0,T ;W 1,q(ΩF (0))) 6 C‖ρ̃− ρ0‖L∞(0,T ;W 1,q)‖div ũ‖Lp(0,T ;W 1,q)

+ C‖ρ̃‖L∞(0,T ;W 1,q)‖QZ − I3‖L∞(0,T ;W 1,q)‖∇ũ‖Lp(0,T ;W 1,q). (6.24)

Combining the above estimate with (6.9), (6.8), (6.7), (6.22) and (6.2), we deduce (6.23).
Estimate of F2.

‖F2‖Lp(0,T ;W 1,q) 6 CT
1/p. (6.25)

Let us recall the definition (4.12) of F2:

(F2)i(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = − ρ̃

ρ0
(ω̃ ×Qũ)i +

(
1− ρ̃

ρ0

)
(∂tũ)i −

ρ̃

ρ0
[(Q− I)∂tũ]i

+
µ

ρ0

∑
l,j,k

∂2(Qũ)i
∂yl∂yk

(Zk,j − δk,j)Zl,j +
µ

ρ0

∑
l,k

∂2(Qũ)i
∂yl∂yk

(Zl,k − δl,k)

+
µ

ρ0
[(Q− I)∆ũ]i +

µ

ρ0

∑
l,j,k

Zl,j
∂(Qũ)i
∂yk

∂Zk,j
∂yl

+
µ+ α

ρ0

∑
l,j,k

∂2(Qu)j
∂yl∂yk

(Zk,j − δk,j)Zl,i +
µ+ α

ρ0

∑
l,j

∂2(Qu)j
∂yl∂yj

(Zl,i − δl,i)

+
α+ µ

ρ0

∂

∂yi

[
∇ũ : (Q> − I3)

]
+
α+ µ

ρ0

∑
l,j,k

Zl,i
∂(Qu)j
∂yk

∂Zk,j
∂yl
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−R ϑ̃

ρ0

(
Z>∇ρ̃

)
i
−R ρ̃

ρ0

(
Z>∇ϑ̃

)
i

• Estimate of first term of F2 : using (6.1),(6.9), (6.10) and (6.12), we have∥∥∥ ρ̃
ρ0

(ω̃ ×Qũ)i

∥∥∥
Lp(0,T ;Lq)

6 C
∥∥ρ̃∥∥

L∞(0,T ;W 1,q)

∥∥ω̃∥∥
L∞(0,T ;R3)

‖ũ‖Lp(0,T ;Lq)

6CT 1/p.

• Estimate of second term of F2 : using (6.7) and (6.8) we have∥∥∥(1− ρ̃

ρ0

)
(∂tũ)i

∥∥∥
Lp(0,T ;Lq)

6 C‖ρ̃− ρ0‖L∞(0,T ;W 1,q)‖∂tũ‖Lp(0,T ;Lq)

6 CT 1/p′ .

• Estimate of third term of F2 : using (6.7), (6.9) and (6.15)∥∥ ρ̃
ρ0

[(Q− I)∂tũ]i
∥∥
Lp(0,T ;Lq)

6 C‖ρ̃‖L∞(0,T ;W 1,q)‖Q− I3‖L∞(0,T )‖ũ‖W 1,p(0,T ;Lq)

6 CT 1/p′ .

• Estimate of fourth term of F2 (the estimate of fifth, eighth and ninth therm of F2 are
similar) ∥∥∥ µ

ρ0

∑
l,j,k

∂2(Qũ)i
∂yl∂yk

(Zk,j − δk,j)Zl,j
∥∥∥
Lp(0,T ;Lq)

6 C‖ũ‖Lp(0,T ;W 2,q)

∥∥Z − I3

∥∥
L∞(0,T ;W 1,q)

‖Z‖L∞(0,T ;W 1,q)

6 CT 1/p′ ,

by using (6.7), (6.20) and (6.2).
• Estimate of sixth and tenth term of F2 :∥∥∥ µ

ρ0
[(Q− I)∆ũ]i

∥∥∥
Lp(0,T ;Lq)

+
∥∥∥α+ µ

ρ0

∂

∂yi

[
∇ũ : (Q> − I3)

]∥∥∥
Lp(0,T ;Lq)

6 C‖Q− I3‖L∞(0,T,R3×3)‖ũ‖Lp(0,T ;W 2,q)

6 CT 1/p′ . ( using (6.7) and (6.15))

• Estimate of seventh term and similarly, the eleventh term of F2: notice that for any 1 6

j, k, l 6 3 and all y ∈ ΩF (0),
∂Zk,j
∂yl

(0, y) = 0. Therefore, using (6.2) we have∥∥∥∂Zk,j
∂yl

∥∥∥
L∞(0,T ;Lq)

6 T 1/p′
∥∥∥∂Zk,j
∂yl

∥∥∥
W 1,p(0,T ;Lq)

6 T 1/p′‖Z‖W 1,p(0,T ;W 1,q) 6 CT
1/p′ .

Using this estimate, along with (6.7), (6.15) and (6.20) we infer∥∥∥ µ
ρ0

∑
l,j,k

Zl,j
∂(Qũ)i
∂yk

∂Zk,j
∂yl

∥∥∥
Lp(0,T ;Lq)

6 C‖Q‖L∞(0,T )

∥∥Z∥∥
Lp(0,T ;W 1,q)

∥∥∇ũ∥∥
Lp(0,T ;W 1,q)

∑
j,k,l

∥∥∥∂Zk,j
∂yl

∥∥∥
L∞(0,T ;Lq)

6 CT 1/p′ .
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• Estimate of twelfth term of F2 :∥∥R ϑ̃

ρ0

(
Z>∇ρ̃

)
i

∥∥
Lp(0,T ;Lq)

6 C‖ϑ̃‖Lp(0,T ;W 1,q)‖Z‖L∞(0,T ;W 1,q)‖∇ρ̃‖L∞(0,T ;Lq)

6 CT 1/p. ( using (6.9), (6.20) and (6.12))

• Estimate of last term of F2 :∥∥R ρ̃

ρ0

(
Z>∇ϑ̃

)
i

∥∥
Lp(0,T ;Lq)

6 C‖ρ̃‖L∞(0,T ;W 1,q)‖Z‖L∞(0,T ;W 1,q)‖∇ϑ̃‖Lp(0,T ;Lq)

6 CT 1/p. ( using (6.9), (6.20) and (6.12))

We deduce (6.25) by noticing that 1/p 6 1/p′.
Estimate of F3.

‖F3‖Lp(0,T ;W 1,q(ΩF (0))) 6 CT
(1−s)/2p, s ∈ (3/q, 1). (6.26)

We recall that F3 is defined by (4.13). The estimate of first five terms of F3 are similar to
estimates of terms of F2 and we skip their proofs. The estimate of the last two terms are
similar and we only consider one of these terms: using (6.14), (6.22) yields, for s ∈ (3/q, 1),∥∥[ZQ]> : ∇ũ

∥∥
Lp(0,T ;L∞)

6 ‖ZQ‖L∞(0,T,W 1,q)‖∇ũ‖Lp(0,T,L∞) 6 CT
(1−s)/2p. (6.27)

Using (6.22) and (6.12), we obtain∥∥[ZQ]> : ∇ũ
∥∥
L∞(0,T ;Lq)

6 ‖ZQ‖L∞(0,T,W 1,q)‖∇ũ‖L∞(0,T,Lq) 6 C. (6.28)

where the constant C depends only on M . Combining (6.27) and (6.28) we obtain∥∥∥ α

cvρ0

(
[ZQ]> : ∇ũ

)2∥∥∥
Lp(0,T ;Lq)

6 C
∥∥[ZQ]> : ∇ũ

∥∥
Lp(0,T ;L∞)

∥∥[ZQ]> : ∇ũ
∥∥
L∞(0,T ;Lq)

6 CT (1−s)/2p, s ∈ (3/q, 1).

Estimate of G1 and G2 .

‖G1‖Lp(0,T ) + ‖G2‖Lp(0,T ) 6 CT
δ, (6.29)

where G1 and G2 are defined by (4.16) and (4.17)
We first show that∥∥∥∫

∂ΩS(0)
G0n

∥∥∥
Lp(0,T )

+
∥∥∥∫

∂ΩS(0)
y × G0n

∥∥∥
Lp(0,T )

6 CT δ, (6.30)

where G0 is defined by (4.15).
Using (6.13) and (6.22)

‖∇ũZQ‖Lp(0,T ;W s,q) 6 C ‖ZQ‖L∞(0,T ;W 1,q) ‖ũ‖Lp(0,T ;W 1+s,q) 6 CT
(1−s)/2p, s ∈ (1/q, 1).

Using the trace theorem, we deduce that∥∥∥∥∥
∫
∂ΩS(0)

∇ũZQ · n dγ

∥∥∥∥∥
Lp(0,T )

6 CT (1−s)/2p, s ∈ (1/q, 1).

The other terms can be estimated similarly.
On the other hand, from (6.10),

‖ω̃ × ˜̀‖Lp(0,T ) + ‖J(0)ω̃ × ω̃‖Lp(0,T ) 6 CT
1/p

and combining this with (6.30), we deduce (6.29).
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Estimate of HF and HS .

‖HF · n‖
F

(1−1/q)/2
p,q (0,T ;Lq(∂Ω)) ∩ Lp(0,T ;W 1−1/q,q(∂Ω))

6 CT δ, (6.31)

‖HS · n‖
F

(1−1/q)/2
p,q (0,T ;Lq(∂ΩS(0))) ∩ Lp(0,T ;W 1−1/q,q(∂ΩS(0)))

6 CT δ, (6.32)

where HF and HS are defined by (4.14).

Recall that,HF = (I3−Z>)∇ϑ̃. Using (6.7), (6.20) and (6.2), and recalling thatW 1,q(ΩF (0))
is an algebra we first obtain∥∥HF · n∥∥Lp(0,T ;W 1−1/q(∂Ω))

6 C
∥∥HF∥∥Lp(0,T ;W 1,q(ΩF (0)))

6 C
∥∥(I3 − Z>)

∥∥
L∞(0,T ;W 1,q(ΩF (0)))

‖∇ϑ̃‖Lp(0,T ;W 1,q(ΩF (0)))

6 CT 1/p′ .

To estimate the Lizorkin-Triebel norm of HF ·n, we shall use Proposition 6.3 with parameter
s=(1−1/q)/2 : for U1 = U3 = Lq(∂Ω), U2 = W 1−1/q,q(∂Ω) and Φ(f, g) = f · g. Since

3 < q <∞, W 1−1/q,q(∂Ω) ↪→ L∞(∂Ω) and so the hypothesis of the proposition on Φ are met.
Since 2 < p <∞, we also have s+ 1/p < 1. We write

HF |∂Ω · n =
∑
j,k

[
(δj,k − Zj,k)

∂ϑ̃

∂yk

]
(t, y)nj(y), y ∈ ∂Ω

By Proposition 6.2 and (6.7), there exists a constant C depending only on M such that∥∥∥ ∂ϑ̃
∂yk

nj

∥∥∥
F

(1−1/q)/2
p,q (0,T ;Lq(∂Ω))

6 C

for all 1 6 j, k 6 3. On the other hand, using (6.20), one has∥∥δj,k − Zj,k∥∥W 1,p(0,T ;W 1−1/q,q(∂Ω))
6 C

∥∥δj,k − Zj,k∥∥W 1,p(0,T ;W 1,q(ΩF (0)))
6 C,

where the constant C depends only on M . Finally (δj,k − Zj,k) (0, y) = 0 for all 1 6 j, k 6 3.
From Proposition 6.3 we obtain∥∥HF |∂Ω · n

∥∥
F

(1−1/q)/2
p,q (0,T ;Lq(∂Ω))

6 CT δ.

The estimate of HS · n is similar. �

Proposition 6.5. Let 2 < p < ∞ and 3 < q < ∞ satisfying the condition 1
p + 1

2q 6=
1
2 .

Let (ρ0, u0, ϑ0, `0, ω0) ∈ Iccp,q such that (2.12) holds. There exists T̃ < 1, a constant δ > 0

depending only on p and q, and a constant C > 0 depending only on p, q,M, T̃ such that for

T ∈ (0, T̃ ] we have the following property: for (f j1 , f
j
2 , f

j
3 , h

j , gj1, g
j
2) ∈ BT,p,q satisfying

‖(f j1 , f
j
2 , f

j
3 , h

j , gj1, g
j
2)‖BT,p,q 6 1,

for j = 1, 2, let (ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j) be the solution of (4.19)—(4.22) corresponding to the source

term (f j1 , f
j
2 , f

j
3 , h

j , gj1, g
j
2). Let us set

F j1 = F1(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), F j2 = F2(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), F j3 = F3(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j)
HjF = HF (ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), HjS = HS(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j),Hj = 1∂ΩHjF + 1∂ΩS(0)H

j
S

Gj1 = G1(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), Gj2 = G2(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j),
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Then ∥∥∥(F1
1 −F2

1 ,F1
2 −F2

2 ,F1
3 −F2

3 ,H1 −H2,G1
1 − G2

1 ,G1
2 − G2

2)
∥∥∥
BT,p,q

6 CT δ.

Proof. The proof of this proposition is similar to the proof of Proposition 6.4 and we only
give here some few ideas. From (5.15) in Theorem 5.3, we first obtain

‖(ρ̃1, ũ1, ϑ̃1, ˜̀1, ω̃1)− (ρ̃2, ũ2, ϑ̃2, ˜̀2, ω̃2)‖ST,p,q
6 C

∥∥(f1
1 , f

1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

. (6.33)

Combining (6.2) and (6.33), we deduce

‖ρ̃1 − ρ̃2‖L∞(0,T ;W 1,q(ΩF (0))) 6 CT
1/p′
∥∥(f1

1 , f
1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

.

(6.34)
In a similar manner, we can obtain

‖ω̃1 − ω̃2‖L∞(0,T ) + ‖˜̀1 − ˜̀2‖L∞(0,T )

6 CT 1/p′
∥∥(f1

1 , f
1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

. (6.35)

Since 2 < p < ∞, one has B
2(1−1/p)
q,p (ΩF (0)) ↪→ W 1,q(ΩF (0)). Therefore, using Proposi-

tion 6.1 and (6.33) we get

‖ũ1 − ũ2‖L∞(0,T ;W 1,q) + ‖ϑ̃1 − ϑ̃2‖L∞(0,T ;W 1,q)

6 C
∥∥(f1

1 , f
1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

. (6.36)

Proceeding as in the proof of Proposition 6.4, we can then deduce

‖ũ1 − ũ2‖Lp(0,T,L∞) + ‖∇ũ1 −∇ũ2‖Lp(0,T,L∞) + ‖∇ϑ̃1 −∇ϑ̃2‖Lp(0,T,L∞)

6 CT (1−s)/2p∥∥(f1
1 , f

1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

, s ∈ (3/q, 1). (6.37)

Let us denote by Q1 and Q2 the solution of (4.8) associated with ω̃1, ω̃2. Then Q1 − Q2

satisfies 
d

dt

(
Q1 −Q2

)
=
(
Q1 −Q2

)
A(ω̃1) +Q2A(ω̃1 − ω̃2) in (0, T ),(

Q1 −Q2
)

(0) = 0,
(6.38)

and thus from (6.10), (6.35) and Grönwall’s lemma, we obtain

‖Q1 −Q2‖L∞(0,T ;R3×3) 6 CT
∥∥(f1

1 , f
1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

. (6.39)

Let X1, X2 be defined as in (4.9) with (Q1, ũ1) and (Q2, ũ2). Then

∂t∇(X1 −X2) =
(
Q1 −Q2

)
∇ũ1 +Q2∇

(
ũ1 − ũ2

)
, ∇(X1 −X2)(0, ·) = 0.

and from (6.7), (6.15), (6.33) and (6.39) we get

‖∂t∇(X1 −X2)‖Lp(0,T ;W 1,q)

6 ‖Q1 −Q2‖L∞(0,T )‖∇ũ2‖Lp(0,T ;W 1,q) + ‖Q2‖L∞(0,T )‖∇
(
ũ1 − ũ2

)
‖Lp(0,T ;W 1,q)

6 C
∥∥(f1

1 , f
1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

.

The above estimate yields
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‖∇(X1 −X2)‖W 1,p(0,T ;W 1,q(ΩF (0)))

6 C
∥∥(f1

1 , f
1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

.

the above estimate and (6.2) yield

‖∇(X1 −X2)‖L∞(0,T ;W 1,q(ΩF (0)))

6 CT 1/p′
∥∥(f1

1 , f
1
2 , f

1
3 , h

1, g1
1, g

1
2)− (f2

1 , f
2
2 , f

2
3 , h

2, g2
1, g

2
2)
∥∥
BT,p,q

.

The rest of the proof runs as the proof of Proposition 6.4. �

Part 3. Global in Time Existence

7. Linearization and Lagrangian Change of Variables

In this section, we slightly modify the change of variables introduced in Section 4 and we
rephrase the global existence and uniqueness result in Theorem 2.2 in terms of the functions
issued from this change of variables. The reason of this modification is that, here we need to
linearize the system around the constant steady state (ρ, 0, ϑ, 0, 0). More precisely, define

ρ̃(t, y) = ρ(t,X(t, y))− ρ, ũ(t, y) = Q−1(t)u(t,X(t, y)), (7.1)

ϑ̃(t, y) = ϑ(t,X(t, y))− ϑ, p̃ = Rρ̃ϑ̃, (7.2)˜̀(t) = Q−1(t)ȧ(t), ω̃(t) = Q−1(t)ω(t), (7.3)

for (t, y) ∈ (0,∞)× ΩF (0), where X has been defined as in (4.1).

Then (ρ̃, ũ, ϑ̃, ˜̀, ω̃) satisfies the following system

∂tρ̃+ ρdiv ũ = F1 in (0,∞)× ΩF (0),

∂tũ− div σl(ρ̃, ũ, ϑ̃) = F2 in (0,∞)× ΩF (0),

∂tϑ̃−
κ

ρcv
∆ϑ̃+

Rϑ

cv
div ũ = F3 in (0,∞)× ΩF (0),

ũ = 0 on (0,∞)× ∂Ω,

ũ = ˜̀+ ω̃ × y on (0,∞)× ∂ΩS(0) (7.4)

∂ϑ̃

∂n
= H · n on (0,∞)× ∂ΩF (0),

d

dt
˜̀= −m−1

∫
∂ΩS(0)

σl(ρ̃, ũ, ϑ̃)n dγ + G1 t ∈ (0,∞)

d

dt
ω = −J(0)−1

∫
∂ΩS(0)

y × σl(ρ, u, ϑ)n dγ + G2 t ∈ (0,∞)

ρ̃(0) = ρ0 − ρ, u(0) = u0, ϑ(0) = ϑ0 − ϑ in ΩF (0),

`(0) = `0, ω(0) = ω0,

where

σl(ρ̃, ũ, ϑ̃) =
2µ

ρ
Dũ+

(
α

ρ
div ũ− Rϑ

ρ
ρ̃−Rϑ̃

)
I3, D(ũ) =

1

2
(∇ũ+∇ũT ), (7.5)

Q̇ = QA(ω̃), Q(0) = I3 (7.6)
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and

X(t, y) = y +

∫ t

0
Q(s)ũ(s, y) ds, and ∇Y (t,X(t, y)) = [∇X]−1(t, y), (7.7)

for every y ∈ ΩF (0) and t > 0. Using the notation

Z(t, y) = (Zi,j)16i,j63 = [∇X]−1(t, y) (t > 0, y ∈ ΩF (0)), (7.8)

the remaining terms in (7.4) are defined by

F1(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = −ρ̃ div ũ− (ρ̃+ ρ)(Z> − I3) : ∇ũ (7.9)

(F2)i(ρ̃, ũ, ϑ̃, ˜̀, ω̃) =− ρ̃+ ρ

ρ
(ω̃ ×Qũ)i + ρ̃(∂tũ)i −

ρ̃+ ρ

ρ
[(Q− I)∂tũ]i

+
µ

ρ

∑
l,j,k

∂2(Qũ)i
∂yl∂yk

(Zk,j − δk,j)Zl,j +
µ

ρ

∑
l,k

∂2(Qũ)i
∂yl∂yk

(Zl,k − δl,k)

+
µ

ρ
[(Q− I)∆ũ]i +

µ

ρ

∑
l,j,k

Zl,j
∂(Qũ)i
∂yk

∂Zk,j
∂yl

+
µ+ α

ρ

∑
l,j,k

∂2(Qu)j
∂yl∂yk

(Zk,j − δk,j)Zl,i +
µ+ α

ρ

∑
l,j

∂2(Qu)j
∂yl∂yj

(Zl,i − δl,i)

+
α+ µ

ρ

∂

∂yi

[
∇ũ : (Q> − I3)

]
+
α+ µ

ρ

∑
l,j,k

Zl,i
∂(Qu)j
∂yk

∂Zk,j
∂yl

−Rϑ̃
ρ

(
Z>∇ρ̃

)
i
−Rρ̃

ρ

(
Z>∇ϑ̃

)
i
− Rϑ

ρ

[(
Z> − I

)
∇ρ̃
]
i

−R
[(
Z> − I

)
∇ϑ̃
]
i
, (7.10)

F3(ρ̃, ũ, ϑ̃, ˜̀, ω̃) =− ρ̃

ρ
∂tϑ̃−

R

cvρ

(
ϑ̃ρ̃+ ρϑ̃+ ϑρ̃

)
[ZQ]> : ∇ũ− Rϑ

cv

(
[ZQ]> − I3

)
: ∇ũ

+
κ

cvρ

∑
l,j,k

Zl,j
∂ϑ̃

∂yk

∂Zk,j
∂yl

+
κ

cvρ

∑
k,l

∂2ϑ̃

∂yk∂yl
(Zl,k − δl,k)Zl,j

+
κ

cvρ

∑
j,k,l

∂2ϑ̃

∂yk∂yl
(Zk,j − δk,j)Zl,j

+
α

cvρ

(
[ZQ]> : ∇ũ

)2
+

µ

2cvρ

∣∣∣∇ũZQ+ (∇ũZQ)>
∣∣∣2 , (7.11)

H(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = 1∂ΩHF + 1∂ΩS(0)HS
HF (ρ̃, ũ, ϑ̃, ˜̀, ω̃) = (I3 − Z>)∇ϑ̃, HS(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = (I3 − (ZQ)>)∇ϑ̃, (7.12)

G0(ρ̃, ũ, ϑ̃, ˜̀, ω̃) =
µ

ρ

[
∇ũ(ZQ− I3) + [(ZQ)> − I3] (∇ũ)>

]
+
α

ρ

(
([ZQ]> − I3) : ∇ũ

)
I3 +Rρ̃ϑ̃I3, (7.13)
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G1(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = −m
ρ

(ω̃ × ˜̀)− ∫
∂ΩS(0)

G0n dγ,

G2(ρ̃, ũ, ϑ̃, ˜̀, ω̃) =
J(0)

ρ
ω̃ × ω̃ −

∫
∂ΩS(0)

y × G0n dγ. (7.14)

Using the above change of variables, Theorem 2.2 can be rephrased as follows.

Theorem 7.1. Let 2 < p <∞ and 3 < q <∞ satisfying the condition
1

p
+

1

2q
6= 1

2
. Assume

that (2.1) is satisfied. Let ρ > 0 and ϑ > 0 be two given constants. Then there exists η0 > 0
such that, for all η ∈ (0, η0) there exist two constants δ0 > 0 and C > 0 such that, for all
δ ∈ (0, δ0) and for any (ρ0, u0, ϑ0, `0, ω0) belongs to Iccp,q satisfying

1

|ΩF (0)|

∫
ΩF (0)

ρ0 dx = ρ, (7.15)

and

‖(ρ0 − ρ, u0, ϑ0 − ϑ, `0, ω0)‖Ip,q 6 δ, (7.16)

the system (7.4) - (7.13) admits a unique solution (ρ̃, ũ, ϑ̃, ˜̀, ω̃) with

‖ρ̃‖L∞(0,∞;W 1,q(ΩF (0))) + ‖eη(·)∇ρ̃‖W 1,p(0,∞;Lq(ΩF (0))) + ‖eη(·)∂tρ̃‖Lp(0,∞;Lq(ΩF (0)))

+ ‖eη(·) ũ‖Lp(0,∞;W 2,q(ΩF (0))3) + ‖eη(·)∂tũ‖Lp(0,∞;Lq(ΩF (0))3) + ‖eη(·)ũ‖
L∞(0,∞;B

2(1−1/p)
q,p (ΩF (0))3)

+ ‖eη(·)∂tϑ̃‖Lp(0,∞;Lq(ΩF (0))) + ‖eη(·)∇ϑ̃‖Lp(0,∞;Lq(ΩF (0))) + ‖eη(·)∇2ϑ̃‖Lp(0,∞;Lq(ΩF (0)))

+ ‖ϑ̃‖
L∞(0,∞;B

2(1−1/p)
q,p (ΩF (0)))

+ ‖eη(·) ˜̀‖W 1,p(0,∞;R3)

+ ‖eη(·) ω̃‖W 1,p(0,∞;R3) 6 Cδ. (7.17)

Moreover, X ∈ L∞(0,∞;W 2,q(ΩF (0)))3 ∩W 1,∞(0,∞;W 1,q(ΩF (0))) and X(t, ·) : ΩF (0) →
ΩF (t) is a C1-diffeormorphim for all t ∈ [0,∞).

8. Some Background on R Sectorial Operators

In this section, we recall some definitions and results on maximal Lp–regularity and R-
boundedness. In what follows, we use Rademacher random variables, that is symmetric
random variables with value in {−1, 1}. We first recall the notion of R-boundedness.

Definition 8.1 (R-bounded family of operators). Let X and Y be Banach spaces. A family
of operators T ⊂ L(X ,Y) is called R−bounded if there exist p ∈ [1,∞) and a constant C > 0,
such that for any integer N > 1, any T1, . . . TN ∈ T , any independent Rademacher random
variables r1, . . . , rN , and any x1, . . . , xN ∈ X ,E

∥∥∥ N∑
j=1

rjTjxj

∥∥∥p
Y

1/p

6 C

E
∥∥∥ N∑
j=1

rjxj

∥∥∥p
X

1/p

.

The smallest constant C in the above inequality is called the Rp-bound of T on L(X ,Y) and
is denoted by Rp(T ). As usual we denote by E the expectation.
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For more information on R-boundedness we refer to [7, 8, 19] and references therein. In
particular, it is proved in [8, p.26] that this definition is independent of p ∈ [1,∞).

We also recall some useful properties (see Proposition 3.4 in [8]):

Rp(S + T ) 6 Rp(S) +Rp(T ), Rp(ST ) 6 Rp(T )Rp(S). (8.1)

For any β ∈ (0, π), we write

Σβ = {λ ∈ C \ {0} | | arg(λ)| < β}.

We now come to the second central definition.

Definition 8.2 (sectorial and R-sectorial operators). Let A be a densely defined closed linear
operator on a Banach space X with domain D(A). We say that A is a sectorial operator of
angle τ ∈ (0, π) if for any β ∈ (τ, π), Σπ−β ⊂ ρ(A) and

Rβ =
{
λ(λ−A)−1 : λ ∈ Σπ−β

}
is bounded in L(X ). In that case, we write

Mβ(A) = sup
λ∈Σπ−β

‖λ(λ−A)−1‖L(X ).

Analogously, we say that A is a R-sectorial operator of angle τ if A is a sectorial operator of
angle τ and if for any β ∈ (τ, π), Rβ is R-bounded. We denote Rp,β(A) the Rp-bound of Rβ.

One can replace in the above definitions Rβ by

R̃β =
{
A(λ−A)−1 : λ ∈ Σπ−β

}
.

In that case, we denote the uniform bound and the R-bound by M̃β(A) and R̃p,β(A).
The importance of R-sectorial operators is explained by the following result:

Theorem 8.3 (Weis). Let X be a UMD Banach space and A a densely defined, closed linear
operator on X . Then the following assertions are equivalent

(a) For any T ∈ R∗+, f ∈ Lp(0, T ;X )

u′ = Au+ f in (0, T ), u(0) = 0 (8.2)

admits a unique solution u satisfying the above equation almost everywhere and such
that Au ∈ Lp(0, T ;X ).

(b) A is R-sectorial of angle τ < π/2.

This result is due to [32] (see also [8, p.45]). We recall that X is a UMD Banach space if the
Hilbert transform is bounded in Lp(R;X ) for p ∈ (1,∞). In particular, the closed subspaces
of Lq(Ω) for q ∈ (1,∞) are UMD Banach spaces. We refer the reader to [3, pp.141–147] for
more information on UMD spaces.

We can also add an initial condition in (8.2) and consider the following system:

u′ = Au+ f in (0,∞), u(0) = u0. (8.3)

Corollary 8.4. Let X be a UMD Banach space, 1 < p < ∞ and let A be a closed, densely
defined operator in X with domain D(A). Let us assume that A is a R-sectorial operator of
angle τ < π/2 and that the semigroup generated by A has negative exponential type. Then
for every u0 ∈ (X ,D(A))1−1/p,p and for every f ∈ Lp(0,∞;X ), Eq. (8.3) admits a unique

solution in Lp(0,∞;D(A)) ∩W 1,p(0,∞;X ).
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Proof. The proof follows from the above theorem, [11, Theorem 2.4] and [27, Theorem 1.8.2].
�

In view of the above results, it is natural to consider the perturbation theory of R-
sectoriality. The following result was obtained in [18, Corollary 2].

Proposition 8.5. Let A be a R-sectorial operator of angle τ on a Banach space X and let
β ∈ (τ, π). Let B be a linear operator on X such that D(A) ⊂ D(B) and

‖Bx‖X 6 a‖Ax‖X + b‖x‖X , (8.4)

for some a, b > 0. If a <
(
M̃β(A)R̃p,β(A)

)−1
then A+B − λ is R-sectorial for each

λ > λ0 =
bMβ(A)R̃p,β(A)

1− aM̃β(A)R̃p,β(A)
.

9. Linearized Fluid-Structure Interaction System

In this section we study the fluid-structure system linearized around (ρ, 0, ϑ, 0, 0), ρ > 0,
ϑ > 0. More precisely, we consider the following linear system

∂tρ+ ρdiv u = 0 in (0,∞)× ΩF (0),

∂tu− div σl(ρ, u, ϑ) = 0 in (0,∞)× ΩF (0),

∂tϑ−
κ

ρcv
∆ϑ+

Rϑ

cv
div u = 0 in (0,∞)× ΩF (0),

u = `+ ω × y on (0,∞)× ∂ΩS(0) (9.1)

u = 0 on (0,∞)× ∂Ω,

∂ϑ

∂n
= 0 on (0,∞)× ∂ΩF (0),

d

dt
` = −m−1

∫
∂ΩS(0)

σl(ρ, u, ϑ)n dγ t ∈ (0,∞)

d

dt
ω = −J(0)−1

∫
∂ΩS(0)

y × σl(ρ, u, ϑ)n dγ t ∈ (0,∞)

ρ0 = ρ0, u(0) = u0, ϑ(0) = ϑ0 in ΩF (0),

`(0) = `0, ω(0) = ω0,

where

σl(ρ, u, ϑ) =
2µ

ρ
Du+

(
α

ρ
div u− Rϑ

ρ
ρ−Rϑ

)
I3, D(u) =

1

2
(∇u+∇uT ). (9.2)

Our aim is to show that the linearized operator is R-sectorial in a suitable functional space.
In order to do this, we first consider the case of a linearized compressible Navier-Stokes-Fourier
system without rigid body and we use Proposition 8.5 in order to deal with the equations for
the rigid body.
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9.1. Linearized compressible Navier-Stokes-Fourier system. In this subsection we dis-
cuss some properties of the generator of the semigroup describing the linearization around an
equilibrium state of the Navier-Stokes-Fourier system. Most of these properties follow from
the corresponding linearized compressible Navier-Stokes system and of the heat equation, and
in this case we just provide the appropriate references. Our contribution is to show that the
coupling terms can be seen as perturbations and thus tackled using either direct estimates or
abstract perturbation results for R-sectorial operators.

Let us set

X = W 1,q(ΩF (0))× Lq(ΩF (0))3 × Lq(ΩF (0)) (9.3)

and consider the operator AF : D(AF )→ X defined by

D(AF ) =

{
(ρ, u, ϑ) ∈W 1,q(ΩF (0))×W 2,q(ΩF (0))3 ×W 2,q(ΩF (0)) |

u = 0 on ∂ΩF (0),
∂ϑ

∂n
= 0 on ∂ΩF (0)

}
,

AF =


0 −ρdiv 0

−Rϑ
ρ
∇ µ

ρ
∆ +

α+ µ

ρ
∇ div −R∇

0 −Rϑ
cv

div
κ

ρcv
∆

 . (9.4)

Let us first study some properties of the operator AF .

Theorem 9.1. Assume 1 < q < ∞. Then there exists γ0 > 0 such that AF − γ0 is an
R-sectorial operator in X of angle < π/2.

Proof. We first define

D(Au) = (W 2,q(ΩF (0)) ∩W 1,q
0 (ΩF (0)))3, Au =

µ

ρ
∆ +

α+ µ

ρ
∇ div, (9.5)

and

D(Aϑ) =

{
ϑ ∈W 2,q(ΩF (0)) | ∂ϑ

∂n
= 0 on ∂ΩF (0)

}
, Aϑ =

κ

ρcv
∆. (9.6)

From [8, Theorem 8.2], there exists γϑ ∈ R such that Aϑ − γϑ is R-sectorial of angle
< π/2. Using [13, Theorem 2.5], we also obtain the existence of γu ∈ R such that Au − γu is
R-sectorial of angle < π/2.

In particular there exist γ and β < π/2 such that,

Rp
{
λ(λ−Au)−1 : λ ∈ γ + Σπ−β

}
<∞, Rp

{
Au(λ−Au)−1 : λ ∈ γ + Σπ−β

}
<∞, (9.7)

and

Rp
{
λ(λ−Aϑ)−1 : λ ∈ γ + Σπ−β

}
<∞ (9.8)

respectively in L(Lq(ΩF (0))3) and L(Lq(ΩF (0))). We deduce from the properties (8.1) that

Rp
{

div(λ−Au)−1 : λ ∈ γ + Σπ−β
}
<∞ (9.9)

in L(Lq(ΩF (0))3,W 1,q(ΩF (0))).
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We rewrite the operator AF in the form AF = A0
F +BF , with

A0
F =

0 −ρdiv 0
0 Au 0
0 0 Aϑ

 and BF =


0 0 0

−Rϑ
ρ
∇ 0 −R∇

0 −Rϑ
cv

div 0

 .

Some standard calculation shows that for λ ∈ γ + Σπ−β,

λ(λI −A0
F )−1 =

I −ρdiv(λI −Au)−1 0
0 λ(λI −Au)−1 0
0 0 λ(λI −Aϑ)−1

 .

Using again the properties (8.1), we deduce from the above formula and from (9.7)–(9.9)
that

Rp
{
λ(λ−A0

F )−1 : λ ∈ γ + Σπ−β
}
<∞

in L(X ).
Now for all (ρ, u, ϑ) ∈ D(AF ) we have∥∥∥∥∥∥BF

ρu
ϑ

∥∥∥∥∥∥
X

6 C
(
‖ρ‖W 1,q(ΩF (0)) + ‖u‖W 1,q(ΩF (0)) + ‖ϑ‖W 1,q(ΩF (0))

)
. (9.10)

Using the compactness of the embedding W 2,q(ΩF (0)) ↪→ W 1,q(ΩF (0)) and a classical result
(see [26, Chapter 3, Lemma 2.1]), we deduce that for any δ > 0, there exists C(δ) > 0 such
that for all f ∈W 2,q(ΩF (0))

‖f‖W 1,q(ΩF (0)) 6 δ‖f‖W 2,q(ΩF (0)) + C(δ)‖f‖Lq(ΩF (0)).

Applying the above estimate to (9.10) we obtain, for every δ > 0, there exists C(δ) > 0 such
that ∥∥∥∥∥∥BF

ρu
ϑ

∥∥∥∥∥∥
X

6 δ

∥∥∥∥∥∥A0
F

ρu
ϑ

∥∥∥∥∥∥
X

+ C(δ)

∥∥∥∥∥∥
ρu
ϑ

∥∥∥∥∥∥
X

.

Therefore applying Proposition 8.5 we complete the proof of the theorem. �

Now we want to show that the operator AF is invertible in a suitable subspace of X . For
this purpose we consider the following problem

ρdiv u = f1 in ΩF (0),

−µ
ρ

∆u− α+ µ

ρ
∇(div u) +

Rϑ

ρ
∇ρ+R∇ϑ = f2 in ΩF (0),

− κ

ρcv
∆ϑ+

Rϑ

cv
div u = f3 in ΩF (0),

u = 0 on ∂ΩF (0),
∂ϑ

∂n
= 0 on ∂ΩF (0).

(9.11)

By integrating the first and the third equations of (9.11) and by using the boundary condi-
tions, we see that we need to impose the following compatibility conditions on f1 and f3:∫

ΩF (0)
f1 dx =

∫
ΩF (0)

f3 dx = 0.
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We thus define

Lqm(ΩF (0)) =

{
f ∈ Lq(ΩF (0)) |

∫
ΩF (0)

f dx = 0

}
, (9.12)

and

Xm =
[
W 1,q(ΩF (0)) ∩ Lqm(ΩF (0))

]
× Lq(ΩF (0))3 × Lqm(ΩF (0)). (9.13)

Since Xm is invariant under (etAF )t>0 the operator AF may be restricted to Xm. The part of
AF in Xm is the restriction of AF to the domain D(AF ) ∩ Xm ([30, Definition 2.4.1]).

Theorem 9.2. The part of AF in Xm is invertible in Xm: for every (f1, f2, f3) ∈ Xm, the
system (9.11) admits a unique solution (ρ, u, ϑ) ∈ D(AF ) ∩ Xm satisfying

‖ρ‖W 1,q(ΩF (0)) + ‖u‖W 2,q(ΩF (0)) + ‖ϑ‖W 2,q(ΩF (0))

6 C(‖f1‖W 1,q(ΩF (0)) + ‖f2‖Lq(ΩF (0))3 + ‖f3‖Lq(ΩF (0))). (9.14)

Proof. Replacing div u = f1/ρ in the third equation of (9.11) yields

− κ

ρcv
∆ϑ = f3 −

Rϑ

ρcv
f1 in ΩF (0),

∂ϑ

∂n
= 0 on ∂ΩF (0).

Since f1, f3 ∈ Lqm(ΩF (0)), by the standard elliptic theory (see for instance [29, chapter 3]),
the above system admits a unique solution ϑ ∈ W 2,q(ΩF (0)) ∩ Lqm(ΩF (0)) and we have the
estimate

‖ϑ‖W 2,q(ΩF (0)) 6 C(‖f1‖W 1,q(ΩF (0)) + ‖f3‖Lq(ΩF (0))). (9.15)

Then, we are reduced to solve the Stokes type system
ρdiv u = f1, in ΩF (0),

−µ
ρ

∆u+
Rϑ

ρ
∇ρ = f2, in ΩF (0),

u = 0 on ∂ΩF (0),

with f2 = f2 −R∇ϑ+ α+µ
ρ2
∇f1. In particular, f2 ∈ Lq(ΩF (0))3 with

‖f2‖Lq(ΩF (0))3 6 C(‖f1‖W 1,q(ΩF (0)) + ‖f2‖Lq(ΩF (0))3 + ‖ϑ‖W 2,q(ΩF (0))). (9.16)

From [13, Theorem 2.9(1)], the above system admits a unique solution

(ρ, u) ∈
[
W 1,q(ΩF (0)) ∩ Lqm(ΩF (0))

]
×W 2,q(ΩF (0))3

satisfying the estimate

‖ρ‖W 1,q(ΩF (0)) + ‖u‖W 2,q(ΩF (0)) 6 C
(
‖f1‖W 1,q(ΩF (0)) + ‖f2‖Lq(ΩF (0))3

)
. (9.17)

The proof follows from the estimates (9.15) - (9.17). �
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9.2. Rewriting (9.1) in an operator form. Let us consider the following problem
−µ∆us +Rϑ∇ρs = 0 in ΩF (0), div us = 0 in ΩF (0),

us = `+ ω × y on ∂ΩS(0), us = 0 on ∂Ω,∫
ΩF (0)

ρs dy = 0.

(9.18)

Lemma 9.3. Let (`, ω) ∈ C3 × C3 and let {ei} denote the canonical basis in C3. Then the
solution (ρs, us) of (9.18) can be expressed as follows

ρs =

3∑
i=1

`iPi +

6∑
i=4

ωi−3Pi, us =

3∑
i=1

`iUi +

6∑
i=4

ωi−3Ui, (9.19)

where (Ui, Pi), i = 1, 2, · · · , 6 solves the following systems

−µ∆Ui +Rϑ∇Pi = 0 in ΩF (0),

divUi = 0 in ΩF (0),

Ui = 0, on ∂Ω,

Ui = ei on ∂ΩF (0), (i = 1, 2, 3),

Ui = ei−3 × y on ∂ΩF (0), (i = 4, 5, 6),∫
ΩF (0)

Pi dy = 0.

(9.20)

Moreover, 
∫
∂ΩS(0)

σl(ρs, us, 0)n dγ∫
∂ΩS(0)

y × σl(ρs, us, 0)n dγ

 = A
(
`
ω

)
,

where

Ai,j =
2µ

ρ

∫
ΩF (0)

DUi : DUj dx. (9.21)

Proof. See [16, Chapter 5]. �

Let us set

Z = W 1,q(ΩF (0))×W 2,q(ΩF (0))3 ×W 2,q(ΩF (0)) and Y = X × C3 × C3.

We introduce the Dirichlet operator Ds ∈ L(C3 × C3;Z) defined by

Ds

(
`
ω

)
=

ρsus
0

 , (9.22)

where (ρs, us) is the solution of the system (9.18). In view of Lemma 9.3, the operator Ds

can also be defined as

Ds

(
`
ω

)
=

P1 P2 · · · P6

U1 U2 · · · U6

0 0 · · · 0

(`
ω

)
, (9.23)
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where (Ui, Pi), i = 1, 2, · · · , 6 are the solutions of the systems (9.20). Let us recall the operator
(AF ,D(AF ;X )) introduced in Section 9.1. By Theorem 9.1 we know that, the operator AF
generates a C0 semigroup on X . It is well-known that, the operator AF has an extension,
also denoted by AF , such that AF ∈ L(X ,D(A∗F )′), where A∗F denotes the adjoint operator
of AF and D(A∗F )′ denotes the dual of D(A∗F ) (see [12, Chapter 2, Section 5]). Let us now
briefly describe, how to rewrite system (9.1) as an evolution equation. All the details can be
found in [21].

We introduce the operator AFS : D(AFS)→ Y defined by

D(AFS) =

(ρ, u, ϑ, `, ω) ∈ Y | AF

ρu
ϑ

−AFDs

(
`
ω

)
∈ X

 ,

AFS =

(
AF −AFDs

C 0

)
, (9.24)

where C ∈ L(Z,C3 × C3) is defined by

C

ρu
ϑ

 =

 −m−1

∫
∂ΩS(0)

σl(ρ, u, ϑ)n dγ

−J(0)−1

∫
∂ΩS(0)

y × σl(ρ, u, ϑ)n dγ

 . (9.25)

Proposition 9.4. Let 1 < p < ∞ and 1 < q < ∞. Let ` ∈ W 1,p(0,∞;C3), ω ∈
W 1,p(0,∞;C3), ρ ∈ W 1,p(0,∞;W 1,q(ΩF (0))), u ∈ W 2,1

q,p (Q∞F )3 and ϑ ∈ W 2,1
q,p (Q∞F ). Then

(ρ, v, ϑ, `, ω) is a solution of the system (9.1) if and only if

d

dt


ρ
u
ϑ
`
ω

 = AFS


ρ
u
ϑ
`
ω

 in D(A∗F )′ × C3 × C3,


ρ(0)
u(0)
ϑ(0)
`(0)
ω(0)

 =


ρ0

u0

ϑ0

`0
ω0

 . (9.26)

We skip the proof since it is standard. We end this subsection by recalling an equivalence
of norms in D(AFS) (see [21, Lemma 1.24]).

Lemma 9.5. The map

(ρ, u, ϑ, `, ω) 7→ ‖(ρ, u, ϑ)‖Z + ‖(`, ω)‖C3×C3

or equivalently the map

(ρ, u, ϑ, `, ω) 7→ ‖ρ‖W 1,q(ΩF (0)) + ‖u‖W 2,q(ΩF (0))3 + ‖ϑ‖W 2,q(ΩF (0)) + ‖`‖C3 + ‖ω‖C3

is a norm on D(AFS) equivalent to the graph norm.

9.3. R-sectoriality of the operator AFS. In this subsection we prove the following theorem

Theorem 9.6. Let 1 < q <∞. Then there exists γ3 > 0 such that AFS−γ3 is an R-sectorial
operator in Y of angle < π/2.

Proof. We write AFS in the form AFS = AFS,1 +BFS where

AFS,1 =

(
AF −AFDs

0 0

)
, BFS =

(
0 0
C 0

)
.
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Observe that

λ(λI −AFS,1)−1 =

(
λ(λI −AF )−1 −(λI −AF )−1AFDs

0 I

)
.

Therefore by Theorem 9.1 and (8.1), there exists γ such that AFS,1 − γ is R-sectorial.
Now, by using trace results on Sobolev spaces, we deduce that for any (ρ, u, ϑ) ∈ Z,∥∥∥∥∥∥C

ρu
ϑ

∥∥∥∥∥∥
C3×C3

6 C(‖ρ‖W s,q(ΩF (0)) + ‖u‖W 1+s,q(ΩF (0)) + ‖ϑ‖W s,q(ΩF (0))), s ∈ (1/q, 1).

Since the embedding W 1,q(ΩF (0)) ↪→W s,q(ΩF (0)) is compact for s ∈ (1/q, 1), we obtain that
for any δ > 0 there exists C(δ) > 0 such that∥∥∥∥∥∥C

ρu
ϑ

∥∥∥∥∥∥
C3×C3

6 δ‖(ρ, u, ϑ)‖Z + C(δ)‖(ρ, u, ϑ)‖X .

By Lemma 9.5, this implies that for any δ > 0 there exists C(δ) > 0 such that

∥∥∥∥∥∥C
ρu
ϑ

∥∥∥∥∥∥
C3×C3

6 δ

∥∥∥∥∥∥∥∥∥∥
AFS,1


ρ
u
ϑ
`
ω


∥∥∥∥∥∥∥∥∥∥
Y

+ C(δ)

∥∥∥∥∥∥∥∥∥∥


ρ
u
ϑ
`
ω


∥∥∥∥∥∥∥∥∥∥
Y

.

Therefore the proof follows from Proposition 8.5. �

9.4. Exponential stability of the semigroup etAFS . The aim of this subsection is to show
the operator AFS generates an analytic semigroup of negative type in a suitable subspace of
Y. Let us set

Ym = Xm × C3 × C3,

where Xm is defined as in (9.13). One can check that the space Ym is invariant under
(etAFS )t>0. We prove the following theorem

Theorem 9.7. Let 1 < q < ∞. Then the part of AFS in Ym generates an exponentially
stable semigroup (etAFS )t>0 on Ym. In other words, there exist constants C > 0 and η0 > 0
such that

‖etAFS (ρ0, u0, ϑ0, `0, ω0)>‖Ym 6 Ce−η0t‖(ρ0, u0, ϑ0, `0, ω0)>‖Ym , (9.27)

for all (ρ0, u0, ϑ0, `0, ω0)> ∈ Ym.

We consider the following resolvent problem

λρ+ ρdiv u = f1, in ΩF (0),

λu− div σl(ρ, u, ϑ) = f2, in ΩF (0),

λϑ− κ

ρcv
∆ϑ+

Rϑ

cv
div u = f3, in ΩF (0), (9.28)

u = `+ ω × y on ∂ΩS(0) u = 0 on ∂Ω,
∂ϑ

∂n
= 0 on ∂ΩF (0),

λ` = −m−1

∫
∂ΩS(0)

σl(ρ, u, ϑ)n dγ + g1,
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λω = −J(0)−1

∫
∂ΩS(0)

y × σl(ρ, u, ϑ)n dγ + g2.

We want to show that the set {λ ∈ C | Reλ > 0}, i.e. the entire right half plane is contained
in the resolvent set of part of AFS in Ym. This will be achieved in two steps. In the first step
we show that 0 belongs to the resolvent of part of AFS in Ym. In the second step, we show
that the set {λ ∈ C \ {0} | 0 6 Reλ} is contained in the resolvent of part of AFS in Ym.

Remark 9.8. If λ = 0, integrating the first and third equations of (9.28) and using the
boundary conditions of u and ϑ we obtain∫

ΩF (0)
f1 dy =

∫
ΩF (0)

f3 dy = 0.

Therefore in order to show AFS generates an exponentially stable semigroup it is necessary
to consider Ym instead of Y.

Theorem 9.9. Let 1 < q <∞ and λ = 0. Then for every (f1, f2, f3, g1, g2) ∈ Ym the system
(9.28) admits a unique solution (ρ, u, ϑ, `, ω) ∈ D(AFS) ∩ Ym satisfying the estimate

‖ρ‖W 1,q(ΩF (0))+‖u‖W 2,q(ΩF (0))+‖ϑ‖W 2,q(ΩF (0))+‖`‖C3 +‖ω‖C3 6 C‖(f1, f2, f3, g1, g2)‖Ym .
(9.29)

Proof. When λ = 0 it is easy to see that (9.28) is equivalent to

AFS(ρ, u, ϑ, `, ω)> = (f1, f2, f3, g1, g2)>.

Thus to prove the theorem, we first show that the operator AFS is invertible. One can easily
check that, if the operators AF and CDs are invertible then the operator AFS is invertible
and its inverse is given by the formula

A−1
FS =

(
A−1
F −Ds(CDs)

−1CA−1
F Ds(CDs)

−1

−(CDs)
−1CA−1

F (CDs)
−1

)
.

We know that AF is invertible on Xm (Theorem 9.2). Thus to complete the proof we need to
verify that CDs is an invertible matrix. From Lemma 9.3, we can see that

CDs = −M−1A where M =

(
mI 0
0 J(0)

)
. (9.30)

Since the matrix A is self-adjoint and positive, we deduce the result. �

Theorem 9.10. Assume 1 < q < ∞ and λ ∈ C \ {0}, with Reλ > 0. Then for any
(f1, f2, f3, g1, g2) ∈ Ym, the system (9.28) admits a unique solution (ρ, u, ϑ, `, ω) ∈ D(AFS) ∩
Ym satisfying the estimate

‖ρ‖W 1,q(ΩF (0)) + ‖u‖W 2,q(ΩF (0)) + ‖ϑ‖W 2,q(ΩF (0)) + ‖`‖C3 + ‖ω‖C3

6 C‖(f1, f2, f3, g1, g2)‖Ym . (9.31)
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Proof. Let us fix λ ∈ C\{0}, with Reλ > 0. By setting ρ =
1

λ
(f1−ρdiv u), the system (9.28)

can be rewritten as

λu− div σ̂λ(u, ϑ) = f̂2, in ΩF (0),

λϑ− κ

ρcv
∆ϑ+

Rϑ

cv
div u = f3, in ΩF (0),

u = `+ ω × y on ∂ΩS(0) u = 0 on ∂Ω,
∂ϑ

∂n
= 0 on ∂ΩF (0),

λ` = −m−1

∫
∂ΩS(0)

σ̂λ(u, ϑ) n dγ + ĝ1

λω = −J(0)−1

∫
∂ΩS(0)

y × σ̂λ(u, ϑ)n dγ + ĝ2

(9.32)

where

σ̂λ(u, ϑ) =
2µ

ρ
D(u) +

(
1

ρ

(
α+

Rϑρ

λ

)
div u−Rϑ

)
I3,

f̂2 = f2 −
Rϑ

λρ
∇f1, ĝ1 =

(
g1 +m−1Rϑ

λρ

∫
∂ΩS(0)

f1n dγ

)
,

ĝ2 =

(
g2 + J(0)−1Rϑ

λρ

∫
∂ΩS(0)

y × f1n dγ

)
.

If (f1, f2, f3, g1, g2) ∈ Ym, the above formulas imply that (f̂2, ĝ1, ĝ2) ∈ Lq(ΩF (0))3 ×C3 ×C3.
We introduce the following notation:

Ẑ = W 2,q(ΩF (0))3 ×
(
W 2,q(ΩF (0)) ∩ Lqm(ΩF (0))

)
, X̂ = Lq(ΩF (0))3 × Lqm(ΩF (0))

Ŷ = X̂ × C3 × C3.

• D̂s ∈ L(C3 × C3; Ẑ) and Ês ∈ L(C3 × C3; Ẑ) defined by

D̂s

(
`
ω

)
=

(
us
0

)
, Ês

(
`
ω

)
=

Rϑ̄ρ̄ ∇ρs
0

 ,

where (ρs, us) is the solution of the system (9.18).

• Âλ defined by

D(Âλ) =

{
(u, ϑ) ∈ Ẑ | u =

∂ϑ

∂n
= 0 on ∂ΩF (0)

}

Âλ

(
u
ϑ

)
=

 div σ̂λ(u, ϑ)

κ

ρcv
∆ϑ− Rϑ

cv
div u

 ,

(
u
ϑ

)
∈ D(Âλ).

• Ĉλ ∈ L(Z,C3 × C3) defined by

Ĉλ

(
u
ϑ

)
=

 −m−1

∫
∂ΩS(0)

σ̂λ(u, ϑ)n dγ

−J(0)−1

∫
∂ΩS(0)

y × σ̂λ(u, ϑ)n dγ

 .
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• Aλ defined by

D(Aλ) =

{
(u, ϑ, `, ω) ∈ Ẑ × C3 × C3 | Âλ

(
u
ϑ

)
− ÂλD̂s

(
`
ω

)
∈ X̂

}
,

Aλ =

(
Âλ −ÂλD̂s + Ês
Ĉλ 0

)
.

With the above notation, we can write (9.32) as

(λI −Aλ)


u
ϑ
`
ω

 =


f̂2

f3

ĝ1

ĝ2

 . (9.33)

Proceeding as in Theorem 9.6, one can show that there exists λ̃ > 0 such that λ̃I −Aλ is
invertible. Consequently, we write (9.33) as

[
I + (λ− λ̃)(λ̃I −Aλ)−1

]
u
ϑ
`
ω

 = (λ̃I −Aλ)−1


f̂2

f3

ĝ1

ĝ2

 (9.34)

and since (λ̃I − Aλ)−1 is a compact operator, in view of the Fredholm alternative theorem,
the existence and the uniqueness of a solution of system (9.34) are equivalent.

Assume (u, ϑ, `, ω) ∈ D(Aλ) satisfies

(λI −Aλ)(u, ϑ, `, ω)> = 0. (9.35)

We first show that (u, ϑ) ∈ W 2,2(ΩF (0))3 ×W 2,2(ΩF (0)). If q > 2, this is a consequence of
Hölder’s estimates. Assume 1 < q < 2. In that case, we can write (9.35) as

(λ̃I −Aλ)(u, ϑ, `, ω)> = (λ̃− λ)(u, ϑ, `, ω)> (9.36)

and since W 2,q(ΩF (0)) ⊂ L2(ΩF (0)), we deduce from the invertibility of λ̃I−Aλ that (u, ϑ) ∈
W 2,2(ΩF (0))3 ×W 2,2(ΩF (0)). We then rewrite (9.35) as

λu− div σ̂λ(u, ϑ) = 0, in ΩF (0),

λϑ− κ

ρcv
∆ϑ+

Rϑ

cv
div u = 0, in ΩF (0),

u = `+ ω × y on ∂ΩS(0) u = 0 on ∂Ω,
∂ϑ

∂n
= 0 on ∂ΩF (0),

λ` = −m−1

∫
∂ΩS(0)

σ̂λ(u, ϑ) n dγ

λω = −J(0)−1

∫
∂ΩS(0)

y × σ̂λ(u, ϑ)n dγ.

(9.37)

Multiplying the first equation of (9.37) by u, the second equation by ϑ, the forth equation
by ` and the fifth equation by ω, we deduce after integration by parts,

Reλ

∫
ΩF (0)

|u|2 dy +
2µ

ρ

∫
ΩF (0)

|D(u)|2 dy +

(
α

ρ
+
Rϑ Reλ

|λ|2

)∫
ΩF (0)

|div u|2 dy
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+
Reλ cv

ϑ

∫
ΩF (0)

|ϑ|2 dy +
κ

ρϑ

∫
ΩF (0)

|∇ϑ|2 dy + Reλm|`|2 + Re(λJ(0)ω · ω) = 0. (9.38)

Using
|div u|2 6 3|D(u)|2,

Reλ > 0 and (2.3), we obtain∫
ΩF (0)

|D(u)|2 dy +

∫
ΩF (0)

|∇ϑ|2 dy 6 0.

The above estimate and the fact that (u, ϑ, `, ω) ∈ D(Aλ) imply that u = ϑ = ` = ω = 0. �

Proof of Theorem 9.7. By virtue of Theorem 9.9 and Theorem 9.10, we deduce

{λ ∈ C ; Reλ > 0} ⊂ ρ(AFS).

Moreover, Theorem 9.6 yields the existence of C1 > 0 such that for any λ ∈ γ3 + Σπ−β3 with
β3 < π/2,

‖(λ−AFS)−1‖L(Ym) 6 C1.

Since
{λ ∈ C ; Reλ > 0} \ [γ3 + Σπ−β3 ]

is a compact set, we deduce the existence of C > 0 such that for any λ ∈ C with Reλ > 0

‖(λ−AFS)−1‖L(Ym) 6 C.

This yields that
{λ ∈ C ; Reλ > −η} ⊂ ρ(AFS),

for some η > 0. Applying standard results on analytic semigroups (see, for instance, Proposi-
tion 2.9 in [4, p.120]), we deduce the exponential stability of the semigroup generated by the
part of AFS in Ym. �

10. Maximal Lp-Lq Regularity for the Linearized Fluid-Structure System

In this section, we study the maximal Lp-Lq regularity of the system (9.1) with source
terms and boundary terms. More precisely, we consider the following system

∂tρ̃+ ρ div ũ = f1 in (0,∞)× ΩF (0),

∂tũ− div σl(ρ̃, ũ, ϑ̃) = f2 in (0,∞)× ΩF (0),

∂tϑ̃−
κ

ρcv
∆ϑ̃+

Rϑ

cv
div ũ = f3 in (0,∞)× ΩF (0),

ũ = 0 on (0,∞)× ∂Ω,

ũ = ˜̀+ ω̃ × y on (0,∞)× ∂ΩS(0) (10.1)

∂ϑ̃

∂n
= h on (0,∞)× ∂ΩF (0),

d

dt
˜̀= −m−1

∫
∂ΩS(0)

σl(ρ̃, ũ, ϑ̃)n dγ + g1 t ∈ (0,∞),

d

dt
ω = −J(0)−1

∫
∂ΩS(0)

y × σl(ρ, u, ϑ)n dγ + g2 t ∈ (0,∞)

ρ̃m(0) = ρ0 − ρ, u(0) = u0, ϕ(0) = ϑ0 − ϑ in ΩF (0),
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`(0) = `0, ω(0) = ω0.

We want to combine Corollary 8.4 and Theorem 9.7. However the latter is stated in Ym,
that is with the constraints that some quantities have to be with zero mean-value. As a
consequence, we introduce the following standard decomposition: for any f ∈ L1(ΩF (0)),

f = fm + favg, with

∫
ΩF (0)

fm dy = 0, favg = |ΩF (0)|−1

∫
ΩF (0)

f(y) dy. (10.2)

We use the same decomposition and the same notation for a function in L1(∂ΩF (0)). The
next result is the main result of this section. We recall that B∞,p,q and S∞,p,q are defined in
(3.2) and (3.3).

Assume 1 < p <∞ and 1 < q <∞ satisfying the conditions

1

p
+

1

2q
6= 1,

1

p
+

1

2q
6= 1

2
. (10.3)

We set

Jp,q =
{

(ρ0, u0, ϑ0, `0, ω0) | ρ0 ∈W 1,q(ΩF (0)) ∩ Lqm(ΩF (0)), u0 ∈ B2(1−1/p)
q,p (ΩF (0))3,

ϑ0 ∈ B2(1−1/p)
q,p (ΩF (0)), `0 ∈ R3, ω0 ∈ R3

}
, (10.4)

and we introduce the space of initial data

J ccp,q = Jp,q if
1

p
+

1

2q
> 1,

J ccp,q =
{

(ρ0, u0, ϑ0, `0, ω0) ∈ Jp,q | u0 = 0 on ∂Ω, u0(y) = `0 + ω0 × y y ∈ ∂ΩS(0)
}

if
1

2
<

1

p
+

1

2q
< 1,

J ccp,q =

{
(ρ0, u0, ϑ0, `0, ω0) ∈ Jp,q | u0 = 0 on ∂Ω, u0(y) = `0 + ω0 × y y ∈ ∂ΩS(0),

∂ϑ0

∂n
= 0 on ∂ΩF (0)

}
if

1

p
+

1

2q
<

1

2
.

The above definition is well-defined due to the trace theorem for Besov spaces (see, for instance
[28, p.200]).

Theorem 10.1. Let 1 < p <∞ and 1 < q <∞ satisfying (10.3). Let ρ > 0 and ϑ > 0 and
η ∈ (0, η0), where η0 is the constant introduced in Theorem 9.7. Then for any

(ρ0 − ρ, u0, ϑ0 − ϑ, `0, ω0) ∈ J ccp,q
and for any (f1, f2, f3, h, g1, g2) ∈ e−η(·)B∞,p,q with (f1,avg, f3,avg, havg) ∈ L1(0,∞)3, the sys-

tem (10.1) admits a unique solution (ρ̃, ũ, ϑ̃, ˜̀, ω̃) with

(ρ̃m, ũ, ϑ̃m, ˜̀, ω̃) ∈ e−η(·)S∞,p,q, (ρ̃avg, ϑ̃avg) ∈ L∞(0,∞)2. (10.5)

Moreover, there exists a positive constant CL depending only on p, q and η such that∥∥∥eη(·)(ρ̃m, ũ, ϑ̃m, ˜̀, ω̃)
∥∥∥
S∞,p,q

+
∥∥∥(ρ̃avg, ϑ̃avg)

∥∥∥
L∞(0,∞)2

+
∥∥∥eη(·)(∂tρ̃avg, ∂tϑ̃avg)

∥∥∥
Lp(0,∞)2
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6 CL
(∥∥(ρ0 − ρ, u0, ϑ0 − ϑ, `0, ω0)

∥∥
Jp,q +

∥∥∥eη(·)(f1, f2, f3, h, g1, g2)
∥∥∥
B∞,p,q

+ ‖(f1,avg, f3,avg, havg)‖L1(0,∞)3

)
. (10.6)

Proof. Let us first consider the case η = 0. We consider the following heat equation

∂tϕ
1 + µ′ϕ1 − κ

ρcv
∆ϕ1 = f3 − f3,avg −

κ|∂ΩF (0)|
ρcv|ΩF (0)|

havg in (0,∞)× ΩF (0)

∂ϕ1

∂n
= h on (0,∞)× ∂ΩF (0),

ϕ1(0) = ϑ0 − ϑ on ΩF (0),

with µ′ > 0. Using (f1, f2, f3, h, g1, g2) ∈ B∞,p,q and applying Proposition 6.4 in [9] (taking
µ′ > 0 large enough), we deduce that the above system admits a unique solution ϕ1 ∈
W 2,1
q,p (QF∞). Moreover, we have the estimate

‖ϕ1‖
W 2,1
q,p (QF∞)

6 C
(
‖f3‖Lp(0,∞;Lq(ΩF (0)))+‖h‖F (1−1/q)/2

p,q (0,∞;Lq(∂ΩF (0)))∩Lp(0,∞;W 1−1/q,q(∂ΩF (0)))

+ ‖ϑ0 − ϑ‖B2(1−1/p)
q,p (ΩF (0))

)
. (10.7)

Standard calculation on the above system yields

∂tϕ
1
avg + µ′ϕ1

avg = 0, ϕ1
avg(0) = ϑ0,avg − ϑ.

Thus ϕ1
avg(t) = (ϑ0,avg − ϑ)e−µ

′t and ϕ1
avg ∈ Lr(0,∞) for any 1 6 r 6∞. Next, we define

ϕ2(t) =

∫ t

0

(
f3,avg(s) +

κ|∂ΩF (0)|
ρcv|ΩF (0)|

havg(s) + µ′ϕ1
avg(s)

)
ds.

Since f3,avg, havg, ϕ
1
avg ∈ L1(0,∞), we obtain ϕ2 ∈ L∞(0,∞).

Integrating the first equation of (10.1) in ΩF (0) and using the boundary condition of u, we
deduce that ρ̃avg is solution of the following system

∂tρ̃avg = f1,avg t ∈ (0,∞), ρ̃avg(0) = 0. (10.8)

As f1,avg belongs to L1(0,∞) we have ρ̃avg ∈ L∞(0,∞). We set

ϕ̃ = ϑ̃− ϕ1 − ϕ2.

Then system (10.1) is transformed into the following system for (ρ̃m, ũ, ϕ̃, ˜̀, ω̃):

∂tρ̃m + ρdiv ũ = f̃1 in (0,∞)× ΩF (0),

∂tũ− div σl(ρ̃m, ũ, ϑ̃) = f̃2 in (0,∞)× ΩF (0),

∂tϕ̃−
κ

ρcv
∆ϕ̃+

Rϑ

cv
div ũ = f̃3 in (0,∞)× ΩF (0),

ũ = 0 on (0,∞)× ∂Ω, ũ = ˜̀+ ω̃ × y on (0,∞)× ∂ΩS(0) (10.9)

∂ϕ̃

∂n
= 0 on (0,∞)× ∂ΩF (0),

d

dt
˜̀= −m−1

∫
∂ΩS(0)

σl(ρ̃m, ũ, ϕ̃)n dγ + g̃1, t ∈ (0,∞)
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d

dt
ω = −J(0)−1

∫
∂ΩS(0)

y × σl(ρ̃m, ũ, ϕ̃)n dγ + g̃2, t ∈ (0,∞)

ρ̃(0) = ρ0 − ρ, u(0) = u0, ϕ̃(0) = 0, in ΩF (0),

`(0) = `0, ω(0) = ω0,

where

f̃1 = f1 − f1,avg, f̃2 = f2 −R∇ϕ1, f̃3 = µ′(ϕ1 − ϕ1
avg)

g̃1 = g1 +m−1R

∫
∂ΩS(0)

ϕ1n dγ, g̃2 = g2 + J(0)−1R

∫
∂ΩS(0)

y × ϕ1n dγ,

and where we recall that σl is defined by (9.2). Using that (f1, f2, f3, h, g1, g2) ∈ B∞,p,q and

that ϕ1 ∈W 2,1
q,p (QF∞), one can show that (f̃1, f̃2, f̃3, g̃1, g̃2) belongs to Lp(0,∞;Ym).

From Theorem 9.6 and Theorem 9.7, we know that AFS generates an analytic exponential
stable semigroup on Ym and is a R-sectorial operator on Ym. Moreover, by hypothesis
of Theorem 10.1, we have (ρ0 − ρ, u0, 0, `0, ω0) ∈ (Ym,D(AFS) ∩ Ym)1−1/p,p . Therefore by

Corollary 8.4, the system (10.9) admits a unique solution

(ρ̃m, ũ, ϕ̃, ˜̀, ω̃) ∈ Lp(0,∞;D(AFS) ∩ Ym) ∩W 1,p(0,∞;Ym) ⊂ S∞,p,q.

We recover (10.5) and (10.6) by remarking that

ϑ̃m = ϕ̃+ ϕ1
m, ϑ̃avg = ϕ2 + ϕ1

avg.

The case η > 0 can be reduced to the previous case by multiplying all the functions by eηt

and using the fact that AFS + η is a R-sectorial operator with negative type. �

11. Estimates of the Nonlinear Terms

In this section, we are going to estimate the nonlinear terms F1,F2,F3,H,G1 and G2 defined
in (7.9) - (7.14).

Throughout this section we assume 2 < p <∞ and 3 < q <∞ satisfy
1

p
+

1

2q
6= 1

2
. Let p′

denote the conjugate of p, i.e.,
1

p
+

1

p′
= 1. In the following, when no confusion is possible,

we use the notation

‖ · ‖W r,p(0,T ;W s,q) = ‖ · ‖W r,p(0,T ;W s,q(ΩF (0))).

Let us fix η ∈ (0, η0), where η0 is the constant introduced in Theorem 9.7. and we introduce
the following ball

S̃ε =
{

(ρ̃, ũ, ϑ̃, ˜̀, ω̃) |
∥∥∥(ρ̃, ũ, ϑ̃, ˜̀, ω̃)

∥∥∥
S
6 ε
}
,

where∥∥∥(ρ̃, ũ, ϑ̃, ˜̀, ω̃)
∥∥∥
S

=
∥∥∥(eη(·)ρ̃m, e

η(·)ũ, eη(·)ϑ̃m, e
η(·) ˜̀, eη(·)ω̃)

∥∥∥
S∞,p,q

+ ‖ρ̃avg, ϑ̃avg‖L∞(0,∞)2 + ‖eη(·)∂tρ̃avg, e
η(·)∂tϑ̃avg‖Lp(0,∞)2 , (11.1)

and where we use the notation (10.2).
Let us first show that X be defined as in (7.7) is a C1-diffeomorphism.
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Lemma 11.1. Let X be defined as in (7.7). Then there exists a constant CX > 0, depending

only on p, q, η and ΩF (0) such that, for every (ρ̃, ũ, ϑ̃, ˜̀, ω̃) ∈ S̃ε, we have

‖∇X − I3‖L∞((0,∞)×ΩF (0)) + ‖∇X − I3‖L∞(0,∞;W 1,q) 6 CXε, (11.2)

|X(·, y1)−X(·, y2)| > (1− CXε)|y1 − y2| (y1, y2 ∈ ΩF (0)). (11.3)

In particular for every ε ∈ (0, 1
2CX

) and for every (ρ̃, ũ, ϑ̃, ˜̀, ω̃) ∈ S̃ε, we have

‖∇X − I3‖L∞((0,∞)×ΩF (0)) <
1

2
. (11.4)

Proof. From the definition of X we obtain

‖∇X − I3‖L∞((0,∞)×ΩF (0)) 6 C‖∇X − I3‖L∞(0,∞;W 1,q(ΩF (0)))

6 C
∫ ∞

0
e−ηteηt‖∇ũ(t, ·)‖W 1,q(ΩF (0)) dt

6 C

(∫ ∞
0

e−p
′ηt dt

)1/p′

‖eη(·)ũ‖
W 2,1
q,p (QF∞)

6 C

(
1

p′η

)1/p′

ε,

where C depends only on ΩF (0). The proof of (11.3) is similar. This completes the proof of
the lemma. �

From now on we assume that

ε0 = min

{
1,

1

2CX

}
, (11.5)

where CX is the constant in Lemma 11.1.
In the following lemma we estimate some other norms of ∇X and [∇X]−1 that we need to

estimate the nonlinear terms.

Lemma 11.2. Let X be defined as in (7.7) and Z defined by (7.8). Then there exists a
constant C > 0 depending only on p, q, η and ΩF (0) such that, for every ε ∈ (0, ε0) and for

every (ρ̃, ũ, ϑ̃, ˜̀, ω̃) ∈ S̃ε, we have

‖det(∇X − I3)‖L∞(0,∞;W 1,q) + ‖Cof(∇X − I3)‖L∞(0,∞;W 1,q)

+ ‖Z − I3‖L∞(0,∞;W 1,q) + ‖∂t∇X‖Lp(0,∞;W 1,q) + ‖∂t(Z − I3)‖Lp(0,∞;W 1,q)

+ ‖Z − I3‖C1/p′ (0,∞;W 1,q) 6 Cε. (11.6)

Proof. The estimates of det(∇X − I3) and Cof(∇X − I3) follow from Lemma 11.1 and from
the fact that the space L∞(0,∞;W 1,q(ΩF (0))) is an algebra for q > 3.

From (11.4), we deduce that det∇X > C > 0 in (0,∞)× ΩF (0) and thus from

Z =
Cof(∇X)

det(∇X)

we obtain

‖Z‖L∞(0,∞;W 1,q(ΩF (0))) 6 C.
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Therefore,

‖Z − I3‖L∞(0,∞;W 1,q) 6 ‖Z‖L∞(0,∞;W 1,q(ΩF (0)))‖∇X − I3‖L∞(0,∞;W 1,q) 6 Cε.

Next notice that,

∂t∇X(t, y) = Q(t)∇ũ(t, y).

Therefore

‖∂t∇X‖Lp(0,∞;W 1,q) 6 ‖eη(·)∇ũ‖Lp(0,∞;W 1,q) 6 Cε.

We also have

∂t(Z − I3) = ∂tZ = −∇X−1 (∂t∇X)∇X−1 = −Z (∂t∇X)Z.

Thus

‖∂t(Z − I3)‖Lp(0,∞;W 1,q) 6 ‖Z‖2L∞(0,∞;W 1,q)‖∂t∇X‖Lp(0,∞;W 1,q) 6 Cε.

Finally, by Hölder’s inequality we have

‖(Z − I3)(t2, ·)− (Z − I3)(t1, ·)‖W 1,q 6
∫ t2

t1

‖∂t(Z − I3)(s, ·)‖W 1,q

6 |t1 − t2|1/p
′‖∂t(Z − I3)‖Lp(0,∞;W 1,q) 6 Cε|t1 − t2|1/p

′
.

This completes the proof of the lemma. �

Now we are in a position to estimate the nonlinear terms in (7.9) - (7.14). More precisely,
we prove the following

Proposition 11.3. Let ε0 be the constant defined as in (11.5). Then there exists a constant

CN depending only on p, q, η,ΩF (0) such that for every ε ∈ (0, ε0) and for every (ρ̃, ũ, ϑ̃, ˜̀, ω̃) ∈
S̃ε, we have ∥∥∥(eη(·)F1, e

η(·)F2, e
η(·)F3, e

η(·)H, eη(·)G1, e
η(·)G2)

∥∥∥
B∞,p,q

+
∥∥∥(F1,avg,F3,avg,Havg)

∥∥∥
L1(0,∞)3

6 CNε
2.

Proof. The constants C appearing in this proof depend only on p, q, η,ΩF (0) and are inde-
pendent of ε.

For every (ρ̃, ũ, ϑ̃, ˜̀, ω̃) ∈ S̃ε, we have

‖ρ̃‖L∞(0,∞;W 1,q) 6 ‖eη(·)ρ̃m‖L∞(0,∞;W 1,q) + ‖ρ̃avg‖L∞(0,∞)

6 C‖eη(·)ρ̃m‖W 1,p(0,∞;W 1,q) + ‖ρ̃avg‖L∞(0,∞) 6 Cε. (11.7)

Since 2 < p <∞, using the the following continuous embedding

W 2,1
q,p (QF∞) ↪→ L∞(0,∞;B2(1−1/p)

q,p (ΩF (0))) ↪→ L∞(0,∞;W 1,q(ΩF (0))),

we can similarly deduce that

‖ũ‖L∞(0,∞;W 1,q)3 + ‖ϑ̃‖L∞(0,∞;W 1,q) 6 Cε. (11.8)

Using the fact that L∞(ΩF (0)) ↪→W 1,q(ΩF (0)) for q > 3 it is easy to see that

‖ũ‖Lp(0,∞;L∞(ΩF (0))) + ‖∇ũ‖Lp(0,∞;L∞(ΩF (0))) + ‖∇ϑ̃‖Lp(0,∞;L∞(ΩF (0))) 6 Cε. (11.9)
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Let Q be defined as in (7.6). Then

‖Q− I3‖L∞(0,∞;R3×3) 6 ‖Q‖L∞(0,∞;R3×3)‖eη(·)ω̃‖L∞(0,∞;R3)

∫ ∞
0

e−ηsds

6
C

η
‖eη(·)ω̃‖W 1,p(0,∞;R3) 6 Cε. (11.10)

Now we estimate the nonlinear terms in (7.9) - (7.14).
Estimates of F1 and F1,avg.

‖eη(·)F1‖Lp(0,∞;W 1,q) + ‖F1,avg‖L1(0,∞) 6 Cε
2. (11.11)

Let us recall

eηtF1(ρ̃, ũ, ϑ̃, ˜̀, ω̃) = −eηt(ρ̃+ ρ)(Z> − I3) : ∇ũ− eηtρ̃div ũ.

Using the Lemma 11.2 and estimates (11.7)-(11.9), we obtain∥∥∥−eηt(ρ̃+ ρ)(Z> − I3) : ∇ũ− eηtρ̃div ũ
∥∥∥
Lp(0,∞;W 1,q)

6 ‖(ρ̃+ ρ)‖L∞(0,∞;W 1,q)

∥∥∥Z> − I3

∥∥∥
L∞(0,∞;W 1,q)

∥∥∥eη(·)∇ũ
∥∥∥
Lp(0,∞;W 1,q)

+ ‖ρ̃‖L∞(0,∞;W 1,q)

∥∥∥eη(·) div ũ
∥∥∥
Lp(0,∞;W 1,q)

6 Cε2.

We have

F1,avg = − 1

|ΩF (0)|

∫
ΩF (0)

(ρ̃+ ρ)(Z> − I3) : ∇ũ dy − 1

|ΩF (0)|

∫
ΩF (0)

ρ̃div ũ dy.

We estimate the first term of F1,avg as follows∥∥∥∥∥
∫

ΩF (0)
(ρ̃+ ρ)(Z> − I3) : ∇ũ dy

∥∥∥∥∥
L1(0,∞)

6 ‖ρ̃+ ρ‖L∞((0,∞)×ΩF (0))‖(Z> − I3)‖L∞((0,∞)×ΩF (0))

∫ ∞
0

∫
ΩF (0)

|∇ũ| dydt

6 C‖ρ̃+ ρ‖L∞(0,∞;W 1,q)

∥∥∥Z> − I3

∥∥∥
L∞(0,∞;W 1,q)

∫ ∞
0

e−ηteηt‖∇ũ(t, ·)‖Lq(ΩF (0)) dt

6 Cε

(∫ ∞
0

e−p
′ηt dt

)1/p′ ∥∥∥eη(·)∇ũ
∥∥∥
Lp(0,∞;Lq(ΩF (0)))

6 Cε2.

The other estimate can be obtained similarly.
Estimates of F2, F3 and F3,avg.

‖eη(·)F2‖Lp(0,∞;Lq) + ‖eη(·)F3‖Lp(0,∞;Lq) + ‖F3,avg‖L1(0,∞) 6 Cε
2. (11.12)

The proof is similar to the proof of (11.11). Note that the terms of F2 and F3 are at least

quadratic functions of ρ̃, ũ, ϑ̃, Z>−I3 and Q−I3. Therefore using Lemma 11.2 and estimates
(11.7) - (11.10), we obtain (11.12).
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Estimates of HF and HS .

‖eη(·)HF · n‖F (1−1/q)/2
p,q (0,∞;Lq(∂Ω))∩Lp(0,∞;W 1−1/q,q(∂Ω))

+ ‖HF,avg‖L1(0,∞)

+ ‖eη(·)HS · n‖F (1−1/q)/2
p,q (0,∞;Lq(∂ΩS(0)))∩Lp(0,∞;W 1−1/q,q(∂ΩS(0))

+ ‖HS,avg‖L1(0,∞) 6 Cε
2.

(11.13)

Recall that

eηtHF = eηt(I3 − Z>)∇ϑ̃.
Using Lemma 11.2 and estimates (11.8)-(11.9), we first obtain∥∥∥eη(·)(I3 − Z>)∇ϑ̃

∥∥∥
Lp(0,∞;W 1−1/q,q(∂Ω))

6 C
∥∥∥(I3 − Z>)eη(·)∇ϑ̃

∥∥∥
Lp(0,∞;W 1,q(ΩF (0)))

6 C
∥∥∥(I3 − Z>)

∥∥∥
L∞(0,∞;W 1,q(ΩF (0)))

∥∥∥eη(·)∇ϑ̃
∥∥∥
Lp(0,∞;W 1,q(ΩF (0)))

6 Cε2.

We write

eηtHF |∂Ω · n =
∑
j,k

[
(δj,k − Zj,k) eηt

∂ϑ̃

∂yk

]
(t, y)nj(y), y ∈ ∂Ω.

We know eηtϑ̃ ∈W 2,1
q,p (Q∞F ). Thus by [9, Proposition 6.4]∥∥∥∥∥eηt ∂ϑ̃∂yk
∣∣∣
∂Ω

∥∥∥∥∥
F

(1−1/q)/2
p,q (0,∞;Lq(∂Ω)

6 C‖eη(·)ϑ̃‖
W 2,1
q,p (Q∞F )

6 Cε, for k = 1, 2, 3.

Also from Lemma 11.2 we have

‖(δj,k − Zj,k) |∂Ω‖C1/p′ ([0,∞);W 1−1/q,q(∂Ω)) 6
∥∥∥Z> − I3

∥∥∥
C1/p′ ([0,∞);W 1,q(ΩF (0)))

6 Cε.

Therefore by [28, Theorem 2.8.2(ii)], we obtain∥∥∥eη(·)HF · n
∥∥∥
F

(1−1/q)/2
p,q (0,∞;Lq(∂Ω))

6 C
∑
j,k

∥∥∥∥∥eηt ∂ϑ̃∂yk
∣∣∣
∂Ω

∥∥∥∥∥
F

(1−1/q)/2
p,q (0,∞;Lq(∂Ω)

‖(δj,k − Zj,k) |∂Ω‖C1/p′ ([0,∞);W 1−1/q,q(∂Ω))

6 Cε2.

The other estimates can be obtained similarly.
Estimates of G1 and G2. ∥∥∥eη(·)G1

∥∥∥
Lp(0,∞)

+
∥∥∥eη(·)G2

∥∥∥
Lp(0,∞)

6 Cε2. (11.14)

The proof is easy and left to the reader. �

Proposition 11.4. Let ε0 be the constant defined as in (11.5). Let us set

F j1 = F1(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), F j2 = F2(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), F j3 = F3(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j)
HjF = HF (ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), HjS = HS(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j),Hj = 1∂ΩHjF + 1∂ΩS(0)H

j
S
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Gj1 = G1(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j), Gj2 = G2(ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j),
Then there exists a constant Clip > 0 depending only on p, q, η,ΩF (0) such that for every for

every ε ∈ (0, ε0) and for all (ρ̃1, ũ1, ϑ̃1, ˜̀1, ω̃1) ∈ S̃ε and (ρ̃2, ũ2, ϑ̃2, ˜̀2, ω̃2) ∈ S̃ε, we have∥∥∥eη(·)
(
F1 −F2

1 ,F1
2 −F2

2 ,F1
3 −F2

3 ,H1 −H2,G1
1 − G2

2 ,G1
2 − G2

2

)∥∥∥
B∞,p,q

+
∥∥(F1

1,avg −F2
1,avg,F1

3,avg −F2
3,avg,H1

avg −H2
avg

)∥∥
L1(0,∞)3

6 Clipε
∥∥∥(ρ̃1, ũ1, ϑ̃1, ˜̀1, ω̃1)− (ρ̃2, ũ2, ϑ̃2, ˜̀2, ω̃2)

∥∥∥
S
. (11.15)

Proof. The proof of this proposition is similar to the proof of Proposition 11.3 �

12. Proof of the Global Existence Theorem

This section is devoted to the proof of Theorem 2.2 and Corollary 2.3. First we prove a
global existence theorem for (7.4) - (7.13). More precisely, we prove the following theorem,
which implies Theorem 7.1.

Theorem 12.1. Let 2 < p <∞ and 3 < q <∞ satisfying the condition
1

p
+

1

2q
6= 1

2
. Assume

that (2.1) is satisfied. Let ρ > 0 and ϑ > 0 be two given constants and η ∈ (0, η0), where η0

is the constant introduced in Theorem 9.7. Then there exists a constant ε̃0 > 0 such that, for
all ε ∈ (0, ε̃0) and for any (ρ0, u0, ϑ0, `0, ω0) belongs to Iccp,q satisfying

1

|ΩF (0)|

∫
ΩF (0)

ρ0 dx = ρ,

and

‖(ρ0 − ρ, u0, ϑ0 − ϑ, `0, ω0)‖Ip,q 6
ε

2CL
,

where CL is the continuity constant appearing in Theorem 10.1, the system (7.4) - (7.13)

admits a unique solution (ρ̃, ũ, ϑ̃, ˜̀, ω̃) with∥∥∥(eηtρ̃m, e
ηtũ, eηtϑ̃m, e

ηt ˜̀, eηtω̃)
∥∥∥
S∞,p,q

+ ‖ρ̃avg, ϑ̃avg‖L∞(0,∞) 6 ε.

Moreover, X ∈ L∞(0,∞;W 2,q(ΩF (0)))3 ∩W 1,∞(0,∞;W 1,q(ΩF (0))) and X(t, ·) : ΩF (0) →
ΩF (t) is a C1-diffeormorphim for all t ∈ [0,∞).

Proof. Let us set

ε̃0 = min

{
ε0,

1

2CLCN
,

1

2CLClip

}
, (12.1)

where ε0 is defined as in (11.5) and CL, CN and Clip are the constants appearing in Theo-
rem 10.1, Proposition 11.3 and Proposition 11.4 respectively. Let us choose ε ∈ (0, ε̃0) and

(σ, v, ϕ, k, τ) ∈ S̃ε, where S̃ε is defined as in (11.1). We consider the following problem

∂tρ̃+ ρdiv ũ = F1(σ, v, ϕ, k, τ), in (0,∞)× ΩF (0),

∂tũ− div σl(ρ̃, ũ, ϑ̃) = F2(σ, v, ϕ, k, τ), in (0,∞)× ΩF (0),

∂tϑ̃−
κ

ρcv
∆ϑ̃+

Rϑ

cv
div ũ = F3(σ, v, ϕ, k, τ), in (0,∞)× ΩF (0),
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ũ = 0 on (0,∞)× ∂Ω, ũ = ˜̀+ ω̃ × y on (0,∞)× ∂ΩS(0) (12.2)

∂ϑ̃

∂n
= HF (σ, v, ϕ, k, τ) · n on (0,∞)× ∂Ω,

∂ϑ̃

∂n
= HS(σ, v, ϕ, k, τ) · n on (0,∞)× ∂ΩS(0),

d

dt
˜̀= −m−1

∫
∂ΩS(0)

σl(ρ̃, ũ, ϑ̃)n dγ + G1(σ, v, ϕ, k, τ), t ∈ (0,∞)

d

dt
ω = −J(0)−1

∫
∂ΩS(0)

y × σl(ρ, u, ϑ)n dγ + G2(σ, v, ϕ, k, τ), t ∈ (0,∞)

ρ̃(0) = ρ0 − ρ, u(0) = u0, ϑ(0) = ϑ0 − ϑ, in ΩF (0),

`(0) = `0, ω(0) = ω0.

We are going to show, the mapping

N : (σ, v, ϕ, k, τ) 7→ (ρ̃, ũ, ϑ̃, ˜̀, ω̃)

where (ρ̃, ũ, ϑ̃, ˜̀, ω̃) is the solution to the system (12.2), is a contraction in S̃ε. Since (σ, v, ϕ, k, τ) ∈
S̃ε, we can apply Theorem 10.1 and Proposition 11.3 to the system (12.2) and using (7.16)
we obtain ∥∥∥(ρ̃, ũ, ϑ̃, ˜̀, ω̃)

∥∥∥
S
6 CL

∥∥(ρ0 − ρ, u0, ϑ0 − ϑ, `0, ω0)
∥∥
Ip,q + CLCNε

2 6 ε.

Thus N is a mapping from S̃ε to itself for all ε ∈ (0, ε̃0).

Let (σ1, v1, ϕ1, k1, τ1) and (σ2, v2, ϕ2, k2, τ2) belong to S̃ε. For j = 1, 2, we set

N (σj , vj , ϕj , kj , τ j) = (ρ̃j , ũj , ϑ̃j , ˜̀j , ω̃j). Using Theorem 10.1 and Proposition 11.4, we obtain∥∥∥(ρ̃1, ũ1, ϑ̃1, ˜̀1, ω̃1)− (ρ̃2, ũ2, ϑ̃2, ˜̀2, ω̃2)
∥∥∥
S

6 CLClipε
∥∥(σ1, v1, ϕ1, k1, τ1)− (σ2, v2, ϕ2, k2, τ2)

∥∥
S (12.3)

Using the definition of ε̃0 one can easily check that the mapping N is a contraction in S̃ε.
This completes the proof of the theorem. �

Proof of Theorem 2.2. Let (ρ̃, ũ, ϑ̃, ˜̀, ω̃) be the solution of (7.4) - (7.13) constructed in The-
orem 12.1. Since X(t, ·) is C1− diffeomorphism from ΩF (0) into ΩF (t), we set Y (t, ·) =
X−1(t, ·) and for x ∈ ΩF (t), t > 0

ρ(t, x) = ρ̃(t, Y (t, x)) + ρ, u(t, x) = Q(t)ũ(t, Y (t, x)), ϑ(t, x) = ϑ̃(t, Y (t, x)) + ϑ,

ȧ(t) = Q(t)˜̀(t), ω(t) = Q(t)ω̃(t). (12.4)

We can easily check that (ρ, u, ϑ, a, ω) solves the original system (2.2) - (2.9) satisfying the

estimate (2.14). By choosing δ0 sufficiently small, from (2.14) it is easy to see that ρ(t, x) >
ρ̄

2
for all (t, x) ∈ (0,∞)× ΩF (t). Finally from (2.5) and (2.14), we obtain

dist(ΩS(t),ΩS(0)) 6 ‖a(t)‖R3 + ‖Q(t)− I3‖R3×3 |y| <
ν

2
for all t > 0,

for sufficiently small δ0. Therefore, dist(ΩS(t), ∂Ω) > ν/2 for all t ∈ [0,∞). �

Proof of Corollary 2.3. The first estimate obviously follows from (2.14). To prove (2.15) we
integrate the density equation (2.2) over ΩF (t) and using the boundary conditions and (2.13)
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we obtain
1

|ΩF (t)|

∫
ΩF (t)

ρ(t, x) dx = ρ (t > 0).

Since dist(ΩS(t), ∂Ω) > ν/2 and ΩS(t) has smooth boundary for every t ∈ [0,∞), by Poincaré-
Wirtinger inequality we obtain

‖ρ(t, x)− ρ‖Lq(ΩF (t)) 6 C‖∇ρ‖Lq(ΩF (t)), (12.5)

where the constant C can be chosen uniformly with respect to t (see for instance [6, Theorem
1]). Thus we have

‖eη(·)(ρ− ρ)‖W 1,p(0,∞;W 1,q(ΩF (·))) 6 C‖eη(·)∇ρ‖W 1,p(0,∞;Lq(ΩF (·))) 6 Cδ.

and consequently (2.15) follows. �
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Boston, MA, second ed., 2007.

[5] M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible
Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 777–813.
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Equations, 32 (2007), pp. 1439–1447.

[7] P. Clément and J. Prüss, An operator-valued transference principle and maximal regularity on vector-
valued Lp-spaces, in Evolution equations and their applications in physical and life sciences (Bad Herrenalb,
1998), vol. 215 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 2001, pp. 67–87.

[8] R. Denk, M. Hieber, and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and
parabolic type, Mem. Amer. Math. Soc., 166 (2003), pp. viii+114.

[9] , Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data, Math.
Z., 257 (2007), pp. 193–224.

[10] B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible
and incompressible models, Comm. Partial Differential Equations, 25 (2000), pp. 1399–1413.

[11] G. Dore, Lp regularity for abstract differential equations, in Functional analysis and related topics, 1991
(Kyoto), vol. 1540 of Lecture Notes in Math., Springer, Berlin, 1993, pp. 25–38.

[12] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, vol. 194 of Grad-
uate Texts in Mathematics, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M.
Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R.
Schnaubelt.

[13] Y. Enomoto and Y. Shibata, On the R-sectoriality and the initial boundary value problem for the
viscous compressible fluid flow, Funkcial. Ekvac., 56 (2013), pp. 441–505.

[14] E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal.,
167 (2003), pp. 281–308.
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