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POSITIVITY OF VALUATIONS ON CONVEX BODIES AND INVARIANT VALUATIONS BY LINEAR ACTIONS

We define a notion of positivity on continuous and translation invariant valuations on convex bodies on a finite dimensional real vector space. We endow the valuation space generated by mixed volumes with a norm induced by the positive cone. This enables us to construct a continuous extension of the convolution operator on smooth valuations to the closure of that space. As an application, we prove a variant of Minkowski's existence theorem. Furthermore, given a linear map, we generalize a theorem of Favre-Wulcan and Lin by proving that the eigenvalues of the linear map is related to the spectral radius of the induced linear operator on the space of valuations. Finally, given a linear action and under a natural strict log-concavity assumption on certain spectral radius of the induced linear operators on valuations, we study the positivity properties of the space of invariant valuations corresponding to the spectral radius of the operator.

We now introduce the following key notion of positivity for convex valuations. For any positive Radon measure µ on K(E) n-i such that

we define a valuation φ µ given by

Observe that the dominated convergence theorem ensures the fact that φ µ is a continuous translation invariant valuation. Moreover, such a valuation is monotone in the sense that if K ⊂ L ∈ K(E) then φ(K) φ(L). Note that the linear map µ → φ µ is not injective.

A valuation φ ∈ Val i (E) is said to be positive if there exists a measure µ as above such that φ = φ µ . We denote by P i ⊂ Val i (E) the set of positive homogeneous valuations of degree i.

Example 1.1. The set of positive linear combinations of mixed volumes of degree i is contained in P i .

Introduction

Let E be a Euclidian real vector space of dimension n, and let K(E) be the family of convex bodies (i.e., compact convex subsets) of E. We endow the space K(E) with the Hausdorff metric, that is, for
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any K, L ∈ K(E) the distance is defined by

d H (K, L) = min{ε > 0|K ⊂ L + εB & L ⊂ K + εB},
where B is the unit ball in E. A real (convex) valuation φ on E is a function φ : K(E) → R such that φ(K ∪ L) = φ(K) + φ(L) -φ(K ∩ L) for any K, L ∈ K(E) satisfying K ∪ L ∈ K(E). Moreover, a valuation φ is called translation invariant if φ(K + t) = φ(K) for any K ∈ K(E) and any t ∈ E, and it is called continuous if it is continuous with respect to the topology of K(E) given by the metric d H . We denote by Val(E) the Banach space of continuous, translation invariant valuations on E where the norm of φ ∈ Val(E) is given by:

(1)

||φ|| := sup K⊂B |φ(K)|,
where the supremum is taken over all convex bodies K contained in the unit ball B.

A valuation φ ∈ Val(E) is called homogeneous of degree i, where 0 i n, if for any K ∈ K(E) and any λ ≥ 0, one has: φ(λK) = λ i φ(K). The subspace of Val(E) of homogeneous valuations of degree i is denoted by Val i (E). By a theorem of McMullen (see [START_REF] Mcmullen | Valuations and Euler-type relations on certain classes of convex polytopes[END_REF]), there is a decomposition of Val(E) in terms of Val i (E) given by:

Val(E) = n i=0 Val i (E).
The most basic examples of homogeneous valuations of degree i are given by the mixed volumes

K → V (L 1 , . . . , L n-i , K[i])
where L 1 , . . . , L n-i ∈ K(E) and the symbol V (-) denotes the mixed volume of convex bodies, and K[i] means that the convex body K is repeated i times in the expression of the mixed volume.

The space of valuations contains a dense subspace called the space of smooth valuations. We recall the definition of this space. The Lie group GL(E) has a natural action on Val(E):

GL(E) × Val(E) → Val(E), (g, φ) → g • φ,
where g • φ(K) := φ(g -1 K) for any K ∈ K(E) (see [START_REF] Alesker | Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture[END_REF]). The valuation φ is called smooth if the map g → g • φ is smooth. We denote by Val ∞ (E) the subset of Val(E) of smooth translation invariant valuations, and by Val ∞ i (E) the smooth translation invariant valuations which are homogeneous of degree i. Similar to the decomposition for Val(E), one also has

Val ∞ (E) = n i=0 Val ∞ i (E).
Remark 1.2. We emphasize that the positivity notation introduced above is different from (and stronger than) the positivity in the traditional setting. In the traditional setting, a valuation φ ∈ Val(E) is called positive if φ(K) ≥ 0 for any K ∈ K(E). Many interesting results on this kind of positive valuations have been obtained by Parapatits-Wannerer [START_REF] Parapatits | On the inverse Klain map[END_REF] and Bernig-Fu [START_REF]Hermitian integral geometry[END_REF]. Note that a monotone valuation must be positive in this traditional sense. There are valuations which are positive in the traditional sense but not monotone, e.g., Kazarnovskii pseudo-volume in hermitian integral geometry (see [START_REF]Hermitian integral geometry[END_REF]), and there are also valuations which are monotone but not positive in our setting (see [START_REF] Bernig | Algebraic integral geometry[END_REF]Section 5.5]).

By a polarization argument, a valuation φ ∈ P i defines a unique function on K(E) i :

φ(L 1 , . . . , L i ) = 1 i! ∂ i ∂t 1 ∂t 2 . . . ∂t i |t 1 =...=t i =0 + φ(t 1 L 1 + . . . + t i L i ),
where L 1 , . . . , L i are convex bodies. If L 1 = ... = L i = L, then φ(L 1 , . . . , L i ) = φ(L).

We say that a valuation φ ∈ P i is strictly positive if there exists > 0 such that

φ(L 1 , . . . , L i ) V (B[n -i], L 1 , ..., L i )
holds for any convex bodies L 1 , . . . , L i .

The convex cone P i generates a vector space V i ⊂ Val i (E). For any φ ∈ V i , there is a signed Radon measure µ on K(E) n-i such that its absolute value |µ| satisfies:

K(E) n-i V (B[i], K 1 , . . . , K n-i )d|µ|(K 1 , . . . , K n-i ) < +∞.
The subspace V i is endowed with an appropriate norm defined as follows.

Definition 1.3. For any φ ∈ V i , the norm || • || P is defined by

||φ|| P := inf{t ≥ 0| |φ(L 1 , ..., L i )| ≤ tV (B[n -i], L 1 , ..., L i ) for any L 1 , ..., L i ∈ K(E)}.
The fact that ||φ|| P is finite follows from the reverse Khovanskii-Teissier inequality [START_REF]Correspondences between convex geometry and complex geometry[END_REF] (see also Theorem 3.10). One of the main properties of the norm || • || P is that the subspace V i ∩ Val ∞ i (E) forms a dense subspace in V i with respect to this norm (see Theorem 3.23).

Remark 1.4. The norm || • || P is inspired by complex geometry, the motivation is that the analogous notation for a cohomology class over a projective manifold measures the pseudo-effectivity of that class. In our setting, ||φ µ || P measures the positivity of φ µ .

Let V P i be the completion of V i with respect to the norm || • || P . By definition, for any L ⊂ B we have |φ(L)| ≤ vol(B)||φ|| P , hence ||φ|| ≤ vol(B)||φ|| P . Thus there is a continuous injection

(V P i , || • || P ) → (Val i (E), || • ||).
A deep theorem of Alesker [START_REF] Alesker | Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture[END_REF] implies that the linear combinations of mixed volumes span a dense set in Val(E). As a consequence, V P i is dense in Val i (E) with respect to the norm || • ||. We do not know whether V P i is dense in Val i (E) with respect to the norm || • || P . Besides the norm || • || P , another norm || • || C induced by the cone structure is also defined on V i . For any φ ∈ V i , ||φ|| C is given by

||φ|| C := inf φ=φ + -φ -,φ ± ∈P i (φ + (B) + φ -(B)),
Its properties are also discussed in the paper (see Section 3.3.2). However, we do not know whether smooth valuations are dense in V i for the topology induced by this cone norm.

Our first theorem shows that the convolution of valuations can be uniquely extended to V P i . Let us recall the convolution operation defined by Bernig-Fu [START_REF] Bernig | Convolution of convex valuations[END_REF] and studied further by Alesker [START_REF]A Fourier-type transform on translation-invariant valuations on convex sets[END_REF] on smooth valuations. By [START_REF] Bernig | Convolution of convex valuations[END_REF] (see also [START_REF]A Fourier-type transform on translation-invariant valuations on convex sets[END_REF]), there exists a unique continuous, symmetric bilinear map * which is homogeneous of degree -n:

Val ∞ (E) × Val ∞ (E) → Val ∞ (E), (φ, ϕ) → φ * ϕ,
such that for any K, L ∈ K(E) with smooth and strictly convex boundary, one has that:

vol(• + K) * vol(• + L) = vol(• + K + L) ∈ Val ∞ (E).
In particular, assume that K 1 , ..., K n-i , L 1 , ..., L n-j ∈ K(E) have smooth and strictly convex boundary, then

(2) V (-; K 1 , . . . , K n-i ) * V (-; L 1 , . . . , L n-j ) = i!j! n! V (-; K 1 , . . . , K n-i , L 1 , . . . , L n-j ).

We can now state our first theorem (see Theorem 3.23 and Theorem 3.33).

Theorem A. Fix two integers i, j such that 2n i + j n. There exists a unique symmetric bilinear operator * : V P i × V P j → V P i+j-n satisfying the following properties.

(1) The operator * is continuous with respect to the topology induced by the norm || • || P .

(2) The operator * coincides with the convolution * on (V P i ∩ Val ∞ i (E)) × (V P j ∩ Val ∞ j (E)). A priori, the convolution is only well defined on the space of smooth valuations Val ∞ (E) and one cannot extend it continuously to Val(E). Theorem A allows us to extend the operation with respect to a finer topology than the one in Val i (E).

Bernig-Faifman and Alesker-Bernig (see [START_REF] Bernig | Generalized translation invariant valuations and the polytope algebra[END_REF], [START_REF] Alesker | The product on smooth and generalized valuations[END_REF]) studied another extension on the generalized valuations satisfying specified conditions. The space of generalized valuations, denoted by Val -∞ (E), is defined to be the dual of Val ∞ (E). However, it is unclear how one can compare these two extensions.

Our extension is closely related to equation (2). Indeed, if µ and ν are two Radon measures on K(E) n-i and K(E) n-j respectively so that their associated valuations φ µ and φ ν belong to V i and V j respectively, then the valuation φ µ * φ ν ∈ V i+j-n is a valuation associated to the measure:

i!j! n! p * 1 µ ⊗ p * 2 ν,
where p 1 : K(E) 2n-i-j → K(E) n-i and p 2 : K(E) 2n-i-j → K(E) n-j are the projections onto the first n -i factors and the last n -j factors respectively. The formula for the valuation φ µ * φ ν is given by:

φ µ * φ ν (-) := i!j! n! K(E) 2n-i-j V (-; K 1 , . . . , K n-i , K 1 , . . . K n-j )dµ(K 1 , . . . , K n-i )dν(K 1 , . . . , K n-j ),
which is always well defined by Proposition 3.13.

Let L 1 , ..., L n-1 ∈ K(E) be convex bodies with non-empty interior, by Minkowski's existence theorem (see [START_REF] Danilovich | On the theory of mixed volumes of convex bodies III. extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies[END_REF]), there exists a unique (up to a translation) convex body L ∈ K(E) with non-empty interior such that

V (L 1 , . . . , L n-1 , -) = V (L[n -1], -).
Our next result can be considered as a variant of Minkowski's existence theorem (see Theorem 4.1 and Proposition 4.2).

Theorem B. For any ψ ∈ P i strictly positive, then there is a constant c > 0 (depending only on ψ) and a convex body B with vol(B) = 1 such that

ψ * V (B[i -1], -) = cV (B[n -1], -) ∈ Val 1 (E).
Moreover, up to translations the solution set

S = {B ∈ K(E)|ψ * V (B[i -1], -) = cV (B[n -1]; -), vol(B) = 1}
is compact in K(E) endowed with the Hausdorff metric.

Remark 1.5. When i = 1, the previous Theorem is just a consequence of Minkowski's existence theorem [START_REF] Danilovich | On the theory of mixed volumes of convex bodies III. extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies[END_REF][START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF] (see Example 3.7).

Our next results focus on linear actions on valuations. We are interested in the behaviour of the sequence {g k • φ} ∞ k=1 where φ ∈ V P n-i and g ∈ GL(E). Given g ∈ GL(E), φ ∈ P n-i and ψ ∈ P i two strictly positive valuations, we define the i-th dynamical degree of g by

d i (g) := lim k→∞ ((g k • φ) * ψ) 1/k .
The terminology "dynamical degree" comes from the study of dynamics of holomorphic maps, where these numbers are defined for rational self-maps on projective varieties. These two notions of dynamical degrees are closely related in the particular case of rational self-maps over toric varieties which preserve the torus action.

Note that g induces a linear operator (denoted by g n-i ) on the Banach space (V P n-i , || • || P ):

g n-i : V P n-i → V P n-i .
A direct application of the reverse Khovanski-Teissier inequality (see Theorem 3.10) and the method in [START_REF] Dang | Degrees of iterates of rational maps on normal projective varieties[END_REF] shows that the number d i (g) is well-defined and is equal to the norm of the operator g n-i . Our next theorem (see Theorem 5.9 and Theorem 5.16) relates the norm of g n-i , the eigenvalues of g and the dynamical degrees.

Theorem C. Given g ∈ GL(E), the dynamical degree d i (g) exists and is independent of the choices of the strictly positive valuations φ ∈ P n-i , ψ ∈ P i . Moreover, assume that ρ(g n-i ) is the spectral radius of g n-i and ρ 1 , ..., ρ n are the eigenvalues of g satisfying

|ρ 1 | ≥ |ρ 2 | ≥ ... ≥ |ρ n |, then the i-th dynamical degree d i (g) = ρ(g n-i ) = | det g| -1 i k=1 |ρ k |.
Our proof relies on the observation that the dynamical degrees define continuous mappings from GL(E) to R. We are then reduced to proving the Theorem C for diagonalizable matrices. Observe that our proof gives an alternative approach to the results of Lin (see [Lin12, Theorem 6.2]) and Favre-Wulcan (see [START_REF] Favre | Degree growth of monomial maps and McMullen's polytope algebra[END_REF]Corollary B]) which relied on Minkowski weights and integral geometry respectively.

We say that a valuation φ is d i (g)-invariant if it belongs to the eigenspace of eigenvalue

d i (g) (i.e., g • φ = d i (g)φ).
By Alexandrov-Fenchel inequality or Theorem C, it is clear that the sequence of dynamical degrees {d i (g)} is log-concave. In particular, d i (g) 2 ≥ d i+s (g)d i-s (g). Our last theorem (see Theorem 6.1) gives some positivity properties of invariant valuations under a natural strict log-concavity assumption on these numbers.

Theorem D. Assume 2i ≤ n. Consider g ∈ GL(E). Then the following properties are satisfied.

(1) There exists a non zero d i (g)-invariant valuation in P n-i ⊂ V P n-i .

(2) Assume that the strict log-concavity inequality is satisfied for some s min(i, n -i):

d i (g) 2 > d i-s (g)d i+s (g), then for any two d i (g)-invariant convex valuations φ 1 , φ 2 ∈ V P n-i , we have φ 1 * φ 2 = 0.
(3) Assume that d 2 1 (g) > d 2 (g), then there exists a unique (up to a multiplication by a positive constant) d 1 (g)-invariant positive convex valuation φ ∈ P n-1 ⊂ V P n-1 . Moreover, φ lies in an extremal ray of P n-1 ⊂ V P n-1 . In the study of monomial maps, the conclusion of (3) implies also the existence of a unique invariant b-divisor class in the sense of [START_REF] Favre | Degree growth of monomial maps and McMullen's polytope algebra[END_REF]. The results (2) and (3) can be understood as the higher dimensional convex analog of a result by [START_REF] Boucksom | Degree growth of meromorphic surface maps[END_REF] for projective surfaces. Given a projective surface X and a dominant rational map f on it. Suppose that the dynamical degree d 1 (f ) and d 2 (f ) satisfy d 1 (f ) 2 > d 2 (f ), Boucksom, Favre and Jonsson proved the existence and the uniqueness (up to scaling) of two nef Weil-classes θ + and θ -which are d 1 (f )-invariant by f * and f * respectively. They proved also that the self-intersection θ + • θ + is equal to zero.

Remark 1.6. We remark that Theorem C and Theorem D also hold for the norm || • || C . As for Theorem A, as we do not know if the density result (Theorem 3.23) holds for the norm || • || C , we have a slightly weaker version of Theorem A for this norm.

1.1. Organization. In Section 2, we give a brief review of valuations on convex sets. Section 3 devotes to the study of some positivity results of convex valuations, and the continuous extension of the convolution operator. In Section 4, using the convolution operator we study a generalization of Minkowski's existence theorem. In Section 5, we use the positivity results to study the dynamical degree and calculate its value. In Section 6, we study the positivity of invariant valuations under a natural strict log-concavity assumption on certain dynamical degrees.
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Preliminaries

2.1. Convex valuations. We first give a brief overview of valuations on convex sets. The classical references are [START_REF] Mcmullen | Valuations on convex bodies, Convexity and its applications[END_REF][START_REF]Handbook of convex geometry[END_REF]. We also refer the reader to the more recent surveys [START_REF]Theory of valuations on manifolds: a survey[END_REF], [START_REF] Alesker | Integral geometry and valuations[END_REF] and [START_REF] Bernig | Algebraic integral geometry[END_REF]. Our general reference for convexity is [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF].

Let E be a Euclidian real vector space of dimension n. We denote the family of non-empty compact convex subsets of E by K(E). Then K(E) has a natural topology induced by the Hausdorff metric defined as follows:

d H (K, L) := inf{ε > 0| K ⊂ L + εB & L ⊂ K + εB},
where B is the unit ball, where K, L ∈ K(E) and where + is the Minkowski sum. By Blaschke selection theorem, (K(E), d H ) is a locally compact space. Moreover, by associating a convex set to its support function, (K(E), d H ) can be isometrically embedded into the function space C 0 (S n-1 ) equipped with L ∞ -norm.

Definition 2.1. A functional φ : K(E) → R is called a real convex valuation if φ(K ∪ L) = φ(K) + φ(L) -φ(K ∩ L) whenever K, L, K ∪ L ∈ K(E).
Remark 2.2. The convex valuation is just called valuation in classical literatures, here we follow the terminology of [START_REF]Theory of valuations on manifolds: a survey[END_REF] because the valuation theory has been extended to not necessarily convex sets on manifolds.

Definition 2.3. A convex valuation φ is called continuous if φ is continuous with respect to the Hausdorff metric d H ; A convex valuation φ is called translation-invariant if φ(K + x) = φ(K) for any K ∈ K(E) and any x ∈ E.

Let us denote by Val(E) the space of translation-invariant continuous valuations. The linear space Val(E) has the natural topology given by a sequence of semi-norms:

||φ|| N = sup K⊂B N |φ(K)|,
where B N is the ball of radius N . This sequence of semi-norms defines a Fréchet space structure on Val(E). Actually, Val(E) is a Banach space endowed with the norm || • || 1 .

McMullen's grading decomposition. We recall McMullen's decomposition of the space of valuations Val(E).

Definition 2.4. A convex valuation φ is called α-homogeneous if φ(λK) = λ α φ(K) for any λ ≥ 0, K ∈ K(E). Furthermore, every valuation φ can be decomposed uniquely into even and odd parts φ = φ even + φ odd , where φ even (-K) = φ even (K), φ odd (-K) = -φ odd (K) for every K ∈ K(E). (1) The Euler characteristic χ which satisfies χ(K) = 1 for every K ∈ K(E) is a constant valuation.

Let us denote by Val

(2) The Lebesgue measure vol(•) belongs to Val n (E).

(3) For any convex body A, the function φ :

K(E) → R defined by φ(K) = vol(K + A) is in Val(E). (4) Let K 1 , ..., K r ∈ K(E) be convex bodies, then there is a polynomial relation vol(t 1 K 1 + ... + t r K r ) = i 1 +...+ir=n n! i 1 !i 2 !...i r ! V (K 1 [i 1 ], ..., K r [i r ])t i 1 1 ...t ir r ,
where t i ≥ 0 and K j [i j ] denotes i j copies of K j and where the coefficient

V (K 1 [i 1 ], ..., K r [i r ]) denotes the mixed volume. Fix A 1 , ..., A n-k ∈ K(E), then the function ψ : K(E) → R defined by ψ(K) := V (K[k], A 1 , ..., A n-k ) belongs to Val k (E).
2.3. Alesker's irreducibility theorem. The group GL(E) acts on Val(E) by

(g • φ)(K) = φ(g -1 K). Note that Val even i (resp. Val odd i ) is invariant under this action. Example 2.6. Assume that φ ∈ Val i (E) is given by φ L 1 ,...,L n-i (K) := V (K[i], L 1 , ..., L n-i ), then (g • φ L 1 ,...,L n-i )(K) = V (g -1 (K)[i], L 1 , ..., L n-i ) = | det g| -1 V (K[i], g(L 1 ), ..., g(L n-i ))
= | det g| -1 φ g(L 1 ),...,g(L n-i ) (K), which implies g•φ L 1 ,...,L n-i = | det g| -1 φ g(L 1 ),...,g(L n-i ) . In particular, if | det g| = 1, then g•φ L 1 ,...,L n-i = φ g(L 1 ),...,g(L n-i ) .

In the case of a general Radon measure µ on K(E) n-i such that:

K(E) n-i V (B[i], g(L 1 ), ..., g(L n-i ))dµ(L 1 , ..., L n-i ) < +∞, we have g • φ µ (K) = 1 | det g| K(E) n-i V (K[i], g(L 1 ), ..., g(L n-i ))dµ(L 1 , ..., L n-i ).
In particular, if we set g

• µ(L 1 , ..., L n-i ) = µ(g -1 (L 1 ), ..., g -1 (L n-i )), then g • φ µ = 1 | det g| φ g•µ .
Alesker's irreducibility theorem [START_REF] Alesker | Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture[END_REF] is one of the milestones of the modern development of convex valuation theory, it can be stated as follows:

Theorem 2.7 (Alesker's irreducibility theorem). As a GL(E)-module, the natural representation of GL(E) on the space Val even i (E) and Val odd i (E) is irreducible for every i = 0, 1, ..., n (that is, there is no proper closed GL(E)-invariant subspace).

As an immediate consequence, the above irreducibility result implies McMullen's conjecture on mixed volumes: the valuations of the form φ(K) = vol(K + A) span a dense subspace in Val(E); the mixed volumes span a dense subspace in Val(E). Moreover, the above theorem also implies in the same way that the linear combinations of valuations of the form φ 

(K) = V (K[i], ∆[n -i]),
∞ (E) × Val ∞ (E) → Val ∞ (E)
which is uniquely characterized by the following two properties:

(1) continuity;

(2) if A, B ∈ K(E) are strictly convex bodies with smooth boundary, then the product of φ

A (•) = vol(• + A), φ B (•) = vol(• + B) is given by φ A • φ B (K) = vol V ×V (∆(K) + (A × B)),
where ∆ : E → E × E is the diagonal embedding. The product makes Val ∞ (E) a commutative associative algebra with the unit given by the Euler characteristic.

Example 2.12. (see [Ale04, Proposition 2.2]) Assume that A 1 , ..., A n-k and B 1 , ..., B k are strictly convex bodies with smooth boundary, then

V (-; A 1 , ..., A n-k ) • V (-; B 1 , ..., B k ) = k!(n -k)! n! V (A 1 , ..., A n-k , -B 1 , ..., -B k ) vol(-).
The convolution on Val ∞ (E) was introduced by Bernig and Fu in [START_REF] Bernig | Convolution of convex valuations[END_REF].

Definition 2.13 (Convolution). There exists a bilinear map

Val ∞ (E) × Val ∞ (E) → Val ∞ (E)
which is uniquely characterized by the following two properties:

(1) continuity;

(2) if A, B ∈ K(E) are strictly convex bodies with smooth boundary, then the convolution of

φ A (•) = vol(• + A), φ B (•) = vol(• + B) is given by φ A * φ B (K) = vol(K + (A + B)).
The convolution makes Val ∞ (E) a commutative associative algebra with the unit given by the Lebesgue measure.

The following formula of * is important in its extension to arbitrary mixed volumes (see Section 3.4).

Example 2.14. (see [BF06, Corollary 1.3]) Assume that A 1 , ..., A n-k and B 1 , ..., B n-l are strictly convex bodies with smooth boundary, and k + l ≥ n, then

V (-; A 1 , ..., A n-k ) * V (-; B 1 , ..., B n-l ) = k!l! n! V (-; A 1 , ..., A n-k , B 1 , ..., B n-l ).
The product and convolution of smooth valuations are dual to each other by Alesker's Fourier transform.

Theorem 2.15 (see [START_REF]A Fourier-type transform on translation-invariant valuations on convex sets[END_REF]). There is an algebra isomorphism :

(Val ∞ (E), •) → (Val ∞ (E), * ) such that φ • ψ = φ * ψ, φ, ψ ∈ Val ∞ (E).
Remark 2.16. Comparing with the intersection theory in algebraic geometry, it is convenient to view Val ∞ i (E) as the group of numerical cycle classes of dimension i, then the convolution can be considered as the cup product of cohomology classes, the product can be considered as the intersection of cycles and Alesker-Fourier transform can be considered as Poincaré duality. In our setting, by Example 2.14 we find it convenient to apply convolution operation rather than product operation.

Positive convex valuations

3.1. Positivity of valuations. By Alesker's irreducibility theorem, we know that the mixed volumes span a dense subspace in Val(E). Let φ ∈ Val i (E), then for any ε > 0 there exist valuations given by mixed volumes and real numbers c 1 , ..., c m such that ||φ -

m k=1 c k ψ k || ≤ ε, where ψ k (-) = V (-; K k 1 , ..., K k n-i ) ∈ Val i (E) for some K k 1 , ..., K k n-i ∈ K(E)
. This motivates the following definition for our positive cone.

For any positive Radon measure µ on K(E) n-i such that

K(E) n-i V (B[i], K 1 , . . . , K n-i )dµ(K 1 , . . . , K n-i ) < +∞,
Denote by φ µ the map from K(E) to R given by:

φ µ (L) = K(E) n-i V (L[i], K 1 , . . . , K n-i )dµ(K 1 , . . . , K n-i ),
where L ∈ K(E) is a convex body. We will see that for any Radon measure µ as above, the map φ µ defines a continuous translation invariant valuation (see Lemma 3.4).

Definition 3.1. We define the convex cone P i ⊂ Val i (E) given by:

P i := φ µ |φ µ (L) := K(E) n-i V (L[i], K 1 , . . . , K n-i )dµ(K 1 , . . . , K n-i ) ,
where µ is taken over the positive Radon measures on K(E) n-i such that

K(E) n-i V (B[i], K 1 , . . . , K n-i )dµ(K 1 , . . . , K n-i ) < +∞. We call a valuation φ ∈ Val i (E) positive if φ ∈ P i .
It is clear that P i is a convex cone. By a polarization argument, observe that a valuation φ ∈ P i defines a unique function on K(E) i :

φ(L 1 , . . . , L i ) = 1 i! ∂ i ∂t 1 ∂t 2 . . . ∂t i (φ(t 1 L 1 + . . . + t i L i )) |t 1 =...=t i =0 + ,
where L 1 , . . . , L i are convex bodies. In particular, φ(L, . . . , L) = φ(L).

Definition 3.2. We say that a valuation φ ∈ P i is strictly positive if there exists ε > 0 such that:

φ(L 1 , ..., L i ) εV (B[n -i], L 1 , ..., L i )
for any convex body L 1 , ..., L i ∈ K(E).

Remark 3.3. The definition for "strict positivity" is inspired by the study of positivity properties of cohomology classes in complex geometry. The convex body B can be viewed as a Kähler class, and the inequality defining strict positivity of φ µ can be viewed as the pseudo-effectivity of φ µ -εV (B[n-i]; -).

We prove that the cone P i is well-defined, i.e., P i ⊂ Val i (E).

Lemma 3.4. For any Radon measure µ on K(E) n-i such that:

K(E) n-i V (B[i], K 1 , . . . , K n-i )dµ(K 1 , . . . , K n-i ) < +∞,
the valuation φ µ defines a continuous and translation invariant valuation.

Proof. Let us first prove that the integral is well-defined. Take a convex body L ∈ K(E), there exists a constant λ > 0 such that L ⊂ λB. Since the mixed volume is monotone, we have:

φ µ (L) = K(E) n-i V (L[i], K 1 , . . . , K n-i )dµ(K 1 , . . . , K n-i ) ≤ λ i K(E) n-i V (B[i], K 1 , . . . , K n-i )dµ(K 1 , . . . , K n-i ) < +∞.
As V (-; K 1 , . . . , K n-i ) is a translation invariant valuation for any K 1 , . . . , K n-i ∈ K(E), it is clear that φ µ is also a translation invariant valuation. Let us prove that φ µ is continuous. Assume that d H (L k , L) → 0, we need to check that φ µ (L k ) → φ µ (L). This is a direct consequence of the dominated convergence theorem. Definition 3.5. We denote by V i the subspace generated by P i , i.e., V i = P i -P i . By Alesker's density theorem, V i is dense in Val i (E) (with respect to the norm || • ||).

Example 3.6. When µ is a finite linear combination of Dirac measures on K(E) n-i , then the associated valuation φ µ ∈ V i is a linear combination of mixed volumes.

Example 3.7. Let us consider the positive cones P 1 and P n-1 :

(1) By Minkowski's existence theorem (see [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF]), if µ is a positive Borel measure on S n-1 which is not concentrated on any great subsphere and has the origin as its center of mass, then µ is given by the surface area measure of a convex body with non-empty interior. In particular, for any n -1 convex bodies K 1 , ..., K n-1 with non-empty interior, up to a translation, there is a unique convex body K with non-empty interior such that

V (-; K 1 , ..., K n-1 ) = V (-; K[n -1]).
By Minkowski's existence theorem again, for any two convex bodies K, L, up to a translation, there exists a unique convex body M such that

V (-; K[n -1]) + V (-; L[n -1]) = V (-; M [n -1]).
We claim that the set of strictly positive elements in P 1 is just

{V (-; K[n -1])| K ∈ K(E) with non-empty interior}.
Thus the cone P 1 can be viewed as a convex cone in the space of Borel measures on S n-1 . To this end, let φ µ ∈ P 1 , we show that it gives a bounded linear functional on C 0 (S n-1 ) endowed with the norm | • | ∞ . For any f ∈ C 0 (S n-1 ), we have

φ µ (f ) := K(E) n-1 dµ(A 1 , ..., A n-1 ) S n-1 f dS(A 1 , ..., A n-1 ) ≤ |f | ∞ K(E) n-1 dµ(A 1 , ..., A n-1 ) S n-1 h B dS(A 1 , ..., A n-1 ) = φ µ (B)|f | ∞ ,
where dµ(A 1 , ..., A n-1 ) is the surface area associated to A 1 , ..., A n-1 and h B is the support function of the unit ball which is equal to 1 on S n-1 . Furthermore, if φ µ is strictly positive, then by Minkowski's existence theorem there is a unique (up to a translation) convex body K µ with non-empty interior such that

φ µ = V (-; K µ [n -1]).
(2) For P n-1 , by the discussions in the proof of Theorem 3.23 and Theorem 6.1 we will see that

P n-1 = {V (-; K)| K ∈ K(E)}.
By the embedding theorem for convex bodies, P n-1 can be also realized as a convex cone in the continuous function space C 0 (S n-1 ), which is generated by support functions.

Remark 3.8. For the space Val n-1 (E), we have McMullen's characterization [START_REF]Continuous translation-invariant valuations on the space of compact convex sets[END_REF]. Let L(S n-1 ) denote the space of the restriction of linear functions to the unit sphere, then there is an isomorphism between the quotient space C 0 (S n-1 )/L(S n-1 ) and Val n-1 (E). Thus for every φ ∈ Val n-1 (E), up to a linear function, there is a unique continuous function f φ such that

φ(K) = S n-1 f φ (x)dS(K n-1 ; x),
where dS(K n-1 ; x) is the surface area measure of K. By the correspondences established in [START_REF]Correspondences between convex geometry and complex geometry[END_REF], the analogy of the space Val n-1 (E) on a projective variety is the vector space of real numerical divisor classes, and the analogy of P n-1 is the movable cone of divisor classes. As for P 1 , its closure is the dual of the cone given by positive continuous functions, and its analogy in complex geometry is the movable cone of curve classes.

For the general space Val i (E) = Val + i (E) Val - i (E), we have the Klain-Schneider realizations (see e.g. [Ale01, Section 2], [Ale11, Section 2.4]). The space Val + i (E) can be GL(E)-equivalently realized as a subspace of the space of smooth sections of certain line bundle over the Grassmannian Gr i (E), and the space Val - i (E) can be GL(E)-equivalently realized as a subspace of the quotient of the space of smooth sections of certain line bundle over the partial flag space F i,i+1 (E). Thus by Klain-Schneider realizations, it seems possible to discuss positivity in the smooth section space of certain line bundles.

Remark 3.9. Another motivation for the definition of P k is the positive cone in Val SO(n) 

(E) -the space of SO(n)-invariant valuations. By the definition in [Ber12, Section 5.5], a valuation φ is called positive if φ(K) ≥ 0 for all K ∈ K(E). By Hadwiger's theorem, a SO(n)-invariant valuation φ is positive if and only if φ = k c k µ k , where c k ≥ 0 and µ k is the k-th intrinsic volume. Thus P SO(n) k = R + µ k .
In the setting of hermitian integral geometry, there are also similar results (see [START_REF]Hermitian integral geometry[END_REF]Proposition 4.1]). It is interesting to give a characterization for valuations φ ∈ Val i (E) satisfying φ(K) ≥ 0 for every K ∈ K(E).

3.2.

Reverse Khovanskii-Teissier inequality. Consider two Radon measures µ, ν on K(E) n-i and K(E) n-j respectively. Let φ µ ∈ V i , φ ν ∈ V j be their associated valuations. We define the valuation φ µ * φ ν given by:

φ µ * φ ν (-) = i!j! n! K(E) 2n-i-j V (-; A 1 , . . . , A n-i , B 1 , . . . B n-j )dµ(A)dν(B). ( 3 
)
where dµ(A) := dµ(A 1 , . . . , A n-i ), dν(B) := dν(B 1 , . . . , B n-j ). We will see immediately that the integral in (3) is well defined, that is, for any D ∈ K(E), φ µ * φ ν (D) is finite (see Corollary 3.14).

The following inequality is a key ingredient of our paper. It was proved for valuations given by mixed volumes in [LX17, Theorem 5.9]. In this section, we state it for valuations from the positive cones P i .

Theorem 3.10. Let φ ∈ P k and ψ ∈ P n-k , then for any K ∈ K(E) we have

φ(K)ψ(K) ≥ vol(K)φ * ψ.
Proof. By definition, there exists two Radon measures µ and ν on K(E) n-k and K(E) k such that φ = φ µ and ψ = φ ν respectively. By definition, φ µ * φ ν is equal to

φ µ * φ ν = k!(n -k)! n! K(E) n V (A 1 , ..., A n-k , B 1 , ..., B k )dµ(A 1 , ..., A n-k )dµ(B 1 , ..., B k ).
Claim: there is a constant c > 0 depending only on n, k such that

V (K[k]; A 1 , ..., A n-k )V (K[n -k]; B 1 , ..., B k ) ≥ cV (A 1 , ..., A n-k , B 1 , ..., B k ) vol(K).
The above inequality is just a slight generalization of [LX17, Theorem 5.9], and the proof is similar. We refer to [LX17, Section 5] for the details (see also [START_REF]Bézout type inequality in convex geometry[END_REF]). Let us give a sketch of the argument here. Without loss of generality, we can assume the A l , B l and K are open and have non-empty interior. We apply a result of [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF] and results from mass transport (see [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF]). Then after solving a real Monge-Ampère equation related to K, the desired geometric inequality of convex bodies can be reduced to an inequality for mixed discriminants -the mixed discriminants given by the Hessian of those convex functions defining the convex bodies. More precisely, as in [START_REF]Correspondences between convex geometry and complex geometry[END_REF] (see also [START_REF] Alesker | A remarkable measure preserving diffeomorphism between two convex bodies in R n[END_REF]) the inequality for mixed volumes is reduced to an inequality for integrals:

R n D(∇ 2 f A 1 , ..., ∇ 2 f A n-k , (∇ 2 F K )[k])dx R n D((∇ 2 F K )[n -k], ∇ 2 f B 1 , ..., ∇ 2 f B k )dx ≥ k!(n -k)! n! R n det(∇ 2 F K )dx R n D(∇ 2 f A 1 , ..., ∇ 2 f A n-k , ∇ 2 f B 1 , ..., ∇ 2 f B k )dx,
where ∇ 2 is the Hessian operator, D(-) denotes mixed discriminants, and f A i , f B j , F K are convex functions obtained by the results in [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF] and [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF]. Let M K , M 1 , . . . M n-k , M 1 , . . . , M k be the associated positive symmetric matrices given by

∇ 2 F K , ∇ 2 f A 1 , . . . ∇ 2 f A n-k , ∇ 2 f B 1 , . . . , ∇ 2 f B k respectively.
After an application of the Cauchy-Schwarz inequality

( |f g|dv) 2 ≤ ( |f | 2 dv)( |g| 2 dv)
to the left hand side of the above inequality for integrals, the pointwise inequality needed is:

D(M K [k]; M 1 , ..., M n-k )D(M K [n -k]; M 1 , ..., M k ) ≥ k!(n -k)! n! D(M 1 , ..., M n-k , M 1 , ..., M k ) det(M K ).
The above inequality for positive matrices is equivalent to an inequality for positive (1, 1)-forms by replacing the positive matrices by positive (1, 1) forms and the discriminants by wedge product of differential forms (see e.g. [Xia17, Section 2]). Assume that M = [a i j ] is a positive Hermitian matrix, then it determines a positive (1, 1) form on C n given by:

M → ω M := √ -1 i,j a i j dz i ∧ dz j .
By this correspondence, the pointwise inequality for discriminants is equivalent to

(ω k M K ∧ ω M 1 ∧ ...ω M n-k )(ω n-k M K ∧ ω M 1 ∧ ... ∧ ω M k ) ≥ k!(n -k)! n! ω n M K (ω M 1 ∧ ...ω M n-k ∧ ω M 1 ∧ ... ∧ ω M k ).
Note that wedge products of positive (1, 1) forms are Hermitian positive. More generally, assume that Φ is a Hermitian positive (n -k, n -k) form, Ψ is a Hermitian positive (k, k) form and ω is a positive (1, 1) form 1 , then

(4) (Φ ∧ ω k )(ω n-k ∧ Ψ) ≥ k!(n -k)! n! (Φ ∧ Ψ)ω n .
1 For the positivity of forms, we refer the reader to [Dem12b, Chapter 3] and [DELV11, Section 1]. In [DELV11, Definition 1.4], "Hermitian positive" is called semipositive.

Recall that a (l, l) form is Hermitian positive on the vector space C n if its associated Hermitian form on ∧ l C n is semipositive (see [DELV11, Definition 1.4]), that is, the coefficients of the (l, l) form give a semipositive Hermitian matrix on ∧ l C n , here ∧ l C n is the l-th wedge product of C n . By taking some local coordinates, it is sufficient to check the above inequality when ω is given by the identity matrix.

As Φ is Hermitian positive, then

|J|=n-k ( |I|=n-k Φ I,I )dz J ∧ dz J -Φ
is also Hermitian positive. As Ψ is Hermitian positive and the cone generated by Hermitian positive (k, k) forms is dual to the cone generated by Hermitian positive (n

-k, n -k) forms (see [DELV11, Section 1]), we get   |J|=n-k ( |I|=n-k Φ I,I )dz J ∧ dz J -Φ   ∧ Ψ ≥ 0,
which gives the desired pointwise inequality (4).

In summary, we finally obtain φ(K)ψ(K) ≥ vol(K)φ * ψ, as required.

Remark 3.11. As for the terminology "reverse Khovanskii-Teissier inequality", it was used in [START_REF] Lehmann | Convexity and Zariski decomposition structure[END_REF]. The reason is that: the classical Khovanskii-Teissier inequality gives us a lower bound of φ * ψ, but the above inequality gives us an upper bound:

φ * ψ ≤ inf vol(K)=1 φ(K)ψ(K).
See also [START_REF] Lehmann | Convexity and Zariski decomposition structure[END_REF] for a discussion in the abstract setting from the viewpoint of convex analysis. In complex geometry, as a corollary of Demailly's holomorphic Morse inequality (see [Dem12a, Chapter 8]), the special case of the above inequality for divisor classes (when k = 1) was first noted by Siu [START_REF] Tong | An effective Matsusaka big theorem[END_REF]. The inequality for general (k, k) classes was first noted in [START_REF] Xiao | Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds[END_REF]. The pointwise inequality for forms in the proof is a generalization of [START_REF] Popovici | Sufficient bigness criterion for differences of two nef classes[END_REF], where the weak transcendental Morse inequality for (1, 1) classes was proved with optimal estimate. 3.2.1. Bézout type inequality. Recently, inspired by Bézout bound in algebraic geometry, the second author [START_REF]Bézout type inequality in convex geometry[END_REF] noticed that the reverse Khovanskii-Teissier inequality can be used to obtain Bézout type inequality in convex geometry (see also [START_REF] Soprunov | Bezout inequality for mixed volumes[END_REF]). This can be also formulated using convolution.

Theorem 3.12 (see [START_REF]Bézout type inequality in convex geometry[END_REF], Theorem 1.1). Let φ i ∈ P n-a i where 1 ≤ i ≤ r and |a| := r i=1 a i ≤ n, then there is a constant c > 0 depending only on n, a 1 , ..., a r such that, for any D ∈ K(E) we have

(φ 1 * ... * φ r )(D) vol(D) r-1 ≤ c r i=1 φ i (D).
In particular, if |a| = n, then

(φ 1 * ... * φ r ) vol(D) r-1 ≤ c r i=1 φ i (D).
Proof. This follows directly from Theorem 3.10, as exactly in [Xia17, Theorem 1.1].

Proposition 3.13. The operator * defined by the formula (3) induces a bilinear map * :

V i × V j → V i+j-n .
Proof. This proposition follows immediately from the following Lemma 3.14 and Lemma 3.15. Lemma 3.14. For any φ µ ∈ P i , ψ ν ∈ P j , the integral (3) defining φ µ * ψ ν is well defined.

Proof. We only need to check that the integral defining φ µ * ψ ν (D) is well defined, when D has nonempty interior. This follows directly from Theorem 3.12.

It is possible that different Radon measures give the same valuations, we prove that φ µ * φ ν is independent of the representations.

Lemma 3.15. The valuation φ µ * φ ν is independent of the choices of µ, ν.

Proof. Consider Radon measures µ 1 , µ 2 on K(E) n-i and ν 1 , ν 2 on K(E) n-j respectively. Assume that

φ µ 1 = φ µ 2 , φ ν 1 = ψ ν 2 , we prove that φ µ 1 * φ ν 1 = φ µ 2 * φ ν 2 .
We need to verify that for any L ∈ K(E),

K(E) 2n-i-j V (L[i + j -n]; A 1 , . . . , A n-i , B 1 , . . . B n-j )dµ 1 (A)dν 1 (B) = K(E) 2n-i-j V (L[i + j -n]; A 1 , . . . , A n-i , B 1 , . . . B n-j )dµ 2 (A)dν 2 (B).
For any t = (t 1 , . . . , t j ) ∈ (R + ) j , denote by K t = t 1 K 1 + ... + t j K j where K 1 , ..., K j are convex bodies. Since φ ν 1 = φ ν 2 , we have that φ ν 1 (K t ) = φ ν 2 (K t ). Since φ ν i (K t ) is a polynomial in t 1 , ..., t j , the equality on the coefficients of the polynomial gives

K(E) n-j V (K 1 , ..., K j ; B 1 , . . . B n-j )dν 1 (B) = K(E) n-j V (K 1 , ..., K j ; B 1 , . . . B n-j )dν 2 (B).
In particular, this implies

φ µ 1 * φ ν 1 = φ µ 1 * φ ν 2 . Similarly, φ µ 1 * φ ν 2 = φ µ 2 * φ ν 2 , hence φ µ 1 * φ ν 1 = φ µ 2 * φ ν 2 .
3.3. Norms on the space of valuations. The aim of this section is to define some norms on the space generated by P i . These norms are induced by the positive cone P i .

3.3.1. Positivity norm || • || P . We define the norm || • || P , for which we will show that the subspace

P i ∩ Val ∞ (E) of smooth valuations is dense in V i .
Definition 3.16. For any valuation φ ∈ V i , we define ||φ|| P by the following formula.

||φ|| P := inf{t ≥ 0| |φ(L 1 , ..., L i )| ≤ tV (B[n -i], L 1 , ..., L i ) for any L 1 , ..., L i ∈ K(E)}.
First we note that for any φ ∈ V i , ||φ|| P is well defined.

Proposition 3.17. The map || • || P :

V i → R + defines a norm on V i .
Proof. The only fact which is not straightforward is whether || • || P i is well-defined. Consider φ ∈ V i , we prove that there exists a t > 0 such that

|φ(L 1 , ..., L i )| ≤ tV (B[n -i], L 1 , ..., L i ).
By definition, there exists a signed Radon measure µ on K(E) n-i such that φ = φ µ . Consider the Hahn decomposition µ = µ + -µ -of the measure µ so that φ µ = φ µ + -φ µ -. One has that

|φ(L 1 , ..., L i )| ≤ φ µ + (L 1 , ..., L i ) + φ µ -(L 1 , ..., L i ).
Let us find an upper bound for φ µ + (L 1 , ..., L i ). By Theorem 3.10 we have

φ µ + (L 1 , ..., L i ) = K(E) n-i V (L 1 , ..., L i , K 1 , ..., K n-i )dµ + (K) ≤ cV (B[n -i], L 1 , ..., L i ) K(E) n-i V (B[i], K 1 , ..., K n-i )dµ + (K),
where c > 0 depends only on n, i, vol(B). Since φ µ + ∈ P i , we get

φ µ + (L 1 , ..., L i ) ≤ tV (B[n -i], L 1 , ..., L i )
for some t > 0. Similar estimates also hold for φ µ -, this proves that ||φ|| P < +∞.

Remark 3.18. Observe that by homogeneity for L 1 , ..., L i , we have

||φ|| P := inf{t ≥ 0| |φ(L 1 , ..., L i )| ≤ tV (B[n -i], L 1 , ..., L i ) for any L 1 , ..., L i ⊂ B}.
By the above remark, we get: Proposition 3.19. For any φ ∈ V i , ||φ|| ≤ vol(B)||φ|| P . Hence, there is a continuous injection:

(V i , || • || P ) → (Val i (E), || • ||).
Regarding the definition for || • || P , we introduce the following positivity notation. Definition 3.20. Let φ, ψ ∈ V i , we say that φ ψ (or equivalently, ψ φ), if for any L 1 , ..., L i ∈ K(E), φ(L 1 , ..., L i ) ≤ ψ(L 1 , ..., L i ).

Using the terminology from complex geometry, φ ψ means that ψ -φ is pseudo-effective in some sense.

Lemma 3.21. Let ψ ∈ P j , φ 1 , φ 2 ∈ V i . Assume that φ 1 φ 2 , then φ 1 * ψ φ 2 * ψ.

Proof. This follows directly from the definition.

We also note that the GL(E) actions preserve the partial order .

Lemma 3.22. Let g ∈ GL(E). Consider φ 1 , φ 2 ∈ V i such that φ 1 φ 2 , then g • φ 1 g • φ 2 .
Next we show that the space of smooth valuations is dense in V i with respect to the topology given by || • || P .

Theorem 3.23. The space of finite sums of mixed volumes of convex bodies with strictly convex and smooth boundary is dense in V i for the topology induced by the norm || • || P . In particular, the space Val ∞ i (E) ∩ V i is dense in V i for the topology induced by the norm || • || P . Proof. Since V i is generated by P i , we are reduced to prove the density of smooth valuations in P i . We prove that the finite sums of mixed volumes of convex bodies with strictly convex and smooth boundary are dense in V i .

We prove it in two steps.

Step 1: Let us first prove that the valuations in P i such that their associated measure has bounded support are dense in P i .

Take φ ∈ P i such that φ = φ µ where µ is its associated positive Radon measure on K(E) n-i . For any integer k > 0, we consider the measure µ k given by µ k = µ |B(0,k) , where

B(0, k) = (K 1 , . . . , K n-i ) ∈ K(E) n-i | K j ⊂ kB, ∀ 0 j n -i ⊂ K(E) n-i .
By construction, the measure µ k has bounded support. (By Blaschke selection theorem, B(0, k) is a compact set.) By the monotone convergence theorem, we have that:

φ µ k (L) = K(E) n-i V (K 1 , . . . , K n-i , L[i])dµ k (K 1 , . . . , K n-i ) → φ(L).
Let us prove that ||φ µ -φ µ k || P converges to zero as k → +∞. Fix some convex bodies L 1 , . . . L i . By construction, one has that:

0 φ(L 1 , . . . , L i ) -φ µ k (L 1 , . . . , L i ).
Moreover, by Theorem 3.10 applied to φ

= V (K 1 , . . . , K n-i , -[i]) and ψ = V (L 1 , . . . , L i , -[n -i])
and to the convex body B, there exists a constant C > 0 such that we have:

V (K 1 , . . . , K n-i , L 1 , . . . , L i ) C V (K 1 , . . . , K n-i , B[i]) vol(B) V (B[n -i], L 1 , . . . , L i ).
Integrating on the previous inequality, one obtains:

φ(L 1 , . . . , L i ) -φ µ k (L 1 , . . . , L i ) C vol(B) B(0,k) c V (K 1 , . . . , K n-i , B[i])dµ(K 1 , . . . , K n-i ) V (B[n -i], L 1 , . . . , L i ),
where B(0, k) c = K(E) n-i \ B(0, k). We have thus proved:

|(φ -φ µ k )(L 1 , . . . , L i )| C vol(B) (φ(B) -φ µ k (B))V (B[n -i], L 1 , . . . , L i ),
for any convex bodies L 1 , . . . L i . Since φ(B) -φ µ k (B) → 0 as k → +∞, we have that ||φ -φ µ k || P → 0 as required.

Step 2: Suppose that φ = φ µ ∈ P i is a valuation where µ is a Radon measure on K(E) n-i whose support is bounded. We prove that φ can be approached by φ k , where φ k ∈ P i ∩ Val ∞ i (E) is a finite sum of mixed volumes given by convex bodies with strictly convex and smooth boundary.

Suppose that the support of µ is contained in B(0, N ) where N > 0 is an integer. For any > 0, there exists a partition ∪ m j=1 O j of B(0, N ) such that for any (K 1 , . . . , K n-i ), (K 1 , . . . , K n-i ) ∈ O j , one has:

(5)

d H (K j , K j ) ≤ , ∀ 1 ≤ j ≤ n -i.
Since the valuations given by mixed volumes are monotone and since supp µ ⊂ B(0, N ), there is a constant C > 0 (depending only on N, i) such that

(6) |V (K 1 , . . . , K n-i , L 1 , . . . , L i ) -V (K 1 , . . . , K n-i , L 1 , . . . , L i )| C V (B[n -i], L 1 , . . . , L i ).
Let us define the measure µ given by

µ := m j=1 µ(O j )δ (K j 1 ,...,K j n-i ) ,
where (K j 1 , K j 2 , . . . , K j n-i ) ∈ O j satisfying that K j 1 , . . . K j n-i are convex bodies with smooth and strictly convex boundary, and where δ (K j 1 ,K j 2 ,...,K j n-i ) is the dirac mass at the point (K j 1 , K j 2 , . . . , K j n-i ). Let us estimate the norm ||φ µ -φ|| P . Take L 1 , . . . , L i ∈ K(E). By definition, one has that

φ µ (L 1 , . . . , L i ) = m j=1 µ(O j )V (K j 1 , . . . , K j n-i , L 1 , . . . , L i ), = m j=1 O j V (K j 1 , . . . , K j n-i , L 1 , . . . , L i )dµ(K 1 , . . . , K i ).
The difference |φ µ (L 1 , . . . , L i ) -φ(L 1 , . . . , L i )| is bounded by:

|φ µ (L 1 , . . . , L i ) -φ(L 1 , . . . , L i )| m j=1 O j (V (K j 1 , . . . , K j n-i , L 1 , . . . , L i ) -V (K 1 , . . . , K n-i , L 1 , . . . , L i ))dµ(K 1 , . . . , K n-i ) m j=1 O j |V (K j 1 , . . . , K j n-i , L 1 , . . . , L i ) -V (K 1 , . . . , K n-i , L 1 , . . . , L i )|dµ(K 1 , . . . , K n-i ).
Applying (6) to the previous inequality, we obtain the following upper bound:

|φ µ (L 1 , . . . , L i ) -φ(L 1 , . . . , L i )| C m j=1 O j V (B[n -i], L 1 , . . . , L i )dµ(K 1 , . . . , K n-i ).
Hence,

|φ µ (L 1 , . . . , L i ) -φ(L 1 , . . . , L i )| C V (B[n -i], L 1 , . . . , L i )µ(B(0, N )),
and this implies that ||φ µ -φ|| P C µ(B(0, N )) is arbitrary small since µ(B(0, N )) is finite.

We have thus proven that finite sums of mixed volumes of convex bodies with smooth and strictly convex boundary are dense in P i with respect to the norm || • || P as required.

A direct consequence is the following result: Corollary 3.24. The set of valuations {V (L; -[n -1]) | L ∈ K(E)} is dense in P n-1 with respect to the topology given by || • || P .

Cone norm || • || C

. As V i is generated by P i , it is naturally endowed a norm || • || C induced by the cone structure. This construction is inspired by the construction in algebraic geometry (see [START_REF] Dang | Degrees of iterates of rational maps on normal projective varieties[END_REF]). Definition 3.25. For any φ ∈ V i , we define ||φ|| C by the following formula:

||φ|| C := inf φ=φ + -φ -,φ ± ∈P i φ + (B) + φ -(B).
Here, the symbol C stands for the fact that this norm is induced by the convex cone P i .

Remark • If ||φ|| C = 0, then φ = 0. To this end, take a sequence of decompositions

φ = φ + k -φ - k such that φ + k (B) + φ - k (B) → 0.
By the definition of the Banach structure on Val(E) (see (1)), for any K ⊂ B we have

|φ(K)| = |φ + k (K) -φ - k (K)| ≤ φ + k (B) + φ - k (B) → 0. Hence, φ(K) = 0 for any K ⊂ B, implying φ = 0.
Proposition 3.29. The set of positive valuations φ µ , where µ has bounded support, is dense in P i with respect to the topology given by || • || C .

Proof. This is straightforward.

Comparison of two norms.

Proposition 3.30. For any φ ∈ V i , one has that ||φ|| P ≤ C||φ|| C for some uniform constant C > 0. Hence, there is a continuous injection:

(V i , || • || C ) → (V i , || • || P ).
Proof. Consider φ ∈ V i and assume that φ = φ + -φ -where φ + , φ -∈ P i . Fix some convex bodies L 1 , . . . , L i . One has that:

|φ(L 1 , . . . , L i )| |φ + (L 1 , . . . , L i )| + |φ -(L 1 , . . . , L i )|.
By Theorem 3.10 applied to φ = φ ± , ψ = V (L 1 , . . . , L i , -[n-i]) and to the convex body B respectively, there exists a uniform constant C > 0 such that:

φ ± (L 1 , . . . , L i ) Cφ ± (B)V (B[n -i], L 1 , . . . , L i ).
In particular, this implies that:

|φ(L 1 , . . . , L i )| C(φ + (B) + φ -(B))V (B[n -i], L 1 , . . . , L i ).
By considering two sequences φ +,j , φ -,j ∈ P i such that lim j φ +,j (B) + φ -,j (B) = ||φ|| C , we obtain:

|φ(L 1 , . . . , L i )| C||φ|| C V (B[n -i], L 1 , . . . , L i ),
for any convex bodies L 1 , . . . , L i . By definition, we obtain:

||φ|| P C||φ|| C , as required.
Corollary 3.31. One has the following sequence of continuous injections:

(V i , || • || C ) → (V i , || • || P ) → (Val i (E), || • ||).
Proof. This follows directly from Proposition 3.19 and Proposition 3.30.

3.3.4. Sub-multiplicity of norms. We get the following sub-multiplicity result for the norms defined above. This will be important in the completion of the space V i . Lemma 3.32. Let φ µ ∈ P i , ψ ν ∈ P j , then there is c > 0 depending only on i, j, n, vol(B) such that:

• ||φ µ * ψ ν || C ≤ c||φ µ || C ||ψ ν || C ; • ||φ µ * ψ ν || P ≤ c||φ µ || P ||ψ ν || P .
Proof. Let us first prove the first inequality. Note that

||φ µ * ψ ν || C = φ µ * ψ ν (B) ≤ cφ µ (B)ψ ν (B) = c||φ µ || C ||ψ ν || C ,
where the second estimate follows from Theorem 3.12.

For the second inequality, let L 1 , ..., L i+j-n ∈ K(E), we have

φ µ * ψ ν (L 1 , ..., L i+j-n ) = i!j! n! K(E) 2n-i-j V (L 1 , ..., L i+j-n , A 1 , ..., A n-i , B 1 , ..., B n-j )dµ(A)dν(B) ≤ c||φ µ || P K(E) n-j V (B[n -i]; L 1 , ..., L i+j-n , B 1 , ..., B n-j )dν(B) ≤ c||φ µ || P ||ψ ν || P V (B[2n -i -j]; L 1 , ..., L i+j-n ).
Thus, by definition ||φ µ * ψ ν || P ≤ c||φ µ || P ||ψ ν || P .

3.4. An extension of the convolution operator. Recall that for φ µ ∈ V i , ψ ν ∈ V j , the formula for φ µ * ψ ν ∈ V i+j-n is defined by

φ µ * ψ ν (-) = i!j! n! K(E) 2n-i-j V (-; A 1 , . . . , A n-i , B 1 , . . . B n-j )dµ(A)dν(B).
Let V C i , V P i be the completions of the space V i with respect to the norms ||•|| C and ||•|| P respectively. In the following, we let γ ∈ {C, P}. We show that the operator * extends continuously to the spaces V γ i with respect to || • || γ . Theorem 3.33. With respect to || • || γ , the operator * : V i × V j → V i+j-n extends continuously to a bilinear operator * :

V γ i × V γ j → V γ i+j-n (Φ, Ψ) → Φ * Ψ.
Proof. We first consider the case when γ = C. Assume that {φ k } ⊂ V i , {ψ k } ⊂ V j are Cauchy sequences with respect to the norm || • || C , and (1) For any ε > 0 and for all k, l large enough, there exist decompositions

φ k → Φ, ψ k → Ψ. We show that {φ k * ψ k } ⊂ V i+j-
φ k -φ l = φ + -φ -, ψ k -ψ l = ψ + -ψ - such that φ ± ∈ P i , ψ ± ∈ P j and φ + (B) + φ -(B) < ε, ψ + (B) + ψ -(B) < ε.
(2) There exist two decompositions

φ k = φ + k -φ - k , ψ k = ψ + k -ψ - k such that φ ± k ∈ P i , ψ ± k ∈ P j and such that φ + k (B) + φ - k (B) ≤ C, ψ + k (B) + ψ - k (B) ≤ C for a uniform constant C > 0.
We write φ k * ψ k -φ l * ψ l as follows:

(7)

φ k * ψ k -φ l * ψ l = φ k * (ψ k -ψ l ) + (φ k -φ l ) * ψ l = (φ + k -φ - k ) * (ψ + -ψ -) + (φ + -φ -) * (ψ + k -ψ - k ) = (φ + k * ψ + + φ - k * ψ -+ φ + * ψ + k + φ - * ψ - k ) -(φ + k * ψ -+ φ - k * ψ + + φ + * ψ - k + φ - * ψ + k )
. This is a decomposition of φ k * ψ k -φ l * ψ l as a difference of two elements in P i+j-n . By Lemma 3.32 applied to each term of (7), we get In particular, the convolution of Φ, Ψ is defined by the following (well-defined) limit:

Φ * Ψ := lim k→∞ φ k * ψ k ∈ V C i+j-n ⊂ Val i+j-n (E).
Let us consider the case when γ = P. We use the same notations as above. Assume that {φ k } ⊂ P i -P i , {ψ k } ⊂ P j -P j are Cauchy sequences with respect to the norm || • || P , and φ k → Φ, ψ k → Ψ. We show that {φ k * ψ k } ⊂ P i+j-n -P i+j-n is also a Cauchy sequence with respect to || • || P .

As {φ k }, {ψ k } are Cauchy sequences, by the definition of the positivity norm || • || P , we have the following properties:

(1) For any ε > 0 and for all k, l large enough,

-εV (B[n -i]; -) φ k -φ l εV (B[n -i]; -) -εV (B[n -j]; -) ψ k -ψ l εV (B[n -j]; -).
(2) There exists c > 0 such that for all k we have

-cV (B[n -i]; -) φ k cV (B[n -i]; -) -cV (B[n -j]; -) ψ k cV (B[n -j]; -)
We write φ k * ψ k -φ l * ψ l as follows:

φ k * ψ k -φ l * ψ l = φ k * (ψ k -ψ l ) + (φ k -φ l ) * ψ l .
For any L 1 , ..., L i+j-n ∈ K(E), as φ k * (ψ k -ψ l )(L 1 , ..., L i+j-n ) is computed by an integral, by the above properties it is easy to see that

|φ k * (ψ k -ψ l )(L 1 , ..., L i+j-n )| ≤ cεV (B[2n -i -j]; L 1 , ..., L i+j-n ).
Hence, ||φ k * (ψ k -ψ l )|| P ≤ cε. Similarly, we also have

||ψ k * (φ k -φ l )|| P ≤ cε.
The same argument shows that the limit

Φ * Ψ := lim k→∞ φ k * ψ k ∈ V P i+j-n ⊂ Val i+j-n (E)
is well defined, i.e., it is independent of the choices of the Cauchy sequences.

Remark 3.34. By Theorem 3.33, the results in Theorem 3.10 and Theorem 3.12 can be extended to valuations in the closure of the cones P i , with respect to the norms || • || γ .

A variant of Minkowski's existence theorem

By the discussion in Example 3.7, the classical Minkowski's existence theorem shows that every strictly positive element in P 1 is of the form V (-; K[n-1]). In this section, we discuss a generalization of this result, proving Theorem B. 4.1. Existence of the solutions. Theorem 4.1. For any strictly positive valuation ψ ∈ P i , there is a constant c > 0 (depending only on ψ) and a convex body B with vol(B) = 1 such that

ψ * V (B[i -1]; -) = cV (B[n -1]; -) ∈ Val 1 (E).
In the following proof, we denote by φ B the valuation given by φ

B = V (B[i -1]; -[n -i + 1]) where B is a convex body.
Given ψ ∈ P i , by scaling the convex set B, Theorem 4.1 implies that the functional equation (with unknown B ∈ K(E)):

(ψ -V (B[n -i]; -)) * φ B = 0 ∈ Val 1 (E)
, where vol(B) > 0 always admits a solution.

Proof. The proof is inspired by the method in [START_REF] Lehmann | Convexity and Zariski decomposition structure[END_REF] 2 . We consider the following variational problem:

c := inf M ∈K(E),vol(M )=1 ψ(M ).
Claim 1: Let {M l } be a minimizing sequence, that is, vol(M l ) = 1 and ψ(M l ) c, then we prove that up to some translations, the sequence

{M l } is compact in (K(E), d H ).
Since ψ ∈ P i is strictly positive, there exists an > 0 such that:

ψ(L 1 , . . . , L i ) V (B[n -i], L 1 , . . . , L i )
for any convex body L 1 , . . . , L i . In particular, one has that

V (K[n -i], M [i]) ≤ ψ(M )
for any convex body M where K = 1/ n-i B. Then there is a uniform constant d > 0 such that

V (K[n -i]; M l [i]) ≤ d
for the minimizing sequence M l . By Alexandrov-Fenchel's inequality, we have

V (K[n -i]; M l [i]) ≥ V (K[n -1], M l ) n-i/n-1 vol(M l ) i-1/n-1 = V (K[n -1], M l ) n-i/n-1 ,
where the last equality follows from vol(M l ) = 1. In particular, V (K[n -1], M l ) is uniformly bounded above. Let r l > 0 be the minimal number such that M l ⊂ r l K (up to a translation). Or equivalently, 1/r l is the maximal number such that M l /r l ⊂ K (up to a translation). By the Diskant inequality,

1/r l ≥ V (K[n -1], M l ) 1 n-1 -V (K[n -1], M l ) n n-1 -vol(K) vol(M l ) 1 n-1 1 n vol(M l ) 1 n-1 ≥ vol(K) nV (K[n -1], M l ) ,
where the last inequality follows from the generalized binomial formula (see also [START_REF]Correspondences between convex geometry and complex geometry[END_REF]). We get3 (9)

r l ≤ nV (K[n -1], M l )/ vol(K).
Thus the sequence r l is uniformly bounded above. Then Blaschke selection theorem implies that, up to translations, the sequence M l has an accumulation point B ∈ K(E) with vol(B) = 1. In particular,

c = ψ(B) = inf M ∈K(E),vol(M )=1 ψ(M ).
Claim 2: For any N ∈ K(E), we have

(10) n! i!(n -i + 1)! ψ * φ B (N ) -ψ(B)V (B[n -1], N ) ≥ 0, and (11) n! i!(n -i + 1)! ψ * φ B (B) -ψ(B)V (B[n -1], B) = 0.
Note that, since the minimal of the variational problem is achieved at M = B, for any t ≥ 0 and any convex body N , we have

ψ B + tN vol(B + tN ) 1/n ≥ ψ(B).
Calculating the right derivative at t = 0 implies

n! i!(n -i + 1)! ψ * φ B (N ) -ψ(B)V (B[n -1], N ) ≥ 0.
The equality (11) for B follows from the minimal property of B.

Claim 3: There is a convex body L with non-empty interior such that

n! i!(n -i + 1)! ψ * φ B (-) = V (L[n -1], -).
By the discussion in Example 3.7, this is a direct consequence of Minkowski's existence theorem since ψ * φ B ∈ P 1 is strictly positive. Now we can finish the proof of our theorem. By Claim 2 and 3, we have

V (L[n -1], N ) -ψ(B)V (B[n -1], N ) ≥ 0 for any N ∈ K(E). Let N = L, we get vol(L) = V (L[n -1], L) ≥ ψ(B)V (B[n -1], L) ≥ ψ(B) vol(B) n-1/n vol(L) 1/n .
Thus vol(L) n-1/n ≥ ψ(B) vol(B) n-1/n . On the other hand, let N = B, the equality in Claim 2 implies

V (L[n -1], B) = ψ(B) vol(B) ≥ vol(L) n-1/n vol(B) 1/n . Thus V (L[n -1], B) = vol(L) n-1/n vol(B) 1/n , which implies the L = ψ(B) 1/n-1 B. Then we get n! i!(n -i + 1)! ψ * φ B (-) = V (L[n -1], -) = ψ(B)V (B[n -1], -).
This finishes the proof of the result.

4.2. Compactness of the solution set. In Minkowski's existence theorem, up to some translation, the solution is unique. In the generalized case, we show that the (normalized) solution set of the functional equation (with unknown B ∈ K(E))

(ψ -V (B[n -i]; -)) * φ B = 0 ∈ Val 1 (E), where vol(B) = 1, φ B (-) = V (-; B[i -1]), is compact in (K(E), d H ).
Proposition 4.2. Given any strictly positive valuation ψ ∈ P i , up to translations, the set of normalized solutions of the above equation is compact.

Proof. Fix a convex body L with non-empty interior. Since vol(B) = 1, similar to the argument in Theorem 4.1, by Blaschke selection theorem and the Diskant inequality it is sufficient to show that V (B; L[n -1]) is uniformly bounded above.

To this end, note that

V (B[n -1], L) ≥ V (B, L[n -1]) 1/n-1 vol(B) n-2/n-1 ,
thus it is sufficient to prove the upper bound for V (B[n -1], L). By the functional equation, we get

n! i!(n -i + 1)! (ψ * φ B )(L) = V (B[n -1], L).
Assume that ψ is given by the measure µ, then

n! i!(n -i + 1)! (ψ * φ B )(L) = K(E) n-i V (B[i -1], L; A 1 , ..., A n-i )dµ(A 1 , ..., A n-i ) ≤ cV (B[i -1], L[n -i + 1]) K(E) n-i V (L[i], A 1 , ..., A n-i )dµ(A 1 , ..., A n-i ),
where the second inequality follows from Theorem 3.10, and c > 0 depends only on n, i, vol(L). Then it is sufficient to give a upper bound for

V (B[i -1], L[n -i + 1]).
Since ψ is strictly positive,

1 = vol(B) = n! i!(n -i + 1)! (ψ * φ B )(B) ≥ c V (L[n -i]; B[i]), thus V (B[i], L[n -i]
) is uniformly bounded above. On the other hand, since vol(B) = 1, the Alexandrov-Fenchel inequality implies that

V (B[i], L[n -i]) ≥ V (B[i -1], L[n -i + 1]) n-i/n-i+1 . Thus V (B[i -1], L[n -i + 1]
) is uniformly bounded above, which implies the compactness of the solution set.

Remark 4.3. By the above proof, it is clear that the compactness result holds whenever the vol(B) has a uniformly positive lower bound.

Remark 4.4. Using the same argument as in Theorem 4.1 and Proposition 4.2, one can get the following analogy in complex geometry (see also [LX16, Section 5]).

Let X be a compact Kähler manifold of dimension n. Assume that Θ ∈ H k,k (X, R) is a strictly positive (k, k) class in the sense that for some Kähler class ω the class Θ -ω k contains some positive (k, k) current. Let

c = inf A Kähler, vol(A)=1 (Θ • A n-k ).
Then there is a decomposition

Θ • B n-k-1 = cB n-1 + N ,
where B is big and nef satisfying vol(B) = 1, N • N ≥ 0 for any nef class N and N • B = 0. Moreover, the set of the (normalized) solutions B is compact.

In particular, if any big nef class is Kähler, we must have N = 0, thus on Kähler manifolds satisfying this condition, for any strictly positive (k, k) class Θ, there is a Kähler class B such that

(Θ -B k ) • B n-k-1 = 0.
Note that this holds for Abelian varieties and generic hyperkähler manifolds. Assume that X is a smooth Abelian variety or generic hyperkähler manifold, and assume 2k ≤ n. By Hodge theory, we have the primitive decomposition with respect to the Kähler class B:

Θ -B k = P k ⊕ B • Γ, where P k ∈ H k,k (X, R) is the primitive class (i.e., B n-2k+1 • P k = 0), and Γ is a (k -1, k -1) class. In particular, if n = 4, k = 2, then (Θ -B 2 ) • B = 0.
Hence, up to a primitive class, every strictly positive (2, 2) class class is equal to B 2 for some Kähler class B.

Dynamical degrees

5.1. Existence. Recall that GL(E) has a natural action on Val(E), which is defined by

(g • φ)(K) = φ(g -1 K).
The space Val i (E) is fixed by this action. Furthermore, by Example 2.6, the map φ → g • φ maps the positive cone P i to P i . Definition 5.1 (Degree). Given ψ ∈ P i and φ ∈ P n-i strictly positive, the (n -i)-th degree of g ∈ GL(E) with respect to φ, ψ is defined by

deg n-i (g) = (g • ψ) * φ.
We are interested in the sequence {deg n-i (g p )} p . Definition 5.2 (Dynamical degree). Given g ∈ GL(E), ψ ∈ P i and φ ∈ P n-i strictly positive, the (n -i)-th dynamical degree of g is defined by

d n-i (g) : = lim k→∞ deg n-i (g k ) 1/k = lim k→∞ ((g k • ψ) * φ) 1/k .
Remark 5.3. In the study of the dynamics of a holomorphic map f : X → X where X is a projective variety, one can similarly define a degree:

deg k (f ) = X f * ω k ∧ ω n-k ,
where ω is a Kähler class on X. Similarly, we can study the asymptotic behaviour of the sequence deg n-i (f k ), k ∈ N, and the i-th dynamical degree of f is defined similarly.

Our first fundamental result is that the (n -i)-th dynamical degree exists, that is, the limit defining d n-i (g) exists, and d n-i (g) is independent of the choices of ψ ∈ P i , φ ∈ P n-i . 5.1.1. Sub-multiplicity estimate. In order to prove the existence of d n-i (g), we first establish the following sub-multiplicity estimate for degrees.

Lemma 5.4. Consider φ ∈ P n-i and ψ ∈ P i are given by

ψ(-) = V (-; B[n -i]) ∈ P i , φ(-) = V (-; B[i]) ∈ P n-i ,
where B ∈ K(E) has non-empty interior. We consider the n -i-th degree deg n-i given by φ, ψ. Assume f, g ∈ GL(E), then there is a constant C > 0 depending only on vol(B), n, i such that

deg n-i (f g) ≤ C deg n-i (f ) deg n-i (g).
In particular, given g ∈ GL(E), the sequence {log

C deg n-i (g k ) } ∞ k=1 is subadditive, that is, log(C deg n-i (g k+l )) ≤ log(C deg n-i (g k )) + log(C deg n-i (g l )), for any k, l ∈ N.
Proof. For any convex body B, let us denote by φ B and ψ B given by φ

B = V (B[i], -[n -i]) and ψ B = V (B[n -i], -[i]).
Since deg n-i (-) is given by ψ B and φ B , we get (12)

deg n-i (f ) deg n-i (g) = ((f • ψ B ) * φ B ) ((g • ψ B ) * φ B ) = | det(f g)| -1 ψ f (B) * φ B ψ g(B) * φ B = | det(f g)| -1 | det f | -1 ψ f (B) * φ B ψ f g(B) * φ f (B) .
Note that there exists a constant c > 0 such that (ψ

f (B) * φ B )(ψ f g(B) * φ f (B) ) = c φ B (f (B))ψ f g(B) (f (B)).
By Theorem 3.10, there is a uniform constant c > 0 such that (13)

(ψ f (B) * φ B )(ψ f g(B) * φ f (B) ) ≥ c vol(f (B))(ψ f g(B) * φ B ) = c| det f || det f g| vol(B)((f g • ψ B ) * φ B ) = c| det f || det f g| vol(B) deg n-i (f g).
Thus, (12) and (13) imply that

deg n-i (f g) ≤ C deg n-i (f ) deg n-i (g),
where C = 1/(c vol(B)) > 0 and this finishes the proof of the sub-multiplicity estimate.

Remark 5.5. In the study of complex dynamics, the analogous estimate for rational self-maps is obtained in [DS05b, DS04] using the theory of positive currents. The above simple proof is inspired by [START_REF] Dang | Degrees of iterates of rational maps on normal projective varieties[END_REF].

Lemma 5.6 (Fekete lemma). For every subadditive sequence {a k } ∞ k=1 , the limit lim k→∞ a k k exists and

lim k→∞ a k k = inf k≥1 a k k .
Theorem 5.7. Given g ∈ GL(E), the dynamical degree d n-i (g) exists and is independent of the choices of strictly positive ψ ∈ P i , φ ∈ P n-i .

Proof.

If ψ = V (-; B[n -i]), φ = V (-; B[i]
), the existence of d n-i (g) follows directly from Fekete's lemma.

For the independence on ψ, φ, we first note that

ψ ||ψ|| P V (B[n -i]; -), φ ||φ|| P V (B[i]; -),
which follow from the definition of || • || P . Applying Lemma 3.22 implies:

g k • ψ ||ψ|| P g k • V (B[n -i]; -).
Moreover, Lemma 3.21 yields:

(g k • ψ) * φ ||ψ|| P g k • V (B[n -i]; -) * φ.
Then we get:

(14) (g k • ψ) * φ ||ψ|| P ||φ|| P (g k • V (B[n -i]; -)) * V (B[i]; -).
On the other hand, by the strict positivity of ψ, φ, there is a constant C > 0 depending only on ψ, φ such that

(15) C(g k • V (B[n -i], -) * V (B[i], -) (g k • ψ) * φ.
Thus, the inequalities ( 14), (15) imply that d n-i (g) does not depend on the choices of φ ∈ P n-i and ψ ∈ P i . 5.1.2. Norms of linear operators. Let g ∈ GL(E), then by Example 2.6 it induces a linear operator (denoted by g i ):

g i : V i → V i .
In the following, let γ ∈ {C, P}. We first show that g i extends to a map:

g i : V γ i → V γ i . Lemma 5.8. Let g ∈ GL(E). Assume that ||φ k -φ|| γ → 0, then ||g • φ k -g • φ|| γ → 0. Proof. For the norm || • || C , it is obvious.
We only need to deal with the norm || • || P . By definition, we have

|(φ k -φ)(L 1 , ..., L i )| ≤ ||φ k -φ|| P V (B[n -i]; L 1 , ..., L i ), which implies |g • (φ k -φ)(L 1 , ..., L i )| ≤ ||φ k -φ|| P V (B[n -i]; g -1 (L 1 ), ..., g -1 (L i )) = ||φ k -φ|| P 1 | det g| V (g(B)[n -i]; L 1 , ..., L i ).
On the other hand, by Theorem 3.10 we have

V (g(B)[n -i]; L 1 , ..., L i ) ≤ cV (g(B)[n -i]; B[i])V (B[n -i]; L 1 , ..., L i ),
where c > 0 depends only on n, i, vol(B). Hence,

||g • (φ k -φ)|| P ≤ c 1 | det g| V (g(B)[n -i]; B[i])||φ k -φ|| P .
This finishes the proof of the result.

Next we show that the dynamical degree d n-i (g) is just the spectral radius of this operator.
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Theorem 5.9. Let g ∈ GL(E) and let g i be the induced operator on V γ i , then the following equality is satisfied:

d n-i (g) = ||g n-i : V P i → V P i || = ||g n-i : V C i → V C i ||, where the symbol ||g n-i : V P i → V P i || and ||g n-i : V C i → V C i ||
denotes the norm of the operator g n-i on V P i and V C i respectively. Proof. For simplicity, since each space is endowed with its appropriate norm, we denote by ||g n-i || P and ||g n-i || C the norm of the operator g n-i on V P i and V C i respectively. We need to verify the equality

d n-i (g) = lim k→∞ ||g k i || 1/k γ .
We first consider the case when γ = C.

Let φ B = V (B[n -i]; -)
, by defintion we get

||g k • φ B || C = (g k • φ B )(B) = V (g k (B)[n -i], B[i])/| det g| k , ||φ B || C = φ B (B) = V (B[n -i], B[i]).
This implies that (16)

||g k i || C ≥ V (g k (B)[n -i], B[i]) | det g| k vol(B) .
On the other hand, take a sequence φ l ∈ P i -P i such that

||φ l || C = 1 and ||g k • φ l || C → ||g k i || C as l → ∞. For l 0 large enough, we have ||g k i || C ≤ 2||g k • φ l 0 || C . Assume that φ l 0 = φ + l 0 -φ - l 0 is a decomposition for φ l 0 , then ||g k i || C ≤ 2(g k • φ + l 0 (B) + g k • φ - l 0 (B)). For the term g k • φ + l 0 (B)
, by Theorem 3.10 there is a constant c > 0 depending only on n, i, vol(B) such that

g k • φ + l 0 (B) = K(E) n-i V (g -k (B)[i], A 1 , ..., A n-i )dµ + l 0 (A 1 , ..., A n-i ) ≤ cV (g -k (B)[i], B[n -i]) K(E) n-i V (B[i], A 1 , ..., A n-i )dµ + l 0 (A 1 , ..., A n-i ) = cV (g -k (B)[i], B[n -i])φ + l 0 (B). Similarly, (17) g k • φ - l 0 (B) ≤ cV (g -k (B)[i], B[n -i])φ - l 0 (B). Since ||φ l 0 || C = 1, we get (18) ||g k i || C ≤ 2cV (g -k (B)[i], B[n -i]).
Next we consider the case when γ = P. Note that ||φ B || P = 1. By the definition for

||g k • φ B || P , we have g k • φ B (B) ≤ ||g k • φ B || P vol(B), hence ||g k • φ B || P ≥ V (B[n -i], g -k (B)[i])/ vol(B). This implies that (19) ||g k i || P ≥ V (g k (B)[n -i], B[i]) | det g| k vol(B) .
On the other hand, take a sequence φ l such that ||φ l || P = 1 and ||g k • φ l || P → ||g k i || P as l → ∞. For l 0 large enough, we have

||g k i || P ≤ 2||g k • φ l 0 || P . For any L 1 , .., L i , |g k • φ l 0 (L 1 , .., L i )| = |φ l 0 (g -k (L 1 ), .., g -k (L i ))| ≤ ||φ l 0 || P V (B[n -i], g -k (L 1 ), .., g -k (L i )).
Applying ||φ l 0 || P = 1 and Theorem 3.10 yields a uniform constant c > 0 such that (20)

||g k i || P ≤ c V (g k (B)[n -i], B[i])/| det g k |.
In summary, by ( 16), ( 18), ( 19), (20) and taking the limits, we obtain the desired equality

d n-i (g) = lim k→∞ ||g k i || 1/k γ .
5.1.3. Log-concavity. By Theorem 5.7, the definition of d n-i (g) is independent of the choices of ψ, φ.

A direct consequence of this result is the following:

Proposition 5.10. For any g ∈ GL(E), the sequence {d i (g)} is log-concave, that is, for

1 ≤ i ≤ n -1 d i (g) 2 ≥ d i-1 (g)d i+1 (g).
Proof. By Theorem 5.7, we get

d i (g) = lim k→∞ (| det g k | -1 V (g k (B)[i], B[n -i])) 1/k = | det g| -1 lim k→∞ (V (g k (B)[i], B[n -i])) 1/k ,
where B is a fixed convex body with non-empty interior. Then the log-concavity property follows immediately from the Alexandrov-Fenchel inequality for mixed volumes.

5.1.4. Relative version. In the study of dynamics of a holomorphic map that preserves some fibration, it is useful to consider a relative version of dynamical degrees. We have a corresponding picture for convex valuations. Let S be a subspace of dimension m, and assume that l : S → E is the embedding. Assume that g ∈ GL(E) fixes the subspace S, equivalently, there is a map f ∈ GL(S) such that g • l = l • f . Definition 5.12. The (n -i)-th relative dynamical degree of g is defined by

reld n-i (g) = lim k→∞ (reldeg n-i (g k )) 1/k .
Similar to Theorem 5.7, we have:

Theorem 5.13. The relative dynamical degree reld n-i (g) exists and is independent of the choices of ψ ∈ P i , φ ∈ P n-i (which are strictly positive), and B ∈ K(S) with non-empty interior.

Proof. The proof is similar to Theorem 5.7, so we omit the details. The only extra ingredient is the following reduction formula for mixed volumes (see [Sch14, Theorem 5.3.1]).

Lemma 5.14. Let k be an integer satisfying 1 ≤ k ≤ n -1, let H ⊂ R n be a k-dimensional linear subspace and let L 1 , ..., L k , K 1 , ..., K n-k be convex bodies with L i ⊂ H for i = 1, ..., k. Then

n k V (L 1 , ..., L k , K 1 , ..., K n-k ) = V H (L 1 , ..., L k )V H ⊥ (p H ⊥ (K 1 ), ..., p H ⊥ (K n-k )),
where V H (•) and V H ⊥ (•) denote the mixed volume in H and H ⊥ , and p H ⊥ : R n → H ⊥ is the projection map.

Remark 5.15. Similar to the complex geometry setting (see e.g. [START_REF] Dinh | Comparison of dynamical degrees for semi-conjugate meromorphic maps[END_REF], [START_REF] Dang | Degrees of iterates of rational maps on normal projective varieties[END_REF]), one could also establish a product formula between the dynamical degrees and the relative dynamical degrees.

5.2. Evaluation of dynamical degrees. In this section, we give a formula for d n-i (g) using the eigenvalues of g. The key point is the formula

d n-i (g) = | det g| -1 lim k→∞ (V (g k (B)[n -i], B[i])) 1/k .
Theorem 5.16. Let g ∈ GL(E), and assume that ρ 1 , ..., ρ n are the eigenvalues of g satisfying

|ρ 1 | ≥ |ρ 2 | ≥ ... ≥ |ρ n |, then the (n -i)-th dynamical degree d n-i (g) = | det g| -1 n-i k=1 |ρ k |.
It is clear that we only need to check the equality

d n-i (g) := lim k→∞ (V (g k (B)[n -i], B[i])) 1/k = n-i k=1 |ρ k |.
Remark 5.17. In the study of dynamics of monomial maps, the above formula was first obtained in [START_REF] Lin | Algebraic stability and degree growth of monomial maps[END_REF][START_REF] Favre | Degree growth of monomial maps and McMullen's polytope algebra[END_REF]. The proof of [START_REF] Lin | Algebraic stability and degree growth of monomial maps[END_REF] is algebraic, and the proof of [START_REF] Favre | Degree growth of monomial maps and McMullen's polytope algebra[END_REF] applies some ideas from integral geometry. We present a different (and simpler) approach to the calculation of d i (g), by using positivity results. 5.2.1. Simple case: d 1 (g). We first discuss the simple calculation for d 1 (g). We need to verify the formula lim

k→∞ V (g k (B), B[n -1]) 1/k = |ρ 1 (g)|.
By Theorem 5.7, for any L, M ∈ K(E) with non-empty interior, we have

d 1 (g) = | det g| -1 lim k→∞ V (g k (L), M [n -1]) 1/k . First, we prove d 1 (g) ≤ | det g| -1 |ρ 1 (g)|.
To this end, we fix a Euclidean structure on E and assume that 0 ∈ L is an interior point. Then for any point x ∈ ∂L we have |g(x)| ≤ ||g|||x|, thus g(L) ⊂ c||g||B where B is the unit ball and c = max x∈∂L |x|. In particular, applying the observation to g k implies

g k (L) ⊂ c||g k ||B. Thus, d 1 (g) ≤ | det g| -1 lim k→∞ ||g k || 1/k V (cB, M [n -1]) 1/k = | det g| -1 |ρ 1 (g)|.
Next, we prove the reverse inequality d 1 (g) ≥ | det g| -1 |ρ 1 (g)|. For any k, we can take a unit vector x k such that |g k (x k )| = ||g k ||. We take L = 2B and take M = B. Then the segment

S k := [0, x k ] ⊂ L, yielding V (g k (S k ), M [n -1]) ≤ V (g k (L), M [n -1]). Note that V (g k (S k ), M [n -1]) = ||g k ||V (||g k || -1 g k (S k ), M [n -1]). Since ||g k || -1 g k (S k ) is a unit vector, Lemma 5.14 implies V (||g k || -1 g k (S k ), M [n -1]) = n -1 V g k (S k ) ⊥ (M ). Since M = B, the volume V g k (S k ) ⊥ (M ) is a constant, thus V (g k (S k ), M [n -1]) = c||g k ||.
Then taking the limit implies

d 1 (g) = | det g| -1 lim k→∞ V (g k (L), M [n -1]) 1/k ≥ | det g| -1 lim k→∞ (c||g k ||) 1/k = | det g| -1 |ρ 1 (g)|.
In summary, we get the formula d 1 (g) = | det g| -1 |ρ 1 (g)|.

5.2.2. General case. For the general case, the idea is as follows:

(1) Prove the formula for diagonalizable matrices over C with distinct eigenvalues;

(2) Show that d n-i (•) is a continuous function over GL(E);

(3) For an arbitrary g ∈ GL(E), approximate g using diagonalizable matrices over C with distinct eigenvalues and apply the continuity of d n-i (•).

Lemma 5.18. Assume g ∈ GL(E) is diagonalizable over C, and assume g has distinct eigenvalues. Then d k (g) = k i=1 |ρ i (g)|. Proof. After a change of basis, we could assume that the matrix form of g takes its real Jordan canonical form. Since g has distinct eigenvalues, its real Jordan canonical form can be written as

         J 1 . . . J s λ s+1 . . . λ n         
, where J i = a i b i -b i a i corresponds to the non-real eigenvalue λ i = a i + √ -1b i , and λ s+1 , ..., λ n are real eigenvalues.

In order to calculate the dynamical degree of g, we consider the following convex body

K r = D r 1 × ... × D rs × I r s+1 × ... × I rn ,
where D r i is a disk of radius r i , and I r j is a segment of length r j with 0 as its center.

For any γ, τ ≥ 0, we have γK r + τ K t = K γr+τ t . In particular, this gives an explicit formula for vol(γK r + τ K t ). On the other hand, note that vol(

K γr+τ t ) = vol(γK r + τ K t ) = k n! k!(n -k)! V (K r [k], K t [n -k])γ k τ n-k .
By comparing the coefficients, we get the explicit formula for V (K k r , K n-k t ) for any r, t. Here, we omit the detailed computations.

Next we take r = t = (1, ..., 1) and compute V (g

p (K 1 )[k], K 1 [n -k]).
To this end, we note that

g p (K 1 ) = K rp , where r p = (|λ 1 | p , ..., |λ s | p , |λ s+1 | p , ..., |λ n | p ). Then a direct computation shows that d k (g) = k i=1 |ρ i (g)|.
Remark 5.19. The calculations in Lemma 5.18 are inspired by the calculations in [FW12, Section 5.1], where the authors did the computations for diagonalizable maps over R and also gave a remark for diagonalizable maps over C.

Next we show that the dynamical degree function

d k : GL(E) → R, g → d k (g) is continuous.
Theorem 5.20. The dynamical degree d k (•) is a continuous function on GL(E). More precisely, let {g l } l≥1 , g ∈ GL(E) endowed with the topology induced by the L 2 -norm of E × E, then lim

g l →g d k (g l ) = d k (g).
Since g l converges to g, g p (x) is in the union of invariant subspaces of g l which correspond to the eigenvalues converging to λ. Thus for any fixed δ > 0, there exists l δ such that when l ≥ l δ , we have Using the above lemma, we get d k (g) ≤ lim l→∞ d k (g l ).

||g -p l • g p (x)|| C p b (|λ| -δ) -p |λ| p ,
Similarly, by studying the inradius of g p (K) relative to g p l (K), we get d k (g) ≥ lim l→∞ d k (g l ). This finishes the proof of the continuity.

Remark 5.22. The complex analog of Theorem 5.20 implies the following interesting continuity result for dynamical degrees of holomorphic maps:

Let X be a compact Kähler manifold of dimension n. Assume that f l , f are dominated holomorphic self-maps of X, and assume that the induced actions

f * l , f * : H 1,1 (X, R) → H 1,1 (X, R) satisfy lim l→∞ f * l = f * , then lim l→∞ d k (f l ) = d k (f )
holds for any k. To our knowledge, the previous result is that: if the induced actions on H

k,k (X, R) satisfies lim l→∞ f * l = f * , then lim l→∞ d k (f l ) = d k (f ).
Now we can finish the proof of Theorem 5.16.

Proof of Theorem

5.16. It is sufficient to prove d k (g) = k i=1 |ρ i (g)|.
Assume that f ∈ GL(E) is diagonalizable over C and has distinct eigenvalues. For any fixed g ∈ GL(E), we consider the path

g t := (1 -t)f + tg.
By linear algebra (see e.g. [START_REF] Darald | Dense sets of diagonalizable matrices[END_REF]), there is a sequence g l such that each g l has distinct eigenvalues (thus it is diagonalizable over C), and lim l→∞ g l = g. (Note that this density statement is not true for diagonalizable matrices over R.)

Since the eigenvalues depend continuously on the entries of a matrix, we get lim l→∞ |ρ i (g l )| = |ρ i (g)|. Applying d k (g l ) = k i=1 |ρ i (g l )| and Theorem 5.20 yields

d k (g) = lim l→∞ d k (g l ) = lim l→∞ k i=1 |ρ i (g l )| = k i=1 |ρ i (g)|.
5.3. A generalization: multiple dynamical degrees. Actually we can show the existence of some kind of dynamical degrees of multiple linear actions. By the previous discussions for dynamical degrees, for simplicity, we only consider valuations of the type V (-; B[i]).

Definition 5.23. Let g 1 , g 2 , ..., g k ∈ GL(E), and let B ∈ K(E) be a convex body with non-empty interior. Then we define the degree deg(g 1 , ..., g k ) as

deg(g 1 , ..., g k ) = (g 1 • ψ B ) * ... * (g k • ψ B ) * φ B ,
where ψ B = V (-; B) and φ B = V (-; B[n -k]). In particular, if g 1 = ... = g k = g, then we get the k-th degree deg k (g) (up to some scaling). Proof. This follows directly from Theorem 3.12. 5.3.1. An application to Laurent system. We give an application to the solution set of a Laurent system. First recall the famous Bernstein-Khovanskii-Kushnirenko theorem (see e.g. [START_REF] David | The number of roots of a system of equations[END_REF], [START_REF] Georgievich | Newton polyhedra, and the genus of complete intersections[END_REF], [START_REF] Georgievich | Polyèdres de Newton et nombres de Milnor[END_REF]). Let V = R n . We identify Z n with the Laurent monomials, i.e., to each integral point a = (a 1 , ..., a n ) ∈ Z n we associate the monomial x a := x a 1 1 x a 2 2 ...x an n . A Laurent polynomial P (x) = c a x a is a finite linear combination of Laurent monomials with coefficients c a ∈ C. The support of a Laurent polynomial P (x) = c a x a is defined as supp(P ) := {a ∈ Z n |c a = 0}.

We denote the convex hull of a finite set I ⊂ Z n by ∆ I ⊂ V . For each finite set I ⊂ Z n , we associate the linear subspace of Laurent polynomials: L I = {P | supp(P ) ⊂ I}.

Theorem 5.25 (Bernstein-Khovanskii-Kushnirenko theorem). Let I 1 , ..., I n be finite sets of Z n . Let N (I 1 , ..., I n ) be the number of solutions in (C * ) n of a general system of Laurent polynomial equations P 1 = P 2 = ... = P n = 0 with P i ∈ L I i , then

N (I 1 , ..., I n ) = n!V (∆ I 1 , ..., ∆ In ).
The group GL(n, Z) has a natural action on Z n , which in turn induces an action on the Laurent polynomials:

P (x) = c a x a → (g • P )(x) := c a x g(a)
, where g ∈ GL(n, Z). It is natural to ask the asymptotic behaviour of the number of solutions under this induced action. Note that we have g(∆ I ) = ∆ g(I) .

Proposition 5.26. Let I 1 , ..., I n be finite sets of Z n , and let g i ∈ GL(n, Z) with 1 ≤ i ≤ k. Let N (p, g 1 , ..., g k ) be the number of solutions in (C * ) n of a general system of Laurent polynomial equations P 1 = P 2 = ... = P n = 0 with P i ∈ L g p i (I i ) for i ≤ k and P j ∈ L I j for j ≥ k + 1, then the limit

lim sup p→+∞ 1 p log N (p, g 1 , ..., g k )
exists. In particular, the function N (•, g 1 , ..., g k ) defined over positive integers has polynomial growth.

Proof. Fix a convex body L ⊂ V with non-empty interior. Then there exists a constant c > 0 such that ∆ I i ⊂ cL (up to some translation) for any i. This implies

N (p, g 1 , ..., g k ) = n!V (∆ g p 1 (I 1 ) , ..., ∆ g p k (I k ) , ∆ I k+1 , ..., ∆ In ) = n!V (g p 1 (∆ I 1 ), ..., g p k (∆ I k ), ∆ I k+1 , ..., ∆ In ) ≤ n!c n V (g p 1 (L), ..., g p k (L), L[n -k]
). Applying Proposition 5.24 gives the desired result.

Remark 5.27. In the complex geometry setting, for holomorphic self-maps of a compact Kähler manifold, the multiple dynamical degrees control how the multiple maps separate the orbits.

Positivity of invariant convex valuations

In this section, we focus on the space Val(E) and the positive cones defined in this space. Let φ µ ∈ V n-i , recall that the action of g ∈ GL(E) on φ µ (see Example 2.6) is given by g

• φ µ = 1 | det g| φ g•µ .
6.1. Invariant classes in complex dynamics. To motivate the discussions, we first recall some facts from complex dynamics. Let X be a compact Kähler manifold of dimension n, and let f ∈ Aut(X) be a holomorphic automorphism of X. Positive invariant classes and invariant currents play an important role in the study of dynamics of f . We consider the following positive cone in H k,k (X, R):

P k = {{Θ} ∈ H k,k (X, R)| Θ is a smooth positive (k, k) form}.
It is clear that P k is convex. We denote its closure in H k,k (X, R) by P k . It is clear that P k is a closed convex cone with non-empty interior, satisfying P k -P k = H k,k (X, R). Since f * preserves P k , the Perron-Frobenius theorem implies that there exists an eigenclass Γ k ∈ P k \ {0} such that

f * Γ k = d k Γ k ,
where d k is the spectral radius of f * on H k,k (X, R). Moreover, d k is equal to the k-th dynamical degree of f (see e.g. [START_REF]Green currents for holomorphic automorphisms of compact Kähler manifolds[END_REF]).

6.2. Invariant convex valuations. In this section, we prove a general Theorem (see Theorem 6.1) which will imply Theorem D. Let g ∈ GL(E), φ ∈ Val n-i (E), we say that φ is invariant (or d i (g)-invariant) if g • φ = d i (g)φ.

By Proposition 5.10, the sequence of dynamical degrees d i (g) is log-concave. In particular, we have d i (g) 2 ≥ d i+s (g)d i-s (g) whenever i ± s are well defined.

As in [FW12, Section 6, 7], suppose that d i (g) 2 > d i+1 (g)d i-1 (g), then the authors show how to obtain a d i (g)-invariant valuation by methods from dynamics. We focus on the positivity properties of such invariant valuations, but under a weaker condition. Note that by log-concavity, d i+1 (g)d i-1 (g) ≥ d i+s (g)d i-s (g).

Thus the condition d i (g) 2 > d i-s (g)d i+s (g) is in general much weaker than the condition d i (g) 2 > d i-1 (g)d i+1 (g).

We show that positive invariant valuations have very weak positivity, if this kind of strict log concavity assumption holds. In the following, let γ ∈ {C, P}. Theorem 6.1. Assume that 2i ≤ n, and g ∈ GL(E). Then the following properties are satisfied.

(1) The subspace of d i (g)-invariant valuations in Val n-i (E) is non trivial.

(2) Assume that the strict log-concavity inequality is satisfied for s min(i, n -i):

d i (g) 2 > d i-s (g)d i+s (g), then for any two d i (g)-invariant convex valuations ψ 1 , ψ 2 ∈ V γ n-i we have ψ 1 * ψ 2 = 0.

(3) Assume that d 2 1 (g) > d 2 (g), then there exists a unique (up to a multiplication by a positive constant) d 1 (g)-invariant positive convex valuation ψ ∈ P n-1 γ (the closure of P n-1 in the topology given by || • || γ ), and ψ lies in an extremal ray of P n-1 γ .

Proof. Let us prove statement (1). Up to a conjugation by an element of GL(E), we are reduced to the problem of finding a ρ i-n -invariant valuation in P n-i for 0 i n, where ρ is the spectral radius of g in each of the following cases: (a) The matrix of g in the canonical basis has Jordan form and the only eigenvalue of g is ρ ∈ R.

(b) One has that n = 2 and g = ρ Id •h where h is in the orthogonal group and where ρ ∈]0, +∞[. Suppose we are in the case (a). Fix i n. Let (e 1 , . . . , e n ) be the canonical basis of E, let B be the unit ball in E and denote by E i = Vect(e 1 , . . . , e i ). Consider B i := B ∩ E i and consider the valuation given by: φ i (L) := V (B i [i], L[n -i]). Let us compute g • φ i (L) for L ∈ K(E):

g • φ i (L) = V (B i [i], g -1 (L)[n -i]) = 1 | det(g)| V (g(B i )[i], L[n -i]).
By the projection formula for mixed volumes (Lemma 5.14), since B i is contained in a subspace of dimension i and since g leaves the subspace E i invariant, we have:

g • φ i (L) := 1 ρ n n i -1 vol E i (g(B i )) vol E ⊥ i (p i (L)),
where p i : E → E ⊥ i is the orthogonal projection onto E ⊥ i . Since | det(g |E i )| = ρ i , we have that: g • φ i = ρ i-n φ i , as required.

Suppose we are in the case (b). Then g = ρ Id •h where h is an element of the orthogonal group. If i = 0 then the valuation vol is ρ 2 -invariant and if i = 2, then the trivial valuation constant equal to 1 is ρ 0 -invariant. Let us find a valuation in P 1 which is ρ-invariant. There exists a ball K in E such that h(K) = K. Consider the valuation φ ∈ P 1 given by: φ(L) := V (K, L), for any L ∈ K(E). We have that:

g • φ(L) = 1 ρ 2 V (g(K), L) = 1 ρ 2 V (ρ(K), L) = 1 ρ V (K, L) = ρ -1 φ(L),
as required.

Let us show how statement (1) follows from the previous arguments. Take g ∈ GL(E). By construction, there exists a decomposition of E into:

E = ⊕E k ,
where each E k is a g-invariant subspace such that g |E k satisfies condition (a) or (b). Denote by λ k = ρ(g |E k ). On each subspace, there exists a convex body B k ⊂ E k such that the valuation given by V (B k [j], -[dim E k -j]) is λ j-dim E k k -invariant. Considering a well-chosen valuation of the form

φ(L) = V (B 1 [i 1 ], . . . , B k [i k ], L[n -i]),
where i 1 + . . . + i k = i, gives the required invariant valuation.

Let us prove statement (2). First note that it is sufficient to prove ψ 1 * ψ 2 * φ B = 0, where φ B (-) = V (-; B[n -2i]) and B ∈ K(E) is a convex body with non-empty interior and smooth boundary.

Note also that if ψ ∈ Val n-i (E) is d i (g)-invariant, then for any c = 0 and K ∈ K(E) we have:

((cg) • ψ)(K) = ψ((cg) -1 (K)) = c i-n ψ(g -1 (K))

= c i-n (g • ψ)(K) = c i-n d i (g)ψ(K) = d i (cg)ψ(K), thus (cg) • ψ = d i (cg)ψ. In particular, ψ is g-invariant if and only if it is cg-invariant. Without loss of generality, to simplify the notations, we can assume that | det g| = 1.

We first consider the case for V C n-i . For j ∈ {1, 2}, since ψ j ∈ V C n-i , we can take a sequence ψ j,l = ψ + j,l -ψ - j,l such that lim l→∞ ψ j,l = ψ j and (21) ψ + j,l (B) + ψ - j,l (B) ≤ c for some uniform constant c > 0, where ψ + j,l , ψ - j,l ∈ P n-i . Since ψ 1 , ψ 2 ∈ V C n-i are invariant valuations, we have

g k • (ψ 1 * ψ 2 ) * φ B = (g k • ψ 1 ) * (g k • ψ 2 ) * φ B = d i (g) 2k ψ 1 * ψ 2 * φ B .
The expansion of (ψ 1,l * ψ 2,l ) * φ B gives: By ( 22), ( 23), ( 24), (25) and the estimate for φ B (g k (B)), we deduce that there exists a uniform constant C 4 > 0 such that (26)

ψ 1 * ψ 2 * φ B = lim
d i (g) 2k (ψ 1 * ψ 2 * φ B ) ≤ C 4 V (g k (B)[i + s], B[n -i -s])V (g k (B)[i -s], B[n -i + s]).
Next we consider the case for V P n-i . We take approximations ψ j,l such that lim l→∞ ψ j,l = ψ j and In summary, if ψ 1 * ψ 2 * φ B > 0, after taking k-th root of the above inequality (26) or (28) and letting k tend to infinity, we get d i (g) 2 ≤ d i+s (g)d i-s (g). This contradicts with our assumption. Thus,

ψ 1 * ψ 2 * φ B ≤ 0.
Since the valuations -ψ 1 is also invariant, the previous argument holds and we also have:

(-ψ 1 ) * ψ 2 * φ B ≤ 0.

Hence, we must have ψ 1 * ψ 2 * φ B = 0.

Finally we prove the statement (3). Suppose i = n -1 (thus the assumption is d 1 (g) 2 > d 2 (g)). We claim that P n-1 P = P n-1 C = P n-1 and that any valuation φ ∈ P n-1 P is of the form V (L; -[n -1]) for some L ∈ K(E).

  α (E) the subspace of Val(E) of α-homogeneous convex valuations. The following result is due to McMullen [McM77].

  Theorem 2.5 (McMullen decomposition). Let n = dim E, then Val(E) = n i=0 Val i (E).

( 8 )

 8 ||φ k * ψ k -φ l * ψ l || C ≤ c Cε, where c depends only on vol(B), i, j, n. Thus {φ k * ψ k } must be a Cauchy sequence with respect to the norm || • || C . Next, assume that {φ k }, {ψ k } are another two Cauchy sequences also satisfying φ k → Φ, ψ k → Ψ, we need to verify that the limits of {φ k * ψ k } and {φ k * ψ k } are the same, i.e., lim k→∞ ||φ k * ψ k -φ k * ψ k || C = 0. Since ||φ k -φ k || C → 0 and ||ψ k -ψ k || C → 0, this follows from similar arguments as above.

Definition 5. 11 .

 11 Assume that ψ ∈ P i (E), φ ∈ P n-i+m (E) are strictly positive, and let τ B = V (-; B[m]) ∈ Val n-m (E), where B ∈ K(S) satisfies vol S (B) > 0, then the (n -i)-th relative degree of g is defined by reldeg n-i (g) = (g • ψ) * φ * τ B .

  where C , b are uniform constants by considering Jordan forms. Taking the limits gives lim l→+∞ lim p→+∞ ||g -p l • g p || 1/p 1.

  l→∞ (ψ 1,l * ψ 2,l ) * φ B = lim l→∞ ψ + 1,l * ψ + 2,l + ψ - 1,l * ψ - 2,l -ψ + 1,l * ψ - 2,l -ψ - 1,l * ψ + 2,l * φ B .Since ψ + j,l , ψ - j,l are positive, we get:(22) d i (g) 2k (ψ 1 * ψ 2 * φ B ) lim inf l→∞ g k • ψ + 1,l * ψ + 2,l + ψ - 1,l * ψ - 2,l * φ B .Applying Theorem 3.10 to φ := g k • (ψ + 1,l * ψ + 2,l ) (respectively g k • (ψ - 1,l * ψ - 2,l )), ψ := φ B ∈ Val 2i (E) and the convex body K := g k (B), we obtain (23) vol(g k (B)) g k • (ψ 1,l * ψ 2,l ) * φ B ≤ g k • (ψ 1,l * ψ 2,l )(g k (B))φ B (g k (B)),where ∈ {+, -}. On the other hand, by Theorem 3.12, we haveφ B (g k (B)) = V (g k (B)[2i], B[n -2i]) = V (g k (B)[i + s], g k (B)[i -s], B[n -2i]) ≤ C 1 V (g k (B)[i + s], B[n -i -s])V (g k (B)[i -s], B[n -i + s]),where C 1 > 0 is a constant which depends only on B, i and n. By (21) and Theorem 3.10, we also have(24) lim inf l→∞ ((ψ + 1,l * ψ + 2,l + ψ - 1,l * ψ - 2,l ) * φ B ) ≤ C 3for some constant C 3 > 0. Note that there exists a constant C 2 > 0 such that (25) g k • (ψ 1,l * ψ 2,l )(g k (B)) = C 2 (ψ 1,l * ψ 2,l * φ B ).

  |ψ j,l (L 1 , ..., L n-i )| ≤ cV (B[n -i]; L 1 , ..., L n-i ) for some uniform constant c > 0, and any L 1 , ..., L n-i . As we are reduced to the situation | det g| = 1, this implies(27) |g k • ψ j,l (L 1 , ..., L n-i )| ≤ cV (g k (B)[n -i]; L 1 , ..., L n-i ).By the definition of * and (27), we getg k • (ψ 1,l * ψ 2,l ) * φ B ≤ c 2 V (g k (B)[2i], B[n -2i]).Then the same arguments as above shows that (28)d i (g) 2k (ψ 1 * ψ 2 * φ B ) ≤ C 5 V (g k (B)[i + s], B[n -i -s])V (g k (B)[i -s], B[n -i + s]).

  where ∆ is a simplex in E, are dense in the space Val i (E). Alesker's irreducibility theorem also enables us to define some explicit positive cones in Val i (E) with nice properties. (E) is finite dimensional if and only if G acts transitively on the unit sphere of E, and under the assumption that G acts transitively on the unit sphere of E one has Val G (E) ⊂ Val ∞ (E).

	2.4. Convolution and product of smooth valuations.	
	Definition 2.8 (Alesker). A valuation φ ∈ Val(E) is called smooth if the map
	GL(E) → Val(E), g → g • φ
	is smooth as a map from a Lie group to a Banach space.	
	As a smooth valuation φ induces a map GL(E) → Val(E) given by g → g • φ ∈ Val(E). The space
	of smooth valuations can be endowed with the topology of C ∞ functions on GL(E) with values in the
	Banach space Val(E) (this is usually called the Garding topology). This topology is naturally stronger
	than the topology from Val(E) since there is a continuous injection
	Val ∞ (E) → Val(E).
	The space of smooth valuations is denoted by Val ∞ (E), it is dense in Val(E). Moreover, the repre-
	sentation of GL(E) in Val ∞ (E) is continuous (see e.g. [AF14]).
	By McMullen's grading decomposition, we have	
	Val ∞ (E) =	Val ,∞ i (E).
	i=0,...,n; ∈{even,odd}	
	Example 2.9. Assume that A 1 , ..., A n-i ∈ K(E) are strictly convex bodies with smooth boundary, then φ A 1 ,...,A n-i (-) = V (-[i]; A 1 , ..., A n-i ) is in Val ∞ i (E).
	Example 2.10 (G-invariant valuations). Let G ⊂ SO(E) be a compact subgroup. Let Val G (E) be the
	subspace of Val(E) of G-invariant convex valuations. By [Ale07, Proposition 2.6, 2.7] (see also [Ale04]),
	the space Val G An crucial ingredient in recent development of valuation theory (or algebraic integral geometry)
	is the product structure introduced by Alesker [Ale04]. To define it, Alesker used his irreducibility
	theorem.	
	Definition 2.11 (Product). There exists a bilinear map	
	Val	

  3.26. Equivalently, by the Jordan decomposition of signed measures we have ||φ µ || C := φ |µ| (B), where |µ| is the absolute value of a Radon measure µ on K(E) n-i . Remark 3.27. By construction, if φ ∈ P i , then ||φ|| C = φ(B). The function || • || C defined above is a norm on the space V i . Proof. It is clear that: • For any c ∈ R and any φ ∈ V i , we have ||cφ|| C = |c|||φ|| C ; • For any φ, ψ ∈ V i , we have ||φ + ψ|| C ≤ ||φ|| C + ||ψ|| C . It remains to verify:

	Lemma 3.28.

  n is also a Cauchy sequence with respect to || • || C . As {φ k }, {ψ k } are Cauchy sequences, by the definition of the cone norm || • || C , we have the following properties:

  Proposition 5.24. If we define the dynamical degree of g 1 , ..., g k as

	d(g 1 , ..., g k ) := lim sup p→∞	deg(g p 1 , ..., g p k ) 1/p ,

then d(g 1 , ..., g k ) exists and does not depend on the choices of B. Moreover, d(g 1 , ..., g k ) is bounded above by k i=1 d k (g i ).

It was realized in[START_REF]Correspondences between convex geometry and complex geometry[END_REF] that the same ideas had previously appeared in the classical work of Alexandrov[START_REF] Danilovich | On the theory of mixed volumes of convex bodies III. extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies[END_REF].

This can also be obtained by applying Theorem 3.10.

Proof. It is sufficient to prove that lim

By Theorem 5.7, the dynamical degree is independent of the choices of φ, ψ. In the following we take K = B to be the unit ball with 0 as its center. We have

We first prove lim l→∞ d k (g l ) ≥ d k (g). We consider the inradius of g p l (K) relative to g p (K), which is defined by r(g p l (K), g p (K)) := max{λ > 0| λg p (K) ⊂ g p l (K) up to some translation}. Applying the Diskant inequality to g p l (K), g p (K), we get r(g p l (K), g p (K)) ≥ vol(g p l (K)) nV (g p l (K)[n -1], g p (K))

.

We next estimate the mixed volume V (g p l (K)[n -1], g p (K)). Note that

where h (g -p l •g p )(K) is the support function of the convex body (g -p l • g p )(K), and dS(K n-1 ; •) is the surface area measure. For any linear map A : E → E, by the definition of support function we have

) 1/p . Lemma 5.21. For any sequence g l converging to g, we have

Proof. We only need to consider the action of g -p l •g p on invariant subspaces. Assume that ||x|| = 1 and x ∈ ker(g -λI) b , where b is the multiplicity of the eigenvalue λ. By assumption, we have that:

By considering the Jordan form of g, there exists a constant C > 0 (independent of x, as ||x|| = 1) such that:

Take φ ∈ P n-1 P . By Corollary 3.24, there exists a sequence of valuations

) is uniformly bounded above. By Diskant's inequality (similar to the estimate (9)), the convex bodies L j (up to some translations) are bounded.

We can thus extract a subsequence of L j (up to some translations) converging to a convex body L.

In particular, φ = V (L, -[n -1]) as required.

Next let ψ ∈ P n-1 C , we prove that ψ is also of the form ψ(-) = V (L; -[n -1]). As P n-1 ⊂ P n-1 P , any valuation in P n-1 is of the form V (L; -). Hence there exists a sequence of convex bodies

) is uniformly bounded above. Then the same argument as in the previous step shows that ψ = V (L; -[n -1]) for some L ∈ K(E), as required. This finishes the proof of the claim.

Now the uniqueness result follows from [Sch14, Theorem 7.6.8], which we present below as a lemma.

Lemma 6.2. If the equality holds in

where C 1 , ..., C n-2 are smooth convex bodies with non-empty interior, then K, L are homothetic.

As in our setting, B is smooth, this immediately proves the uniqueness of invariant valuations.

The proof for the extremal ray property also follows from the above lemma. Assume that ψ ∈ P n-1 γ is invariant and can be written as

where φ 1 = V (-; K 1 ), φ 2 = V (-; K 2 ). We need to verify that φ 1 , φ 2 are proportional. The vanishing of ψ * ψ * φ B is equivalent to

which yields that K 1 , K 2 are homothetic. Thus ψ must lie in an extremal ray of the cone P n-1 γ ⊂ V γ n-1 .

6.2.1. Weak closedness. The above argument for Theorem 6.1 (3) shows that the cone P n-1 is closed with respect to the topology given by || • || P . Actually, this cone is also weakly closed in the following sense. Observe that for any convex body K ∈ K(E), the evaluation map induces a continuous linear form on

Consider the weak topology, which is the coarsest topology on V P k such that the evaluation maps ev K are continuous. We first note that the weak topology contains a countable basis of neighborhoods. Consider the finite intersection of neighborboods of the form:

where a i , b ∈ Q, N ∈ N and where P and P j,i are rational polytopes in E. By construction U is an open set of V P k for the weak topology. The fact that such subset U defines a basis of neighborhoods results from the density of rational polytopes inside K(E).

Proposition 6.3. The cone P n-1 ⊂ V P n-1 is closed with respect to the weak topology. In particular, one has the following equality:

P n-1 P = P n-1 = P n-1 w , where P n-1 w is the closure of the cone P n-1 with respect to the weak topology and where P n-1 P is the closure of the cone P n-1 with respect to the norm || • || P .

Proof. Since the space V P n-1 endowed with the weak topology is first countable, every point φ ∈ V P n-1 in the weak closure of the cone P n-1 is the weak limit of a sequence φ j ∈ P n-1 . Recall that every valuation in P n-1 is of the form V (M ; -[n -1]) for some convex body M ∈ K(E) and one can write each φ j as φ j = V (L j ; -[n -1]) where L j ∈ K(E). Since φ j converges weakly to φ, this implies that:

as j tend to +∞. In particular, the sequence {V (L j , B[n -1])} j is bounded. By Diskant's inequality, there exists a subsequence of the sequence {L j } j∈N (up to translations), which converges to a convex body L. Hence, we have that φ = V (L; -[n -1]) for some L ∈ K(E) and φ ∈ P n-1 as required.

Remark 6.4. We are not sure about the weak closedness of P k when k = n -1.

Remark 6.5. In general the invariant valuations are not smooth. The invariant valuations in [START_REF] Favre | Degree growth of monomial maps and McMullen's polytope algebra[END_REF] are given by the volume of a projection onto a linear subspace. By the reduction formula for mixed volumes, they are given by mixed volumes, which are elements in P i .

Remark 6.6. For any g ∈ GL(E), the action of g satisfies g(P i ) ⊂ P i . Recall that in functional analysis we have the famous Krein-Rutman theorem:

Let X be a Banach space, and let C ⊂ X be a closed convex cone such that C -C is dense in X. Let T : X → X be a non-zero compact operator satisfying T (C) ⊂ C, and assume that its spectral radius ρ(T ) is strictly positive. Then there is an eigenvector

If X is of finite dimension, then this is the Perron-Frobenius theorem, which is very useful to construct invariant classes in complex dynamics. In our setting, in general the induced linear operator by g is not compact. However, if we consider the finite dimensional space Val G (E) where G ⊂ SO(E) is a compact subgroup acting transitively on the unit sphere of E, and consider appropriate cones in this space, then we can apply the result directly.

Remark 6.7. We remark that the same vanishing result also holds true for the dynamics of dominated holomorphic maps. Furthermore, by Hodge theory (see e.g. [START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF]), the extremal ray property holds true for invariant (1, 1) classes. More precisely, using the notations in Section 6.1, we have:

Let X be a compact Kähler manifold of dimension n. Let f : X → X be a dominated holomorphic self-map. 

, then the non-zero invariant class Θ ∈ P 1 is unique (up to some scaling) and lies in an extremal ray of P 1 .

The proof of Θ 1 • Θ 2 • ω n-2k = 0 is the same as in Theorem 6.1, where we apply the reverse Khovanskii-Teissier inequality in complex geometry [START_REF]Correspondences between convex geometry and complex geometry[END_REF]. For the uniqueness and extremity of Θ ∈ P 1 , we decompose Θ i , i = 1, 2 as follows:

where a i ∈ R, and P i is a primitive class, i.e., ω n-1 • P i = 0. Since Θ i • Θ j • ω n-2 = 0 for i, j ∈ {1, 2}, both P 1 and P 2 can not be zero. Moreover, combining with ω n-1 • P i = 0 implies P 2 1 • ω n-2 = -a 2 1 ω n , P 2 2 • ω n-2 = -a 2 2 ω n , P 1 • P 2 • ω n-2 = -a 1 a 2 ω n .

Thus the matrix [P i • P j • ω n-2 ] i,j is degenerate. By Hodge-Riemann bilinear relations, we have P 1 = cP 2 for some non-zero constant c. Then we get a 2 1 = c 2 a 2 2 . We claim a 1 = ca 2 , which then implies Θ 1 = cΘ 2 . If some a i = 0, then this is clear; otherwise, if a 1 = -ca 2 , by considering Θ 1 -cΘ 2 we get that ω is also an invariant class, which is impossible by the vanishing result. Thus we finish the proof of the uniqueness result. The extremity property follows from the same argument.