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POSITIVITY OF VALUATIONS ON CONVEX BODIES AND INVARIANT

VALUATIONS BY LINEAR ACTIONS

NGUYEN-BAC DANG AND JIAN XIAO

Abstract. We define a notion of positivity on continuous and translation invariant valuations on con-
vex bodies on a finite dimensional real vector space. We endow the valuation space generated by mixed
volumes with a norm induced by the positive cone. This enables us to construct a continuous extension
of the convolution operator on smooth valuations to the closure of that space. As an application, we
prove a variant of Minkowski’s existence theorem. Furthermore, given a linear map, we generalize
a theorem of Favre-Wulcan and Lin by proving that the eigenvalues of the linear map is related to
the spectral radius of the induced linear operator on the space of valuations. Finally, given a linear
action and under a natural strict log-concavity assumption on certain spectral radius of the induced
linear operators on valuations, we study the positivity properties of the space of invariant valuations
corresponding to the spectral radius of the operator.
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1. Introduction

Let E be a Euclidian real vector space of dimension n, and let K(E) be the family of convex bodies
(i.e., compact convex subsets) of E. We endow the space K(E) with the Hausdorff metric, that is, for

The first author is supported by the ERC-starting grant project “Nonarcomp” no.307856, and by the brazilian project
“Ciência sem fronteiras” founded by the CNPq.
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any K,L ∈ K(E) the distance is defined by

dH(K,L) = min{ε > 0|K ⊂ L+ εB & L ⊂ K + εB},
where B is the unit ball in E. A real (convex) valuation φ on E is a function φ : K(E)→ R such that

φ(K ∪ L) = φ(K) + φ(L)− φ(K ∩ L)

for any K,L ∈ K(E) satisfying K ∪L ∈ K(E). Moreover, a valuation φ is called translation invariant
if φ(K + t) = φ(K) for any K ∈ K(E) and any t ∈ E, and it is called continuous if it is continuous
with respect to the topology of K(E) given by the metric dH . We denote by Val(E) the Banach space
of continuous, translation invariant valuations on E where the norm of φ ∈ Val(E) is given by:

(1) ||φ|| := sup
K⊂B

|φ(K)|,

where the supremum is taken over all convex bodies K contained in the unit ball B.
A valuation φ ∈ Val(E) is called homogeneous of degree i, where 0 6 i 6 n, if for any K ∈ K(E)

and any λ ≥ 0, one has:

φ(λK) = λiφ(K).

The subspace of Val(E) of homogeneous valuations of degree i is denoted by Vali(E). By a theorem
of McMullen (see [McM77]), there is a decomposition of Val(E) in terms of Vali(E) given by:

Val(E) =
n⊕
i=0

Vali(E).

The most basic examples of homogeneous valuations of degree i are given by the mixed volumes

K 7→ V (L1, . . . , Ln−i,K[i])

where L1, . . . , Ln−i ∈ K(E) and the symbol V (−) denotes the mixed volume of convex bodies, and
K[i] means that the convex body K is repeated i times in the expression of the mixed volume.

The space of valuations contains a dense subspace called the space of smooth valuations. We recall
the definition of this space. The Lie group GL(E) has a natural action on Val(E):

GL(E)×Val(E)→ Val(E),

(g, φ) 7→ g · φ,

where g · φ(K) := φ(g−1K) for any K ∈ K(E) (see [Ale01]). The valuation φ is called smooth if the
map g 7→ g ·φ is smooth. We denote by Val∞(E) the subset of Val(E) of smooth translation invariant
valuations, and by Val∞i (E) the smooth translation invariant valuations which are homogeneous of
degree i. Similar to the decomposition for Val(E), one also has

Val∞(E) =
n⊕
i=0

Val∞i (E).

We now introduce the following key notion of positivity for convex valuations. For any positive
Radon measure µ on K(E)n−i such that∫

K(E)n−i
V (B[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i) < +∞,

we define a valuation φµ given by

φµ(L) =

∫
K(E)n−i

V (L[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i).

Observe that the dominated convergence theorem ensures the fact that φµ is a continuous translation
invariant valuation. Moreover, such a valuation is monotone in the sense that if K ⊂ L ∈ K(E) then
φ(K) 6 φ(L). Note that the linear map µ→ φµ is not injective.

A valuation φ ∈ Vali(E) is said to be positive if there exists a measure µ as above such that φ = φµ.
We denote by Pi ⊂ Vali(E) the set of positive homogeneous valuations of degree i.

Example 1.1. The set of positive linear combinations of mixed volumes of degree i is contained in
Pi.
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Remark 1.2. We emphasize that the positivity notation introduced above is different from (and
stronger than) the positivity in the traditional setting. In the traditional setting, a valuation φ ∈
Val(E) is called positive if φ(K) ≥ 0 for any K ∈ K(E). Many interesting results on this kind of
positive valuations have been obtained by Parapatits-Wannerer [PW13] and Bernig-Fu [BF11]. Note
that a monotone valuation must be positive in this traditional sense. There are valuations which are
positive in the traditional sense but not monotone, e.g., Kazarnovskii pseudo-volume in hermitian
integral geometry (see [BF11]), and there are also valuations which are monotone but not positive in
our setting (see [Ber12, Section 5.5]).

By a polarization argument, a valuation φ ∈ Pi defines a unique function on K(E)i:

φ(L1, . . . , Li) =
1

i!

(
∂i

∂t1∂t2 . . . ∂ti

)
|t1=...=ti=0+

φ(t1L1 + . . .+ tiLi),

where L1, . . . , Li are convex bodies. If L1 = ... = Li = L, then φ(L1, . . . , Li) = φ(L).
We say that a valuation φ ∈ Pi is strictly positive if there exists ε > 0 such that

φ(L1, . . . , Li) > εV (B[n− i], L1, ..., Li)

holds for any convex bodies L1, . . . , Li.

The convex cone Pi generates a vector space V ′i ⊂ Vali(E). For any φ ∈ V ′i, there is a signed Radon
measure µ on K(E)n−i such that its absolute value |µ| satisfies:∫

K(E)n−i
V (B[i],K1, . . . ,Kn−i)d|µ|(K1, . . . ,Kn−i) < +∞.

The subspace V ′i is endowed with an appropriate norm defined as follows.

Definition 1.3. For any φ ∈ V ′i, the norm || · ||P is defined by

||φ||P := inf{t ≥ 0| |φ(L1, ..., Li)| ≤ tV (B[n− i], L1, ..., Li) for any L1, ..., Li ∈ K(E)}.

The fact that ||φ||P is finite follows from the reverse Khovanskii-Teissier inequality [LX17] (see also
Theorem 3.10). One of the main properties of the norm || · ||P is that the subspace V ′i∩Val∞i (E) forms
a dense subspace in V ′i with respect to this norm (see Theorem 3.23).

Remark 1.4. The norm || · ||P is inspired by complex geometry, the motivation is that the analogous
notation for a cohomology class over a projective manifold measures the pseudo-effectivity of that
class. In our setting, ||φµ||P measures the positivity of φµ.

Let VPi be the completion of V ′i with respect to the norm || · ||P . By definition, for any L ⊂ B we
have |φ(L)| ≤ vol(B)||φ||P , hence ||φ|| ≤ vol(B)||φ||P . Thus there is a continuous injection

(VPi , || · ||P) ↪→ (Vali(E), || · ||).
A deep theorem of Alesker [Ale01] implies that the linear combinations of mixed volumes span a dense
set in Val(E). As a consequence, VPi is dense in Vali(E) with respect to the norm || · ||. We do not
know whether VPi is dense in Vali(E) with respect to the norm || · ||P .

Besides the norm || · ||P , another norm || · ||C induced by the cone structure is also defined on V ′i.
For any φ ∈ V ′i, ||φ||C is given by

||φ||C := inf
φ=φ+−φ−,φ±∈Pi

(φ+(B) + φ−(B)),

Its properties are also discussed in the paper (see Section 3.3.2). However, we do not know whether
smooth valuations are dense in V ′i for the topology induced by this cone norm.

Our first theorem shows that the convolution of valuations can be uniquely extended to VPi . Let us
recall the convolution operation defined by Bernig-Fu [BF06] and studied further by Alesker [Ale11] on
smooth valuations. By [BF06] (see also [Ale11]), there exists a unique continuous, symmetric bilinear
map ∗ which is homogeneous of degree −n:

Val∞(E)×Val∞(E)→ Val∞(E),

(φ, ϕ) 7→ φ ∗ ϕ,
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such that for any K,L ∈ K(E) with smooth and strictly convex boundary, one has that:

vol(·+K) ∗ vol(·+ L) = vol(·+K + L) ∈ Val∞(E).

In particular, assume thatK1, ...,Kn−i, L1, ..., Ln−j ∈ K(E) have smooth and strictly convex boundary,
then

(2) V (−;K1, . . . ,Kn−i) ∗ V (−;L1, . . . , Ln−j) =
i!j!

n!
V (−;K1, . . . ,Kn−i, L1, . . . , Ln−j).

We can now state our first theorem (see Theorem 3.23 and Theorem 3.33).

Theorem A. Fix two integers i, j such that 2n > i+ j > n. There exists a unique symmetric bilinear
operator ∗̃ : VPi × VPj → VPi+j−n satisfying the following properties.

(1) The operator ∗̃ is continuous with respect to the topology induced by the norm || · ||P .
(2) The operator ∗̃ coincides with the convolution ∗ on (VPi ∩Val∞i (E))× (VPj ∩Val∞j (E)).

A priori, the convolution is only well defined on the space of smooth valuations Val∞(E) and one
cannot extend it continuously to Val(E). Theorem A allows us to extend the operation with respect
to a finer topology than the one in Vali(E).

Bernig-Faifman and Alesker-Bernig (see [BF16], [AB12]) studied another extension on the gen-
eralized valuations satisfying specified conditions. The space of generalized valuations, denoted by
Val−∞(E), is defined to be the dual of Val∞(E). However, it is unclear how one can compare these
two extensions.

Our extension is closely related to equation (2). Indeed, if µ and ν are two Radon measures on
K(E)n−i and K(E)n−j respectively so that their associated valuations φµ and φν belong to V ′i and V ′j
respectively, then the valuation φµ∗̃φν ∈ V ′i+j−n is a valuation associated to the measure:

i!j!

n!
p∗1µ⊗ p∗2ν,

where p1 : K(E)2n−i−j → K(E)n−i and p2 : K(E)2n−i−j → K(E)n−j are the projections onto the first
n− i factors and the last n− j factors respectively. The formula for the valuation φµ∗̃φν is given by:

φµ∗̃φν(−) :=
i!j!

n!

∫
K(E)2n−i−j

V (−;K1, . . . ,Kn−i,K
′
1, . . .K

′
n−j)dµ(K1, . . . ,Kn−i)dν(K ′1, . . . ,K

′
n−j),

which is always well defined by Proposition 3.13.

Let L1, ..., Ln−1 ∈ K(E) be convex bodies with non-empty interior, by Minkowski’s existence theo-
rem (see [Ale38]), there exists a unique (up to a translation) convex body L ∈ K(E) with non-empty
interior such that

V (L1, . . . , Ln−1,−) = V (L[n− 1],−).

Our next result can be considered as a variant of Minkowski’s existence theorem (see Theorem 4.1
and Proposition 4.2).

Theorem B. For any ψ ∈ Pi strictly positive, then there is a constant c > 0 (depending only on ψ)
and a convex body B with vol(B) = 1 such that

ψ∗̃V (B[i− 1],−) = cV (B[n− 1],−) ∈ Val1(E).

Moreover, up to translations the solution set

S = {B ∈ K(E)|ψ∗̃V (B[i− 1],−) = cV (B[n− 1];−), vol(B) = 1}
is compact in K(E) endowed with the Hausdorff metric.

Remark 1.5. When i = 1, the previous Theorem is just a consequence of Minkowski’s existence
theorem [Ale38,Sch14] (see Example 3.7).

Our next results focus on linear actions on valuations. We are interested in the behaviour of the
sequence {gk · φ}∞k=1 where φ ∈ VPn−i and g ∈ GL(E). Given g ∈ GL(E), φ ∈ Pn−i and ψ ∈ Pi two
strictly positive valuations, we define the i-th dynamical degree of g by

di(g) := lim
k→∞

((gk · φ)∗̃ψ)1/k.
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The terminology “dynamical degree” comes from the study of dynamics of holomorphic maps, where
these numbers are defined for rational self-maps on projective varieties. These two notions of dynamical
degrees are closely related in the particular case of rational self-maps over toric varieties which preserve
the torus action.

Note that g induces a linear operator (denoted by gn−i) on the Banach space (VPn−i, || · ||P):

gn−i : VPn−i → VPn−i.

A direct application of the reverse Khovanski-Teissier inequality (see Theorem 3.10) and the method
in [Dan17] shows that the number di(g) is well-defined and is equal to the norm of the operator gn−i.
Our next theorem (see Theorem 5.9 and Theorem 5.16) relates the norm of gn−i, the eigenvalues of g
and the dynamical degrees.

Theorem C. Given g ∈ GL(E), the dynamical degree di(g) exists and is independent of the choices of
the strictly positive valuations φ ∈ Pn−i, ψ ∈ Pi. Moreover, assume that ρ(gn−i) is the spectral radius
of gn−i and ρ1, ..., ρn are the eigenvalues of g satisfying

|ρ1| ≥ |ρ2| ≥ ... ≥ |ρn|,

then the i-th dynamical degree di(g) = ρ(gn−i) = | det g|−1
∏i
k=1 |ρk|.

Our proof relies on the observation that the dynamical degrees define continuous mappings from
GL(E) to R. We are then reduced to proving the Theorem C for diagonalizable matrices. Observe
that our proof gives an alternative approach to the results of Lin (see [Lin12, Theorem 6.2]) and
Favre-Wulcan (see [FW12, Corollary B]) which relied on Minkowski weights and integral geometry
respectively.

We say that a valuation φ is di(g)-invariant if it belongs to the eigenspace of eigenvalue di(g) (i.e.,
g · φ = di(g)φ).

By Alexandrov-Fenchel inequality or Theorem C, it is clear that the sequence of dynamical degrees
{di(g)} is log-concave. In particular, di(g)2 ≥ di+s(g)di−s(g). Our last theorem (see Theorem 6.1)
gives some positivity properties of invariant valuations under a natural strict log-concavity assumption
on these numbers.

Theorem D. Assume 2i ≤ n. Consider g ∈ GL(E). Then the following properties are satisfied.

(1) There exists a non zero di(g)-invariant valuation in Pn−i ⊂ VPn−i.
(2) Assume that the strict log-concavity inequality is satisfied for some s 6 min(i, n− i):

di(g)2 > di−s(g)di+s(g),

then for any two di(g)-invariant convex valuations φ1, φ2 ∈ VPn−i, we have

φ1∗̃φ2 = 0.

(3) Assume that

d2
1(g) > d2(g),

then there exists a unique (up to a multiplication by a positive constant) d1(g)-invariant positive
convex valuation φ ∈ Pn−1 ⊂ VPn−1. Moreover, φ lies in an extremal ray of Pn−1 ⊂ VPn−1.

In the study of monomial maps, the conclusion of (3) implies also the existence of a unique invariant
b-divisor class in the sense of [FW12]. The results (2) and (3) can be understood as the higher
dimensional convex analog of a result by [BFJ08] for projective surfaces. Given a projective surface
X and a dominant rational map f on it. Suppose that the dynamical degree d1(f) and d2(f) satisfy
d1(f)2 > d2(f), Boucksom, Favre and Jonsson proved the existence and the uniqueness (up to scaling)
of two nef Weil-classes θ+ and θ− which are d1(f)-invariant by f∗ and f∗ respectively. They proved
also that the self-intersection θ+ · θ+ is equal to zero.

Remark 1.6. We remark that Theorem C and Theorem D also hold for the norm || · ||C . As for
Theorem A, as we do not know if the density result (Theorem 3.23) holds for the norm || · ||C , we have
a slightly weaker version of Theorem A for this norm.
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1.1. Organization. In Section 2, we give a brief review of valuations on convex sets. Section 3
devotes to the study of some positivity results of convex valuations, and the continuous extension of
the convolution operator. In Section 4, using the convolution operator we study a generalization of
Minkowski’s existence theorem. In Section 5, we use the positivity results to study the dynamical
degree and calculate its value. In Section 6, we study the positivity of invariant valuations under a
natural strict log-concavity assumption on certain dynamical degrees.

Acknowledgements. We would like to thank A. Bernig, S. Boucksom and C. Favre for their interests
and comments regarding this paper. We would also like to thank S. Alesker for answering several
questions on his works on the convolution of valuations. The first author would also like to thank
L. DeMarco for supporting his stay in Northwestern University to work on this project.

2. Preliminaries

2.1. Convex valuations. We first give a brief overview of valuations on convex sets. The classical
references are [MS83, McM93]. We also refer the reader to the more recent surveys [Ale07], [AF14]
and [Ber12]. Our general reference for convexity is [Sch14].

Let E be a Euclidian real vector space of dimension n. We denote the family of non-empty compact
convex subsets of E by K(E). Then K(E) has a natural topology induced by the Hausdorff metric
defined as follows:

dH(K,L) := inf{ε > 0| K ⊂ L+ εB & L ⊂ K + εB},
where B is the unit ball, where K,L ∈ K(E) and where + is the Minkowski sum. By Blaschke selection
theorem, (K(E), dH) is a locally compact space. Moreover, by associating a convex set to its support
function, (K(E), dH) can be isometrically embedded into the function space C0(Sn−1) equipped with
L∞-norm.

Definition 2.1. A functional φ : K(E)→ R is called a real convex valuation if

φ(K ∪ L) = φ(K) + φ(L)− φ(K ∩ L)

whenever K,L,K ∪ L ∈ K(E).

Remark 2.2. The convex valuation is just called valuation in classical literatures, here we follow the
terminology of [Ale07] because the valuation theory has been extended to not necessarily convex sets
on manifolds.

Definition 2.3. A convex valuation φ is called continuous if φ is continuous with respect to the
Hausdorff metric dH ; A convex valuation φ is called translation-invariant if φ(K + x) = φ(K) for any
K ∈ K(E) and any x ∈ E.

Let us denote by Val(E) the space of translation-invariant continuous valuations. The linear space
Val(E) has the natural topology given by a sequence of semi-norms:

||φ||N = sup
K⊂BN

|φ(K)|,

where BN is the ball of radius N . This sequence of semi-norms defines a Fréchet space structure on
Val(E). Actually, Val(E) is a Banach space endowed with the norm || · ||1.

2.2. McMullen’s grading decomposition. We recall McMullen’s decomposition of the space of
valuations Val(E).

Definition 2.4. A convex valuation φ is called α-homogeneous if φ(λK) = λαφ(K) for any λ ≥
0,K ∈ K(E).

Let us denote by Valα(E) the subspace of Val(E) of α-homogeneous convex valuations. The follow-
ing result is due to McMullen [McM77].

Theorem 2.5 (McMullen decomposition). Let n = dimE, then

Val(E) =

n⊕
i=0

Vali(E).
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Furthermore, every valuation φ can be decomposed uniquely into even and odd parts

φ = φeven + φodd,

where φeven(−K) = φeven(K), φodd(−K) = −φodd(K) for every K ∈ K(E). Thus we have the following
decomposition

Val(E) =
⊕

i=0,...,n;ε∈{even,odd}

Valεi(E).

2.2.1. Examples. Let us present some examples of convex valuations:

(1) The Euler characteristic χ which satisfies χ(K) = 1 for every K ∈ K(E) is a constant valuation.
(2) The Lebesgue measure vol(·) belongs to Valn(E).
(3) For any convex body A, the function φ : K(E) → R defined by φ(K) = vol(K + A) is in

Val(E).
(4) Let K1, ...,Kr ∈ K(E) be convex bodies, then there is a polynomial relation

vol(t1K1 + ...+ trKr) =
∑

i1+...+ir=n

n!

i1!i2!...ir!
V (K1[i1], ...,Kr[ir])t

i1
1 ...t

ir
r ,

where ti ≥ 0 and Kj [ij ] denotes ij copies of Kj and where the coefficient V (K1[i1], ...,Kr[ir])
denotes the mixed volume. Fix A1, ..., An−k ∈ K(E), then the function ψ : K(E)→ R defined
by

ψ(K) := V (K[k], A1, ..., An−k)

belongs to Valk(E).

2.3. Alesker’s irreducibility theorem. The group GL(E) acts on Val(E) by

(g · φ)(K) = φ(g−1K).

Note that Valeven
i (resp. Valodd

i ) is invariant under this action.

Example 2.6. Assume that φ ∈ Vali(E) is given by φL1,...,Ln−i(K) := V (K[i], L1, ..., Ln−i), then

(g · φL1,...,Ln−i)(K) = V (g−1(K)[i], L1, ..., Ln−i)

= |det g|−1V (K[i], g(L1), ..., g(Ln−i))

= |det g|−1φg(L1),...,g(Ln−i)(K),

which implies g ·φL1,...,Ln−i = |det g|−1φg(L1),...,g(Ln−i). In particular, if |det g| = 1, then g ·φL1,...,Ln−i =
φg(L1),...,g(Ln−i).

In the case of a general Radon measure µ on K(E)n−i such that:∫
K(E)n−i

V (B[i], g(L1), ..., g(Ln−i))dµ(L1, ..., Ln−i) < +∞,

we have

g · φµ(K) =
1

| det g|

∫
K(E)n−i

V (K[i], g(L1), ..., g(Ln−i))dµ(L1, ..., Ln−i).

In particular, if we set g · µ(L1, ..., Ln−i) = µ(g−1(L1), ..., g−1(Ln−i)), then g · φµ = 1
| det g|φg·µ.

Alesker’s irreducibility theorem [Ale01] is one of the milestones of the modern development of convex
valuation theory, it can be stated as follows:

Theorem 2.7 (Alesker’s irreducibility theorem). As a GL(E)-module, the natural representation of

GL(E) on the space Valeven
i (E) and Valodd

i (E) is irreducible for every i = 0, 1, ..., n (that is, there is
no proper closed GL(E)-invariant subspace).

As an immediate consequence, the above irreducibility result implies McMullen’s conjecture on
mixed volumes: the valuations of the form φ(K) = vol(K + A) span a dense subspace in Val(E); the
mixed volumes span a dense subspace in Val(E). Moreover, the above theorem also implies in the
same way that the linear combinations of valuations of the form φ(K) = V (K[i],∆[n − i]), where ∆
is a simplex in E, are dense in the space Vali(E). Alesker’s irreducibility theorem also enables us to
define some explicit positive cones in Vali(E) with nice properties.
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2.4. Convolution and product of smooth valuations.

Definition 2.8 (Alesker). A valuation φ ∈ Val(E) is called smooth if the map

GL(E)→ Val(E), g 7→ g · φ
is smooth as a map from a Lie group to a Banach space.

As a smooth valuation φ induces a map GL(E)→ Val(E) given by g 7→ g · φ ∈ Val(E). The space
of smooth valuations can be endowed with the topology of C∞ functions on GL(E) with values in the
Banach space Val(E) (this is usually called the Garding topology). This topology is naturally stronger
than the topology from Val(E) since there is a continuous injection

Val∞(E) ↪→ Val(E).

The space of smooth valuations is denoted by Val∞(E), it is dense in Val(E). Moreover, the repre-
sentation of GL(E) in Val∞(E) is continuous (see e.g. [AF14]).

By McMullen’s grading decomposition, we have

Val∞(E) =
⊕

i=0,...,n;ε∈{even,odd}

Valε,∞i (E).

Example 2.9. Assume that A1, ..., An−i ∈ K(E) are strictly convex bodies with smooth boundary,
then φA1,...,An−i(−) = V (−[i];A1, ..., An−i) is in Val∞i (E).

Example 2.10 (G-invariant valuations). Let G ⊂ SO(E) be a compact subgroup. Let ValG(E) be the
subspace of Val(E) of G-invariant convex valuations. By [Ale07, Proposition 2.6, 2.7] (see also [Ale04]),
the space ValG(E) is finite dimensional if and only if G acts transitively on the unit sphere of E, and
under the assumption that G acts transitively on the unit sphere of E one has ValG(E) ⊂ Val∞(E).

An crucial ingredient in recent development of valuation theory (or algebraic integral geometry)
is the product structure introduced by Alesker [Ale04]. To define it, Alesker used his irreducibility
theorem.

Definition 2.11 (Product). There exists a bilinear map

Val∞(E)×Val∞(E)→ Val∞(E)

which is uniquely characterized by the following two properties:

(1) continuity;
(2) if A,B ∈ K(E) are strictly convex bodies with smooth boundary, then the product of φA(·) =

vol(·+A), φB(·) = vol(·+B) is given by

φA · φB(K) = volV×V (∆(K) + (A×B)),

where ∆ : E → E × E is the diagonal embedding.

The product makes Val∞(E) a commutative associative algebra with the unit given by the Euler
characteristic.

Example 2.12. (see [Ale04, Proposition 2.2]) Assume that A1, ..., An−k and B1, ..., Bk are strictly
convex bodies with smooth boundary, then

V (−;A1, ..., An−k) · V (−;B1, ..., Bk) =
k!(n− k)!

n!
V (A1, ..., An−k,−B1, ...,−Bk) vol(−).

The convolution on Val∞(E) was introduced by Bernig and Fu in [BF06].

Definition 2.13 (Convolution). There exists a bilinear map

Val∞(E)×Val∞(E)→ Val∞(E)

which is uniquely characterized by the following two properties:

(1) continuity;
(2) if A,B ∈ K(E) are strictly convex bodies with smooth boundary, then the convolution of

φA(·) = vol(·+A), φB(·) = vol(·+B) is given by

φA ∗ φB(K) = vol(K + (A+B)).
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The convolution makes Val∞(E) a commutative associative algebra with the unit given by the Lebesgue
measure.

The following formula of ∗ is important in its extension to arbitrary mixed volumes (see Section
3.4).

Example 2.14. (see [BF06, Corollary 1.3]) Assume that A1, ..., An−k and B1, ..., Bn−l are strictly
convex bodies with smooth boundary, and k + l ≥ n, then

V (−;A1, ..., An−k) ∗ V (−;B1, ..., Bn−l) =
k!l!

n!
V (−;A1, ..., An−k, B1, ..., Bn−l).

The product and convolution of smooth valuations are dual to each other by Alesker’s Fourier
transform.

Theorem 2.15 (see [Ale11]). There is an algebra isomorphism̂: (Val∞(E), ·) → (Val∞(E), ∗) such
that

φ̂ · ψ = φ̂ ∗ ψ̂, φ, ψ ∈ Val∞(E).

Remark 2.16. Comparing with the intersection theory in algebraic geometry, it is convenient to view
Val∞i (E) as the group of numerical cycle classes of dimension i, then the convolution can be considered
as the cup product of cohomology classes, the product can be considered as the intersection of cycles
and Alesker-Fourier transform can be considered as Poincaré duality. In our setting, by Example 2.14
we find it convenient to apply convolution operation rather than product operation.

3. Positive convex valuations

3.1. Positivity of valuations. By Alesker’s irreducibility theorem, we know that the mixed volumes
span a dense subspace in Val(E). Let φ ∈ Vali(E), then for any ε > 0 there exist valuations given by
mixed volumes and real numbers c1, ..., cm such that

||φ−
m∑
k=1

ckψk|| ≤ ε,

where ψk(−) = V (−;Kk
1 , ...,K

k
n−i) ∈ Vali(E) for some Kk

1 , ...,K
k
n−i ∈ K(E). This motivates the

following definition for our positive cone.
For any positive Radon measure µ on K(E)n−i such that∫

K(E)n−i
V (B[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i) < +∞,

Denote by φµ the map from K(E) to R given by:

φµ(L) =

∫
K(E)n−i

V (L[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i),

where L ∈ K(E) is a convex body. We will see that for any Radon measure µ as above, the map φµ
defines a continuous translation invariant valuation (see Lemma 3.4).

Definition 3.1. We define the convex cone Pi ⊂ Vali(E) given by:

Pi :=

{
φµ|φµ(L) :=

∫
K(E)n−i

V (L[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i)

}
,

where µ is taken over the positive Radon measures on K(E)n−i such that∫
K(E)n−i

V (B[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i) < +∞.

We call a valuation φ ∈ Vali(E) positive if φ ∈ Pi.
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It is clear that Pi is a convex cone.
By a polarization argument, observe that a valuation φ ∈ Pi defines a unique function on K(E)i:

φ(L1, . . . , Li) =
1

i!

∂i

∂t1∂t2 . . . ∂ti
(φ(t1L1 + . . .+ tiLi))|t1=...=ti=0+ ,

where L1, . . . , Li are convex bodies. In particular, φ(L, . . . , L) = φ(L).

Definition 3.2. We say that a valuation φ ∈ Pi is strictly positive if there exists ε > 0 such that:

φ(L1, ..., Li) > εV (B[n− i], L1, ..., Li)

for any convex body L1, ..., Li ∈ K(E).

Remark 3.3. The definition for “strict positivity” is inspired by the study of positivity properties of
cohomology classes in complex geometry. The convex body B can be viewed as a Kähler class, and the
inequality defining strict positivity of φµ can be viewed as the pseudo-effectivity of φµ−εV (B[n−i];−).

We prove that the cone Pi is well-defined, i.e., Pi ⊂ Vali(E).

Lemma 3.4. For any Radon measure µ on K(E)n−i such that:∫
K(E)n−i

V (B[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i) < +∞,

the valuation φµ defines a continuous and translation invariant valuation.

Proof. Let us first prove that the integral is well-defined. Take a convex body L ∈ K(E), there exists
a constant λ > 0 such that L ⊂ λB. Since the mixed volume is monotone, we have:

φµ(L) =

∫
K(E)n−i

V (L[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i)

≤ λi
∫
K(E)n−i

V (B[i],K1, . . . ,Kn−i)dµ(K1, . . . ,Kn−i) < +∞.

As V (−;K1, . . . ,Kn−i) is a translation invariant valuation for any K1, . . . ,Kn−i ∈ K(E), it is clear
that φµ is also a translation invariant valuation. Let us prove that φµ is continuous. Assume that
dH(Lk, L)→ 0, we need to check that φµ(Lk)→ φµ(L). This is a direct consequence of the dominated
convergence theorem. �

Definition 3.5. We denote by V ′i the subspace generated by Pi, i.e., V ′i = Pi − Pi.

By Alesker’s density theorem, V ′i is dense in Vali(E) (with respect to the norm || · ||).

Example 3.6. When µ is a finite linear combination of Dirac measures on K(E)n−i, then the associ-
ated valuation φµ ∈ V ′i is a linear combination of mixed volumes.

Example 3.7. Let us consider the positive cones P1 and Pn−1:

(1) By Minkowski’s existence theorem (see [Sch14]), if µ is a positive Borel measure on Sn−1 which
is not concentrated on any great subsphere and has the origin as its center of mass, then µ is
given by the surface area measure of a convex body with non-empty interior. In particular,
for any n− 1 convex bodies K1, ...,Kn−1 with non-empty interior, up to a translation, there is
a unique convex body K with non-empty interior such that

V (−;K1, ...,Kn−1) = V (−;K[n− 1]).

By Minkowski’s existence theorem again, for any two convex bodies K,L, up to a translation,
there exists a unique convex body M such that

V (−;K[n− 1]) + V (−;L[n− 1]) = V (−;M [n− 1]).

We claim that the set of strictly positive elements in P1 is just

{V (−;K[n− 1])| K ∈ K(E) with non-empty interior}.
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Thus the cone P1 can be viewed as a convex cone in the space of Borel measures on Sn−1. To
this end, let φµ ∈ P1, we show that it gives a bounded linear functional on C0(Sn−1) endowed
with the norm | · |∞. For any f ∈ C0(Sn−1), we have

φµ(f) :=

∫
K(E)n−1

dµ(A1, ..., An−1)

∫
Sn−1

fdS(A1, ..., An−1)

≤ |f |∞
∫
K(E)n−1

dµ(A1, ..., An−1)

∫
Sn−1

hBdS(A1, ..., An−1)

= φµ(B)|f |∞,

where dµ(A1, ..., An−1) is the surface area associated to A1, ..., An−1 and hB is the support
function of the unit ball which is equal to 1 on Sn−1. Furthermore, if φµ is strictly positive,
then by Minkowski’s existence theorem there is a unique (up to a translation) convex body
Kµ with non-empty interior such that φµ = V (−;Kµ[n− 1]).

(2) For Pn−1, by the discussions in the proof of Theorem 3.23 and Theorem 6.1 we will see that

Pn−1 = {V (−;K)| K ∈ K(E)}.

By the embedding theorem for convex bodies, Pn−1 can be also realized as a convex cone in
the continuous function space C0(Sn−1), which is generated by support functions.

Remark 3.8. For the space Valn−1(E), we have McMullen’s characterization [McM80]. Let L(Sn−1)
denote the space of the restriction of linear functions to the unit sphere, then there is an isomorphism
between the quotient space C0(Sn−1)/L(Sn−1) and Valn−1(E). Thus for every φ ∈ Valn−1(E), up to
a linear function, there is a unique continuous function fφ such that

φ(K) =

∫
Sn−1

fφ(x)dS(Kn−1;x),

where dS(Kn−1;x) is the surface area measure of K. By the correspondences established in [LX17],
the analogy of the space Valn−1(E) on a projective variety is the vector space of real numerical divisor
classes, and the analogy of Pn−1 is the movable cone of divisor classes. As for P1, its closure is the
dual of the cone given by positive continuous functions, and its analogy in complex geometry is the
movable cone of curve classes.

For the general space Vali(E) = Val+i (E)
⊕

Val−i (E), we have the Klain-Schneider realizations (see

e.g. [Ale01, Section 2], [Ale11, Section 2.4]). The space Val+i (E) can be GL(E)-equivalently realized as
a subspace of the space of smooth sections of certain line bundle over the Grassmannian Gri(E), and
the space Val−i (E) can be GL(E)-equivalently realized as a subspace of the quotient of the space of
smooth sections of certain line bundle over the partial flag space Fi,i+1(E). Thus by Klain-Schneider
realizations, it seems possible to discuss positivity in the smooth section space of certain line bundles.

Remark 3.9. Another motivation for the definition of Pk is the positive cone in ValSO(n)(E) – the
space of SO(n)-invariant valuations. By the definition in [Ber12, Section 5.5], a valuation φ is called
positive if φ(K) ≥ 0 for all K ∈ K(E). By Hadwiger’s theorem, a SO(n)-invariant valuation φ
is positive if and only if φ =

∑
k ckµk, where ck ≥ 0 and µk is the k-th intrinsic volume. Thus

PSO(n)
k = R+µk. In the setting of hermitian integral geometry, there are also similar results (see [BF11,

Proposition 4.1]). It is interesting to give a characterization for valuations φ ∈ Vali(E) satisfying
φ(K) ≥ 0 for every K ∈ K(E).

3.2. Reverse Khovanskii-Teissier inequality. Consider two Radon measures µ, ν on K(E)n−i and
K(E)n−j respectively. Let φµ ∈ V ′i, φν ∈ V ′j be their associated valuations. We define the valuation
φµ∗̃φν given by:

φµ∗̃φν(−) =
i!j!

n!

∫
K(E)2n−i−j

V (−;A1, . . . , An−i, B1, . . . Bn−j)dµ(A)dν(B).(3)

where dµ(A) := dµ(A1, . . . , An−i), dν(B) := dν(B1, . . . , Bn−j). We will see immediately that the
integral in (3) is well defined, that is, for any D ∈ K(E), φµ∗̃φν(D) is finite (see Corollary 3.14).
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The following inequality is a key ingredient of our paper. It was proved for valuations given by
mixed volumes in [LX17, Theorem 5.9]. In this section, we state it for valuations from the positive
cones Pi.
Theorem 3.10. Let φ ∈ Pk and ψ ∈ Pn−k, then for any K ∈ K(E) we have

φ(K)ψ(K) ≥ vol(K)φ∗̃ψ.
Proof. By definition, there exists two Radon measures µ and ν on K(E)n−k and K(E)k such that
φ = φµ and ψ = φν respectively. By definition, φµ∗̃φν is equal to

φµ∗̃φν =
k!(n− k)!

n!

∫
K(E)n

V (A1, ..., An−k, B1, ..., Bk)dµ(A1, ..., An−k)dµ(B1, ..., Bk).

Claim: there is a constant c > 0 depending only on n, k such that

V (K[k];A1, ..., An−k)V (K[n− k];B1, ..., Bk) ≥ cV (A1, ..., An−k, B1, ..., Bk) vol(K).

The above inequality is just a slight generalization of [LX17, Theorem 5.9], and the proof is similar.
We refer to [LX17, Section 5] for the details (see also [Xia17]). Let us give a sketch of the argument
here. Without loss of generality, we can assume the Al, Bl and K are open and have non-empty
interior. We apply a result of [Gro90] and results from mass transport (see [Bre91, McC95]). Then
after solving a real Monge-Ampère equation related to K, the desired geometric inequality of convex
bodies can be reduced to an inequality for mixed discriminants – the mixed discriminants given by
the Hessian of those convex functions defining the convex bodies. More precisely, as in [LX17] (see
also [ADM99]) the inequality for mixed volumes is reduced to an inequality for integrals:∫

Rn
D(∇2fA1 , ...,∇2fAn−k , (∇

2FK)[k])dx

∫
Rn
D((∇2FK)[n− k],∇2fB1 , ...,∇2fBk)dx

≥ k!(n− k)!

n!

∫
Rn

det(∇2FK)dx

∫
Rn
D(∇2fA1 , ...,∇2fAn−k ,∇

2fB1 , ...,∇2fBk)dx,

where ∇2 is the Hessian operator, D(−) denotes mixed discriminants, and fAi , fBj , FK are convex
functions obtained by the results in [Gro90] and [Bre91,McC95].

Let MK , M1, . . .Mn−k, M
′
1, . . . ,M

′
k be the associated positive symmetric matrices given by ∇2FK ,

∇2fA1 , . . .∇2fAn−k , ∇2fB1 , . . . ,∇2fBk respectively. After an application of the Cauchy-Schwarz in-
equality

(

∫
|fg|dv)2 ≤ (

∫
|f |2dv)(

∫
|g|2dv)

to the left hand side of the above inequality for integrals, the pointwise inequality needed is:

D(MK [k];M1, ...,Mn−k)D(MK [n− k];M ′1, ...,M
′
k) ≥

k!(n− k)!

n!
D(M1, ...,Mn−k,M

′
1, ...,M

′
k) det(MK).

The above inequality for positive matrices is equivalent to an inequality for positive (1, 1)-forms by
replacing the positive matrices by positive (1, 1) forms and the discriminants by wedge product of
differential forms (see e.g. [Xia17, Section 2]). Assume that M = [aij̄ ] is a positive Hermitian matrix,
then it determines a positive (1, 1) form on Cn given by:

M 7→ ωM :=
√
−1
∑
i,j

aij̄dz
i ∧ dz̄j .

By this correspondence, the pointwise inequality for discriminants is equivalent to

(ωkMK
∧ ωM1 ∧ ...ωMn−k)(ωn−kMK

∧ ωM ′1 ∧ ... ∧ ωM ′k) ≥ k!(n− k)!

n!
ωnMK

(ωM1 ∧ ...ωMn−k ∧ ωM ′1 ∧ ... ∧ ωM ′k).

Note that wedge products of positive (1, 1) forms are Hermitian positive. More generally, assume
that Φ is a Hermitian positive (n − k, n − k) form, Ψ is a Hermitian positive (k, k) form and ω is a
positive (1, 1) form1, then

(4) (Φ ∧ ωk)(ωn−k ∧Ψ) ≥ k!(n− k)!

n!
(Φ ∧Ψ)ωn.

1For the positivity of forms, we refer the reader to [Dem12b, Chapter 3] and [DELV11, Section 1]. In [DELV11,
Definition 1.4], “Hermitian positive” is called semipositive.
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Recall that a (l, l) form is Hermitian positive on the vector space Cn if its associated Hermitian form
on ∧lCn is semipositive (see [DELV11, Definition 1.4]), that is, the coefficients of the (l, l) form give a
semipositive Hermitian matrix on ∧lCn, here ∧lCn is the l-th wedge product of Cn. By taking some
local coordinates, it is sufficient to check the above inequality when ω is given by the identity matrix.
As Φ is Hermitian positive, then ∑

|J |=n−k

(
∑
|I|=n−k

ΦI,I)dzJ ∧ dz̄J − Φ

is also Hermitian positive. As Ψ is Hermitian positive and the cone generated by Hermitian positive
(k, k) forms is dual to the cone generated by Hermitian positive (n − k, n − k) forms (see [DELV11,
Section 1]), we get  ∑

|J |=n−k

(
∑
|I|=n−k

ΦI,I)dzJ ∧ dz̄J − Φ

 ∧Ψ ≥ 0,

which gives the desired pointwise inequality (4).
In summary, we finally obtain

φ(K)ψ(K) ≥ vol(K)φ∗̃ψ,
as required. �

Remark 3.11. As for the terminology “reverse Khovanskii-Teissier inequality”, it was used in [LX16].
The reason is that: the classical Khovanskii-Teissier inequality gives us a lower bound of φ∗̃ψ, but the
above inequality gives us an upper bound:

φ∗̃ψ ≤ inf
vol(K)=1

φ(K)ψ(K).

See also [LX16] for a discussion in the abstract setting from the viewpoint of convex analysis. In
complex geometry, as a corollary of Demailly’s holomorphic Morse inequality (see [Dem12a, Chapter
8]), the special case of the above inequality for divisor classes (when k = 1) was first noted by
Siu [Siu93]. The inequality for general (k, k) classes was first noted in [Xia15]. The pointwise inequality
for forms in the proof is a generalization of [Pop16], where the weak transcendental Morse inequality
for (1, 1) classes was proved with optimal estimate.

3.2.1. Bézout type inequality. Recently, inspired by Bézout bound in algebraic geometry, the second
author [Xia17] noticed that the reverse Khovanskii-Teissier inequality can be used to obtain Bézout
type inequality in convex geometry (see also [SZ16]). This can be also formulated using convolution.

Theorem 3.12 (see [Xia17], Theorem 1.1). Let φi ∈ Pn−ai where 1 ≤ i ≤ r and |a| :=
∑r

i=1 ai ≤ n,
then there is a constant c > 0 depending only on n, a1, ..., ar such that, for any D ∈ K(E) we have

(φ1∗̃...∗̃φr)(D) vol(D)r−1 ≤ c
r∏
i=1

φi(D).

In particular, if |a| = n, then

(φ1∗̃...∗̃φr) vol(D)r−1 ≤ c
r∏
i=1

φi(D).

Proof. This follows directly from Theorem 3.10, as exactly in [Xia17, Theorem 1.1]. �

Proposition 3.13. The operator ∗̃ defined by the formula (3) induces a bilinear map ∗̃ : V ′i × V ′j →
V ′i+j−n.

Proof. This proposition follows immediately from the following Lemma 3.14 and Lemma 3.15. �

Lemma 3.14. For any φµ ∈ Pi, ψν ∈ Pj, the integral (3) defining φµ∗̃ψν is well defined.

Proof. We only need to check that the integral defining φµ∗̃ψν(D) is well defined, when D has non-
empty interior. This follows directly from Theorem 3.12. �

It is possible that different Radon measures give the same valuations, we prove that φµ∗̃φν is
independent of the representations.
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Lemma 3.15. The valuation φµ∗̃φν is independent of the choices of µ, ν.

Proof. Consider Radon measures µ1, µ2 on K(E)n−i and ν1, ν2 on K(E)n−j respectively. Assume that
φµ1 = φµ2 , φν1 = ψν2 , we prove that φµ1 ∗̃φν1 = φµ2 ∗̃φν2 .

We need to verify that for any L ∈ K(E),∫
K(E)2n−i−j

V (L[i+ j − n];A1, . . . , An−i, B1, . . . Bn−j)dµ1(A)dν1(B)

=

∫
K(E)2n−i−j

V (L[i+ j − n];A1, . . . , An−i, B1, . . . Bn−j)dµ2(A)dν2(B).

For any t = (t1, . . . , tj) ∈ (R+)j , denote by Kt = t1K1 + ... + tjKj where K1, ...,Kj are convex
bodies. Since φν1 = φν2 , we have that φν1(Kt) = φν2(Kt). Since φνi(Kt) is a polynomial in t1, ..., tj ,
the equality on the coefficients of the polynomial gives∫

K(E)n−j
V (K1, ...,Kj ;B1, . . . Bn−j)dν1(B) =

∫
K(E)n−j

V (K1, ...,Kj ;B1, . . . Bn−j)dν2(B).

In particular, this implies φµ1 ∗̃φν1 = φµ1 ∗̃φν2 . Similarly, φµ1 ∗̃φν2 = φµ2 ∗̃φν2 , hence φµ1 ∗̃φν1 = φµ2 ∗̃φν2 .
�

3.3. Norms on the space of valuations. The aim of this section is to define some norms on the
space generated by Pi. These norms are induced by the positive cone Pi.

3.3.1. Positivity norm || · ||P . We define the norm || · ||P , for which we will show that the subspace
Pi ∩Val∞(E) of smooth valuations is dense in V ′i.

Definition 3.16. For any valuation φ ∈ V ′i, we define ||φ||P by the following formula.

||φ||P := inf{t ≥ 0| |φ(L1, ..., Li)| ≤ tV (B[n− i], L1, ..., Li) for any L1, ..., Li ∈ K(E)}.

First we note that for any φ ∈ V ′i, ||φ||P is well defined.

Proposition 3.17. The map || · ||P : V ′i → R+ defines a norm on V ′i.

Proof. The only fact which is not straightforward is whether || · ||Pi is well-defined. Consider φ ∈ V ′i,
we prove that there exists a t > 0 such that

|φ(L1, ..., Li)| ≤ tV (B[n− i], L1, ..., Li).

By definition, there exists a signed Radon measure µ on K(E)n−i such that φ = φµ. Consider the
Hahn decomposition µ = µ+ − µ− of the measure µ so that φµ = φµ+ − φµ− . One has that

|φ(L1, ..., Li)| ≤ φµ+(L1, ..., Li) + φµ−(L1, ..., Li).

Let us find an upper bound for φµ+(L1, ..., Li). By Theorem 3.10 we have

φµ+(L1, ..., Li) =

∫
K(E)n−i

V (L1, ..., Li,K1, ...,Kn−i)dµ
+(K)

≤ cV (B[n− i], L1, ..., Li)

∫
K(E)n−i

V (B[i],K1, ...,Kn−i)dµ
+(K),

where c > 0 depends only on n, i, vol(B). Since φµ+ ∈ Pi, we get

φµ+(L1, ..., Li) ≤ tV (B[n− i], L1, ..., Li)

for some t > 0. Similar estimates also hold for φµ− , this proves that ||φ||P < +∞.
�

Remark 3.18. Observe that by homogeneity for L1, ..., Li, we have

||φ||P := inf{t ≥ 0| |φ(L1, ..., Li)| ≤ tV (B[n− i], L1, ..., Li) for any L1, ..., Li ⊂ B}.

By the above remark, we get:

Proposition 3.19. For any φ ∈ V ′i, ||φ|| ≤ vol(B)||φ||P . Hence, there is a continuous injection:

(V ′i, || · ||P) ↪→ (Vali(E), || · ||).
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Regarding the definition for || · ||P , we introduce the following positivity notation.

Definition 3.20. Let φ, ψ ∈ V ′i, we say that φ � ψ (or equivalently, ψ � φ), if for any L1, ..., Li ∈
K(E),

φ(L1, ..., Li) ≤ ψ(L1, ..., Li).

Using the terminology from complex geometry, φ � ψ means that ψ−φ is pseudo-effective in some
sense.

Lemma 3.21. Let ψ ∈ Pj , φ1, φ2 ∈ V ′i. Assume that φ1 � φ2, then φ1∗̃ψ � φ2∗̃ψ.

Proof. This follows directly from the definition. �

We also note that the GL(E) actions preserve the partial order �.

Lemma 3.22. Let g ∈ GL(E). Consider φ1, φ2 ∈ V ′i such that φ1 � φ2, then g · φ1 � g · φ2.

Next we show that the space of smooth valuations is dense in V ′i with respect to the topology given
by || · ||P .

Theorem 3.23. The space of finite sums of mixed volumes of convex bodies with strictly convex and
smooth boundary is dense in V ′i for the topology induced by the norm || · ||P . In particular, the space
Val∞i (E) ∩ V ′i is dense in V ′i for the topology induced by the norm || · ||P .

Proof. Since V ′i is generated by Pi, we are reduced to prove the density of smooth valuations in Pi.
We prove that the finite sums of mixed volumes of convex bodies with strictly convex and smooth
boundary are dense in V ′i.

We prove it in two steps.

Step 1: Let us first prove that the valuations in Pi such that their associated measure has bounded
support are dense in Pi.

Take φ ∈ Pi such that φ = φµ where µ is its associated positive Radon measure on K(E)n−i. For
any integer k > 0, we consider the measure µk given by µk = µ|B(0,k), where

B(0, k) =
{

(K1, . . . ,Kn−i) ∈ K(E)n−i | Kj ⊂ kB,∀ 0 6 j 6 n− i
}
⊂ K(E)n−i.

By construction, the measure µk has bounded support. (By Blaschke selection theorem, B(0, k) is a
compact set.) By the monotone convergence theorem, we have that:

φµk(L) =

∫
K(E)n−i

V (K1, . . . ,Kn−i, L[i])dµk(K1, . . . ,Kn−i)→ φ(L).

Let us prove that ||φµ − φµk ||P converges to zero as k → +∞. Fix some convex bodies L1, . . . Li.
By construction, one has that:

0 6 φ(L1, . . . , Li)− φµk(L1, . . . , Li).

Moreover, by Theorem 3.10 applied to φ′ = V (K1, . . . ,Kn−i,−[i]) and ψ′ = V (L1, . . . , Li,−[n − i])
and to the convex body B, there exists a constant C > 0 such that we have:

V (K1, . . . ,Kn−i, L1, . . . , Li) 6 C
V (K1, . . . ,Kn−i,B[i])

vol(B)
V (B[n− i], L1, . . . , Li).

Integrating on the previous inequality, one obtains:

φ(L1, . . . , Li)− φµk(L1, . . . , Li)

6
C

vol(B)

(∫
B(0,k)c

V (K1, . . . ,Kn−i,B[i])dµ(K1, . . . ,Kn−i)

)
V (B[n− i], L1, . . . , Li),

where B(0, k)c = K(E)n−i \B(0, k). We have thus proved:

|(φ− φµk)(L1, . . . , Li)| 6
C

vol(B)
(φ(B)− φµk(B))V (B[n− i], L1, . . . , Li),

for any convex bodies L1, . . . Li. Since φ(B)−φµk(B)→ 0 as k → +∞, we have that ||φ−φµk ||P → 0
as required.
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Step 2: Suppose that φ = φµ ∈ Pi is a valuation where µ is a Radon measure on K(E)n−i whose
support is bounded. We prove that φ can be approached by φk, where φk ∈ Pi ∩ Val∞i (E) is a finite
sum of mixed volumes given by convex bodies with strictly convex and smooth boundary.

Suppose that the support of µ is contained in B(0, N) where N > 0 is an integer. For any ε > 0,
there exists a partition ∪mj=1Oj of B(0, N) such that for any (K1, . . . ,Kn−i), (K

′
1, . . . ,K

′
n−i) ∈ Oj , one

has:

(5) dH(Kj ,K
′
j) ≤ ε, ∀ 1 ≤ j ≤ n− i.

Since the valuations given by mixed volumes are monotone and since suppµ ⊂ B(0, N), there is a
constant C > 0 (depending only on N, i) such that

(6) |V (K1, . . . ,Kn−i, L1, . . . , Li)− V (K ′1, . . . ,K
′
n−i, L1, . . . , Li)| 6 CεV (B[n− i], L1, . . . , Li).

Let us define the measure µε given by

µε :=
m∑
j=1

µ(Oj)δ(Kj
1 ,...,K

j
n−i)

,

where (Kj
1 ,K

j
2 , . . . ,K

j
n−i) ∈ Oj satisfying that Kj

1 , . . .K
j
n−i are convex bodies with smooth and strictly

convex boundary, and where δ
(Kj

1 ,K
j
2 ,...,K

j
n−i)

is the dirac mass at the point (Kj
1 ,K

j
2 , . . . ,K

j
n−i). Let us

estimate the norm ||φµε − φ||P . Take L1, . . . , Li ∈ K(E). By definition, one has that

φµε(L1, . . . , Li) =
m∑
j=1

µ(Oj)V (Kj
1 , . . . ,K

j
n−i, L1, . . . , Li),

=
m∑
j=1

∫
Oj

V (Kj
1 , . . . ,K

j
n−i, L1, . . . , Li)dµ(K1, . . . ,Ki).

The difference |φµε(L1, . . . , Li)− φ(L1, . . . , Li)| is bounded by:

|φµε(L1, . . . , Li)− φ(L1, . . . , Li)|

6
m∑
j=1

∣∣∣∣∣
∫
Oj

(V (Kj
1 , . . . ,K

j
n−i, L1, . . . , Li)− V (K1, . . . ,Kn−i, L1, . . . , Li))dµ(K1, . . . ,Kn−i)

∣∣∣∣∣
6

m∑
j=1

∫
Oj

|V (Kj
1 , . . . ,K

j
n−i, L1, . . . , Li)− V (K1, . . . ,Kn−i, L1, . . . , Li)|dµ(K1, . . . ,Kn−i).

Applying (6) to the previous inequality, we obtain the following upper bound:

|φµε(L1, . . . , Li)− φ(L1, . . . , Li)| 6 Cε
m∑
j=1

∫
Oj

V (B[n− i], L1, . . . , Li)dµ(K1, . . . ,Kn−i).

Hence,

|φµε(L1, . . . , Li)− φ(L1, . . . , Li)| 6 CεV (B[n− i], L1, . . . , Li)µ(B(0, N)),

and this implies that ||φµε − φ||P 6 Cεµ(B(0, N)) is arbitrary small since µ(B(0, N)) is finite.

We have thus proven that finite sums of mixed volumes of convex bodies with smooth and strictly
convex boundary are dense in Pi with respect to the norm || · ||P as required. �

A direct consequence is the following result:

Corollary 3.24. The set of valuations {V (L;−[n− 1]) | L ∈ K(E)} is dense in Pn−1 with respect to
the topology given by || · ||P .
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3.3.2. Cone norm || · ||C. As V ′i is generated by Pi, it is naturally endowed a norm || · ||C induced by the
cone structure. This construction is inspired by the construction in algebraic geometry (see [Dan17]).

Definition 3.25. For any φ ∈ V ′i, we define ||φ||C by the following formula:

||φ||C := inf
φ=φ+−φ−,φ±∈Pi

φ+(B) + φ−(B).

Here, the symbol C stands for the fact that this norm is induced by the convex cone Pi.

Remark 3.26. Equivalently, by the Jordan decomposition of signed measures we have ||φµ||C :=
φ|µ|(B), where |µ| is the absolute value of a Radon measure µ on K(E)n−i.

Remark 3.27. By construction, if φ ∈ Pi, then ||φ||C = φ(B).

Lemma 3.28. The function || · ||C defined above is a norm on the space V ′i.

Proof. It is clear that:

• For any c ∈ R and any φ ∈ V ′i, we have ||cφ||C = |c|||φ||C ;
• For any φ, ψ ∈ V ′i, we have ||φ+ ψ||C ≤ ||φ||C + ||ψ||C .

It remains to verify:

• If ||φ||C = 0, then φ = 0.

To this end, take a sequence of decompositions φ = φ+
k − φ

−
k such that φ+

k (B) + φ−k (B)→ 0. By the
definition of the Banach structure on Val(E) (see (1)), for any K ⊂ B we have

|φ(K)| = |φ+
k (K)− φ−k (K)| ≤ φ+

k (B) + φ−k (B)→ 0.

Hence, φ(K) = 0 for any K ⊂ B, implying φ = 0. �

Proposition 3.29. The set of positive valuations φµ, where µ has bounded support, is dense in Pi
with respect to the topology given by || · ||C.

Proof. This is straightforward. �

3.3.3. Comparison of two norms.

Proposition 3.30. For any φ ∈ V ′i, one has that ||φ||P ≤ C||φ||C for some uniform constant C > 0.
Hence, there is a continuous injection:

(V ′i, || · ||C) ↪→ (V ′i, || · ||P).

Proof. Consider φ ∈ V ′i and assume that φ = φ+ − φ− where φ+, φ− ∈ Pi. Fix some convex bodies
L1, . . . , Li. One has that:

|φ(L1, . . . , Li)| 6 |φ+(L1, . . . , Li)|+ |φ−(L1, . . . , Li)|.
By Theorem 3.10 applied to φ′ = φ±, ψ = V (L1, . . . , Li,−[n−i]) and to the convex body B respectively,
there exists a uniform constant C > 0 such that:

φ±(L1, . . . , Li) 6 Cφ±(B)V (B[n− i], L1, . . . , Li).

In particular, this implies that:

|φ(L1, . . . , Li)| 6 C(φ+(B) + φ−(B))V (B[n− i], L1, . . . , Li).

By considering two sequences φ+,j , φ−,j ∈ Pi such that limj φ+,j(B) + φ−,j(B) = ||φ||C , we obtain:

|φ(L1, . . . , Li)| 6 C||φ||CV (B[n− i], L1, . . . , Li),

for any convex bodies L1, . . . , Li. By definition, we obtain:

||φ||P 6 C||φ||C ,
as required. �

Corollary 3.31. One has the following sequence of continuous injections:

(V ′i, || · ||C) ↪→ (V ′i, || · ||P) ↪→ (Vali(E), || · ||).

Proof. This follows directly from Proposition 3.19 and Proposition 3.30. �
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3.3.4. Sub-multiplicity of norms. We get the following sub-multiplicity result for the norms defined
above. This will be important in the completion of the space V ′i.

Lemma 3.32. Let φµ ∈ Pi, ψν ∈ Pj, then there is c > 0 depending only on i, j, n, vol(B) such that:

• ||φµ∗̃ψν ||C ≤ c||φµ||C ||ψν ||C;
• ||φµ∗̃ψν ||P ≤ c||φµ||P ||ψν ||P .

Proof. Let us first prove the first inequality. Note that

||φµ∗̃ψν ||C = φµ∗̃ψν(B) ≤ cφµ(B)ψν(B) = c||φµ||C ||ψν ||C ,

where the second estimate follows from Theorem 3.12.
For the second inequality, let L1, ..., Li+j−n ∈ K(E), we have

φµ∗̃ψν(L1, ..., Li+j−n) =
i!j!

n!

∫
K(E)2n−i−j

V (L1, ..., Li+j−n, A1, ..., An−i, B1, ..., Bn−j)dµ(A)dν(B)

≤ c||φµ||P
∫
K(E)n−j

V (B[n− i];L1, ..., Li+j−n, B1, ..., Bn−j)dν(B)

≤ c||φµ||P ||ψν ||PV (B[2n− i− j];L1, ..., Li+j−n).

Thus, by definition ||φµ∗̃ψν ||P ≤ c||φµ||P ||ψν ||P . �

3.4. An extension of the convolution operator. Recall that for φµ ∈ V ′i, ψν ∈ V ′j , the formula

for φµ∗̃ψν ∈ V ′i+j−n is defined by

φµ∗̃ψν(−) =
i!j!

n!

∫
K(E)2n−i−j

V (−;A1, . . . , An−i, B1, . . . Bn−j)dµ(A)dν(B).

Let VCi ,VPi be the completions of the space V ′i with respect to the norms ||·||C and ||·||P respectively.
In the following, we let γ ∈ {C,P}. We show that the operator ∗̃ extends continuously to the spaces

Vγi with respect to || · ||γ .

Theorem 3.33. With respect to || · ||γ, the operator ∗̃ : V ′i × V ′j → V ′i+j−n extends continuously to a
bilinear operator

∗̃ :Vγi × V
γ
j → V

γ
i+j−n

(Φ,Ψ) 7→ Φ∗̃Ψ.

Proof. We first consider the case when γ = C. Assume that {φk} ⊂ V ′i, {ψk} ⊂ V ′j are Cauchy

sequences with respect to the norm || · ||C , and φk → Φ, ψk → Ψ. We show that {φk∗̃ψk} ⊂ V ′i+j−n is

also a Cauchy sequence with respect to || · ||C .
As {φk}, {ψk} are Cauchy sequences, by the definition of the cone norm || · ||C , we have the following

properties:

(1) For any ε > 0 and for all k, l large enough, there exist decompositions

φk − φl = φ+ − φ−, ψk − ψl = ψ+ − ψ−

such that φ± ∈ Pi, ψ± ∈ Pj and

φ+(B) + φ−(B) < ε, ψ+(B) + ψ−(B) < ε.

(2) There exist two decompositions

φk = φ+
k − φ

−
k , ψk = ψ+

k − ψ
−
k

such that φ±k ∈ Pi, ψ
±
k ∈ Pj and such that

φ+
k (B) + φ−k (B) ≤ C, ψ+

k (B) + ψ−k (B) ≤ C

for a uniform constant C > 0.
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We write φk∗̃ψk − φl∗̃ψl as follows:

(7)

φk∗̃ψk − φl∗̃ψl = φk∗̃(ψk − ψl) + (φk − φl)∗̃ψl
= (φ+

k − φ
−
k )∗̃(ψ+ − ψ−) + (φ+ − φ−)∗̃(ψ+

k − ψ
−
k )

= (φ+
k ∗̃ψ

+ + φ−k ∗̃ψ
− + φ+∗̃ψ+

k + φ−∗̃ψ−k )
−(φ+

k ∗̃ψ
− + φ−k ∗̃ψ

+ + φ+∗̃ψ−k + φ−∗̃ψ+
k ).

This is a decomposition of φk∗̃ψk−φl∗̃ψl as a difference of two elements in Pi+j−n. By Lemma 3.32
applied to each term of (7), we get

(8) ||φk∗̃ψk − φl∗̃ψl||C ≤ c′Cε,

where c′ depends only on vol(B), i, j, n. Thus {φk∗̃ψk} must be a Cauchy sequence with respect to
the norm || · ||C .

Next, assume that {φ′k}, {ψ′k} are another two Cauchy sequences also satisfying φ′k → Φ, ψ′k → Ψ,
we need to verify that the limits of {φ′k∗̃ψ′k} and {φk∗̃ψk} are the same, i.e.,

lim
k→∞

||φ′k∗̃ψ′k − φk∗̃ψk||C = 0.

Since ||φ′k − φk||C → 0 and ||ψ′k − ψk||C → 0, this follows from similar arguments as above.
In particular, the convolution of Φ,Ψ is defined by the following (well-defined) limit:

Φ∗̃Ψ := lim
k→∞

φk∗̃ψk ∈ VCi+j−n ⊂ Vali+j−n(E).

Let us consider the case when γ = P. We use the same notations as above. Assume that {φk} ⊂
Pi −Pi, {ψk} ⊂ Pj −Pj are Cauchy sequences with respect to the norm || · ||P , and φk → Φ, ψk → Ψ.
We show that {φk∗̃ψk} ⊂ Pi+j−n − Pi+j−n is also a Cauchy sequence with respect to || · ||P .

As {φk}, {ψk} are Cauchy sequences, by the definition of the positivity norm || · ||P , we have the
following properties:

(1) For any ε > 0 and for all k, l large enough,

− εV (B[n− i];−) � φk − φl � εV (B[n− i];−)

− εV (B[n− j];−) � ψk − ψl � εV (B[n− j];−).

(2) There exists c > 0 such that for all k we have

− cV (B[n− i];−) � φk � cV (B[n− i];−)

− cV (B[n− j];−) � ψk � cV (B[n− j];−)

We write φk∗̃ψk − φl∗̃ψl as follows:

φk∗̃ψk − φl∗̃ψl = φk∗̃(ψk − ψl) + (φk − φl)∗̃ψl.

For any L1, ..., Li+j−n ∈ K(E), as φk∗̃(ψk − ψl)(L1, ..., Li+j−n) is computed by an integral, by the
above properties it is easy to see that

|φk∗̃(ψk − ψl)(L1, ..., Li+j−n)| ≤ cεV (B[2n− i− j];L1, ..., Li+j−n).

Hence, ||φk∗̃(ψk − ψl)||P ≤ cε. Similarly, we also have ||ψk∗̃(φk − φl)||P ≤ cε.
The same argument shows that the limit

Φ∗̃Ψ := lim
k→∞

φk∗̃ψk ∈ VPi+j−n ⊂ Vali+j−n(E)

is well defined, i.e., it is independent of the choices of the Cauchy sequences. �

Remark 3.34. By Theorem 3.33, the results in Theorem 3.10 and Theorem 3.12 can be extended to
valuations in the closure of the cones Pi, with respect to the norms || · ||γ .

4. A variant of Minkowski’s existence theorem

By the discussion in Example 3.7, the classical Minkowski’s existence theorem shows that every
strictly positive element in P1 is of the form V (−;K[n−1]). In this section, we discuss a generalization
of this result, proving Theorem B.
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4.1. Existence of the solutions.

Theorem 4.1. For any strictly positive valuation ψ ∈ Pi, there is a constant c > 0 (depending only
on ψ) and a convex body B with vol(B) = 1 such that

ψ∗̃V (B[i− 1];−) = cV (B[n− 1];−) ∈ Val1(E).

In the following proof, we denote by φB the valuation given by φB = V (B[i−1];−[n− i+ 1]) where
B is a convex body.

Given ψ ∈ Pi, by scaling the convex set B, Theorem 4.1 implies that the functional equation (with
unknown B ∈ K(E)):

(ψ − V (B[n− i];−)) ∗̃φB = 0 ∈ Val1(E), where vol(B) > 0

always admits a solution.

Proof. The proof is inspired by the method in [LX16]2. We consider the following variational problem:

c := inf
M∈K(E),vol(M)=1

ψ(M).

Claim 1: Let {Ml} be a minimizing sequence, that is, vol(Ml) = 1 and ψ(Ml)↘ c, then we prove
that up to some translations, the sequence {Ml} is compact in (K(E), dH).

Since ψ ∈ Pi is strictly positive, there exists an ε > 0 such that:

ψ(L1, . . . , Li) > εV (B[n− i], L1, . . . , Li)

for any convex body L1, . . . , Li. In particular, one has that

V (K[n− i],M [i]) ≤ ψ(M)

for any convex body M where K = 1/εn−iB. Then there is a uniform constant d > 0 such that

V (K[n− i];Ml[i]) ≤ d
for the minimizing sequence Ml.

By Alexandrov-Fenchel’s inequality, we have

V (K[n− i];Ml[i]) ≥ V (K[n− 1],Ml)
n−i/n−1 vol(Ml)

i−1/n−1 = V (K[n− 1],Ml)
n−i/n−1,

where the last equality follows from vol(Ml) = 1. In particular, V (K[n− 1],Ml) is uniformly bounded
above. Let rl > 0 be the minimal number such that Ml ⊂ rlK (up to a translation). Or equivalently,
1/rl is the maximal number such that Ml/rl ⊂ K (up to a translation). By the Diskant inequality,

1/rl ≥
V (K[n− 1],Ml)

1
n−1 −

(
V (K[n− 1],Ml)

n
n−1 − vol(K) vol(Ml)

1
n−1

) 1
n

vol(Ml)
1

n−1

≥ vol(K)

nV (K[n− 1],Ml)
,

where the last inequality follows from the generalized binomial formula (see also [LX17]). We get3

(9) rl ≤ nV (K[n− 1],Ml)/ vol(K).

Thus the sequence rl is uniformly bounded above. Then Blaschke selection theorem implies that, up
to translations, the sequence Ml has an accumulation point B ∈ K(E) with vol(B) = 1. In particular,

c = ψ(B) = inf
M∈K(E),vol(M)=1

ψ(M).

Claim 2: For any N ∈ K(E), we have

(10)
n!

i!(n− i+ 1)!
ψ∗̃φB(N)− ψ(B)V (B[n− 1], N) ≥ 0,

2It was realized in [LX17] that the same ideas had previously appeared in the classical work of Alexandrov [Ale38].
3This can also be obtained by applying Theorem 3.10.
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and

(11)
n!

i!(n− i+ 1)!
ψ∗̃φB(B)− ψ(B)V (B[n− 1], B) = 0.

Note that, since the minimal of the variational problem is achieved at M = B, for any t ≥ 0 and
any convex body N , we have

ψ

(
B + tN

vol(B + tN)1/n

)
≥ ψ(B).

Calculating the right derivative at t = 0 implies

n!

i!(n− i+ 1)!
ψ∗̃φB(N)− ψ(B)V (B[n− 1], N) ≥ 0.

The equality (11) for B follows from the minimal property of B.

Claim 3: There is a convex body L with non-empty interior such that

n!

i!(n− i+ 1)!
ψ∗̃φB(−) = V (L[n− 1],−).

By the discussion in Example 3.7, this is a direct consequence of Minkowski’s existence theorem
since ψ∗̃φB ∈ P1 is strictly positive.

Now we can finish the proof of our theorem. By Claim 2 and 3, we have

V (L[n− 1], N)− ψ(B)V (B[n− 1], N) ≥ 0

for any N ∈ K(E). Let N = L, we get

vol(L) = V (L[n− 1], L) ≥ ψ(B)V (B[n− 1], L) ≥ ψ(B) vol(B)n−1/n vol(L)1/n.

Thus vol(L)n−1/n ≥ ψ(B) vol(B)n−1/n. On the other hand, let N = B, the equality in Claim 2 implies

V (L[n− 1], B) = ψ(B) vol(B) ≥ vol(L)n−1/n vol(B)1/n.

Thus V (L[n− 1], B) = vol(L)n−1/n vol(B)1/n, which implies the L = ψ(B)1/n−1B. Then we get

n!

i!(n− i+ 1)!
ψ∗̃φB(−) = V (L[n− 1],−) = ψ(B)V (B[n− 1],−).

This finishes the proof of the result. �

4.2. Compactness of the solution set. In Minkowski’s existence theorem, up to some translation,
the solution is unique. In the generalized case, we show that the (normalized) solution set of the
functional equation (with unknown B ∈ K(E))

(ψ − V (B[n− i];−)) ∗̃φB = 0 ∈ Val1(E), where vol(B) = 1, φB(−) = V (−;B[i− 1]),

is compact in (K(E), dH).

Proposition 4.2. Given any strictly positive valuation ψ ∈ Pi, up to translations, the set of normal-
ized solutions of the above equation is compact.

Proof. Fix a convex body L with non-empty interior. Since vol(B) = 1, similar to the argument in
Theorem 4.1, by Blaschke selection theorem and the Diskant inequality it is sufficient to show that
V (B;L[n− 1]) is uniformly bounded above.

To this end, note that

V (B[n− 1], L) ≥ V (B,L[n− 1])1/n−1 vol(B)n−2/n−1,

thus it is sufficient to prove the upper bound for V (B[n− 1], L). By the functional equation, we get

n!

i!(n− i+ 1)!
(ψ∗̃φB)(L) = V (B[n− 1], L).
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Assume that ψ is given by the measure µ, then

n!

i!(n− i+ 1)!
(ψ∗̃φB)(L) =

∫
K(E)n−i

V (B[i− 1], L;A1, ..., An−i)dµ(A1, ..., An−i)

≤ cV (B[i− 1], L[n− i+ 1])

∫
K(E)n−i

V (L[i], A1, ..., An−i)dµ(A1, ..., An−i),

where the second inequality follows from Theorem 3.10, and c > 0 depends only on n, i, vol(L). Then
it is sufficient to give a upper bound for V (B[i− 1], L[n− i+ 1]).

Since ψ is strictly positive,

1 = vol(B) =
n!

i!(n− i+ 1)!
(ψ∗̃φB)(B) ≥ c′V (L[n− i];B[i]),

thus V (B[i], L[n − i]) is uniformly bounded above. On the other hand, since vol(B) = 1, the
Alexandrov-Fenchel inequality implies that

V (B[i], L[n− i]) ≥ V (B[i− 1], L[n− i+ 1])n−i/n−i+1.

Thus V (B[i − 1], L[n − i + 1]) is uniformly bounded above, which implies the compactness of the
solution set. �

Remark 4.3. By the above proof, it is clear that the compactness result holds whenever the vol(B)
has a uniformly positive lower bound.

Remark 4.4. Using the same argument as in Theorem 4.1 and Proposition 4.2, one can get the
following analogy in complex geometry (see also [LX16, Section 5]).

Let X be a compact Kähler manifold of dimension n. Assume that Θ ∈ Hk,k(X,R) is
a strictly positive (k, k) class in the sense that for some Kähler class ω the class Θ−ωk
contains some positive (k, k) current. Let

c = inf
A Kähler, vol(A)=1

(Θ ·An−k).

Then there is a decomposition

Θ ·Bn−k−1 = cBn−1 +N ,

where B is big and nef satisfying vol(B) = 1, N · N ≥ 0 for any nef class N and
N ·B = 0. Moreover, the set of the (normalized) solutions B is compact.

In particular, if any big nef class is Kähler, we must have N = 0, thus on Kähler manifolds satisfying
this condition, for any strictly positive (k, k) class Θ, there is a Kähler class B such that

(Θ−Bk) ·Bn−k−1 = 0.

Note that this holds for Abelian varieties and generic hyperkähler manifolds.
Assume that X is a smooth Abelian variety or generic hyperkähler manifold, and assume 2k ≤ n.

By Hodge theory, we have the primitive decomposition with respect to the Kähler class B:

Θ−Bk = Pk ⊕B · Γ,

where Pk ∈ Hk,k(X,R) is the primitive class (i.e., Bn−2k+1 · Pk = 0), and Γ is a (k − 1, k − 1) class.
In particular, if n = 4, k = 2, then (Θ − B2) · B = 0. Hence, up to a primitive class, every strictly
positive (2, 2) class class is equal to B2 for some Kähler class B.

5. Dynamical degrees

5.1. Existence. Recall that GL(E) has a natural action on Val(E), which is defined by

(g · φ)(K) = φ(g−1K).

The space Vali(E) is fixed by this action. Furthermore, by Example 2.6, the map φ 7→ g · φ maps the
positive cone Pi to Pi.
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Definition 5.1 (Degree). Given ψ ∈ Pi and φ ∈ Pn−i strictly positive, the (n − i)-th degree of
g ∈ GL(E) with respect to φ, ψ is defined by

degn−i(g) = (g · ψ)∗̃φ.

We are interested in the sequence {degn−i(g
p)}p.

Definition 5.2 (Dynamical degree). Given g ∈ GL(E), ψ ∈ Pi and φ ∈ Pn−i strictly positive, the
(n− i)-th dynamical degree of g is defined by

dn−i(g) : = lim
k→∞

degn−i(g
k)1/k

= lim
k→∞

((gk · ψ)∗̃φ)1/k.

Remark 5.3. In the study of the dynamics of a holomorphic map f : X → X where X is a projective
variety, one can similarly define a degree:

degk(f) =

∫
X
f∗ωk ∧ ωn−k,

where ω is a Kähler class on X. Similarly, we can study the asymptotic behaviour of the sequence
degn−i(f

k), k ∈ N, and the i-th dynamical degree of f is defined similarly.

Our first fundamental result is that the (n− i)-th dynamical degree exists, that is, the limit defining
dn−i(g) exists, and dn−i(g) is independent of the choices of ψ ∈ Pi, φ ∈ Pn−i.

5.1.1. Sub-multiplicity estimate. In order to prove the existence of dn−i(g), we first establish the
following sub-multiplicity estimate for degrees.

Lemma 5.4. Consider φ ∈ Pn−i and ψ ∈ Pi are given by

ψ(−) = V (−;B[n− i]) ∈ Pi, φ(−) = V (−;B[i]) ∈ Pn−i,

where B ∈ K(E) has non-empty interior. We consider the n − i-th degree degn−i given by φ, ψ.
Assume f, g ∈ GL(E), then there is a constant C > 0 depending only on vol(B), n, i such that

degn−i(fg) ≤ C degn−i(f) degn−i(g).

In particular, given g ∈ GL(E), the sequence {log
(
C degn−i(g

k)
)
}∞k=1 is subadditive, that is,

log(C degn−i(g
k+l)) ≤ log(C degn−i(g

k)) + log(C degn−i(g
l)), for any k, l ∈ N.

Proof. For any convex body B, let us denote by φB and ψB given by φB = V (B[i],−[n − i]) and
ψB = V (B[n− i],−[i]).

Since degn−i(−) is given by ψB and φB, we get

(12)
degn−i(f) degn−i(g) = ((f · ψB)∗̃φB) ((g · ψB)∗̃φB)

= |det(fg)|−1
(
ψf(B)∗̃φB

) (
ψg(B)∗̃φB

)
= |det(fg)|−1|det f |−1

(
ψf(B)∗̃φB

) (
ψfg(B)∗̃φf(B)

)
.

Note that there exists a constant c′ > 0 such that (ψf(B)∗̃φB)(ψfg(B)∗̃φf(B)) = c′φB(f(B))ψfg(B)(f(B)).
By Theorem 3.10, there is a uniform constant c > 0 such that

(13)
(ψf(B)∗̃φB)(ψfg(B)∗̃φf(B)) ≥ c vol(f(B))(ψfg(B)∗̃φB)

= c|det f ||det fg| vol(B)((fg · ψB)∗̃φB)
= c|det f ||det fg| vol(B) degn−i(fg).

Thus, (12) and (13) imply that

degn−i(fg) ≤ C degn−i(f) degn−i(g),

where C = 1/(c vol(B)) > 0 and this finishes the proof of the sub-multiplicity estimate. �

Remark 5.5. In the study of complex dynamics, the analogous estimate for rational self-maps is
obtained in [DS05b, DS04] using the theory of positive currents. The above simple proof is inspired
by [Dan17].
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Lemma 5.6 (Fekete lemma). For every subadditive sequence {ak}∞k=1, the limit limk→∞
ak
k exists and

lim
k→∞

ak
k

= inf
k≥1

ak
k
.

Theorem 5.7. Given g ∈ GL(E), the dynamical degree dn−i(g) exists and is independent of the
choices of strictly positive ψ ∈ Pi, φ ∈ Pn−i.

Proof. If ψ = V (−; B[n − i]), φ = V (−; B[i]), the existence of dn−i(g) follows directly from Fekete’s
lemma.

For the independence on ψ, φ, we first note that

ψ � ||ψ||PV (B[n− i];−), φ � ||φ||PV (B[i];−),

which follow from the definition of || · ||P . Applying Lemma 3.22 implies:

gk · ψ � ||ψ||Pgk · V (B[n− i];−).

Moreover, Lemma 3.21 yields:

(gk · ψ)∗̃φ 6 ||ψ||Pgk · V (B[n− i];−)∗̃φ.

Then we get:

(14) (gk · ψ)∗̃φ 6 ||ψ||P ||φ||P(gk · V (B[n− i];−))∗̃V (B[i];−).

On the other hand, by the strict positivity of ψ, φ, there is a constant C > 0 depending only on
ψ, φ such that

(15) C(gk · V (B[n− i],−)∗̃V (B[i],−) 6 (gk · ψ)∗̃φ.

Thus, the inequalities (14), (15) imply that dn−i(g) does not depend on the choices of φ ∈ Pn−i and
ψ ∈ Pi. �

5.1.2. Norms of linear operators. Let g ∈ GL(E), then by Example 2.6 it induces a linear operator
(denoted by gi):

gi : V ′i → V ′i.
In the following, let γ ∈ {C,P}.
We first show that gi extends to a map:

gi : Vγi → V
γ
i .

Lemma 5.8. Let g ∈ GL(E). Assume that ||φk − φ||γ → 0, then ||g · φk − g · φ||γ → 0.

Proof. For the norm || · ||C , it is obvious.
We only need to deal with the norm || · ||P . By definition, we have

|(φk − φ)(L1, ..., Li)| ≤ ||φk − φ||PV (B[n− i];L1, ..., Li),

which implies

|g · (φk − φ)(L1, ..., Li)| ≤ ||φk − φ||PV (B[n− i]; g−1(L1), ..., g−1(Li))

= ||φk − φ||P
1

| det g|
V (g(B)[n− i];L1, ..., Li).

On the other hand, by Theorem 3.10 we have

V (g(B)[n− i];L1, ..., Li) ≤ cV (g(B)[n− i]; B[i])V (B[n− i];L1, ..., Li),

where c > 0 depends only on n, i, vol(B). Hence,

||g · (φk − φ)||P ≤ c
1

| det g|
V (g(B)[n− i]; B[i])||φk − φ||P .

This finishes the proof of the result. �

Next we show that the dynamical degree dn−i(g) is just the spectral radius of this operator.
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Theorem 5.9. Let g ∈ GL(E) and let gi be the induced operator on Vγi , then the following equality
is satisfied:

dn−i(g) = ||gn−i : VPi → VPi || = ||gn−i : VCi → VCi ||,
where the symbol ||gn−i : VPi → VPi || and ||gn−i : VCi → VCi || denotes the norm of the operator gn−i on
VPi and VCi respectively.

Proof. For simplicity, since each space is endowed with its appropriate norm, we denote by ||gn−i||P
and ||gn−i||C the norm of the operator gn−i on VPi and VCi respectively. We need to verify the equality

dn−i(g) = lim
k→∞

||gki ||1/kγ .

We first consider the case when γ = C.
Let φB = V (B[n− i];−), by defintion we get

||gk · φB||C = (gk · φB)(B) = V (gk(B)[n− i],B[i])/|det g|k,
||φB||C = φB(B) = V (B[n− i],B[i]).

This implies that

(16) ||gki ||C ≥
V (gk(B)[n− i],B[i])

| det g|k vol(B)
.

On the other hand, take a sequence φl ∈ Pi − Pi such that ||φl||C = 1 and ||gk · φl||C → ||gki ||C
as l → ∞. For l0 large enough, we have ||gki ||C ≤ 2||gk · φl0 ||C . Assume that φl0 = φ+

l0
− φ−l0 is a

decomposition for φl0 , then

||gki ||C ≤ 2(gk · φ+
l0

(B) + gk · φ−l0(B)).

For the term gk · φ+
l0

(B), by Theorem 3.10 there is a constant c > 0 depending only on n, i, vol(B)
such that

gk · φ+
l0

(B) =

∫
K(E)n−i

V (g−k(B)[i], A1, ..., An−i)dµ
+
l0

(A1, ..., An−i)

≤ cV (g−k(B)[i],B[n− i])
∫
K(E)n−i

V (B[i], A1, ..., An−i)dµ
+
l0

(A1, ..., An−i)

= cV (g−k(B)[i],B[n− i])φ+
l0

(B).

Similarly,

(17) gk · φ−l0(B) ≤ cV (g−k(B)[i],B[n− i])φ−l0(B).

Since ||φl0 ||C = 1, we get

(18) ||gki ||C ≤ 2cV (g−k(B)[i],B[n− i]).

Next we consider the case when γ = P. Note that ||φB||P = 1. By the definition for ||gk · φB||P ,
we have gk · φB(B) ≤ ||gk · φB||P vol(B), hence

||gk · φB||P ≥ V (B[n− i], g−k(B)[i])/ vol(B).

This implies that

(19) ||gki ||P ≥
V (gk(B)[n− i],B[i])

|det g|k vol(B)
.

On the other hand, take a sequence φl such that ||φl||P = 1 and ||gk ·φl||P → ||gki ||P as l→∞. For
l0 large enough, we have ||gki ||P ≤ 2||gk · φl0 ||P . For any L1, .., Li,

|gk · φl0(L1, .., Li)| = |φl0(g−k(L1), .., g−k(Li))|

≤ ||φl0 ||PV (B[n− i], g−k(L1), .., g−k(Li)).

Applying ||φl0 ||P = 1 and Theorem 3.10 yields a uniform constant c′ > 0 such that

(20) ||gki ||P ≤ c′V (gk(B)[n− i],B[i])/| det gk|.



26 NGUYEN-BAC DANG AND JIAN XIAO

In summary, by (16), (18), (19), (20) and taking the limits, we obtain the desired equality

dn−i(g) = lim
k→∞

||gki ||1/kγ .

�

5.1.3. Log-concavity. By Theorem 5.7, the definition of dn−i(g) is independent of the choices of ψ, φ.
A direct consequence of this result is the following:

Proposition 5.10. For any g ∈ GL(E), the sequence {di(g)} is log-concave, that is, for 1 ≤ i ≤ n−1

di(g)2 ≥ di−1(g)di+1(g).

Proof. By Theorem 5.7, we get

di(g) = lim
k→∞

(| det gk|−1V (gk(B)[i], B[n− i]))1/k

= |det g|−1 lim
k→∞

(V (gk(B)[i], B[n− i]))1/k,

where B is a fixed convex body with non-empty interior. Then the log-concavity property follows
immediately from the Alexandrov-Fenchel inequality for mixed volumes. �

5.1.4. Relative version. In the study of dynamics of a holomorphic map that preserves some fibration,
it is useful to consider a relative version of dynamical degrees. We have a corresponding picture for
convex valuations. Let S be a subspace of dimension m, and assume that l : S → E is the embedding.
Assume that g ∈ GL(E) fixes the subspace S, equivalently, there is a map f ∈ GL(S) such that
g ◦ l = l ◦ f .

Definition 5.11. Assume that ψ ∈ Pi(E), φ ∈ Pn−i+m(E) are strictly positive, and let τB =
V (−;B[m]) ∈ Valn−m(E), where B ∈ K(S) satisfies volS(B) > 0, then the (n − i)-th relative de-
gree of g is defined by

reldegn−i(g) = (g · ψ)∗̃φ∗̃τB.

Definition 5.12. The (n− i)-th relative dynamical degree of g is defined by

reldn−i(g) = lim
k→∞

(reldegn−i(g
k))1/k.

Similar to Theorem 5.7, we have:

Theorem 5.13. The relative dynamical degree reldn−i(g) exists and is independent of the choices of
ψ ∈ Pi, φ ∈ Pn−i (which are strictly positive), and B ∈ K(S) with non-empty interior.

Proof. The proof is similar to Theorem 5.7, so we omit the details. The only extra ingredient is the
following reduction formula for mixed volumes (see [Sch14, Theorem 5.3.1]).

Lemma 5.14. Let k be an integer satisfying 1 ≤ k ≤ n − 1, let H ⊂ Rn be a k-dimensional linear
subspace and let L1, ..., Lk,K1, ...,Kn−k be convex bodies with Li ⊂ H for i = 1, ..., k. Then(

n
k

)
V (L1, ..., Lk,K1, ...,Kn−k) = VH(L1, ..., Lk)VH⊥(pH⊥(K1), ..., pH⊥(Kn−k)),

where VH(·) and VH⊥(·) denote the mixed volume in H and H⊥, and pH⊥ : Rn → H⊥ is the projection
map.

�

Remark 5.15. Similar to the complex geometry setting (see e.g. [DN11], [Dan17]), one could also
establish a product formula between the dynamical degrees and the relative dynamical degrees.
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5.2. Evaluation of dynamical degrees. In this section, we give a formula for dn−i(g) using the
eigenvalues of g. The key point is the formula

dn−i(g) = | det g|−1 lim
k→∞

(V (gk(B)[n− i], B[i]))1/k.

Theorem 5.16. Let g ∈ GL(E), and assume that ρ1, ..., ρn are the eigenvalues of g satisfying

|ρ1| ≥ |ρ2| ≥ ... ≥ |ρn|,

then the (n− i)-th dynamical degree dn−i(g) = | det g|−1
∏n−i
k=1 |ρk|.

It is clear that we only need to check the equality

d̂n−i(g) := lim
k→∞

(V (gk(B)[n− i], B[i]))1/k =
n−i∏
k=1

|ρk|.

Remark 5.17. In the study of dynamics of monomial maps, the above formula was first obtained
in [Lin12,FW12]. The proof of [Lin12] is algebraic, and the proof of [FW12] applies some ideas from
integral geometry. We present a different (and simpler) approach to the calculation of di(g), by using
positivity results.

5.2.1. Simple case: d1(g). We first discuss the simple calculation for d1(g). We need to verify the
formula

lim
k→∞

V (gk(B), B[n− 1])1/k = |ρ1(g)|.

By Theorem 5.7, for any L,M ∈ K(E) with non-empty interior, we have

d1(g) = |det g|−1 lim
k→∞

V (gk(L),M [n− 1])1/k.

First, we prove d1(g) ≤ |det g|−1|ρ1(g)|. To this end, we fix a Euclidean structure on E and assume
that 0 ∈ L is an interior point. Then for any point x ∈ ∂L we have |g(x)| ≤ ||g|||x|, thus

g(L) ⊂ c||g||B
where B is the unit ball and c = maxx∈∂L |x|. In particular, applying the observation to gk implies

gk(L) ⊂ c||gk||B.
Thus,

d1(g) ≤ |det g|−1 lim
k→∞

||gk||1/kV (cB,M [n− 1])1/k

= |det g|−1|ρ1(g)|.

Next, we prove the reverse inequality d1(g) ≥ |det g|−1|ρ1(g)|. For any k, we can take a unit vector
xk such that |gk(xk)| = ||gk||. We take L = 2B and take M = B. Then the segment Sk := [0, xk] ⊂ L,
yielding

V (gk(Sk),M [n− 1]) ≤ V (gk(L),M [n− 1]).

Note that

V (gk(Sk),M [n− 1]) = ||gk||V (||gk||−1gk(Sk),M [n− 1]).

Since ||gk||−1gk(Sk) is a unit vector, Lemma 5.14 implies

V (||gk||−1gk(Sk),M [n− 1]) = n−1Vgk(Sk)⊥(M).

Since M = B, the volume Vgk(Sk)⊥(M) is a constant, thus

V (gk(Sk),M [n− 1]) = c||gk||.
Then taking the limit implies

d1(g) = |det g|−1 lim
k→∞

V (gk(L),M [n− 1])1/k

≥ |det g|−1 lim
k→∞

(c||gk||)1/k = | det g|−1|ρ1(g)|.

In summary, we get the formula d1(g) = |det g|−1|ρ1(g)|.
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5.2.2. General case. For the general case, the idea is as follows:

(1) Prove the formula for diagonalizable matrices over C with distinct eigenvalues;
(2) Show that dn−i(·) is a continuous function over GL(E);
(3) For an arbitrary g ∈ GL(E), approximate g using diagonalizable matrices over C with distinct

eigenvalues and apply the continuity of dn−i(·).

Lemma 5.18. Assume g ∈ GL(E) is diagonalizable over C, and assume g has distinct eigenvalues.

Then d̂k(g) =
∏k
i=1 |ρi(g)|.

Proof. After a change of basis, we could assume that the matrix form of g takes its real Jordan
canonical form. Since g has distinct eigenvalues, its real Jordan canonical form can be written as

J1

. . .

Js
λs+1

. . .

λn


,

where Ji =

(
ai bi
−bi ai

)
corresponds to the non-real eigenvalue λi = ai +

√
−1bi, and λs+1, ..., λn are

real eigenvalues.
In order to calculate the dynamical degree of g, we consider the following convex body

Kr = Dr1 × ...×Drs × Irs+1 × ...× Irn ,

where Dri is a disk of radius ri, and Irj is a segment of length rj with 0 as its center.
For any γ, τ ≥ 0, we have γKr + τKt = Kγr+τt. In particular, this gives an explicit formula for

vol(γKr + τKt). On the other hand, note that

vol(Kγr+τt) = vol(γKr + τKt) =
∑
k

n!

k!(n− k)!
V (Kr[k],Kt[n− k])γkτn−k.

By comparing the coefficients, we get the explicit formula for V (Kk
r ,K

n−k
t ) for any r, t. Here, we omit

the detailed computations.
Next we take r = t = (1, ..., 1) and compute V (gp(K1)[k],K1[n− k]). To this end, we note that

gp(K1) = Krp ,

where rp = (|λ1|p, ..., |λs|p, |λs+1|p, ..., |λn|p). Then a direct computation shows that

d̂k(g) =
k∏
i=1

|ρi(g)|.

�

Remark 5.19. The calculations in Lemma 5.18 are inspired by the calculations in [FW12, Section
5.1], where the authors did the computations for diagonalizable maps over R and also gave a remark
for diagonalizable maps over C.

Next we show that the dynamical degree function

dk : GL(E)→ R, g 7→ dk(g)

is continuous.

Theorem 5.20. The dynamical degree dk(·) is a continuous function on GL(E). More precisely, let
{gl}l≥1, g ∈ GL(E) endowed with the topology induced by the L2-norm of E × E, then

lim
gl→g

dk(gl) = dk(g).
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Proof. It is sufficient to prove that

lim
gl→g

d̂k(gl) = d̂k(g).

By Theorem 5.7, the dynamical degree is independent of the choices of φ, ψ. In the following we
take K = B to be the unit ball with 0 as its center. We have

d̂k(g) = lim
k→∞

V (gp(K)[k],K[n− k])1/p.

We first prove liml→∞ d̂k(gl) ≥ d̂k(g). We consider the inradius of gpl (K) relative to gp(K), which
is defined by

r(gpl (K), gp(K)) := max{λ > 0| λgp(K) ⊂ gpl (K) up to some translation}.

Applying the Diskant inequality to gpl (K), gp(K), we get

r(gpl (K), gp(K)) ≥
vol(gpl (K))

nV (gpl (K)[n− 1], gp(K))
.

We next estimate the mixed volume V (gpl (K)[n− 1], gp(K)). Note that

V (gpl (K)[n− 1], gp(K)) = | det(gl)|pV (K[n− 1], (g−pl ◦ g
p)(K))

= | det(gl)|p
∫
Sn−1

h(g−pl ◦gp)(K)(x)dS(Kn−1;x),

where h(g−pl ◦gp)(K) is the support function of the convex body (g−pl ◦ g
p)(K), and dS(Kn−1; ·) is the

surface area measure. For any linear map A : E → E, by the definition of support function we have

hA(K)(x) = max{x · y| y ∈ A(K)} = max{ATx · y| y ∈ K}.

Thus hA(K)(x) = hK(ATx). Since K = B, we have hK(x) = hB(x) = |x|. Then we get

h(g−pl ◦gp)(K)(x) = hK((g−pl ◦g
p)Tx) = |(g−pl ◦g

p)Tx|

≤ ||g−pl ◦g
p|||x| = ||g−pl ◦g

p||hK(x).

Applying the above inequality to V (gpl (K)[n− 1], gp(K)) implies

V (gpl (K)[n− 1], gp(K)) ≤ |det(gl)|p(||g−pl ◦g
p||) vol(K).

Then we have

V (gpl (K)[k],K[n− k])1/p ≥ r(gpl (K), gp(K))k/pV (gp(K)[k],K[n− k])1/p

≥
(

vol(gpl (K))

nV (gpl (K)[n− 1], gp(K))

)k/p
V (gp(K)[k],K[n− k])1/p

≥

(
| det(gl)|p vol(K)

n|det(gl)|p(||g−pl ◦gp||) vol(K)

)k/p
V (gp(K)[k],K[n− k])1/p

= (||g−pl ◦g
p||1/p)−kn−k/pV (gp(K)[k],K[n− k])1/p.

Lemma 5.21. For any sequence gl converging to g, we have

lim
l→+∞

lim
p→+∞

||g−pl ◦g
p||1/p ≤ 1.

Proof. We only need to consider the action of g−pl ◦g
p on invariant subspaces. Assume that ||x|| = 1

and x ∈ ker(g − λI)b, where b is the multiplicity of the eigenvalue λ. By assumption, we have that:

gp(x) ∈ ker(g − λI)b.

By considering the Jordan form of g, there exists a constant C > 0 (independent of x, as ||x|| = 1)
such that:

||gp(x)|| 6 Cpb|λ|p.



30 NGUYEN-BAC DANG AND JIAN XIAO

Since gl converges to g, gp(x) is in the union of invariant subspaces of gl which correspond to the
eigenvalues converging to λ. Thus for any fixed δ > 0, there exists lδ such that when l ≥ lδ, we have

||g−pl ◦ g
p(x)|| 6 C ′pb′(|λ| − δ)−p|λ|p,

where C ′, b′ are uniform constants by considering Jordan forms. Taking the limits gives

lim
l→+∞

lim
p→+∞

||g−pl ◦ g
p||1/p 6 1.

�

Using the above lemma, we get d̂k(g) ≤ liml→∞ d̂k(gl).

Similarly, by studying the inradius of gp(K) relative to gpl (K), we get d̂k(g) ≥ liml→∞ d̂k(gl). This
finishes the proof of the continuity. �

Remark 5.22. The complex analog of Theorem 5.20 implies the following interesting continuity result
for dynamical degrees of holomorphic maps:

Let X be a compact Kähler manifold of dimension n. Assume that fl, f are dominated
holomorphic self-maps of X, and assume that the induced actions

f∗l , f
∗ : H1,1(X,R)→ H1,1(X,R)

satisfy liml→∞ f
∗
l = f∗, then liml→∞ dk(fl) = dk(f) holds for any k.

To our knowledge, the previous result is that: if the induced actions onHk,k(X,R) satisfies liml→∞ f
∗
l =

f∗, then liml→∞ dk(fl) = dk(f).

Now we can finish the proof of Theorem 5.16.

Proof of Theorem 5.16. It is sufficient to prove d̂k(g) =
∏k
i=1 |ρi(g)|. Assume that f ∈ GL(E) is

diagonalizable over C and has distinct eigenvalues. For any fixed g ∈ GL(E), we consider the path

gt := (1− t)f + tg.

By linear algebra (see e.g. [Har95]), there is a sequence gl such that each gl has distinct eigenvalues
(thus it is diagonalizable over C), and liml→∞ gl = g. (Note that this density statement is not true
for diagonalizable matrices over R.)

Since the eigenvalues depend continuously on the entries of a matrix, we get liml→∞ |ρi(gl)| = |ρi(g)|.
Applying d̂k(gl) =

∏k
i=1 |ρi(gl)| and Theorem 5.20 yields

d̂k(g) = lim
l→∞

d̂k(gl) = lim
l→∞

k∏
i=1

|ρi(gl)| =
k∏
i=1

|ρi(g)|.

�

5.3. A generalization: multiple dynamical degrees. Actually we can show the existence of some
kind of dynamical degrees of multiple linear actions. By the previous discussions for dynamical degrees,
for simplicity, we only consider valuations of the type V (−;B[i]).

Definition 5.23. Let g1, g2, ..., gk ∈ GL(E), and let B ∈ K(E) be a convex body with non-empty
interior. Then we define the degree deg(g1, ..., gk) as

deg(g1, ..., gk) = (g1 · ψB)∗̃...∗̃(gk · ψB)∗̃φB,
where ψB = V (−;B) and φB = V (−;B[n − k]). In particular, if g1 = ... = gk = g, then we get the
k-th degree degk(g) (up to some scaling).

Proposition 5.24. If we define the dynamical degree of g1, ..., gk as

d(g1, ..., gk) := lim sup
p→∞

deg(gp1 , ..., g
p
k)

1/p,

then d(g1, ..., gk) exists and does not depend on the choices of B. Moreover, d(g1, ..., gk) is bounded

above by
∏k
i=1 dk(gi).

Proof. This follows directly from Theorem 3.12. �
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5.3.1. An application to Laurent system. We give an application to the solution set of a Laurent
system. First recall the famous Bernstein-Khovanskii-Kushnirenko theorem (see e.g. [Ber75], [Kho78],
[Kus76]). Let V = Rn. We identify Zn with the Laurent monomials, i.e., to each integral point a =
(a1, ..., an) ∈ Zn we associate the monomial xa := xa11 x

a2
2 ...x

an
n . A Laurent polynomial P (x) =

∑
cax

a

is a finite linear combination of Laurent monomials with coefficients ca ∈ C. The support of a Laurent
polynomial P (x) =

∑
cax

a is defined as

supp(P ) := {a ∈ Zn|ca 6= 0}.

We denote the convex hull of a finite set I ⊂ Zn by ∆I ⊂ V . For each finite set I ⊂ Zn, we associate
the linear subspace of Laurent polynomials: LI = {P | supp(P ) ⊂ I}.

Theorem 5.25 (Bernstein-Khovanskii-Kushnirenko theorem). Let I1, ..., In be finite sets of Zn. Let
N(I1, ..., In) be the number of solutions in (C∗)n of a general system of Laurent polynomial equations
P1 = P2 = ... = Pn = 0 with Pi ∈ LIi, then

N(I1, ..., In) = n!V (∆I1 , ...,∆In).

The group GL(n,Z) has a natural action on Zn, which in turn induces an action on the Laurent
polynomials:

P (x) =
∑

cax
a 7→ (g · P )(x) :=

∑
cax

g(a),

where g ∈ GL(n,Z). It is natural to ask the asymptotic behaviour of the number of solutions under
this induced action. Note that we have g(∆I) = ∆g(I).

Proposition 5.26. Let I1, ..., In be finite sets of Zn, and let gi ∈ GL(n,Z) with 1 ≤ i ≤ k. Let
N(p, g1, ..., gk) be the number of solutions in (C∗)n of a general system of Laurent polynomial equations
P1 = P2 = ... = Pn = 0 with Pi ∈ Lgpi (Ii) for i ≤ k and Pj ∈ LIj for j ≥ k + 1, then the limit

lim sup
p→+∞

1

p
logN(p, g1, ..., gk)

exists. In particular, the function N(·, g1, ..., gk) defined over positive integers has polynomial growth.

Proof. Fix a convex body L ⊂ V with non-empty interior. Then there exists a constant c > 0 such
that ∆Ii ⊂ cL (up to some translation) for any i. This implies

N(p, g1, ..., gk) = n!V (∆gp1(I1), ...,∆gpk(Ik),∆Ik+1
, ...,∆In)

= n!V (gp1(∆I1), ..., gpk(∆Ik),∆Ik+1
, ...,∆In)

≤ n!cnV (gp1(L), ..., gpk(L), L[n− k]).

Applying Proposition 5.24 gives the desired result. �

Remark 5.27. In the complex geometry setting, for holomorphic self-maps of a compact Kähler
manifold, the multiple dynamical degrees control how the multiple maps separate the orbits.

6. Positivity of invariant convex valuations

In this section, we focus on the space Val(E) and the positive cones defined in this space.
Let φµ ∈ V ′n−i, recall that the action of g ∈ GL(E) on φµ (see Example 2.6) is given by

g · φµ =
1

| det g|
φg·µ.

6.1. Invariant classes in complex dynamics. To motivate the discussions, we first recall some facts
from complex dynamics. Let X be a compact Kähler manifold of dimension n, and let f ∈ Aut(X) be
a holomorphic automorphism of X. Positive invariant classes and invariant currents play an important
role in the study of dynamics of f . We consider the following positive cone in Hk,k(X,R):

Pk = {{Θ} ∈ Hk,k(X,R)| Θ is a smooth positive (k, k) form}.
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It is clear that Pk is convex. We denote its closure in Hk,k(X,R) by Pk. It is clear that Pk is a closed
convex cone with non-empty interior, satisfying Pk − Pk = Hk,k(X,R). Since f∗ preserves Pk, the
Perron-Frobenius theorem implies that there exists an eigenclass Γk ∈ Pk \ {0} such that

f∗Γk = dkΓk,

where dk is the spectral radius of f∗ on Hk,k(X,R). Moreover, dk is equal to the k-th dynamical
degree of f (see e.g. [DS05a]).

6.2. Invariant convex valuations. In this section, we prove a general Theorem (see Theorem 6.1)
which will imply Theorem D.

Let g ∈ GL(E), φ ∈ Valn−i(E), we say that φ is invariant (or di(g)-invariant) if g · φ = di(g)φ.
By Proposition 5.10, the sequence of dynamical degrees di(g) is log-concave. In particular, we have

di(g)2 ≥ di+s(g)di−s(g)

whenever i± s are well defined.
As in [FW12, Section 6, 7], suppose that di(g)2 > di+1(g)di−1(g), then the authors show how to

obtain a di(g)-invariant valuation by methods from dynamics. We focus on the positivity properties
of such invariant valuations, but under a weaker condition. Note that by log-concavity,

di+1(g)di−1(g) ≥ di+s(g)di−s(g).

Thus the condition di(g)2 > di−s(g)di+s(g) is in general much weaker than the condition di(g)2 >
di−1(g)di+1(g).

We show that positive invariant valuations have very weak positivity, if this kind of strict log
concavity assumption holds. In the following, let γ ∈ {C,P}.

Theorem 6.1. Assume that 2i ≤ n, and g ∈ GL(E). Then the following properties are satisfied.

(1) The subspace of di(g)-invariant valuations in Valn−i(E) is non trivial.
(2) Assume that the strict log-concavity inequality is satisfied for s 6 min(i, n− i):

di(g)2 > di−s(g)di+s(g),

then for any two di(g)-invariant convex valuations ψ1, ψ2 ∈ Vγn−i we have

ψ1∗̃ψ2 = 0.

(3) Assume that

d2
1(g) > d2(g),

then there exists a unique (up to a multiplication by a positive constant) d1(g)-invariant positive

convex valuation ψ ∈ Pn−1
γ

(the closure of Pn−1 in the topology given by || · ||γ), and ψ lies

in an extremal ray of Pn−1
γ
.

Proof. Let us prove statement (1). Up to a conjugation by an element of GL(E), we are reduced to
the problem of finding a ρi−n-invariant valuation in Pn−i for 0 6 i 6 n, where ρ is the spectral radius
of g in each of the following cases:

(a) The matrix of g in the canonical basis has Jordan form and the only eigenvalue of g is ρ ∈ R.
(b) One has that n = 2 and g = ρ Id ◦h where h is in the orthogonal group and where ρ ∈]0,+∞[.

Suppose we are in the case (a). Fix i 6 n. Let (e1, . . . , en) be the canonical basis of E, let B be the
unit ball in E and denote by Ei = Vect(e1, . . . , ei). Consider Bi := B ∩Ei and consider the valuation
given by:

φi(L) := V (Bi[i], L[n− i]).
Let us compute g · φi(L) for L ∈ K(E):

g · φi(L) = V (Bi[i], g
−1(L)[n− i]) =

1

| det(g)|
V (g(Bi)[i], L[n− i]).

By the projection formula for mixed volumes (Lemma 5.14), since Bi is contained in a subspace of
dimension i and since g leaves the subspace Ei invariant, we have:

g · φi(L) :=
1

ρn

(
n
i

)−1

volEi(g(Bi)) volE⊥i
(pi(L)),
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where pi : E → E⊥i is the orthogonal projection onto E⊥i . Since |det(g|Ei)| = ρi, we have that:

g · φi = ρi−nφi,

as required.

Suppose we are in the case (b). Then g = ρ Id ◦h where h is an element of the orthogonal group. If
i = 0 then the valuation vol is ρ2-invariant and if i = 2, then the trivial valuation constant equal to
1 is ρ0-invariant. Let us find a valuation in P1 which is ρ-invariant. There exists a ball K in E such
that h(K) = K. Consider the valuation φ ∈ P1 given by:

φ(L) := V (K,L),

for any L ∈ K(E). We have that:

g · φ(L) =
1

ρ2
V (g(K), L) =

1

ρ2
V (ρ(K), L) =

1

ρ
V (K,L) = ρ−1φ(L),

as required.

Let us show how statement (1) follows from the previous arguments. Take g ∈ GL(E). By con-
struction, there exists a decomposition of E into:

E = ⊕Ek,
where each Ek is a g-invariant subspace such that g|Ek satisfies condition (a) or (b). Denote by
λk = ρ(g|Ek). On each subspace, there exists a convex body Bk ⊂ Ek such that the valuation given

by V (Bk[j],−[dimEk − j]) is λj−dimEk
k -invariant. Considering a well-chosen valuation of the form

φ(L) = V (B1[i1], . . . , Bk[ik], L[n− i]),
where i1 + . . .+ ik = i, gives the required invariant valuation.

Let us prove statement (2). First note that it is sufficient to prove

ψ1∗̃ψ2∗̃φB = 0,

where φB(−) = V (−;B[n− 2i]) and B ∈ K(E) is a convex body with non-empty interior and smooth
boundary.

Note also that if ψ ∈ Valn−i(E) is di(g)-invariant, then for any c 6= 0 and K ∈ K(E) we have:

((cg) · ψ)(K) = ψ((cg)−1(K)) = ci−nψ(g−1(K))

= ci−n(g · ψ)(K) = ci−ndi(g)ψ(K)

= di(cg)ψ(K),

thus (cg) · ψ = di(cg)ψ. In particular, ψ is g-invariant if and only if it is cg-invariant. Without loss of
generality, to simplify the notations, we can assume that | det g| = 1.

We first consider the case for VCn−i.
For j ∈ {1, 2}, since ψj ∈ VCn−i, we can take a sequence ψj,l = ψ+

j,l − ψ
−
j,l such that liml→∞ ψj,l = ψj

and

(21) ψ+
j,l(B) + ψ−j,l(B) ≤ c

for some uniform constant c > 0, where ψ+
j,l, ψ

−
j,l ∈ Pn−i.

Since ψ1, ψ2 ∈ VCn−i are invariant valuations, we have

gk · (ψ1∗̃ψ2)∗̃φB = (gk · ψ1)∗̃(gk · ψ2)∗̃φB
= di(g)2kψ1∗̃ψ2∗̃φB.

The expansion of (ψ1,l∗̃ψ2,l)∗̃φB gives:

ψ1∗̃ψ2∗̃φB = lim
l→∞

(ψ1,l∗̃ψ2,l)∗̃φB

= lim
l→∞

(
ψ+

1,l∗̃ψ
+
2,l + ψ−1,l∗̃ψ

−
2,l − ψ

+
1,l∗̃ψ

−
2,l − ψ

−
1,l∗̃ψ

+
2,l

)
∗̃φB.
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Since ψ+
j,l, ψ

−
j,l are positive, we get:

(22) di(g)2k(ψ1∗̃ψ2∗̃φB) 6 lim inf
l→∞

gk ·
(
ψ+

1,l∗̃ψ
+
2,l + ψ−1,l∗̃ψ

−
2,l

)
∗̃φB.

Applying Theorem 3.10 to φ := gk · (ψ+
1,l∗̃ψ

+
2,l) (respectively gk · (ψ−1,l∗̃ψ

−
2,l)), ψ := φB ∈ Val2i(E)

and the convex body K := gk(B), we obtain

(23) vol(gk(B))
(
gk · (ψε1,l∗̃ψε2,l)∗̃φB

)
≤ gk · (ψε1,l∗̃ψε2,l)(gk(B))φB(gk(B)),

where ε ∈ {+,−}. On the other hand, by Theorem 3.12, we have

φB(gk(B)) = V (gk(B)[2i], B[n− 2i])

= V (gk(B)[i+ s], gk(B)[i− s], B[n− 2i])

≤ C1V (gk(B)[i+ s], B[n− i− s])V (gk(B)[i− s], B[n− i+ s]),

where C1 > 0 is a constant which depends only on B, i and n.
By (21) and Theorem 3.10, we also have

(24) lim inf
l→∞

((ψ+
1,l∗̃ψ

+
2,l + ψ−1,l∗̃ψ

−
2,l)∗̃φB) ≤ C3

for some constant C3 > 0. Note that there exists a constant C2 > 0 such that

(25) gk · (ψε1,l∗̃ψε2,l)(gk(B)) = C2(ψε1,l∗̃ψε2,l∗̃φB).

By (22), (23), (24), (25) and the estimate for φB(gk(B)), we deduce that there exists a uniform
constant C4 > 0 such that

(26) di(g)2k(ψ1∗̃ψ2∗̃φB) ≤ C4V (gk(B)[i+ s], B[n− i− s])V (gk(B)[i− s], B[n− i+ s]).

Next we consider the case for VPn−i.
We take approximations ψj,l such that liml→∞ ψj,l = ψj and

|ψj,l(L1, ..., Ln−i)| ≤ cV (B[n− i];L1, ..., Ln−i)

for some uniform constant c > 0, and any L1, ..., Ln−i. As we are reduced to the situation | det g| = 1,
this implies

(27) |gk · ψj,l(L1, ..., Ln−i)| ≤ cV (gk(B)[n− i];L1, ..., Ln−i).

By the definition of ∗̃ and (27), we get

gk · (ψ1,l∗̃ψ2,l)∗̃φB ≤ c2V (gk(B)[2i], B[n− 2i]).

Then the same arguments as above shows that

(28) di(g)2k(ψ1∗̃ψ2∗̃φB) ≤ C5V (gk(B)[i+ s], B[n− i− s])V (gk(B)[i− s], B[n− i+ s]).

In summary, if ψ1∗̃ψ2∗̃φB > 0, after taking k-th root of the above inequality (26) or (28) and letting
k tend to infinity, we get

di(g)2 ≤ di+s(g)di−s(g).

This contradicts with our assumption. Thus,

ψ1∗̃ψ2∗̃φB ≤ 0.

Since the valuations −ψ1 is also invariant, the previous argument holds and we also have:

(−ψ1)∗̃ψ2∗̃φB ≤ 0.

Hence, we must have ψ1∗̃ψ2∗̃φB = 0.

Finally we prove the statement (3). Suppose i = n− 1 (thus the assumption is d1(g)2 > d2(g)).
We claim that

Pn−1
P

= Pn−1
C

= Pn−1

and that any valuation φ ∈ Pn−1
P

is of the form V (L;−[n− 1]) for some L ∈ K(E).
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Take φ ∈ Pn−1
P

. By Corollary 3.24, there exists a sequence of valuations φj = V (Lj ,−[n−1]) such
that ||φj − φ||P → 0. Then we have that V (Lj ,B[n − 1]) is uniformly bounded above. By Diskant’s
inequality (similar to the estimate (9)), the convex bodies Lj (up to some translations) are bounded.
We can thus extract a subsequence of Lj (up to some translations) converging to a convex body L.
In particular, φ = V (L,−[n− 1]) as required.

Next let ψ ∈ Pn−1
C
, we prove that ψ is also of the form ψ(−) = V (L;−[n− 1]). As Pn−1 ⊂ Pn−1

P
,

any valuation in Pn−1 is of the form V (L;−). Hence there exists a sequence of convex bodies Lk ∈ K(E)
such that

||V (Lk;−[n− 1])− ψ||C → 0.

This implies that V (Lk; B[n − 1]) is uniformly bounded above. Then the same argument as in the
previous step shows that ψ = V (L;−[n− 1]) for some L ∈ K(E), as required.

This finishes the proof of the claim.

Now we have ψ1(−) = V (−[n − 1];K) and ψ2(−) = V (−[n − 1];L) for some K,L ∈ K(E). Then
ψi∗̃ψj ∗̃φB = 0 for i, j ∈ {1, 2} implies

V (K,L,B[n− 2]) = V (K[2], B[n− 2]) = V (L[2], B[n− 2]) = 0.

In particular,

V (K,L,B[n− 2]) = V (K[2], B[n− 2])V (L[2], B[n− 2]).

Now the uniqueness result follows from [Sch14, Theorem 7.6.8], which we present below as a lemma.

Lemma 6.2. If the equality holds in

V (K,L,C1, ..., Cn−2) ≥ V (K[2], C1, ..., Cn−2)V (L[2], C1, ..., Cn−2),

where C1, ..., Cn−2 are smooth convex bodies with non-empty interior, then K,L are homothetic.

As in our setting, B is smooth, this immediately proves the uniqueness of invariant valuations.
The proof for the extremal ray property also follows from the above lemma. Assume that ψ ∈ Pn−1

γ

is invariant and can be written as

ψ = φ1 + φ2,

where φ1 = V (−;K1), φ2 = V (−;K2). We need to verify that φ1, φ2 are proportional. The vanishing
of ψ∗̃ψ∗̃φB is equivalent to

V (K1,K2, B[n− 2]) = V (K1[2], B[n− 2]) = V (K2[2], B[n− 2]) = 0,

which yields that K1,K2 are homothetic. Thus ψ must lie in an extremal ray of the cone Pn−1
γ ⊂

Vγn−1. �

6.2.1. Weak closedness. The above argument for Theorem 6.1 (3) shows that the cone Pn−1 is closed
with respect to the topology given by || · ||P . Actually, this cone is also weakly closed in the following
sense. Observe that for any convex body K ∈ K(E), the evaluation map induces a continuous linear
form on VPk :

evK : VPk → R, φ 7→ φ(K).

The continuity of evK follows from

|φ(K)| 6 ||φ||PV (B[n− k],K[k]).

Consider the weak topology, which is the coarsest topology on VPk such that the evaluation maps evK
are continuous. We first note that the weak topology contains a countable basis of neighborhoods.
Consider the finite intersection of neighborboods of the form:

U =

{
φ ∈ VPk | |φ(P )−

N∑
i=1

aiV (P1,i, . . . , Pn−k,i, P [k])| < b

}
,

where ai, b ∈ Q, N ∈ N and where P and Pj,i are rational polytopes in E. By construction U is an
open set of VPk for the weak topology. The fact that such subset U defines a basis of neighborhoods
results from the density of rational polytopes inside K(E).
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Proposition 6.3. The cone Pn−1 ⊂ VPn−1 is closed with respect to the weak topology. In particular,
one has the following equality:

Pn−1
P

= Pn−1 = Pn−1
w
,

where Pn−1
w

is the closure of the cone Pn−1 with respect to the weak topology and where Pn−1
P

is the
closure of the cone Pn−1 with respect to the norm || · ||P .

Proof. Since the space VPn−1 endowed with the weak topology is first countable, every point φ ∈ VPn−1

in the weak closure of the cone Pn−1 is the weak limit of a sequence φj ∈ Pn−1. Recall that every
valuation in Pn−1 is of the form V (M ;−[n− 1]) for some convex body M ∈ K(E) and one can write
each φj as φj = V (Lj ;−[n− 1]) where Lj ∈ K(E). Since φj converges weakly to φ, this implies that:

φj(B) = V (Lj ,B[n− 1])→ φ(B),

as j tend to +∞. In particular, the sequence {V (Lj ,B[n− 1])}j is bounded. By Diskant’s inequality,
there exists a subsequence of the sequence {Lj}j∈N (up to translations), which converges to a convex
body L. Hence, we have that φ = V (L;−[n− 1]) for some L ∈ K(E) and φ ∈ Pn−1 as required. �

Remark 6.4. We are not sure about the weak closedness of Pk when k 6= n− 1.

Remark 6.5. In general the invariant valuations are not smooth. The invariant valuations in [FW12]
are given by the volume of a projection onto a linear subspace. By the reduction formula for mixed
volumes, they are given by mixed volumes, which are elements in Pi.

Remark 6.6. For any g ∈ GL(E), the action of g satisfies g(Pi) ⊂ Pi. Recall that in functional
analysis we have the famous Krein-Rutman theorem:

Let X be a Banach space, and let C ⊂ X be a closed convex cone such that C − C is
dense in X. Let T : X → X be a non-zero compact operator satisfying T (C) ⊂ C, and
assume that its spectral radius ρ(T ) is strictly positive. Then there is an eigenvector
u ∈ C \ {0} such that T (u) = ρ(T )u.

If X is of finite dimension, then this is the Perron-Frobenius theorem, which is very useful to construct
invariant classes in complex dynamics. In our setting, in general the induced linear operator by g is
not compact. However, if we consider the finite dimensional space ValG(E) where G ⊂ SO(E) is a
compact subgroup acting transitively on the unit sphere of E, and consider appropriate cones in this
space, then we can apply the result directly.

Remark 6.7. We remark that the same vanishing result also holds true for the dynamics of dominated
holomorphic maps. Furthermore, by Hodge theory (see e.g. [Voi07]), the extremal ray property holds
true for invariant (1, 1) classes. More precisely, using the notations in Section 6.1, we have:

Let X be a compact Kähler manifold of dimension n. Let f : X → X be a dominated
holomorphic self-map. Assume 2k ≤ n. If d2

k > dk+sdk−s, then for any Kähler class ω

and any invariant positive classes Θ1,Θ2 ∈ Pk ⊂ Hk,k(X,R) we have

Θ1 ·Θ2 · ωn−2k = 0.

Moreover, if d2
1 > d2, then the non-zero invariant class Θ ∈ P1 is unique (up to some

scaling) and lies in an extremal ray of P1.

The proof of Θ1 · Θ2 · ωn−2k = 0 is the same as in Theorem 6.1, where we apply the reverse
Khovanskii-Teissier inequality in complex geometry [LX17]. For the uniqueness and extremity of
Θ ∈ P1, we decompose Θi, i = 1, 2 as follows:

Θi = aiω + Pi,

where ai ∈ R, and Pi is a primitive class, i.e., ωn−1 · Pi = 0. Since Θi ·Θj · ωn−2 = 0 for i, j ∈ {1, 2},
both P1 and P2 can not be zero. Moreover, combining with ωn−1 · Pi = 0 implies

P 2
1 · ωn−2 = −a2

1ω
n,

P 2
2 · ωn−2 = −a2

2ω
n,

P1 · P2 · ωn−2 = −a1a2ω
n.
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Thus the matrix [Pi · Pj · ωn−2]i,j is degenerate. By Hodge-Riemann bilinear relations, we have
P1 = cP2 for some non-zero constant c. Then we get a2

1 = c2a2
2. We claim a1 = ca2, which then

implies Θ1 = cΘ2. If some ai = 0, then this is clear; otherwise, if a1 = −ca2, by considering Θ1 − cΘ2

we get that ω is also an invariant class, which is impossible by the vanishing result. Thus we finish
the proof of the uniqueness result. The extremity property follows from the same argument.
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[Xia17] , Bézout type inequality in convex geometry, Int. Math. Res. Not. IMRN, to appear, arXiv:1704.00883,
(2017).
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