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Abstract

Concerned with pathological voice assessment, this paper aims
at characterizing dysphonia in the speech signal for a better
understanding of related phenomena while most of the studies
have focused only on improving classification systems for diag-
nosis help purposes. This work is focused on an automatic and
manual phonetic analysis, which highlights the potential and
rather unexpected relevance of unvoiced consonants in the au-
tomatic classification task of dysphonia severity grades (based
on the GRBAS scale).
Index Terms: Voice disorder, dysphonia characterization, au-
tomatic dysphonic voice classification, automatic and manual
phonetic analysis, GRBAS scale

1. Introduction
In the medical domain, assessment of the pathological voice
quality is a sensitive topic, involving multi-disciplinary domains:
clinicians, phoneticians, and automatic speech processing spe-
cialists. Dysphonia is one of the medical terms to define phona-
tion disorders. Currently, two main approaches are involved to
deal with the phonation disorders. The first approach, the per-
ceptual evaluation [1, 2], consists in qualifying and quantifying
the vocal dysfunction by listening to the patient’s speech pro-
duction. It is the most used by the clinicians currently even if
it is largely debated in the literature because of an intrinsic sub-
jectivity, a lack of a universal scale, as well as a large intra and
inter-variability in the human judgments. The second methodol-
ogy, the objective measurement-based analysis [3, 4, 5, 6, 7, 8],
consists in associating acoustic, aero-dynamical and/or phys-
iological measures with an automatic classification system to
provide a reproducible and objective decision. Even if the latter
has been introduced as an alternative to the perceptual evalua-
tion, the current performance of the automatic systems has not
been sufficient yet to satisfy clinicians. This paper, related to
the objective measurement-based analysis, aims at characteriz-
ing phenomena due to the dysphonia in the speech signal. Here,
the authors propose to analyze the performance of the automatic
classification system (according to the GRBAS scale) according
to different phonetic classes, mixing voiced and unvoiced com-
ponents. The goal of this study is to bring a better understand-
ing of the dysphonia phenomena in the speech signal, helpful
for the enhancement of the automatic classification systems, as
well as for the medical domain.

2. Dysphonic voice corpus
Speakers involved in this study were, on the one hand, dyspho-
nic women (aged 17 to 50) affected by nodules, polyps, oedema,
cysts, ... and, on the other hand, control women (normal voice).
They were recorded in the ENT department of the Timone Uni-
versity Hospital, Marseille, France. The speech material is ob-

tained by reading the same short text (French), which signal
duration varies from 13.5 to 77.7 seconds (mean: 18.7s). The
subjects’ voices are perceptually classified along the G param-
eter of the Hirano’s GRBAS scale [9], where a normal voice is
rated as grade G0, a slight dysphonia as G1, a moderate dys-
phonia as G2 and finally, a severe dysphonia as G3. These per-
ceptual grades were determined by a jury composed of 3 expert
listeners, by consensus between the different jury members as
it is the usual way to assess voice quality by our therapist part-
ners. The judgment was done during one session only.
For the following experiments, 80 voices equally balanced among
the 4 grades (20 voices per each) were selected. Due to the small
amount of data, cautions have been made to provide valid proto-
col and experimental results by applying leave_x_out technics.
The latter consists in discardingx speakers’ voices from the 80
voices, using the remaining data for training and thex speak-
ers’ voices for testing. This scheme is repeated until reaching a
sufficient number of tests.

3. Baseline classification system

The baseline system is derived from a classical speaker recog-
nition (ASR) system adapted to dysphonic voice classification.
The ASR system is based on the state-of-the-art GMM mod-
elling. It relies on the ASR toolkit, available in « open source »
(ALIZE/SpkDet [10]) and developed at the LIA laboratory. Three
phases are necessary:
Parameterization: in this paper, the pre-emphasized speech
signal (0.95 value) is characterized by 24 spectrum coefficients
issued from a filter-bank analysis (24 filters) applied on 20ms
Hamming windowed frames at a 10ms frame rate. The filters
are triangular and equally spaced along the entire linear scale to
yield Linear Frequency Spectrum Coefficients (LFSC). Param-
eters are normalized to match a 0-mean and 1-variance distribu-
tion.
Modelling: Gaussian Mixture Model (GMM)-based techniques
are used to build a statistical model for each dysphonia severity
grade, named grade modelGg with g ∈ {0, 1, 2, 3}. A GMM
is a weighted sum of M multi-dimensional Gaussian distribu-
tions, each characterized by mean vectorx (dimensiond), co-
variance matrixΣ (d x d) and weightp of the Gaussian compo-
nent within the mixture (diagonal covariance matrices are used
in this work). A GMM model is built on a training data set by
estimating the parameters (x, Σ, p) thanks to the EM/ML algo-
rithm (Expectation-Maximization/Maximum Likelihood).
Grade modelGg is learned gathering all the voices evaluated
perceptually as gradeg. Two training phases are used here to
cope with the lack of training data, as classically used in speaker
recognition domain [11]: (1) training of a generic speech model
estimated by the EM/ML algorithm on a large population of
speakers; (2) training of the grade model, derived from the generic
speech model by applying adaptation techniques (MAP, Maxi-



Table 1:Total duration in seconds per phonetic class and per grade as
well as the number of phonemes (nb), their averaged duration(µ) and
associated standard deviation (σ).

Phonetic Grades Info. per class

classes G0 G1 G2 G3 nb µ σ

Consonant 135.1 139.2 149.8 167.36395 0.092 0.045

. Voiced 88.8 90.6 95.4 106.64719 0.081 0.039

. Unvoiced 46.3 48.7 54.5 60.7 1676 0.125 0.046

Vowel 103.6 98.8 103.5 109.85586 0.074 0.046

All phonemes 241.5 241.0 256.7 280.512140 0.084 0.046

mum a posteriori).
All GMM models are composed of 128 gaussian components
with diagonal covariance matrices. It has to be noted that all the
voices used for the grade model training are excluded from the
test trials in order to differentiate the detection of the pathology
from the speaker recognition.
Decision: For dysphonic voice classification, decision is made
by selecting the gradeg of the modelGg (among the four grade
models) for which the largest similarity measure is computed
given a test voice. The similarity measure relies on a likelihood
value as follows:L(yt|X) =

PM

i=1
pi Li(yt) whereLi(yt) is

the likelihood of signalyt given gaussiani, M the number of
gaussians andpi the weight of gaussiani in the mixture.

4. Phoneme-based classification
The authors propose in this paper to observe the behaviour of
the automatic dysphonic voice classification system following
different phoneme classes. Thus, system performance is pro-
vided per phoneme class in order to evaluate how the dysphonia
effects may impact on phonemes or phoneme classes according
to the grades.

4.1. Automatic phoneme segmentation

To perform dysphonic voice classification tests according to dif-
ferent phoneme classes, a phonetic segmentation is necessary
for each speech signal of the corpus. This segmentation was ex-
tracted automatically by realizing an automatic text-constrained
phonetic alignment. In other words, phoneme boundaries of
each expected words uttered by speakers are extracted automat-
ically in a unsupervised way. This alignment was performed by
the automatic alignment system developed at the LIA labora-
tory. This system is based on a Viterbi decoding algorithm, a
text-restricted lexicon of words associated with their phonolog-
ical variants and a set of 38 French phonemes. Each phoneme
model relies on a three state HMM, initially trained on a French
speech corpus, produced by a set of female speakers. Since the
latter has no connection with the dysphonic corpus (described in
section 2), classical unsupervised adaptation techniques are ap-
plied iteratively on phoneme models for the automatic phonetic
alignment to enhance and refine phoneme boundaries.

4.2. Comparative phonetic analysis

The phonetic segmentation is coupled with the automatic dys-
phonic classification system for the decision step. Indeed, for
the classification tests and decision making, the similarity mea-
sure (see section 3) between the test voice and the grade models
is computed on the restricted set of segments associated with
a targeted phoneme class. Conversely, the grade models are
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Figure 1: Performance per grade in terms of Correct Classification
Rate (CCR %) considering "All phonemes", both voiced and unvoiced
consonant and vowel classes.

learned on all the phonemic material available per grade in the
corpus independently of the phonem class targeted.
In this paper, the authors focus on three main phoneme classes:
both voiced and unvoiced consonants, and vowels. These indi-
vidual phoneme classes are compared with the global set, join-
ing all the phonemes available in the corpus. Table 1 provides
duration information on these different phoneme classes per
voice and grade. This automatic phonetic analysis of dysphonia
is close to the "phonetic labelling" proposed in [2], in which a
descriptive and perceptual study of pathological characteristics
of different phonemes is presented.

Figure 1 presents performance of the automatic dysphonic
voice classification system depending on the different phoneme
classes: all phoneme set, both voiced and unvoiced consonants,
and vowels. Performance is expressed in terms of Correct Clas-
sification Rates (namedCCR in the rest of the paper).
From this figure, it can be observed that:
• best performance (85% CCR) is obtained for grade 0 voices
considering all the phoneme while other phoneme classes reach
between 70 and 80% CCR. Performance of grade 3 voices is
rather close (from 60 to 75% CCR) while more confusion is ob-
served on grade 1 and 2 voices (CCR varying from 40 to 60%);
• individual classes perform in the similar range of performance
as considering all the phoneme set. Indeed, while CCR varia-
tion for all the phonemes is between 50 to 85%, CCR of voiced
consonants vary from 45 to 75% depending on the grades, CCR
of unvoiced consonants from 50 to 80%, and CCR of vowels
from 40 to 70%.
• unvoiced consonant class obtains quite high CCR, compared
with all the phoneme set. It outperforms the vowel class what-
ever the grades observed. It obtains higher CCR than the voiced
consonant class for grades 0 and 1, and a similar and lower CCR
for grades 3 and 2 respectively.

Discussion
The performance observed on the unvoiced consonant class is
particularly surprising. Indeed, focus is generally made on voiced
components in the literature while considering dysphonia since
they are directly affected by this kind of pathology related to the
glottic source. Sustained vowels are, for instance, extensively
used in the literature by perceptual or objective approaches,
since they facilite the measurement of parameters directly linked



to the vocal source.
In this context, two hypotheses may be proposed to explain
the behaviour of the automatic classification system on the un-
voiced consonant class:
• Hyp 1: phoneme boundaries are determined by the automatic
text-constraint alignment system. As reported in section 4, the
latter has not been developped to process pathological speech
specifically. Even if unsupervised techniques have been applied
to enhance the quality of the phoneme models, voice alteration
due to dysphonia may decrease the system performance, de-
grading the quality of phoneme boundaries. Mislabelling in the
phonetic alignment could involve, for instance in the case of
vowel-consonant (V C) or consonant-vowel (CV ) contexts, that
parts of vowels were merged with unvoiced components. In this
case, previous observations would be biased.
• Hyp 2: dysphonia may have effects on the unvoiced conso-
nant production, especially in theV C or CV contexts. More-
over, it can be assumed that this effect is gradual according to
the dysphonia severity since the classification system provides
satisfactory discrimination between grades.

5. Validation of the phonetic segmentation
This section aims at verifying the first hypothesis outlined in the
previous section.

5.1. Manual phonetic segmentation

In order to be able to evaluate the performance of the automatic
text-constrained alignment system regarding the unvoiced con-
sonants, manual verification is necessary. The focus has been
made on 18 unvoiced consonants among the 20 ones uttered by
each speaker in the corpus1. The 18 unvoiced consonants are
split into 8 fricatives (6 /s/, 1 /f/, 1 /ch/), and 10 plosives (2 /p/,
5 /t/, 3 /k/). A human expert listened to all the speech signal in
the corpus and marked them with different information, distin-
guishing in some cases unvoiced fricatives from plosives:
• formant end of each vowel preceding an unvoiced consonant
notedFEV (both fricatives and plosives);
• voicing end of each vowel preceding an unvoiced consonant
notedV EV (both fricatives and plosives);
• start of noise for the fricative consonants notedSNO;
• end of noise for the fricative consonants notedENO;
• plosive burst;
• voicing start of each vowel following an unvoiced consonant
notedV SV (both fricatives and plosives);
• formant start of each vowel following an unvoiced consonant
notedFSV (both fricatives and plosives);

This manual labelling was performed in a blind way, using the
Praat software [12]. Listening, signal visualization, spectro-
grams, and F0 measurements issued from Praat were utilized.
No information about the boundaries determined by the auto-
matic system was made available for the human expert to avoid
any influence. Only rough location of unvoiced consonants in
the speech signal was provided to save time.
Globally, 1440 unvoiced consonants have been processed in the
overall corpus, corresponding to 7840 markers potentially. Nev-
ertheless, the human expert was not able to fix the overall set of
markers, especially due to the voice quality degradation. For
instance, in a few contexts, vowels have been totally devoiced,
making unavailable information, and corresponding markers.

12 unvoiced consonants have been discarded here since they appear
in particular consonantic groups: /ks/ and /tr/.

Configuration Count

V EV > START 1014

V EV ∼= START 67

V EV < START 107

END < V SV 899

END ∼= V SV 199

END > V SV 147

Table 2: Comparison between the unvoiced consonant boundaries
(START and END) issued from the automatic text-constrained
alignment system and markers fixed by a human expert (V EV repre-
sents the voicing end of the vowel preceding an unvoiced consonant and
V SV the voicing start of the vowel following an unvoiced consonant).
Possible configurations and their counts.

5.2. Manual vs automatic phonetic segmentation

The boundaries of unvoiced consonants, issued from the au-
tomatic text-constrained alignment system and notedSTART

andEND are compared with both theV EV andV SV mark-
ers, in terms of time location. Assuming that boundaries of un-
voiced consonants are synchronized with the end and start of
vowel voicing, this comparison aims at pointing out whether
parts of vowels are included in the unvoiced consonants accord-
ing to the following configurations:
• V EV > START : the unvoiced consonant includes the fi-
nal part of the preceding vowel;
• V EV ∼= START : the start boundary of the unvoiced con-
sonant is considered as correct;
• V EV < START : the beginning part of the unvoiced con-
sonant is missing;
• END < V SV : the final part of the unvoiced consonant is
missing;
• END ∼= V SV : the final boundary of the unvoiced conso-
nant is considered as correct;
• END > V SV : the unvoiced consonant includes the begin-
ning part of the following vowel.

Table 2, providing counts relating to each configuration, shows
that the automatic text-constrained alignment system used to
misplace the start of the unvoiced consonants rather systemat-
ically (1014 times on 1188 measures), including the final part
of the preceding vowel. In contrast, the beginning part of the
following vowel is rather excluded (included in 147 times only
on 1245 measures) whereas the final part of the unvoiced conso-
nant is most of the times missing (899 times on 1245 measures).

Therefore, these results could confirm the first hypothesis, which
assumes that unvoiced consonants could be mislabelled by the
automatic system. Next section will verify whether this misla-
belling should have an impact on the classification system per-
formance reached by the unvoiced consonants.

5.3. Experimental validation

Experiment reported in section 4.2 is reproduced here, focusing
on unvoiced consonants only. Considering manual markers, six
different case studies are conducted here:
• Auto1 and Auto2 : classification system is based on the
automatic boundaries of unvoiced consonants for which man-
ual markers of the preceding (Auto1) or the following (Auto2)
vowels were available. These experiments provide system per-
formance computed on the same number of unvoiced conso-



Grade 0 Grade 1 Grade 2 Grade 3 Total

Study cases % CCR % CCR % CCR % CCR % CCR

(nb/20) (nb/20) (nb/20) (nb/20) (nb/80)

Auto1 75 (15) 55 (11) 60 (12) 80 (16) 67.5 (54)

V EV 1 75 (15) 55 (11) 60 (12) 80 (16) 67.5 (54)

V EV 2 65 (13) 55 (11) 60 (12) 80 (16) 65 (52)

Auto2 75 (15) 55 (11) 50 (10) 80 (16) 65 (52)

V SV 1 75 (15) 55 (11) 55 (11) 85 (17) 67.5 (54)

V SV 2 75 (15) 55 (11) 55 (11) 85 (17) 67.5 (54)

V EV − V SV 65 (13) 55 (11) 60 (12) 85 (17) 66.25 (53)

Table 3:Performance of the automatic classification system consider-
ing the unvoiced consonants only. Performance is reported for different
study cases considering automatic segmentation before and after cor-
rections according to the manual markers.

Study cases Grade 0 Grade 1 Grade 2 Grade 3 Total

Duration in s

Auto1 37.09 39.25 44.05 37.37 157.76

V EV 1 38.24 40.23 44.96 38.8 162.23

V EV 2 27.41 33.33 37.91 33.92 132.57

Auto2 37.69 41.10 44.51 38.68 161.98

V SV 1 42.60 46.88 50.04 45.30 184.82

V SV 2 42.22 46.46 49.46 44.57 182.71

V EV − V SV 29.59 37.11 39.68 31.57 137.95

Table 4: Duration of the unvoiced consonants considering automatic
segmentation before and after correction according to the manual mark-
ers.

nants as the rest of study cases;
• V EV 1 : similar to Auto1 except that segmentation of un-
voiced consonants for which the beginning part is missing (107
cases) is corrected according to the manual markers;
• V EV 2 : similar to V EV 1 except that segmentation of un-
voiced consonants which include the final part of the preceding
vowels (V EV > START : 1014 cases) is corrected;
• V SV 1 : similar to Auto2 except that segmentation of un-
voiced consonants for which the final part is missing (899 cases)
is corrected;
• V EV 2 : similar to V SV 1 except that segmentation of un-
voiced consonants which include the beginning part of the fol-
lowing vowels (END > V SV : 147 cases) is corrected;
• V EV − V SV : segmentation of unvoiced consonants is di-
rectly issued from the manual markers :V EV andV SV .

Tables 3 and 4 report classification system performance in terms
of CCR% and global durations of unvoiced consonants related
to each case study respectively. Very few variation in terms of
system classification performance can be observed comparing
the different case studies.

Correcting the segmentation of the unvoiced consonants by dis-
carding all the mislabelled components (ie the vowel compo-
nents) permits to reach very similar performance to the one ob-
tained in section 4.2. This enables to invalidate the first hypoth-
esis raised previously, highlighting the second hypothesis : dys-
phonia may have impact on the unvoiced consonant production,
especially in theV C or CV contexts.

6. Conclusion
This paper aims at studying the characterization of dysphonia
voices through an automatic classification system coupled with
a phonetic analysis. Comparing system performance according
to vowel, voiced and unvoiced consonant classes shows that un-
voiced consonants outperform vowels and reach relatively high
classification performance. The first hypothesis, raised by the
authors to explain this quite surprising behaviour and directly
linked to the quality of the automatic phonetic segmentation has
been invalidated thanks to a manual correction done by a human
expert. Indeed, additional experiments have still demonstrated
the relevance of unvoiced consonants in the classification task.
The second hypothesis, raised by the authors, assuming that
dysphonia may impact on the unvoiced consonant production,
especially in the vowel-consonantV C or consonant-vowelCV

contexts is therefore emphasized. Further work will consist in
examining unvoiced consonant components of the speech cor-
pus manually with the help of phonetician experts.
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