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THE CLUSTER CATEGORY OF A SURFACE WITH

PUNCTURES VIA GROUP ACTIONS

CLAIRE AMIOT AND PIERRE-GUY PLAMONDON

Dedicated to Idun Reiten on the occasion of her 75th birthday.

Abstract. Given a certain triangulation of a punctured surface with bound-

ary, we construct a new triangulated surface without punctures which covers
it. This new surface is naturally equipped with an action of a group of order

two, and its quotient by this action recovers the original surface. We show that

the group acts on the quivers with potentials associated to the surfaces, and
that their Ginzburg dg algebras are skew group algebras of each other, up to

Morita equivalence. We then use these results to construct functors between

the generalized cluster categories associated to the triangulations. This allows
us to give a complete description of the indecomposable objects of these cat-

egories in terms of curves on the surface, when the surface has punctures and
non-empty boundary.
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Introduction

The cluster algebra A(Q) of a quiver Q was defined by Fomin and Zelevinsky
in their seminal paper [FZ02]. It is a commutative algebra with a certain set of
generators called cluster variables which can be computed by iterating mutations
of the quiver Q. In the case where Q is the adjacency quiver of a triangulation
of an unpunctured marked surface (Σ,M), the situation is especially nice, since
the cluster variables are in natural bijection with the arcs on (Σ,M) by [FSTh08].
When the triangulation comes from a surface with punctures, the situation is more
complicated and a notion of tagged arcs is introduced in [FSTh08] in order to get
an analogue bijection with cluster variables.

A strong link between cluster algebras and representations of quivers was es-
tablished via the construction of the cluster category, first associated to an acyclic
quiver [BMR+06] (and in [CCS06] in type An) and then via its generalized version
C(Q,S) [A09] associated to a quiver with potential in the sense of [DWZ08]. These
are triangulated categories with a certain class of objects called cluster-tilting ob-
jects. In the case where the quiver with potential (Q(τ), S(τ)) is associated to
a triangulation τ of a surface (as introduced in [L09], and in [ABCP10] for un-
punctured surfaces), the indecomposable summands of cluster-tilting objects in
Cτ = C(Q(τ),S(τ)) are in bijection with tagged arcs (see [BZ11, QZ17]). Moreover, a
complete description of all indecomposable objects of the category Cτ in terms of
homotopy classes of curves on Σ is given in [BZ11] in the unpunctured case, and
much representation-theoretic information, such as the Auslander-Reiten transla-
tion or components, can be recovered from operations on the surface and the arcs
and curves on it.

In this paper, we give a link between the punctured case and the unpunctured
case, and use it to give a description of the cluster category of a triangulated
punctured surface. More precisely, given a certain triangulation τ of a punctured

surface (Σ,M,P), we construct an unpunctured surface (Σ̃,M̃) together with a
triangulation τ̃ and triangle functors between the categories Cτ and Cτ̃ . The new

surface Σ̃ comes naturally with an order two homeomorphism, and the surface

(Σ,M,P) can be recovered from (Σ̃,M̃, σ) via a bijection Σ̃/σ → Σ. This gives
a structure of orbifold to Σ, where (order 2) orbifold points are points in P. As a
main consequence, we use the description of [BZ11] of indecomposable objects in
Cτ̃ to deduce a complete description of indecomposable objects in Cτ in terms of
the orbifold fundamental groupoid of Σ:

Theorem (Corollaries 5.10 and 5.19). Let (Σ,M,P) be a marked surface with non-
empty boundary and possibly with punctures. Let τ be a triangulation of Σ such
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that each puncture belongs to a self-folded triangle and such that no triangle shares
a side with two self-folded triangles. Then the indecomposable objects of the cluster
category Cτ are in bijection with the following sets:

• πorb
1 (Σ,M;P ′) (see Definition 5.8),

•
{
{γ, γ−1} | γ ∈ πorb

1 (Σ,M), γ 6= γ−1
}

,

•
{

[γ] ∈ πorb,free
1 (Σ)| [γ] 6= [γ−1]

}
× k∗/ ∼,

•
{

[γ] ∈ πorb,free
1 (Σ)| γ2 6= 1 and [γ] = [γ−1]

}
× k∗\{±1}/ ∼,

•
{

[γ] ∈ πorb,free
1 (Σ)| γ2 6= 1 and [γ] = [γ−1]

}
× (Z/2Z)2,

where ∼ is the equivalence relation given by ([γ], λ) ∼ ([γ−1], λ).

This result is a generalization of [BZ11, Theorem 1.1], which treats the case
where the set of punctures of Σ is empty.

Our construction of the surface (Σ̃,M̃) can be seen as a generalization of that
of [FZ03a, Section 3.5] and [FZ03b, Section 12.4], who studied cluster algebras of
type Dn via symmetric pairs of diagonals of a 2n-gon.

The construction of the functors between Cτ and Cτ̃ goes back to the study
of skew group algebras introduced by Reiten in Riedtmann in [RR85]. Given an
algebra Λ and a finite group G acting on Λ by automorphism, the authors in
[RR85] defined the skew group algebra ΛG and studied the different properties of
the functors linking the categories mod Λ and mod ΛG. In the present paper,
we adapt the situation in the context of G = Z/2Z acting on a quiver with potential
(Q,S). We let the group act on the corresponding Ginzburg dg algebra (as defined
in [G]), and show that the resulting skew group dg algebra is Morita equivalent
to the Ginzburg dg algebra of a quiver with potential (QG, SG) which we describe
explicitly (see Theorem 2.6). In the case where (Q(τ), S(τ)) is the quiver with
potential associated to a certain tagged triangulation τ of a punctured surface,
we have a natural action of Z/2Z on (Q(τ), S(τ)) and we prove that the quiver
with potential (Q(τ)G, S(τ)G) arises as the quiver with potential of a triangulated
unpunctured surface.

The case of a free group action on a quiver with potential has recently been
studied in [PS], where functors between cluster categories are also obtained. In our
situation, however, the group action is never free, so other methods from skew group
algebras need to be used. Also, even though we use the orbifold structure on Σ
given by our group action, our results differ from the works on cluster algebras from
orbifolds, see for instance [FSTu12]. Indeed, while we study skew group algebras
and objects which are “simply-laced” (such as quivers, skew-symmetric matrices,
etc.), the results of [FSTu12] reflect a folding procedure via this group action and
deals with “non-simply-laced” objects (such as valued quivers, skew-symmetrizable
matrices, etc.).

The paper is organized as follows. In Section 1, we recall Reiten-Riedtmann’s
constructions on skew group algebras, and study in detail the case of an action of a
group of order two. In Section 2, we extend these construction to dg algebras and
prove that in our setting, skew group Ginzburg dg algebras are Morita equivalent
to Ginzburg dg algebras. From there, we deduce triangle functors between the
corresponding cluster categories. In Section 3, we apply the results of Section 2 in
the case where the quiver with potential (Q(τ), S(τ)) comes from a triangulation of
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a punctured surface (Σ,M,P). This allows us to construct a new surface (Σ̃,M̃).
Section 4 is devoted to the description of the indecomposable objects of Cτ in terms

of curves on the surface Σ̃. We use the orbifold structure of (Σ,M,P) in Section 5
to get a description of the indecomposable objects of Cτ in terms of curves on Σ.
Finally, Section 6 is dedicated to examples.

Conventions. We compose arrows of quivers from right to left, as for function. If
α is an arrow of a quiver, then s(α) is its source and t(α) is its target. All modules
over algebras are right modules.

1. Skew group algebras

1.1. Definition for associative algebras. In this section, we follow [RR85, In-
troduction].

Let k be a commutative Artin ring, and Λ be an Artin k-algebra. Let G be a
finite group acting on Λ by k-algebra automorphisms.

Definition 1.1. The skew group algebra ΛG is the k-algebra defined thus:

(1) Its underlying k-module is Λ⊗k kG.
(2) Multiplication is given by (λ⊗ g)(λ′⊗ g′) = λ · g(λ′)⊗ gg′ and extended to

all of ΛG by distributivity.

There is a natural monomorphism of k-algebras

Λ −→ ΛG

λ 7−→ λ⊗ 1.

Note that the algebra ΛG is not basic in general.

1.2. The case of G = Z/2Z. In this paper, we will be concerned only with certain
actions of the cyclic group of order 2, so for the rest of the section, we fix G =
Z/2Z = {1, σ}.

Let k be a field whose characteristic is not equal to 2. Let Q be a finite quiver,
and Λ = kQ/I be a quotient of the path algebra kQ by an admissible ideal I
(admissible means that if R is the ideal generated by the arrows of Q, then there
exists an integer m ≥ 2 such that Rm ⊆ I ⊆ R2).

We will assume that G acts on Λ in the following way:

Assumption 1.2. The action of G on Λ = kQ/I is induced by an action of G on
the quiver Q, such that if two vertices i and j are fixed under this action, then all
arrows from i to j are also fixed under this action.

This implies that vertices are sent to vertices and arrows are sent to arrows. This
assumption is strong: in general, the action ofG sends arrows to linear combinations
of arrows and paths of length ≥ 2.

Under this assumption, we will describe a basic algebra Morita equivalent to ΛG,
applying the results of [RR85].

Let Q0 = V
∐
W , where

• V is the set of vertices fixed by G;
• W is the set of vertices not fixed by G.
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Then a complete set of pairwise orthogonal primitive idempotents of ΛG is given
by the union of the sets

{1

2
ei ⊗ (1 + σ),

1

2
ei ⊗ (1− σ)

∣∣ i ∈ V },
{1

2
(ej + eσ(j))⊗ (1 + σ)

∣∣ j ∈W}, and

{1

2
(ej + eσ(j))⊗ (1− σ)

∣∣ j ∈W}.
We will use the following notations:

Definition 1.3. • For each i ∈ V , we put e±i := 1
2ei ⊗ (1± σ);

• For each i ∈W , we put e±i := 1
2 (ei + eσ(i))⊗ (1± σ).

• For each arrow α ∈ Q1, we put α± = e±t(α)(α⊗ 1)e±s(α).

• For any path w = α1 · · ·αm, we put w± = α±1 · · ·α±m.

Note that e±i = e±σ(i). Moreover, it can be shown that for any j ∈ W , the

indecomposable projective modules e+
j Λ and e−j Λ are isomorphic. Thus, if we let

o(W ) denote a set of representatives of the G-orbits in W , and we put

ē =
∑
i∈V

(e+
i + e−i ) +

∑
j∈o(W )

e+
j ,

then ēΛGē is a basic algebra Morita-equivalent to Λ.

Lemma 1.4. Let α : i→ j be an arrow in Q.

(1) If i ∈ V and j ∈ V , then

α± := e±j (α⊗ 1)e±i =
1

2
α⊗ (1± σ).

(2) If i ∈ V and j ∈W , then

α± := e+
j (α⊗ 1)e±i =

1

4
(α± σ(α))⊗ (1± σ).

(3) If i ∈W and j ∈ V , then

α± := e±j (α⊗ 1)e+
i =

1

4
(α± σ(α))⊗ (1 + σ).

(4) If i ∈W and j ∈W , then

α+ := e+
j (α⊗ 1)e+

i =
1

4
(α+ σ(α))⊗ (1 + σ).

In particular, in cases (2) and (3), we have that α± = ±σ(α)±, while in case
(1), we have that α± = σ(α)±, and in case (4), we have α+ = σ(α)+.

From there, an application of [RR85, Section 2.4] allows us to compute the
Gabriel quiver QG := QēΛGē of ēΛGē.

Proposition 1.5 ([RR85]). Under Assumption 1.2, the Gabriel quiver QG of ēΛGē
is defined as follows:

• The vertices of QG correspond to the idempotents e±i (for i ∈ V ) and e+
j

(for j ∈ o(W )). We denote them by i± and j+, respectively.
• Let o(Q1) be a set of representatives of the G-orbits of arrows of Q. Then

for any arrow α ∈ o(Q1),
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(1) if i ∈ V and j ∈ V , then α± corresponds to an arrow i± → j± in QG;
(2) if i ∈ V and j ∈W , then α± corresponds to an arrow i± → j+ in QG;
(3) if i ∈W and j ∈ V , then α± corresponds to an arrow i+ → j± in QG;
(4) if i ∈ W and j ∈ W , then α+ corresponds to an arrow i+ → j+ in

QG.

Relations on the quiver of ēΛGē can also be obtained from those on Q.

Notation 1.6. We will sometimes write j instead of j+ if j ∈W and α instead of
α+ if both endpoints of α are in W .

There is a natural application

ι : Λ −→ ēΛGē

λ 7−→ ē(λ⊗ 1)ē.

which is not a morphism of algebras. Nevertheless, we have the following

Lemma 1.7. Let w be an element in the radical of Λ, and α ∈ Q1. Denote by i
the start of α. Then we have

ι(αw) =

{
ι(α)ι(eiw) if i ∈ V,
2ι(α)ι(eiw) if i ∈W.

In particular, if w = α1 . . . αr is a path in Q, then

ι(w) = 2sι(α1) . . . ι(αr),

where s is the number of arrows in {α1, . . . , αr−1} whose starting point is in W
(recall that we compose arrows from right to left).

Proof. Since ι is linear, it is enough to show it for w a path of length ≥ 1. If
α and w do not compose, then the statement clearly holds. So assume α and w
compose and that i ∈ V , then we have:

ι(α)ι(w) = ē(α⊗ 1)ē(w ⊗ 1)ē

= ē(α⊗ 1)(e+
i + e−i )(w ⊗ 1)ē

= ē(α⊗ 1)(ei ⊗ 1)(w ⊗ 1)ē

= ē(α⊗ 1)(w ⊗ 1)ē

= ē(αw ⊗ 1)ē

= ι(αw).

If i is in W then we have

ι(α)ι(w) = ē(α⊗ 1)ē(w ⊗ 1)ē

= ē(α⊗ 1)(
1

2
(ei + eσ(i))⊗ (1 + σ))(w ⊗ 1)ē

=
1

2
ē((α⊗ (1 + σ))(w ⊗ 1)ē

=
1

2
ē(αw ⊗ 1 + ασw ⊗ σ)ē

=
1

2
ι(αw) since α and σw do not compose.

2
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Remark 1.8. The application ι : Λ → ēΛGē defined above sends arrows α of Q
to either α+ +α− if we are in situations (1), (2) or (3) of Lemma 1.4, and to α+ if
we are in situation (4).

We end this subsection by giving an expression of ι ◦ σ that will be useful in
several computations.

Lemma 1.9. Let w be a path from i to j in Q. Then we have

ι(σw) =


e+
j ι(w)e+

i + e−j ι(w)e−i − e
+
j ι(w)e−i − e

−
j ι(w)e+

i if i, j ∈ V ;

ι(w)e+
i − ι(w)e−i if i ∈ V, j ∈W ;

e+
j ι(w)− e−j ι(w) if i ∈W, i ∈ V ;

ι(w) if i, j ∈W.

Proof. The proof is done by induction on the length of w. If w = α is an
arrow, the statement follows directly from Proposition 1.5 together with Remark
1.8.

Assume the result holds for any path of length r and prove it for a path w′ = αw
of length r + 1. Denote by i = s(w), j = t(w) = s(α) and k = t(α). We have then
eight cases to consider depending on wether i,j and k belong to V or W .

Case 1: i, j, k ∈ V .
We have the following equalities:

ι(σ(α)σ(w)) = ι(σ(α))ι(σ(w)) by Lemma 1.7
= ι(α)ι(σ(w)) since j, k ∈ V
= (α+ + α−)(e+

j ι(w)e+
i + e−j ι(w)e−i − e

+
j ι(w)e−i − e

−
j ι(w)e+

i )

= α+(ι(w)e+
i − ι(w)e−i ) + α−(ι(w)e−i − ι(w)e+

i )
= e+

k α
+ι(w)e+

i − e
+
k α
−ι(w)e−i − e

−
k α
−ι(w)e+

i + e−k α
−ι(w)e−i

= e+
k ι(α)ι(w)e+

i − e
+
k ι(α)ι(w)e−i − e

−
k ι(α)ι(w)e+

i + e−k ι(α)ι(w)e−i .

Case 2: i, j ∈ V and k ∈W
We have the following equalities:

ι(σ(α)σ(w)) = ι(σ(α))ι(σ(w)) by Lemma 1.7
= (α+ − α−)(e+

j ι(w)e+
i + e−j ι(w)e−i − e

+
j ι(w)e−i − e

−
j ι(w)e+

i )

= (α+ − α−)ι(w)e+
i − (α+ + α−)ι(w)e−i

= ι(αw)(e+
i − e

−
i ).

Case 3: i ∈ V , j ∈W and k ∈ V .
We have then the following equalities:

ι(σ(α)σ(w)) = 2ι(σ(α))ι(σ(w)) by Lemma 1.7
= 2(α+ − α−)(ι(w)e+

i − ι(w)e−i )
= 2(α+ι(w)e+

i − α−ι(w)e+
i − α+ι(w)e−i + α−ι(w)e−i ).

We get then the result since we have

ι(αw) = 2(α+ι(w)e+
i + α−ι(w)e+

i + α+ι(w)e−i + α−ι(w)e−i ).

Case 4: i ∈ V and j, k ∈W
We have then the following equalities:
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ι(σ(α)σ(w)) = 2ι(σ(α))ι(σ(w)) by Lemma 1.7
= 2α+(ι(w)e+

i − ι(w)e−i )
= ι(αw)e+

i − ι(αw)e−i .

The remaining cases are either dual or very similar and are left to the reader. 2

1.3. Group action on ēΛGē. As before, we let G = {1, σ} act on the quiver Q,

inducing an action on Λ. It is proved in [RR85] that the dual group Ĝ acts on

ΛG, and that the resulting skew group algebra (ΛG)Ĝ is Morita-equivalent to Λ.

It is also observed that Ĝ should act on ēΛGē. In this section, we make this action
precise.

Let o(W ) be a set of representatives of G-orbits of W . Define

ε :=
∑
i∈V

(e+
i + e−i ) +

∑
j∈o(W )

(ej − eσ(j))⊗ 1 ∈ ΛG.

Note that the first term can be written as
∑
i∈V ei ⊗ 1. Note, also, that the

second term depends on the choice of o(W ).

Lemma 1.10. We have that ε2 = 1.

Proof. Since the e±i (i ∈ V ) are pairwise orthogonal primitive idempotents,
we have that the square of the first term is

(
∑
i∈V

(e+
i + e−i ))2 =

∑
i∈V

(e+
i + e−i ).

Next, the square of the second term is

(
∑

j∈o(W )

(ej − eσ(j)))
2 ⊗ 1 =

∑
j∈o(W )

(ej − eσ(j))
2 ⊗ 1

=
∑

j∈o(W )

(ej + eσ(j))⊗ 1

=
∑

j∈o(W )

(e+
j + e−j ).

Finally, the orthogonality of the ei (i ∈ V ) and ej (j ∈W ) implies that the two
terms of ε are orthogonal to each other.

Therefore, ε2 =
∑
i∈V (e+

i + e−i ) +
∑
j∈o(W )(e

+
j + e−j ) = 1. 2

Let E : ΛG −→ ΛG : x 7→ εxε be the conjugation by ε.

Lemma 1.11. The map E defined above is an algebra automorphism of ΛG.
Morevoer,

• if i ∈ V , then E(e±i ) = e±i ;
• if j ∈W , then E(e±j ) = e∓j .

Proof. Since ε is invertible by Lemma 1.10, then E is an algebra automor-
phism.
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Let k ∈ V . Then

E(e±k ) = εe±k ε

=
(∑
i∈V

(e+
i + e−i ) +

∑
j∈o(W )

(ej − eσ(j))⊗ 1
)
e±k

(∑
i∈V

(e+
i + e−i ) +

∑
j∈o(W )

(ej − eσ(j))⊗ 1
)

= e±k ,

the last line being obtained by using orthogonality relations between the ei’s and e±i ’s.

Now, let k ∈W . Let δ =

{
1 if k ∈ o(W ),

−1 if k /∈ o(W ).
Then

E(e±k ) = εe±k ε

=
(∑
i∈V

(e+
i + e−i ) +

∑
j∈o(W )

(ej − eσ(j))⊗ 1
)(1

2
(ek + eσ(k))⊗ (1± σ)

)
ε

=
1

2

( ∑
j∈o(W )

(ej − eσ(j))⊗ 1
)(1

2
(ek + eσ(k))⊗ (1± σ)

)
ε

=
1

2

(
δ(ek − eσ(k))⊗ (1± σ)

)
ε

= δ
1

2

(
(ek − eσ(k))⊗ (1± σ)

)(∑
i∈V

(e+
i + e−i ) +

∑
j∈o(W )

(ej − eσ(j))⊗ 1
)

= δ
1

2
δ
(

(ek + eσ(k))⊗ 1± (−ek − eσ(k))⊗ σ
)

=
1

2

(
(ek + eσ(k))⊗ (1∓ σ)

)
= e∓k .

2

Let Ĝ = {1, σ̂} be the dual group of G. We know from [RR85] that Ĝ acts on
ΛG by

σ̂ ? (λ⊗ h) := λ⊗ σ̂(h)h.

However, this action does not restrict to an action on ēΛGē in general. To obtain
an action on ēΛGē, we need to twist by the automorphism E:

Proposition 1.12. The assignment

σ̂ · (λ⊗ h) := E(λ⊗ σ̂(h)h)

defines an action of Ĝ on ΛG. This action restricts to an action of Ĝ on ēΛGē.

Proof. The proposed action of σ̂ is an automorphism of ΛG, since it is the
composition of E and of the action of σ̂ by ?. In order to prove the first claim, it
suffices to prove that this automorphism is an involution.
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By definition, σ̂ · (λ⊗ h) = E(σ̂ ? (λ⊗ h)). Hence

σ̂ · (σ̂ · (λ⊗ h)) = σ̂ · E(σ̂ ? (λ⊗ h))

= σ̂ · ε(σ̂ ? (λ⊗ h))ε

= E
(
σ̂ ? (ε(σ̂ ? (λ⊗ h))ε)

)
= E

(
(σ̂ ? ε)(σ̂ ? (σ̂ ? (λ⊗ h)))(σ̂ ? ε)

)
= E

(
(σ̂ ? ε)(λ⊗ h)(σ̂ ? ε)

)
= E

(
ε(λ⊗ h)ε

)
= ε2(λ⊗ h)ε2

= λ⊗ h.

The first claim is proved. The second claim follows from the following computations,
using Lemma 1.11:

• if i ∈ V , then σ̂ · e±i = E(σ̂ ? e±i ) = E(e∓i ) = e∓i ;
• if j ∈W , then σ̂ · e±j = E(σ̂ ? e±j ) = E(e∓i ) = e±i .

2

Lemma 1.13. Let Ĝ act on ēΛGē as in Proposition 1.12.

(1) The action of Ĝ on the idempotents is defined as follows.
• If i ∈ V , then σ̂ · e±i = e∓i .
• If j ∈W , then σ̂ · e+

j = e+
j .

(2) The action of Ĝ on the arrows is defined as follows. Let α : i → j be an
arrow in Q.
• If i ∈ V and j ∈ V , then σ̂ · α± = α∓.

• If i ∈ V and j ∈W , then σ̂·α± = δjα
∓, where δj =

{
1 if j ∈ o(W ),

−1 else.

• If i ∈W and j ∈ V , then σ̂·α± = δiα
∓, where δi =

{
1 if i ∈ o(W ),

−1 else.

• If i ∈ W and j ∈ W , then σ̂ · α+ = δiδjα
+, where δi and δj are as

above.

Proof. The first two equalities were obtained at the end of the proof of
Proposition 1.12. The others are straightforward computations, of which we only
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write one instance. If i ∈ V and j ∈W , then

σ̂ · α± = σ̂ · (e+
j (α⊗ 1)e±i )

= (σ̂ · e+
j )(σ̂ · (α⊗ 1))(σ̂ · e±i )

= e+
j (ε(α⊗ 1)ε)e∓i

= e+
j

(∑
i∈V

ei ⊗ 1 +
∑

j∈o(W )

(ej − eσ(j))⊗ 1
)
(α⊗ 1)εe∓i

= e+
j (δjα⊗ 1)εe∓i

= δje
+
j (α⊗ 1)

(∑
i∈V

ei ⊗ 1 +
∑

j∈o(W )

(ej − eσ(j))⊗ 1
)
e∓i

= δje
+
j (α⊗ 1)e∓i

= δjα
∓.

The other cases are computed in a similar fashion. 2

1.4. Skew group algebra of ēΛGē. Our next aim is to describe the skew group
algebra of ēΛGē under the action of Ĝ.

1.4.1. Admissible choice. To do so, we will need an additional assumption using
the following definition.

Definition 1.14. Let Q be a quiver with an action of G = {1, σ} as above. A set
o(W ) of representatives of the orbits of the vertices in W is admissible if any arrow
having an endpoint in o(W ) has its other endpoint either in V or in o(W ). A set
o(Q1) of representatives of the orbits of the arrows is admissible with respect to
o(W ) if the arrows of o(Q1) are precisely the arrows whose endpoints are in o(W )
or V .

Example 1.15. (1) Consider the quiver given by

Q = 2

1

1’

3

3’

4

4’

α

α′

β

β′

γ

γ′

together with the action of G sending 1, 3 and 4 to 1′, 3′ and 4′, respec-
tively, and fixing 2. Then the o(W ) = {1, 3, 4} and o(Q1) = {α, β, γ} are
admissible.

(2) Consider the quiver

Q =

1

1’

2

2’

α

β

β′

α′

with action of G sending 1 and 2 to 1′ and 2′, respectively, and α and β
to α′ and β′, respectively. Then there is no admissible choice of o(W ). If,
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nevertheless, we choose o(W ) = {1, 2} and o(Q1) = {α, β}, then

QG = 1 2α+

β+

with σ̂(α+) = α+ and σ̂(β+) = −β+. Thus Assumption 1.2 is not satisfied
for QG.

Corollary 1.16. Assume that o(W ) and o(Q1) are admissible as in Definition

1.14. Then the action of the action of Ĝ on the algebra ēΛGē is induced by an
action of Ĝ on its Gabriel quiver QG (see Proposition 1.5). Let

VG := {i | i ∈W} and WG := {j± | j ∈ V }

be the sets of fixed vertices and non-fixed vertices, respectively, by the action of Ĝ
on QG. Then the choices

o(WG) = {i+ | i ∈ V } and

o((QG)1) = {α+ | α with at least one endpoint in V }∪{β+ | β has both endpoints in o(W )}
are admissible.

Proof. For admissible choices of o(W ) and o(Q1), all the δi and δj of Lemma
1.13 are equal to 1. This proves the first claim. The second claim follows from the
description of the quiver QG in Proposition 1.5. 2

1.4.2. Quiver of (ēΛGē)Ĝ. In view of Corollary 1.16, if there is an admissible choice

of o(W ), then we can apply Proposition 1.5 to the skew group algebra (ēΛGē)Ĝ.
We then get a set of pairwise primitive idempotents:

• for j ∈W , (e+
j )± = 1

2e
+
j ⊗ (1± σ̂), and

• for i ∈ V , (e±i )+ = 1
2 (e±i + e∓i )⊗ (1 + σ̂).

Call ẽ the sum of these idempotents. Then ẽ
(
(ēΛGē)Ĝ

)
ẽ is a basic algebra.

The arrows of its Gabriel quiver QĜ can be described, again using Proposi-

tion 1.5. First, we need to choose a set of representatives of the Ĝ-orbits of
{(e±i )+ | i ∈ V }. We choose o(WG) := {(e+

i )+ | i ∈ V }; this is admissible by
Corollary 1.16. We let o((QG)1) = {α+ | α with at least one endpoint in V } ∪
{β+ | β has both endpoints in o(W )}, which is also admissible by Corollary 1.16.
We can also define

ιG : ēΛGē→ ẽ
(
(ēΛGē)Ĝ

)
ẽ : x 7→ ẽ(x⊗ 1)ẽ.

Then, for any arrow α : i→ j in the original quiver Q:

• if i ∈ V and j ∈ V , then we had two arrows α± : i± → j± in QG. These
become one (α+)+ in QĜ.

• if i ∈ V and j ∈ o(W ), then we had two arrows α± : i± → j in QG. These
become two arrows (α+)± : (e+

i )+ → (e+
j )± in QĜ.

• if i ∈ o(W ) and j ∈ V , then we had two arrows α± : i→ j± in QG. These
become two arrows (α+)± : (e+

i )± → (e+
j )+ in QĜ.

• if i ∈ o(W ) and j ∈ o(W ), then we had one arrow α : i → j in QG. This
becomes two arrows (α+)± : (e+

i )± → (e+
j )± in QĜ.

The following follows from these considerations.
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Proposition 1.17. Let o(W ) and o(Q1) be admissible as in Definition 1.14. Then
the quivers Q and QĜ are isomorphic, and an isomorphism is induced by:

• for each i ∈ V , ei 7→ (e+
i )+;

• for each j ∈ o(W ), ej 7→ (e+
j )+;

• for each j ∈W \ o(W ), ej 7→ (e+
j )−;

• for each arrow α ∈ Q1, then α is sent to (α+)+ if α ∈ o(Q1) and to (α+)−

otherwise.

Moreover, this isomorphism is G-equivariant.

We will call ξ : QĜ → Q the isomorphism inverse to the one described in Propo-
sition 1.17. Then ξ extends to an isomorphism from kQĜ to kQ.

1.4.3. Relations. The rest of the section is devoted to showing that this isomor-
phism induces one between Λ and ẽ

(
(ēΛGē)Ĝ

)
ẽ. To this end, we will first need a

technical lemma.

Lemma 1.18. Assume that Λ = kQ, so that ξ extends to an isomorphism from
kQĜ to kQ. Let o(W ) and o(Q1) be admissible as in Definition 1.14. Let w =
α1 · · ·αm be a path in Q. Let p be the number of αi with start in V (resp. W ) and
end in W (resp. V ) if s(w) is in W (resp. in V ). Then

ξ◦ιG◦ι(w) =

{
2m+pw if w does not have both its start and end in W ,

2m+p−1(w + σ(w)) if w has both its start and end in W .

Proof. We prove the result as well as the following statement

(†) “if w is a path from i to j such that i, j ∈ V then ιG((e+
j − e

−
j )ι(w)) = 0”

by induction on the length m of w.
Let σµ(α) : σµi→ σµ(j) be an arrow in Q with α ∈ o(Q1) and µ = 0 or 1. Then

• if i, j ∈ V , ξ ◦ ιG ◦ ι(α) = ξ ◦ ιG(α+ + α−) = ξ(2(α+)+) = 2α;
• if i ∈ V and j ∈ W then ξ ◦ ιG ◦ ι(σµα) = ξ ◦ ιG(α+ + (−1)µα−) =

(α+ σα) + (−1)µ(α− σα) = 2σµα;
• if i ∈W and j ∈ V the case is dual;
• if i, j ∈W , then ξ ◦ ιG ◦ ι(σµα) = ξ ◦ ιG(α+) = α+σα = 20(σµα+σµ+1α).

Moreover if α is an arrow i → j with i, j ∈ V , then ιG((e+
j − e

−
j )ι(α)) = ιG(α+ −

α−) = (α+)+ − (α−)+ = α− α = 0, so (†) and the lemma hold for r = 1.

Assume w′ = σµ(α)w is a path of length r + 1, with α ∈ o(Q1) and µ = 0 or
1, and denote i = s(w), j = t(w) = s(σµα) and k = t(σµα). Denote by m and p
(resp. m′ and p′) the integers defined in the Lemma 1.18 for the path w (resp. w′).

We first show (†) for w′. Assume i and k are in V . If j is in V then we have

ιG((e+
k − e

−
k )ι(w′)) = ιG((e+

k − e
−
k )ι(α)ι(w)) by Lemma 1.7

= ιG(α+ι(w)− α−ι(w))
= ιG(α+)ιG(e+

j w)− ιG(α−)ιG(e−j ι(w)) by Lemma 1.7

= α(ιG(e+
j ι(w)− e−j ι(w))) = 0 by induction hypotesis
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If j is in W then we have

ιG((e+
k − e

−
k )ι(w′)) = 2ιG((e+

k − e
−
k )ι(σµα)ι(w))

= 2ιG((α+ − (−1)µα−)ι(w))
= 2ιG(α+)ιG(ejι(w))− (−1)µιG(α−)ιG(ejι(w))
= 2[(α+ σα)− (−1)µ(α− σα)]ιG ◦ ι(w) since ι(w) = ejι(w)
= 2m+p+2(σµ+1α)w by induction
= 0 since σµ+1α and w do not compose.

To prove the step for w′ = (σµα)w we have to treat eight cases depending on
wether i, j and k belong to V or to W .

Case 1: Assume that i, j ∈ V and k ∈W . Then p′ = p, and we have

ξ ◦ ιG ◦ ι((σµα)w) = ξ ◦ ιG(ι(σµα)ι(w)
= ξ ◦ ιG[(α+ + (−1)µα−)ι(w)]
= 2ξ ◦ ιG(α+)ξ ◦ ιG(e+

j ι(w)) + (−1)µ2ξ ◦ ιG(α−)ξ ◦ ιG(e−j ι(w))

= 2(α+ (σα))ξ ◦ ιG(e+
j ι(w)) + (−1)µ2(α− (σα))ξ ◦ ιG(e−j ι(w))

= 2αξ ◦ ιG(e+
j ι(w) + (−1)µe−j ι(w)) + 2(σα)ξ ◦ ιG(e+

j ι(w)− (−1)µe−j ι(w))

= 2(σµα)ξ ◦ ιG(e+
j ι(w) + e−j ι(w)) + 2(σµ+1α)ξ ◦ ιG(e+

j ι(w)− e−j ι(w))

= 2(σµα)ξ ◦ ιG(ι(w)) by induction hypothesis (†)
= 2m+p+1(σµα)w by induction hypothesis.

Case 2: i ∈ V , j ∈W and k ∈ V . Then p′ = p+ 1 and we have

ξ ◦ ιG ◦ ι((σµα)w) = 2ξ ◦ ιG((α+ + (−1)µα−)ι(w))
= 2ξ ◦ ιG(α+)ξ ◦ ιG ◦ ι(w) + 2(−1)µξ ◦ ιG(α−)ξ ◦ ιG ◦ ι(w) since ι(w) = ejι(w)
= 2(α+ (σα))2m+pw + 2(−1)µ(α− (σα))2m+pw by induction
= 2m+p+2(σµα)w.

Case 3: i ∈W , j ∈ V , k ∈W . Then p′ = p+ 1 and we have

ξ ◦ ιG ◦ ι((σµα)w) = ξ ◦ ιG((α+ + (−1)µα−)ι(w))
= 2(α+ (σα))ξ ◦ ιG(ej+ι(w)) + 2(−1)µ(α− (σα))ξ ◦ ιG(e−j ι(w))

= 2(σµα)ξ ◦ ιG(e+
j ι(w) + e−j ι(w)) + 2(σµ+1α)ξ ◦ ιG(e+

j ι(w)− e−j ι(w))

= 2(σµα)ξ ◦ ιG(ι(w)) + 2(σµ+1α)ξ ◦ ιG(ι(σw)) by Lemma 1.9
= 2m+p+1((σµα)w + (σµ+1α)σw)).

Case 4: i, j ∈W and k ∈ V . Then p′ = p and we have

ξ ◦ ιG ◦ ι((σµα)w) = 2ξ ◦ ιG((α+ + (−1)µα−)ι(w))
= 2(α+ (σα))ξ ◦ ιG(ι(w)) + (−1)µ2(α− (σα))ξ ◦ ιG(ι(w))
= 4.2m+p−1(σµα)(w + σw)
= 2m+p+1(σµα)w since σµα and w do not compose.

The other cases are very similar and are left to the reader.
2

Theorem 1.19. Let o(W ) and o(Q1) be admissible as in Definition 1.14. Then

the algebras Λ and ẽ
(
(ēΛGē)Ĝ

)
ẽ are isomorphic.
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Proof.
By Proposition 1.17, they have the same Gabriel quiver. Let R be a set of

relations, that is, a set of generators of the ideal I such that Λ = kQ/I. Since G
acts on Λ, we can assume that R is closed under the action of G. Then for any
ρ ∈ R, ιGι(ρ) is a relation for ẽ

(
(ēΛGē)Ĝ

)
ẽ.

Let ζ be the automorphism of kQ sending each arrow α to either 1
4α if α has its

starting point in V and its ending point in W , and to 1
2α otherwise. Then, applying

Lemma 1.18:

• if ρ has its starting and ending points in V , then ζξιGι(ρ) = ρ;
• the same holds if ρ has its starting point in W and its ending point in V ;
• if ρ has its starting point in V and its ending point in W , then ζξιGι(ρ) =

1
2ρ;

• if ρ has both its start and ending points in W , then ζξιGι(ρ) = 1
2 (ρ+σ(ρ)).

But if i is the starting point of ρ and j its ending point, then ej(ρ+σ(ρ))ei =
ρ is a relation.

Therefore, the relations of ẽ
(
(ēΛGē)Ĝ

)
ẽ are scalar multiple of those of Λ. The

two algebras are thus isomorphic.
2

2. Application to generalized cluster categories

2.1. Extension to the dg setting. In this section, we extend the previous notions
to the case of differential graded (=dg) algebras.

A dg k-algebra is a graded k-algebra Γ together with a differential d, that is, a
degree-1 k-linear map from Γ to itself satisfying the Leibnitz rule

d(uv) = d(u)v + (−1)deg uud(v)

for all homogenous elements u and v. Morphisms of dg algebras are degree-0 algebra
morphisms which commute with the differentials. For more on dg algebras (and
categories), we refer the reader to [K06].

Let Γ be a dg algebra. Let G be a finite group acting on Γ by dg algebra
automorphisms.

Definition 2.1. The skew group dg algebra ΓG is the algebra defined as follows.

• As a k-module, ΓG = Γ⊗k kG.
• Multiplication is given by

(x⊗ g)(y ⊗ h) = x · g(y)⊗ gh,

for all x, y ∈ Γ and g, h ∈ G.
• The differential is defined by

d(x⊗ g) = d(x)⊗ g.

Proposition 2.2. The algebra ΓG is a dg algebra.
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Proof. We only need to check the Leibnitz rule. Let x ∈ Γi, y ∈ Γj , g, h ∈ G.
Then

d((x⊗ g)(y ⊗ h)) = d(x(g(y))⊗ gh)

= d(x(g(y)))⊗ gh
= d(x)g(y)⊗ gh+ (−1)ixd(g(y))⊗ gh
= (d(x)⊗ g)(y ⊗ h) + (−1)ix · g(d(y))⊗ gh
= d(x⊗ g)(y ⊗ h) + (−1)i(x⊗ g)(d(y)⊗ h)

= d(x⊗ g)(y ⊗ h) + (−1)i(x⊗ g)d(y ⊗ h).

2

Corollary 2.3. If G acts on Γ as above, then G also acts on H0Γ, and (H0Γ)G =
H0(ΓG).

Proof. Since the action of G commutes with the differential of Γ, it preserves
its image and kernel. Thus G acts on H0Γ. Moreover, if dG is the differential of
ΓG, then it is clear that ker d0

G = (ker d0) ⊗k kG and Im d−1
G = (Im d−1) ⊗k kG.

This implies that (H0Γ)G = H0(ΓG). 2

2.2. Functors. Let, as before, G be a finite group acting on a dg algebra Γ. Then Γ
is a subalgebra of ΓG. This induces an exact functor between the module categories

F : Mod (Γ) −→ Mod (ΓG)

defined by F =?⊗Γ ΓG. The image of a module M by this functor can be seen as
a k-module (or even a Γ-module) as ⊕g∈GM .

The functor F has an adjoint F ′ sending a ΓG-module to its restriction to Γ.
We see that FF ′(M) = ⊕g∈GM .

Let DΓ be the derived category of Γ, per Γ be the perfect derived category (the
full subcategory of DΓ generated by Γ and stable under taking direct summands)
and DfdΓ be the full subcategory of DΓ whose objects are those whose homology
is of finite total dimension over k.

Proposition 2.4. The derived functor LF : DΓ→ DΓG restricts to functors

LF : per Γ −→ per ΓG

and

LF : DfdΓ −→ DfdΓG.

Proof. The first restriction is because FΓ = ΓG. The second comes from the
fact that F is exact and sends a module M to ⊕g∈GM . 2
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2.3. Actions of G = Z/2Z on (complete) path dg algebras. Let Q be a finite

graded quiver. Let Γgr be the graded path algebra of Q, and let Γ̂gr be the complete
graded path algebra of Q. Let Γ be a dg algebra with underlying graded algebra

Γgr and differential d, and let Γ̂ be its completion.
Let G be a finite group which acts on Q and which preserves degrees. This

action induces an action of G on Γgr and Γ̂gr by automorphisms of graded algebras.
Assume further that this action of G commutes with d, so that G acts on the dg

algebras Γ and Γ̂.
Assume now that G = {1, σ}. As in Section 1.2, we partition Q0 into subsets

Q0 = V
∐
W .

Then

Proposition 2.5. The dg algebra ēΓGē is isomorphic to the dg algebra whose
underlying graded graded algebra is the graded path algebra of the quiver described
in Section 1.2, with differential d such that d(i±) = (d(i)±) and d(α±) = (d(α))±.

Its completion is isomorphic to ēΓ̂Gē.

2.4. The case of Ginzburg dg algebras. We follow [G] and [A09]. Let (Q,S)

be a quiver with potential. We define its complete Ginzburg dg algebra Γ̂ = Γ̂Q,S
as follows.

Let Q̄ be the graded quiver whose vertices set is that of Q and whose arrows set
contains

• for every arrow α : i→ j in Q, an arrow α : i→ j of degree 0;
• for every arrow α : i→ j in Q, an arrow ᾱ : j → i of degree −1; and
• for every vertex i of Q, a loop ti : i→ i of degree −2.

Then, as a graded algebra, Γ̂ is the complete path algebra of Q̄, that is, for every
integer m,

Γ̂m =
∏

w path of degree m

kw.

The differential of Γ̂ is the continuous map defined as follows on arrows, and ex-
tended by linearity and the Leibnitz rule: for any arrow α of Q, d(α) = 0 and
d(ᾱ) = ∂αS, and for any vertex i of Q, d(ti) = ei

(∑
α∈Q1

(αᾱ− ᾱα)
)
ei.

Assume that G = {1, σ} acts on Q, and that this action is such that S and
σ(S) are cyclically equivalent. This implies that for any arrow a of Q, the cyclic
derivative ∂σ(a)(S) = σ(∂a(S)).

Before we go on, we need a version of the application ι : Λ → ēΛGē which is
well-defined on potentials, that is, which is invariant under cyclic permutations.
For any cyclic path w, we define

ι′(w) =

{
ι(w) if w has its starting and ending points in V ,

2ι(w) if w has its starting and ending points in W.

Thanks to Lemma 1.7, ι′ is well-defined on cyclic paths up to cyclic equivalence; it
also extends naturally to linear combinations of path.

Theorem 2.6. (1) The action of G on (Q,S) induces an action on Γ̂ by dg
automorphisms.

(2) The dg algebra ēΓ̂Gē is isomorphic to the complete Ginzburg dg algebra of
the quiver with potential (QG, SG), where
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• QG is the quiver described in Section 1.2;

• SG = ι′(S) in ēΓ̂Gē.

Proof. Point (1) is proved by observing that the action of G on (Q,S) extends

to an action on the dg algebra Γ, and then by completing to get an action on Γ̂.

To prove point (2), first note that the dg algebra ēΓ̂Gē has an underlying graded
algebra isomorphic to that of the Ginzburg dg algebra of (QG, SG). Thus we only
need to check that the differentials coincide. We do this by computing the action
of the differentials on the arrows in both cases.

The arrows of degree 0 are all sent to 0 in both cases.

To deal with the arrows of degree −1, we treat four cases. Let α : i → j be an
arrow in Q. We can identify (ᾱ)± with α±. We need to compare dG((ᾱ)±) and
∂α±(ι′(S)).

Case 1: i, j ∈ V . Let w = α1 · · ·αm be a term in S which involves α. Up to
cyclic permutation, we can assume that w starts and ends in a vertex in V .

We have that

dG((ᾱ)±) = dG(e±i ι(ᾱ)e±j )

= e±i dG(α⊗ 1)e±j

= e±i (d(α)⊗ 1)e±j

= e±i (∂αS ⊗ 1)e±j

= e±i ι(∂αS)e±j .

Moreover, ∂α±(ι′w) = e±i ι(∂αw)e±j . Summing over all terms w of S, this shows

that dG((ᾱ)±) = ∂α±(ι′(S)).

Case 2: i ∈ V, j ∈W . Let w be as in Case 1.
We can show as in Case 1 that dG((ᾱ)±) = e±i (ι(∂α(S)))e+

j .

To compute ∂α±(ι′w), note that α± appears in ι′(w) whenever α or σ(α) appears
in w; this is because ι(α) = (α+ + α−) and ι(σ(α)) = (α+ − α−). Hence

∂α±(ι′w) = 2e±i (ι(∂αw))e+
j ± 2e±i (ι(∂σαw))e+

j ,

where the factor 2 appears because of the definition of ι′. According to Lemma 1.9,

ι(∂σαw) = ι(σ(∂ασw)) = e+
i ι(∂ασw)− e−i ι(∂ασw),

Hence ∂α±(ι′w) = 2e±i
(
ι(∂αw) + ι(∂ασw)

)
e+
j .

Since S is σ-invariant, σw is also a term in S. This shows that dG((ᾱ)±) =
1
4∂α±(ι′(S)).

Case 3: i ∈W, j ∈ V . This case is dual to Case 2, and we omit it.

Case 4: i, j ∈ W . Let w be as before. As in the previous cases, we can show
that dG((ᾱ)+) = e+

i (ι(∂α(S)))e+
j .

To compute ∂α+(ι′w), note that α+ appears in ι′(w) whenever α or σ(α) appear
in w. Then

∂α+(ι′w) = 4e+
i (ι(∂αw))e+

j + 4e+
i (ι(∂σαw))e+

j ,
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where the factor 4 appears because of the factor 2 in the definition of ι′. Again
using Lemma 1.9, we have that

ι(∂σαw) = ι(σ(∂ασw)) = ι(∂ασw),

so that ∂α+(ι′w) = 8e+
i (ι(∂αw))e+

j .

Since S is σ-invariant, the term σ(w) also appears in it. Therefore dG((ᾱ)+) =
1
8∂α+(ι′(S)).

Finally, we deal with arrows of degree −2. Let i be a vertex of Q.

Case a: i ∈ V . The following computation is sufficient:

dG(t±i ) = dG(e±i t
±
i e
±
i )

= e±i dG(ti ⊗ 1)e±i

= e±i ι(d(ti))e
±
i

= e±i ι(ei
∑
α∈Q1

(αᾱ− ᾱα)ei)e
±
i

= e±i
( ∑

α∈Q1

(s(α),t(α))∈V 2

(α±α± − α±α±) + 2
∑

α±∈Q1

(s(α),t(α))/∈V 2

(α±α± − α±α±)
)
e±i

= e±i
( ∑

α±∈(QG)1
(s(α),t(α))∈V 2

(α±α± − α±α±) + 4
∑

α±∈(QG)1
(s(α),t(α))/∈V 2

(α±α± − α±α±)
)
e±i .

Case b: i ∈W . In this case, a similar computation yields

dG(t±i ) = e+
i

(
2

∑
α±∈(QG)1

(s(α),t(α))∈W 2

(α+α+ − α+α+)

+
∑

α±∈(QG)1
(s(α),t(α))/∈W 2

(α+α+ − α+α+)

+
∑

α±∈(QG)1
(s(α),t(α))/∈W 2

(α−α− − α−α−)
)
e+
i .

To finish the proof, define an automorphism ζ of the path algebra kQ̄G as follows.
Firstly, ζ is the identity on vertices. Secondly, for every arrow α of Q, ζ sends α to
itself. Thirdly,

ζ(α±) =


α± if (s(α), t(α)) ∈ V × V ,

4α± if (s(α), t(α)) ∈ (V ×W ) ∪ (W × V ),

8α± if (s(α), t(α)) ∈W ×W .

Finally, for every vertex i of Q,

ζ(t±i ) =

{
t±i if i ∈ V ,
4t±i if i ∈W.

Then ζ(ΓQG,SG) is isomorphic to ēΓ̂Gē and we get the result.
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2

Corollary 2.7. The algebra ē(P(Q,S)G)ē is a Jacobian algebra.

Proof. It is proved in [KY11, Lemma 2.8] that H0Γ̂ is isomorphic to P(Q,S).
The result is then an application of Theorem 2.6 and Corollary 2.3. 2

Corollary 2.8. The functors of Proposition 2.4 induce functors

F : C(Γ̂Q,S)→ C(Γ̂QG,SG) and F ′ : C(Γ̂QG,SG)→ C(Γ̂Q,S)

between generalized cluster categories.

3. Group action on cluster categories associated with surfaces

We follow [FSTh08, Section 2]. In the rest of the paper Σ is a Riemann surface
with boundary, by which we mean a surface whose interior has a complex structure
and whose points in the boundary have open neighborhoods homeomorphic to the
closed upper half-plane. Let M be a finite set of marked points on the boundary
of Σ such that there is at least one marked point on each boundary component of
Σ. Let P be a finite set of marked points in the interior of Σ, called punctures. We
assume that:

• the set of punctures P is non empty,
• (Σ,M,P) is not a once-punctured monogon.

We denote by g the genus of Σ, by b the number of boundary components and by
p the number of punctures.

The aim in this section is to construct a new marked surface (Σ̃,M̃) without
punctures together with triangle functors between the associated cluster categories
using group actions and the results of Section 1.

3.1. Z/2Z-action on the quiver of a triangulation. Let τ be an ideal triangu-
lation of (Σ,M,P) of Σ (in the sense of [FSTh08, Def 2.6]) such that each puncture
belongs to a self-folded triangle and such that no triangle shares a side with two
self-folded triangles. (These kinds of triangulations are called skewed-gentle by
[GLS16] and are also considered in [QZ17]).

Then there are exaclty six different types of triangles in τ which are not self-
folded (boundary segments are here colored in gray):

0 I II

•

IIIa

•

IIIb

•

IV
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Therefore the adjacency quiver Q(τ) (as defined in [FSTh08]) is built by gluing
blocks corresponding to each kind of triangle.

• •
I

• •

•

α

βγ

II

�

�

•

IIIa

�

�

•

IIIb

�

�

••

γ

γ′

β

β′

α

IV

Note that two blocks can only be glued by identifying two vertices of type • and
that one block cannot be glued to itself (see [FSTh08, section 13] for more details
on block decompositions).

The potential S(τ) defined in [L09] associated to τ is then

S(τ) =
∑

blocks of type II

γβα+
∑

blocks of type IV

(γβα+ γ′β′α).

We consider the action of G = Z/2Z on Q(τ) as the unique one exchanging
vertices i and i′ in the blocks of type IIIa, IIIb and IV. The potential S(τ) is clearly
G-invariant. Applying Theorem 2.6 we get that Q(τ)G is obtained from Q(τ) by
replacing:

• each block of type I by two blocks

i+ j+α+

i− j−α−

• each block of type II by two blocks

i+ j+

k+

α+

β+γ+

i− j−

k−

α−

β−γ−

• each block of type IIIa (resp. IIIb) by a block (resp. a block)

i+

i−

j

α+

α−

resp.

j+

j−

i

α+

α−

• and each block of type IV by a block

i+

j

i−

k+

k−.

β+ γ+

α+

β− γ−

α−

We obtain the following description for the potential.

Proposition 3.1. The potential S(τ)G defined in Theorem 2.6 is

S(τ)G =
∑

blocks of type II

(γ+β+α++γ−β−α−)+4
∑

blocks of type IV

(γ+β+α++γ−β−α−).
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Proof. By Theorem 2.6 the potential S(τ)G is defined to be S(τ)G = ι′(S(τ)),
where ι′ is as in Section 2.4.

Now if γβα is a 3-cycle corresponding to a block of type III in Q(τ) we compute

ι′(γβα) = ι(γβα)

= (γ+ + γ−)(β+ + β−)(α+ + α−)

= γ+β+α+ + γ−β−α−

since the arrows γ± and β∓ do not compose.
If γβα+γ′β′α is the potential associated with a block of type IV then we compute

ι′(γβα+ γ′β′α) = 2ι(γβα+ γ′β′α)

= 2
(

(γ+ + γ−)(β+ + β−)(α+ + α−) + (γ+ + γ−)(β+ − β−)(α+ − α−)
)

= 2
(
γ+β+α+ + γ+β+α− + γ−β−α+ + γ−β−α− +

γ+β+α+ − γ+β+α− − γ−β−α+ + γ−β−α−
)

= 4γ+β+α+ + 4γ−β−α−.

This finishes the proof. 2

3.2. Construction of a new surface Σ̃.

3.2.1. First description using Riemann structure. We construct a branched cover-

ing p : Σ̃ → Σ of degree two whose non-trivial branching points are precisely the
preimages of the punctures of Σ. The construction seems classical; we nevertheless
provide a detailed construction.

First, for each puncture P of Σ, choose a simple curve γP joining P to a marked
point on the boundary. We can choose the γP so that they are pairwise non-
intersecting. The arcs γP will play the role of “branch cuts” in what follows.

Next, let Σ̃+ and Σ̃− be two copies of Σ, with copies γ+
P and γ−P of the arcs γP ,

respectively. Denote by σ : Σ± → Σ∓ the identification map. In what follows,

if X+ is a point or a curve on Σ̃+, we will denote by X− the corresponding object

on Σ̃−, and vice versa.

We now define a new Riemann surface Σ̃. We do this in three steps: we define
it as a set, then define its topology, and finally define its complex structure.

As a set, Σ̃ is the union of Σ̃+ and Σ̃−, where any puncture P+ is identified
with P−. In other words,

Σ̃ = Σ̃+ t Σ̃−/(P+ ∼ P−, P puncture).

We define a topology on Σ̃ by specifying a basis of open neighborhoods around
each point. There are four cases to consider.

(1) Let x+ be a point in the interior (or the boundary) of Σ̃+ which does

not lie on any of the arcs γ+
P . Then, for the topology of Σ̃+, x+ has a

basis B+ of open neighborhoods which are holomorphic to open discs (or
homeomorphic to half-discs, respectively) and are disjoint from any of the

arcs γ+
P and from the punctures of Σ̃+; if x+ is in the interior, we further

ask that the neighborhoods are disjoint from the boundary. We let B+ be
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a basis of neighborhoods of x+ on Σ̃. We also do the same, replacing all +
signs with − signs in the above.

(2) Let x+ be a point in the interior of Σ̃+ which lies on the arc γ+
P . Let B+

be a basis of open neighborhoods of x+ on Σ̃+ satisfying the following:

each U+ in B+ is disjoint from the boundary and punctures of Σ̃+, and
is holomorphic to an open disc which is split in exacly two parts by γ+

P .

Orienting γ+
P so that it goes from the boundary to P , it makes sense to speak

of the left part and of the right part of U+ with respect to this orientation.
Let U+

R be the right part, including γ+
P ∩ U+, and let U+

L = U+ \ U+
R .

Finally, let Ũ+ = U+
R t U

−
L . Then we let

B̃+ = {Ũ+ | U+ ∈ B+}
be a basis of open neighborhoods of x+. We also do the same thing, this
time permuting the signs + and − in the above.

Σ̃+

•
γP

P

•

U+
L U+

R

Σ̃

•
γP

P

•

U−L U+
R

(3) Let P be a puncture, with copies P+ and P− on Σ̃+ and Σ̃− prior to

identification. Let B± be a basis of open neighborhoods of P± on Σ̃±

which are disjoint from the punctures (other that P±) and the boundary

of Σ̃±. For any U+ ∈ B+, define Ũ = U+ t U−/(P+ ∼ P−), and set

B̃ = {Ũ | U+ ∈ B+}.

Then we let B̃ be a basis of open neighborhoods of P on Σ̃.

Σ̃+

•

γP

P

•
Σ̃

•

γP

P

•

(4) Let x+ be a point on the boundary of Σ̃+ which lies on exactly m ≥ 1
arcs γ+

P1
, . . . , γ+

Pm
(that is to say, x+ is a marked point which is an end-

point of these curves). Let B+ be a basis of open neighborhoods of x+

on Σ̃+ such that each U+ in B+ is disjoint from the punctures and is
homeomorphic to a half-disc in the closed upper half plane split into m+ 1
regions by the γ+

Pi
. We order these regions counter-clockwise around x+

and name them U+
1 , . . . , U

+
m+1, with the convention that x+ belongs to U+

1

and each γ+
Pi

is contained in U+
i . We set

Ũ+ = U+
1 t U

−
2 t U

+
3 t . . . t U

±
m+1,

and let

B̃ = {Ũ | U+ ∈ B+}
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be a basis of open neighborhoods of x+ on Σ̃.

Σ̃+

•• •
P2

P3 P1

•
U+

4

U+
3 U+

2

U+
1

Σ̃

•• •
P2

P3 P1

•
U−4

U+
3 U−2

U+
1

Finally, we define an atlas on Σ̃ to make it a Riemann surface with boundary.
Let D be the open unit disc in the complex plane, and H be an open half-disc in

the closed upper half plane. We can assume that we have atlases on Σ̃± whose
charts are either of the form

ψ±U : U± → D or ψ±U : U± → H,

where the U± are the sets which are part of the basis of open neighborhoods of Σ̃±

described above; whether the chart goes to D or to H depends on whether U± is

disjoint from the boundary or not. We define charts on Σ̃ as follows.

• If we are in case (1) from above and U± is part of the basis of open neighbor-
hoods, then we use the chart ψ±U without change. This is possible, since U±

is completely contained in the interior of Σ̃±.

• If Ũ± is an open set as in case (2), then we define a chart

ψ̃±U : Ũ± → D

by setting it to be equal to ψ±U on U±R and to ψ∓U on U∓L .

• If Ũ is as in case (3), then define ψ̃ to be the composition of the maps on
the bottom row of the following commutative diagram:

U+ t U− D tD

Ũ D tD/ ∼ D,

ψ+tψ−

s

where D tD/ ∼ is the branched covering of the map z 7→ z2 on the disc,
obtained by gluing the two copies of D along the branch cuts [0, 1] and
identifying the origins of both copies, and s is the “square root map”.

• If Ũ± is as in case (4), then define

ψ̃±U : Ũ± → H

to be equal to ψ±Ui on U±i when i is odd and ψ∓Ui on U∓i when i is even.

The transition maps between charts of Σ̃ are either those of Σ̃±, or their square
or square root. As such, they are holomorphic (or simply continuous around the
boundary).

3.2.2. Alternative description of the topological structure of Σ̃. Let Σ be as above,
and τ be a triangulation such that each puncture P is linked to the boundary by a
self-folded triangle as in Section 3.1 . For each P ∈ P denote by iP the folded side
of the folded triangle containing P . By definition of τ , the other endpoint of iP
is on the boundary of Σ. We can then apply the above construction to the curves
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γP = iP , and obtain a double cover Σ̃ of Σ with branch points the preimages of the
punctures.

The topological structure can also be described as follows (and this is this de-
scription that will be used later on in the paper). We first construct a surface Σ+

by cutting along the arcs iP . In other words each block of type IIIa, IIIb and IV is
replaced as in the following picture:

Σ

j k•
iP

P

•
Σ+

j+ k+

• •
P ′+ P+

If several punctures are linked to the same marked point, since the folded sides are
compatible arcs, the folded sides linked to the same marked point can be ordered.
Then we cut Σ following the order as shown in the following picture:

(1)

• • •
P3 P2 P1

• • • • •
P ′+3 P ′+2 = P+

3 P ′+1 = P+
2 P+

1

DefineM+ as the set of marked points of Σ which are not linked to a puncture,
and let τ+ the union of arcs j+ where j is an arc in τ which is not a side of a
self-folded triangle. The next result is immediate to check.

Lemma 3.2. The marked surface (Σ+,M+ ∪ {P+, P ′+, P ∈ P}) is oriented and
τ+ is a triangulation.

For each segment [P+, P ′+], fix a homeomorphism ϕP : [P+, P ′+]→ [0, 1] and let
P+ := ϕ−1

P ( 1
2 ). Fix another copy Σ− of Σ+ and a homeomorphism S : Σ+ tΣ− →

Σ+ t Σ− exchanging Σ+ and Σ−.

Definition 3.3. From Σ and τ , we define Cov(Σ) as the quotient Σ+tΣ−/(ΨP , P ∈
P), where ΨP is the following composition:

ΨP : [P+;P ′+]
ϕP // [0, 1]

I // [0, 1]
ϕ−1
P // [P+, P ′+]

S // [P−, P ′−] ,

and where I : [0, 1]→ [0, 1] is the map t 7→ 1− t.

Lemma 3.4. The surfaces Cov(Σ) and Σ̃ are homeomorphic as oriented surfaces
with marked points.

Proof. Let us define a map Φ : Cov(Σ)→ Σ̃. We use the notation of Σ± and

Σ̃± as defined above. For x in Cov(Σ) outside of a segment [P+, P ′+] = [P ′−, P−],
it is clear how to define Φ(x) using the fact that Σ+ \

⋃
P {iP } is homeomorphic to

Σ̃+ \
⋃
P [P+, P ′+]. Now there is a natural map [P+, P

′+] → (iP )+ ⊂ Σ̃+ sending

P ′+ to the boundary point linked to P , and P+ = ϕ−1
P ( 1

2 ) to P . For x in [P+, P
′+]

we define Φ(x) as the corresponding point in Σ̃+. The map Φ is well defined and
bijective since we have P+ = P−, and since we have [P+, P+] = [P ′−, P−].
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We now prove that Φ is a homeomorphism. For x ∈ Σ, we denote by x+ its
preimage in Σ+ in Cov(Σ). We take a basis of neighborhood of x in Σ as described
in the previous description, and check that it induces a basis of neighborhood of

x+ in Cov(Σ) that coincide through Φ with the one of Σ̃ described in the previous
section.

(1) For x+ in Σ+ (resp. Σ−) outside of a segment [P+, P ′+] (resp. [P−, P ′−]),
it is clear that this is the case.

(2) For x+ ∈]P+, P+[, then if U is a neighborhood of the corresponding x in Σ
which does not contain P , and which is split in exactly two parts UR ∪ UL
by iP , then a neighborhood of x+ ∈ Cov(Σ) is constructed by gluing U+

R

to U−L along [P+, P ′+] = [P ′−, P−] as shown in the following picture.

Σ

•
iP

P

•

UL UR

Σ+

• •
P ′+ P+P+

•

Σ−

• •
P− P ′−P−

•

U+
L U+

R

U−R U−L

(3) For x = P , let U be a neighborhood of P which does not intersect any other
iQ and such that U ∩ iP is connected. Then a neighborhood of P+ = P−
in Cov(Σ) is constructed by gluing U+ to U− along [P+, P ′+] = [P ′−, P−]
as follows.

Σ

•

iP

P

•
Σ+

• •
P ′+ P+

•

Σ−

• •
P− P ′−

•

U+

U−

(4) Let x be a point on the boundary of Σ which lies on exactly m arcs
iP1
, . . . , iPm , and let U be a neighborhood of x that is split by the iPj ’s in

m+1 regions U1, . . . , Um+1. Then on Σ+, U becomes a disjoint union of m+
1 opens that are respectively neighborhoods of P+

1 , P
′+
1 = P+

2 , . . . , P
′+
m−1 =

P+
m , P

′+
m . Gluing these open sets via the maps ΨP , we obtain one neigh-

borhood of P+
1 = P ′−1 = P−2 = P ′+3 = . . . as the union

U+
1 t U

−
2 t U

+
3 . . .

and one of P−1 = P ′+1 = P+
2 = P ′−3 = P+

3 = . . . as the union

U−1 t U
+
2 t U

−
3 . . . .
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Σ

•• •
P2

P3 P1

•
U4

U3 U2

U1

• • • •
U+

4

P ′+3

U+
3

P ′+2 = P+
3

U+
2

P ′+1 = P+
2

U+
1

P+
1

Σ+

• • • •
U−1

P−1

U−2

P ′−1 = P−2

U−3

P ′−2 = P−3

U−4

P ′−3
Σ−

•

U+
4

U−3

U+
2

U−1

CovΣ

This finishes the proof. 2

In the rest of the paper, we consider the surface CovΣ together with the complex

structure inherited from the one of Σ̃. We denote this surface by Σ̃.
The main result of the section is the following.

Theorem 3.5. The surface Σ̃ is a Riemann surface with non empty boundary. The

set τ̃ = τ+ ∪ τ− ∪ {[P+, P ′+], P ∈ P} is a triangulation of (Σ̃,M̃) where

M̃ =M+ ∪M− ∪ {P±, P ′±, P ∈ P}/(ΨP , P ∈ P).

Moreover the quiver with potential (Q(τ̃), S(τ̃)) is (naturally) right equivalent to
(Q(τ)G, S(τ)G).

The biholomorphism S : Σ̃+ t Σ̃− → Σ̃+ t Σ̃− exchanging Σ̃+ and Σ̃− induces a

biholomorphism σ : Σ̃→ Σ̃ of order 2 whose fixed points are the P+, P ∈ P.

Proof. The fact that Σ̃ is a Riemann surface comes from Subsection 3.2.1.
By Lemma 3.2, τ+ ∪ τ− is a triangulation of Σ+ t Σ− in which [P+, P ′+] and

[P−, P ′−] are boudary segments. So τ̃ = τ+ ∪ τ− ∪ {[P+, P ′+], P ∈ P} is a trian-

gulation of Cov(Σ), and hence of Σ̃ by Lemma 3.4.
By the lemma 3.2, τ+ ∪ τ− is a triangulation of Σ+ t Σ−, in this triangulation

the segments [P+, P ′+] and [P−, P ′−] are boundary segments. Hence when gluing
along ΨP , these segments become internal arcs.

Finally, let ∆ be an internal triangle of τ which is not self-folded and not adjacent
to a self-folded triangle (that is a block of type II). It corresponds to a 3-cycle
i→ j → k → i in Q(τ). The triangle ∆ gives rise to two disjoint internal triangles

in Σ̃, one in Σ+ and one in Σ−. These triangles give rise to two disjoint 3-cycles
i± → j± → k± → i± in Q(τ̃). The same hold for triangles of type I.

If B is a block of type IV that is a self-folded triangle (around P ) together with
the triangle adjacent to it, then it gives rise to an internal triangle whose sides are
[P±, P ′±], j± and k± in Σ±. So in Q(τ̃) we obtain the following picture:
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j+ k+

i

j−k−

i

The same holds for blocks of types IIIa and IIIb. Therefore by subsection 3.1
we conclude that Q(τ̃) = Q(τ)G. The right equivalence for the associated potential
directly follows from Proposition 3.1. 2

The group Z/2Z acts then properly and discontinuously on the surface Σ̃, hence
by [T80, 13.2.2], we obtain the following (we refer to [T80, Chapter 13] for basic
definition of orbifolds).

Corollary 3.6. There is a homeomorphism Σ̃/σ → Σ that induces an orbifold
structure on Σ on which every P ∈ P is an orbifold point of order 2.

By Corollary 1.16 we obtain a natural action of Z/2Z on (Q(τ̃), S(τ̃)). This
is the unique action fixing the vertices of Q(τ̃) corresponding to ‘unfolded sides’
and exchanging vertices i+ and i−. This action is clearly the one induced by
the biholomorphism σ. We denote both by σ this automophism of Q(τ̃) and the
corresponding automorphism of Q(τ) (the one exchanging i and i′).

Denote by Cτ (resp. Cτ̃ ) the cluster category associated with the quiver with po-
tential (Q(τ), S(τ)) (resp. (Q(τ̃), S(τ̃))). Then a direct consequence of Theorem 3.5
together with Corollary 2.8 is the following.

Corollary 3.7. There exist triangle functors F : Cτ̃ → Cτ and F ′ : Cτ → Cτ̃
commuting with the action of σ and satisfying the following properties:

(1) For any object X in Cτ̃ (resp. Cτ ) we have F ′ ◦ F (X) ' X ⊕ Xσ (resp.
F ◦ F ′(X) ' X ⊕Xσ).

(2) If X is an indecomposable object of Cτ̃ (resp. Cτ ) such that Xσ 6' X,
then FX (resp. F ′X) is an indecomposable object of Cτ (resp. Cτ̃ ) and
FX ' F (Xσ) (resp. F ′X ' F ′(Xσ)).

(3) If X is an indecomposable object of Cτ̃ (resp. Cτ ) such that Xσ ' X,
then there exists an indecomposable object Y in Cτ (resp. Cτ̃ ) such that
FX ' Y ⊕ Y σ (resp. F ′X = Y ⊕ Y σ).

Remark 3.8. If τ and τ ′ are different triangulation of (Σ,P,M) there exists a
triangle equivalence between the corresponding cluster categories Cτ and Cτ ′ , but
this equivalence is not canonical (see [ÇS17, Appendix]) making dangerous the

writing of CΣ instead of Cτ . Moreover the surface Σ̃ (see next subsection for an
example) and the functors F and F ′ depend on the choice of τ , so we use the
notation Cτ and Cτ̃ to emphasize this fact.

3.3. Example. Let (Σ,M,P) be a cylinder with two punctures P = {P,Q} and
two marked points M = {A,B}. Assume first that the two self-folded triangles of
the triangulation τ are attached to the same boundary component. Cutting the
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surface along the folded sides and along an arc [A,B], we obtain Σ as the following
polygon with identification of sides.
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The surfaces Σ+ and Σ− are then given by the following polygons with identifi-
cation:
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Hence the surface Σ̃ is a sphere with four boundary components and is given by
the following polygon with identification:
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The quivers Q(τ) and Q(τ̃) have the following shape:
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Q(τ) =
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Now for the same surface (Σ,P,M) let τ be a triangulation such that the two
self folded triangles are linked to different boundary components.
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The surface Σ̃ is then a torus with two boundary components given by the
following polygon with identification:
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The quivers associated with τ and τ̃ are respectively:

Q(τ) =

1

1′
2

3

4

6

5

5′
and Q(τ̃) =1
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Remark 3.9. Even though the surface Σ̃ is not unique, an easy calculation shows
that its rank is always 4g+ 2b+ p− 3 = 2rk(Σ)− (p+ 1) so does not depend on the
choice of τ . This is confirmed by the parametrization of indecomposable objects of

Cτ in terms of curves on Σ̃ made in the next section.

4. Indecomposable objects of Cτ in terms of curves on Σ̃

From now on and in the rest of the paper, we assume that k is an algebraically
closed field of characteristic different from 2.

Let (Σ,M,P), τ and (Σ̃,M̃), τ̃ be as in Section 3. Denote by Cτ̃ and Cτ the
corresponding cluster categories. Corollary 3.7 implies that provided we have a
description of the indecomposable objects of Cτ̃ and of the action of the automor-
phism σ on these objects, we obtain a complete description of the indecomposable

objects of Cτ . Since the surface (Σ̃,M̃) does not have any punctures, a complete
parametrization of the indecomposable objects of Cτ̃ has been given by Brüstle
and Zhang in [BZ11]. The aim of this section is to understand the action of the
automorphism σ to obtain a complete description of the objects of Cτ .

We start with some definitions.

Definition 4.1. Given the functor F ′ : Cτ → Cτ̃ given by Corollary 3.7, we call an

object X of Cτ a Σ̃-string (resp. Σ̃-band) object if F ′X is a string object (or the
sum of two string objects) (resp. band).

4.1. Σ̃-string objects. Denote by π1(Σ̃,M̃) the groupoid of paths on Σ̃ with end-

points in M̃ (see Section 5 for precise definition). In [BZ11], the authors associate

to each non trivial element γ in π1(Σ̃,M̃) an indecomposable object Mτ̃ (γ) ∈ Cτ̃ .
First recall the following classical fact.

Lemma 4.2. Let Σ be a surface and τ be an ideal triangulation. If γ is a curve on
Σ, then up to homotopy, γ can be chosen so that it crosses arcs of τ transversally,
crosses them finitely many times, and does not cross the same arc twice in succes-
sion. In this case, γ is completely determined (up to homotopy) by the sequence of
angles of the triangulation τ it intersects.

This fact can be easily verified by constructing the dual of the quiver on the
surface Σ, and consider it as a deformation retract of the surface.

.

..

Let us give here the description of the map Mτ̃ (?) by induction on the minimal
number `τ̃ (γ) of arcs of τ̃ intersected by a transversal representative of γ. Note that
in [BR87, ABCP10, BZ11], the description is a direct one rather than an inductive
one. We choose this inductive presentation since it permits to describe more easily
the action of σ on the objects of the category Cτ̃ (Lemma 4.5).

For any arc i ∈ τ̃ , the object Mτ̃ (i) is defined to be the image Xi of the indecom-

posable object eiΓ̂(Q(τ̃), S(τ̃)) under the natural functor

DΓ̂(Q(τ̃), S(τ̃)) −→ Cτ̃ .
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If `τ̃ (γ) = 1 then γ is homotopic to the flip fi of some arc i in τ̃ . Then the object
Mτ̃ (fi) sits in the following triangle

(2)
⊕

a∈Q1,t(a)=i M
τ̃ (s(a))[−1]

(a) // Mτ̃ (i)[−1] // Mτ̃ (fi) //⊕
a M

τ̃ (s(a)) .

The object X =
⊕

iXi is a cluster-tilting object in Cτ̃ by [A09]. By results of
[BMR07, KR07], the functor H = HomC(X[−1],−) : Cτ̃ → mod Jac(Q(τ̃), S(τ̃))
is essentially surjective and sends any indecomposable objects not isomorphic to
X to an indecomposable module. For any arc i of τ̃ , the module H(Xi[−1]) is
isomorphic to the projective indecomposable associated to the vertex i. Therefore,
applying H to the triangle (2), we get that the module H(Mτ̃ (fi)) is isomorphic to
the simple S(i) supported by the vertex i.

For any arrow α : i→ j in Q(τ̃), we define Mτ̃ (α) to be the indecomposable object
of Cτ̃ such that HMτ̃ (α) is the indecomposable module supported by the arrow α.
Then there exists a short exact sequence in mod Jac(Q(τ̃), S(τ̃)):

(3) 0 // HMτ̃ (fi)
iα // HMτ̃ (α)

pα // // HMτ̃ (fj) // 0 .

Definition 4.3. Let γ be a non trivial element in π1(Σ̃,M̃) which is not an arc of
τ̃ . We say that γ starts directly (resp. undirectly) if the first angle of τ̃ intersected
by a transversal representative of γ agrees (resp. disagrees) with the orientation of

Σ̃ (see the picture below) or if γ = fi for some arc i.
For γ = fi, we set iγ = pγ = Id : HMτ̃ (fi)→ HMτ̃ (fi).

Let γ be an element in π1(Σ̃,M̃) with `τ̃ (γ) ≥ 2. If i1, . . . , i` is the sequence

of arcs intersected by γ, denote by γ′ the element of π1(Σ̃,M̃) corresponding to
i2, . . . , i`.

�

γ γ′

γ starts directly

� γ′

γ

γ starts undirectly

The next proposition characterizes objects Mτ̃ (γ) together with maps iγ : HMτ̃ (fi1)→
HMτ̃ (γ) if γ starts directly and maps pγ : HMτ̃ (γ)→ HMτ̃ (fi1) if γ starts undirectly

by induction on `τ̃ (γ). It is a direct consequence of results of [BR87, ABCP10,
BZ11].

Proposition 4.4. Let γ be an element in π1(Σ̃,M̃) with `τ̃ (γ) ≥ 2. Then the
indecomposable object Mτ̃ (γ) and the maps iγ ,pγ are uniquely characterized by the
following induction properties:
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(1) If γ and γ′ start directly, there exists a commutative diagram of the following
form, where horizontal sequences are short exact sequences:

0 // HMτ̃ (fi1)
iα // HMτ̃ (α)

pα //

��

HMτ̃ (fi2)
α //

iγ′

��

0

0 // HMτ̃ (fi1)
iγ // HMτ̃ (γ) // HMτ̃ (γ′) // 0

(2) if γ starts directly and γ′ starts undirectly, there exists a commutative di-
agram of the following form, where horizontal sequences are short exact
sequences:

0 // HMτ̃ (fi1)
iγ // HMτ̃ (γ) //

��

HMτ̃ (γ′) //

pγ′

��

0

0 // HMτ̃ (fi1)
iα // HMτ̃ (α)

pα // HMτ̃ (fi2)
α // 0

(3) If γ starts undirectly and γ′ starts directly, there exists a commutative dia-
gram of the following form, where horizontal sequences are triangles:

0 // HMτ̃ (fi2)
iα //

iγ′

��

HMτ̃ (α)
pα //

��

HMτ̃ (fi1) // 0

0 // HMτ̃ (γ′) // HMτ̃ (γ)
pγ // HMτ̃ (fi1)

α // 0

(4) If γ and γ′ start undirectly, there exists a commutative diagram of the
following form, where horizontal sequences are triangles:

0 // HMτ̃ (γ′) //

pγ′

��

HMτ̃ (γ)
pγ //

��

HMτ̃ (fi1) // 0

0 // HMτ̃ (fi2)
iα // HMτ̃ (α)

pα // HMτ̃ (fi1) // 0

Moreover Mτ̃ (γ) ' Mτ̃ (β) if and only if γ = β or γ = β−1.

The action of σ on the quiver with potential (Q(τ̃), S(τ̃)) is induced by an au-

tomorphism of the surface Σ̃ also denoted by σ. This automorphism induces an

action of Z/2Z on the set π1(Σ̃,M̃). The next result links directly this action to
the action of σ on the objects of Cτ̃ .

Lemma 4.5. For any γ non trivial in π1(Σ̃,M̃), we have an isomorphism in Cτ̃
Mτ̃ (γ)σ ' Mτ̃ (σ(γ)).

Proof. If i is a vertex of Q(τ̃) that is an arc of τ̃ , then the curve σi on

the surface Σ̃ is homotopic to the arc σi associated to the vertex σi. The rest
follows directly from the above description of the objects Mτ̃ (γ). Indeed, as an
automorphism of triangulated categories, σ sends a distinguished triangle of Cτ̃ to
a distinguished triangle. 2

Combining the description of string objects of Cτ̃ with Corollary 3.7 and Lemma 4.5

we obtain a complete description of the Σ̃-string objects of Cτ .
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Corollary 4.6. The Σ̃-string objects in the cluster category Cτ are in bijection with
the following union of sets:

• {{γ, σγ, γ−1, σγ−1}, γ ∈ π1(Σ̃,M̃) | σγ 6= γ−1}
• {{γ, γ−1}, γ ∈ π1(Σ̃,M̃)∗ | σγ = γ−1} × Z/2Z.

Proof. By Proposition 4.4 and Lemma 4.5, an isomorphism Mτ̃ (γ)σ ' Mτ̃ (γ)

implies either σγ = γ or σγ = γ−1. Since the endpoints of an element γ in π1(Σ̃,M̃)

are in M̃ so are not fixed points under σ, the curve σγ is never homotopic to γ
unless γ is trivial. The rest follows directly from Corollary 3.7. 2

4.2. Σ̃-band objects. Denote by πfree
1 (Σ̃) the set of loops on Σ̃ modulo free ho-

motopy, that is homotopy that does not fix the base point. Such a loop is called
primitive if it is not a proper power of a loop (see also Definition 5.16). Note that
primitive loops correspond to irreducible loops introduced in [BZ11]. We call them
primitive, since it is the usual terminology in the theory of free groups and lattices.

For [γ] ∈ πfree
1 (Σ̃) primitive, there exists an arc i of τ̃ such that a transversal

representative of γ intersects locally first undirectly then directly the two triangles
adjancent to i, as in the following picture.

�

�

γ

Indeed if such an i does not exist, then either the angles ot τ̃ intersected by the

curve γ all agree with the orientation of Σ̃ or all disagree. This implies that the
curve γ turns around a base point of the triangulation. This situation cannot occur

since there are no punctures in (Σ̃,M̃).
Let γ be a transversal representative of [γ] such that i is the first arc intersected

by γ, and denote by i2, . . . , i` the arcs successively intersected by γ. Define an

element γ′ of π1(Σ̃,M̃) as the transversal curve intersecting successively the arcs
i, i2, . . . , i`, i:

�

γ′

It is immediate to see that both γ′ and γ′−1 start directly with the arc i.
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Proposition 4.7. Let [γ] ∈ πfree
1 (Σ̃) be primitive , and λ ∈ k∗. The band object

Bτ̃ ([γ], λ) associated to [γ] and λ in [BZ11] is defined to be the indecomposable object
such that the module HBτ̃ ([γ], λ) is the cokernel of the following morphism:

HMτ̃ (fi)
iγ′−λiγ′−1

// HMτ̃ (γ′) .

Moreover we have Bτ̃ ([γ], λ) ' Bτ̃ ([β], µ) if and only if ([γ], λ) = ([β], µ) or ([γ], λ) =
([β−1], µ−1).

The application Bτ̃ can be extended to any element ([γn], λ) of πfree
1 (Σ̃) × k∗

with γ primitive, the object Bτ̃ ([γn], λ) being the (unique) non trivial n-extension of
Bτ̃ ([γ], λ) with itself.

Proof. The result follows immediately from the description of band modules
over gentle algebras by Butler and Ringel [BR87].

The last statement comes from the fact that if γ′ is defined as above, then
γ′−1 can be chosen as the curve (γ−1)′. Then we have the following commutative
diagram:

HMτ̃ (fi)

−λ
��

iγ′−1−λiγ′ // HMτ̃ (γ′)

HMτ̃ (fi)
iγ′−λ

−1i
γ′−1
// HMτ̃ (γ′)

.

2

As an automorphism of Σ̃, σ acts also on the set πfree
1 (Σ̃), and clearly restricts

to the subset of primitive loops. The next result is then an analogue of Lemma 4.5.

Lemma 4.8. Let [γ] ∈ πfree
1 (Σ̃) non trivial and λ ∈ k∗. There is an isomorphism

in Cτ̃ :
Bτ̃ ([γ], λ)σ ' Bτ̃ (σ[γ], λ).

Proof. The statement is an immediate consequence of Lemma 4.5 and Propo-
sition 4.7 in the case where γ is primitive . It follows then for any γn by the unicity
of extension of Bτ̃ ([γ], λ) by itself. 2

Combining the description of band objects of Cτ̃ with Corollary 3.7, Proposition

4.7 and Lemma 4.8 we obtain a complete description of the Σ̃-band objects of Cτ .

Denote by ∼ the equivalence relation on the set πfree
1 (Σ̃) × k∗ generated by

([γ], λ) ∼ ([γ−1], λ−1).

Corollary 4.9. The set of Σ̃-band objects of the category Cτ is in bijection with
the union of the following sets:

• {{[γ], [σγ]}, [γ] ∈ πfree
1 (Σ̃) | σ[γ] 6= [γ], [γ−1]} × k∗/ ∼

• {[γ] ∈ πfree
1 (Σ̃)∗ | σ[γ] = [γ−1]} × (k∗ \ {±1})/ ∼

• ({[γ] ∈ πfree
1 (Σ̃)∗ | σ[γ] = [γ]} × k∗/ ∼)× {±1}

• ({[γ] ∈ πfree
1 (Σ̃)∗ | σ[γ] = [γ−1]} × {±1}/ ∼)× {±1}.

Proof. The assignment Bτ̃ induces a bijection between the set πfree
1 (Σ̃)∗×k∗/ ∼

and the set of band objects in Cτ̃ . By Lemma 4.8, we have Bτ̃ ([γ], λ)σ ' Bτ̃ ([γ], λ)
if and only if (σ[γ], λ) ∼ ([γ], λ), that is if σ[γ] = [γ] or if σ[γ] = γ−1 and λ = λ−1.
The result is then a direct application of Corollary 3.7. 2
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Remark 4.10. (1) As we will see in the examples in Section 6, these four sets

are non empty in general. Moreover, since π1(Σ̃) is a free group, we cannot
have σ[γ] = [γ] = [γ−1] (see Section 5).

(2) As shown in [RR85] (see also [GP99]), the functor F commutes with the
Auslander-Reiten translation, therefore F sends a connected component of
the Auslander-Reiten quiver of Cτ̃ to union of connected components of the

Auslander-Reiten quiver of Cτ . For ([γ̃], λ) ∈ πfree
1 (Σ̃) × k∗ with γ̃ primi-

tive, the indecomposable object Bτ̃ ([γ̃], λ) is at the base of a homogenous
tube in the Auslander-Reiten quiver of Cτ̃ . Therefore if σ[γ̃] 6= [γ̃] and if
(σ[γ̃], λ) 6= ([γ̃−1], λ−1), then the image of the corresponding tube is also
an homogenous tube.

But if σ[γ̃] = [γ̃] or if (σ[γ̃], λ) = ([γ̃−1], λ−1), then Bτ̃ ([γ̃], λ) ' X1 ⊕X2

is the sum of two indecomposable objects satisfying τ(X1⊕X2) = X1⊕X2.
Either both X1 and X2 are stabilized by τ in which case the image of the
tube is two homogenous tubes, or τX1 = X2 in which case the image of
the homogenous tube is a homogenous tube of rank 2. Therefore non rigid
objects can be sent to rigid objects by the functor F . Both cases may
occur as shown in the examples in Section 6, and it may be interesting to
determine exactly when.

5. Fundamental groupoids of Σ̃ and Σ

5.1. Generalities. In general, if Σ is any surface and E is a subset of Σ, we define
its fundamental groupoid π1(Σ, E) to be the groupoid whose objects are the points
in E and whose morphism set from a point x to a point y is the set of homotopy
classes of oriented paths from x to y. If E = Σ, then we simply write π1(Σ). We
write π1(Σ, E)∗ for the set of all morphisms of π1(Σ, E) which are not identities.

If the surface has punctures and if E does not contain any punctures, then we
define the orbifold fundamental groupoid πorb

1 (Σ, E) to be the quotient of π1(Σ \
P, E) by the equivalence relation given by

•P = •P

where P is a puncture.

We return to the situation where we have a covering of surfaces p : Σ̃ → Σ. A
way to understand the fundamental groupoid is by way of a deformation retract of
the surface.

For Σ̃, let Γ̃τ̃ be the dual graph of τ̃ , that is, Γ̃τ̃ has one vertex xT for every
triangle T of τ̃ and two vertices are joined by an edge if the corresponding triangles
share an edge. For Σ, let Γτ be defined similarly. Note that for each self-folded
triangle in τ , there is a loop in Γτ .

The following is classical.



THE CLUSTER CATEGORY OF A SURFACE WITH PUNCTURES 37

Proposition 5.1. The graph Γ̃τ̃ is a deformation retract of Σ̃, and the graph Γτ
is a deformation retract of Σ \ P.

Corollary 5.2. We have isomorphisms of groupoids π1(Σ̃, {xT }T∈τ̃ ) ∼= π1(Γ̃τ̃ , {xT }T∈τ̃ )
and π1(Σ \ P, {xT }T∈τ ) ∼= π1(Γτ , {xT }T∈τ ).

As a consequence, we can say that π1(Σ̃, xT ) is a free group generated by elements

a1, b1, . . . , ag̃, bg̃, c1, . . . , cb̃−1,

where g̃ is the genus of Σ̃ and b̃ is its number of boundary components.

Note that G = {1, σ} acts on Γ̃τ̃ and that the quotient is (retracted to) Γτ .
This allows us to understand the orbifold groupoid by generators and relations as
follows. For every puncture P of Σ, let eP be the corresponding loop in Γτ . Then

πorb
1 (Σ, {xT }T∈τ ) ∼= π1(Γτ , {xT }T∈τ )/〈e2

P | P ∈ P〉.
Another consequence is that

πorb
1 (Σ, xT ) ∼= Z∗2g+b−1 ∗ (Z/2Z)∗p,

where g is the genus of Σ, b its number of boundary components and p its number of
punctures. Denote the generators of the Z∗2g+b−1 part by a1, b1, . . . , ag, bg, c1, . . . , cb−1

and those of the (Z/2Z)∗p part by sP , P ∈ P. Note that each sP is a conjugate (in
the groupoid sense) of eP ; say sP = wP eP (wP )−1.

In view of this, the following properties will be useful to us later.

Lemma 5.3. (1) [S77, Corollary I.1.1] Any element of order 2 in πorb
1 (Σ, xT )

is conjugate to one of the sP , with P a puncture.
(2) [S77, Theorem 2] If P is a puncture, then the only elements of πorb

1 (Σ, xT )
which commute with sP are 1 and sP .

Theorem 5.4 (Schreier). [S77, Theorem 5] Any subgroup of a free group is free.
In particular, if two elements of a free group commute, then they are both powers
of a third element of the group.

We end this subsection with a general result comparing the fundamental groupoid

of Σ̃ with the orbifold fundamental groupoid of Σ.

Proposition 5.5. Let p : Σ̃→ Σ be as above. Then p induces a functor of groupoids

Φ : π1(Σ̃, Σ̃ \ p−1(P)) −→ πorb
1 (Σ,Σ \ P).

Moreover,

(1) Φ is faithful;
(2) Φ is surjective on objects, and each object of πorb

1 (Σ,Σ \P) has exactly two
preimages.

Proof. To prove that Φ is well-defined, consider the following diagram of
functors:

π1(Σ̃ \ p−1(P), Σ̃ \ p−1(P))

S
��

T // π1(Σ \ P,Σ \ P)

U

��
π1(Σ̃, Σ̃ \ p−1(P))

Φ // πorb
1 (Σ,Σ \ P).

The functors S and U are clearly surjective on morphisms and on objects. Let γ

be a morphism in π1(Σ̃, Σ̃ \ p−1(P)). We need to show that p ◦ γ, viewed as an
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element of πorb
1 (Σ,Σ \ P), does not depend on a choice of representative of the

homotopy class of γ. First note that, up to homotopy, we can choose γ so that it

avoids p−1(P). Thus γ can be chosen so that it is a morphism in π1(Σ̃\p−1(P), Σ̃\
p−1(P)). This choice, however, is not independent of the homotopy class of γ.

Indeed, in π1(Σ̃, Σ̃ \ p−1(P)), a homotopy is allowed to go through p−1(P), while

it is not allowed to in π1(Σ̃ \ p−1(P)). Thus π1(Σ̃, Σ̃ \ p−1(P)) is the quotient of

π1(Σ̃ \ p−1(P), Σ̃ \ p−1(P)) by the relations given by these missing homotopies:

•P̃
Σ̃±

Σ̃∓
= •P̃

Σ̃±

Σ̃∓

where P̃ ∈ p−1(P).
Once we apply T , these new relations become, in π1(Σ \ P,Σ \ P), precisely the

relations given at the begining of the section to define πorb
1 (Σ,Σ \ P). Thus p ◦ γ,

viewed in this last groupoid, does not depend on the choice of representative of γ.
This shows that Φ is well-defined.

Statement (1) follows from the fact, shown above, that for any morphisms δ and

δ′ in π1(Σ̃ \ p−1(P), Σ̃ \ p−1(P)) having the same starting and ending points, their
images by U ◦ T are equal if and only if their images by S are equal.

Statement (2) follows from the fact that σ is an involution acting on Σ̃ and that
the set of fixed points is exactly p−1(P). 2

5.2. Strings: from Σ̃ to Σ. Recall our setting from Section 3.2: we have a covering

of surfaces p : Σ̃→ Σ given by an action of an involution σ on Σ̃. This action defines

an autoequivalence σ : π1(Σ̃,M̃)→ π1(Σ̃,M̃), and post-composition with p defines

a functor Φ|M̃ : π1(Σ̃,M̃)→ πorb
1 (Σ,M) (see Proposition 5.5).

Proposition 5.6. (1) The functor Φ|M̃ is surjective on objects, and the preim-

age of each object of πorb
1 (Σ,M) contains exactly two objects.

(2) The functor Φ|M̃ is surjective on morphisms. For any morphism γ̃ in

π1(Σ̃,M̃), we have that Φ|M̃(γ̃) = Φ|M̃(σγ̃). Moreover, σγ̃ and γ̃ are the
only preimages of Φ|M̃(γ̃).

Proof. Point (1) follows from Proposition 5.5(1).
In point (2), the fact that Φ|M̃(σγ̃) = Φ|M̃(γ̃) follows from the equality p = p◦σ.

To prove that Φ is surjective on morphisms, let τ be the triangulation of Σ used to

build Σ̃. Let γ be a morphism in πorb
1 (Σ,M). If γ is in τ , then it clearly lifts to a

morphism in π1(Σ̃,M̃).
Assume that γ is not in τ . We can assume that γ crosses the arcs of τ transver-

sally. Let τ1, . . . , τm be the arcs of τ crossed by γ, in that order.
If γ never crosses the arcs of a self-folded triangle, then it admits two lifts, one

of which is entirely contained in Σ̃+ and the other in Σ̃−.
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If γ does cross the arcs of self-folded triangles, then split γ into sub-paths
γ1, . . . , γr such that each γi does not cross the internal arcs of self-folded trian-
gles except on their starting and ending points. Then γ1 lifts to a path γ+

1 that is

contained in Σ̃+, γ2 lifts to a path γ−2 whose starting point is the ending point of

γ+
1 and which is contained in Σ̃−, and so on. Thus we construct a lift of γ by Φ.

Hence Φ is surjective on morphisms.
Finally, if γ̃ is a lift of γ, then γ̃ is determined by its starting point and the order

in which it crosses the arcs of τ̃ , by Lemma 4.2. The only two possible starting
points for γ̃ are the two lifts of the starting point of γ, and the order in which γ̃
crosses the arcs of τ̃ is determined by the order in which γ crosses the arcs of τ .
Hence γ̃ and σγ̃ are the only lifts of γ.

2

Corollary 5.7. The Σ̃-string objects of Cτ are in bijection with the set{
{γ, γ−1} | γ ∈ πorb

1 (Σ,M), γ 6= γ−1
}
∪ ({γ ∈ πorb

1 (Σ,M)∗ | γ = γ−1} × Z/2Z).

In order to link this with classes of curves studied in [FSTh08] (where curves are
allowed to have a puncture as an endpoint) and [QZ17], we introduce the following
definition.

Definition 5.8. For a puncture P on Σ, let P ′ = xTP be a point in the self-folded
triangle TP around P . Let P ′ be the set of all such P ′. We let πorb

1 (Σ,M;P ′) be
the set of morphisms with source in M and target in P ′.

Note that πorb
1 (Σ,M;P ′) is not a groupoid, since composition is not well-defined.

The points in P ′ must be thought of as points “very close” to the punctures, and the
maps fromM to P ′ as curves joining marked points on the boundary to punctures.
But in contrast with [FSTh08], a curve in πorb

1 (Σ,M;P ′) with endpoint P ′ ∈ P ′
can reach P ′ in two different ways, so the tagging of arcs in [FSTh08] is already
encoded in πorb

1 (Σ,M;P ′).

• • •
M P P ′

6= • • •
M P P ′

Proposition 5.9. There is a natural bijection between the sets πorb
1 (Σ,M;P ′) and

({γ ∈ πorb
1 (Σ,M)∗ | γ = γ−1} × Z/2Z).

Proof. Let (γ, ε) be in the second set. Then γ2 = 1 implies that γ = v−1eP v
for some v : M → P ′, by Lemma 5.3; moreover, we can assume that the leftmost
letter in the reduced expression of v is not eP . Then define the map from the second
set in the statement to the first

(γ, ε) 7−→ eεP v.

This map is well defined, since if γ = w−1eQw, with w : M → Q′ whose leftmost
letter is its reduced expression is not eQ, then eQ and eP are both conjugate to sP ,
so P = Q, and v−1eP v = w−1ePw implies that vw−1 commutes with eP , which
is conjugate to sP , so vw−1 is either equal to 1 or to eP , by Lemma 5.3. Thus
v = ePw or v = w; the first case is impossible by our assumptions on v and w. So
v = w, and the map is well-defined.
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Conversely, define a map from πorb
1 (Σ,M;P ′) to ({γ ∈ πorb

1 (Σ,M)∗ | γ = γ−1}×
{±1}) by (

v : M → P ′
)
7−→ (γ = v−1eP v, ε),

where ε is 0 or 1 depending on whether eP is not or is the leftmost letter in the
reduced expression of v. Then clearly the two maps defined above are mutually
inverse. 2

Corollary 5.10. The Σ̃-string objects of Cτ are in bijection with the set{
{γ, γ−1} | γ ∈ πorb

1 (Σ,M), γ 6= γ−1
}
∪ πorb

1 (Σ,M;P ′).

Proof. Apply Corollary 5.7 and Proposition 5.9. 2

5.3. Generalities on the free fundamental group. The following general lemma
on groupoids will be useful in dealing with the notion of free fundamental group.

Lemma 5.11. Let G be a connected groupoid. Denote by G(x, y) the set of mor-
phisms from the object x to the object y in G.

(1) Any morphism γ ∈ G(x, y) induces an isomorphism of groups

γ̄ : G(x, x)→ G(y, y) : α 7→ γαγ−1.

(2) For any object z of G, denote by G(z, z)cl the set of conjugacy classes of
the group G(z, z). Then the bijection G(x, x)cl → G(y, y)cl induced by the
morphism γ̄ of (1) does not depend on γ.

Proof. Point (1) is trivial. Point (2) follows from the fact that if γ, δ ∈ G(x, y),
then for any α ∈ G(x, x), we have that γαγ−1 and δαδ−1 are conjugate to each
other (using the element γδ−1 ∈ G(y, y)). 2

Definition 5.12. For any connected groupoid G, define Gfree to be a set together
with bijections cx : G(x, x)cl → Gfree for every object x of G, such that the following
hold: for all γ ∈ G(x, y), we have that

cx = cy ◦ γ̄.

In the special case where G is a fundamental groupoid π1(Σ), we call πfree
1 (Σ)

the free fundamental group of Σ. We define the free orbifold fundamental group
similarly.

Remark 5.13. The set Gfree can be defined as a categorical colimit. Let C : G→
Set be the functor sending each x to G(x, x)cl and each γ to γ̄. Then Gfree is the
colimit of this functor in the category of sets.

Proposition 5.14. • The projection p : Σ̃→ Σ induces a map Ψ : πfree
1 (Σ̃)→

πorb,free
1 (Σ).

• The action of σ on Σ̃ induces a map σ : πfree
1 (Σ̃) → πfree

1 (Σ̃). This map is
an involution.

Proof. This is a consequence of Remark 5.13 and of the universal property of
colimits. 2
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5.4. Bands: from Σ̃ to Σ. We now turn to some properties of the map Ψ :

πfree
1 (Σ̃) → πorb,free

1 (Σ) defined in Proposition 5.14. We will need the following
result on fundamental groups.

Lemma 5.15. Let x+
0 be a point in the interior of Σ̃+ and not on any arcs of τ̃ ,

and let x0 = p(x+
0 ). Let Φ|x+

0
: π1(Σ̃, x+

0 ) → πorb1 (Σ, x0) be the morphism induced

by p (see Proposition 5.5).
Then the image of Φ|x+

0
contains exactly the paths that cross internal arcs of

self-folded triangles an even number of times. In particular, for every puncture P ,
the element sP and its conjugates are not in the image of Φ|x+

0
.

Proof. This follows from the fact that any path γ̃ ∈ π1(Σ̃, x+
0 ) starts and ends

in Σ̃+, so it passes between Σ̃+ and Σ̃− and even number of times. Applying p,
these passages become exactly the points where p(γ̃) crosses and internal arc of a
self-folded triangle. 2

Let us define the notion of primitivity for general free products of cyclic groups.
This notion coincides with the usual notion of primitive elements in the literature
for free groups.

Definition 5.16. Let γ be an element in a group which is a free product of cyclic
groups. We call γ primitive if γ is torsionfree and is a generator of the maximal
cyclic subgroup containing it.

Note that with this definition, if γ ∈ πorb
1 (Σ, x0) satisfies γ2 6= 1 then γ is

torsionfree, and so can be written in a unique way as a positive power of a primitive
element.

Proposition 5.17. Let Ψ : πfree
1 (Σ̃) → πorb,free

1 (Σ) be as in Proposition 5.14. Let

[γ̃] ∈ πfree
1 (Σ̃) be represented by a closed loop γ̃ ∈ π1(Σ̃, x+

0 ), with x+
0 in the interior

of Σ̃+.

(1) If γ̃ is primitive and if σ[γ̃] = [γ̃], then Ψ([γ̃]) = [α2], with α ∈ πorb
1 (Σ, x0)

primitive (where x0 = p(x+
0 )).

(2) σ[γ̃] = [γ̃−1] if and only if [Φ(γ̃)] = [Φ(γ̃)−1], and in such situation γ̃ is
primitive if and only if Φ(γ̃) is.

Let [γ] ∈ πorb,free
1 (Σ) be represented by a primitive closed loop γ ∈ πorb

1 (Σ, x0).

(3) [γ] is not in the image of Ψ if, and only if, [γ2] = Ψ(δ̃), with δ̃ primitive

and σ[δ̃] = [δ̃].

(4) If [γ] = [γ−1], then [γ] = Ψ[γ̃] for some γ̃ ∈ π1(Σ̃, x+
0 ) which satisfies

σ[γ̃] = [γ̃−1].

Proof. Let us first prove (1). Assume that σ[γ̃] = [γ̃]. This is equivalent to the
existence of a path h : x+

0 → x−0 such that σγ̃ = hγ̃h−1. Applying σ, we get that

γ̃ = σh · σγ̃ · (σh)−1 = (σh · h)γ̃(σh · h)−1.

Therefore σh · h and γ̃ commute in π1(Σ̃, x+
0 ). Since this group is free, and since

γ̃ is primitive, this implies (by Theorem 5.4) that σh · h is a power of γ̃. Write
σh · h = γ̃n.

Now, recall that Φ|x+
0

is a restriction of the functor Φ of Proposition 5.5. Then

Φ|x+
0

(γ̃) = Φ(γ̃) = Φ(σγ̃) = Φ(σh · γ̃ · σh−1)) = Φ(h)Φ(γ̃)Φ(h)−1.
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Thus Φ(h) and Φ(γ̃) commute.
Assume that n = 2m+ 1 is odd. Then γ̃ = σh · hγ̃−2m. Applying Φ, we get

Φ(γ̃) = Φ(h)2Φ(γ̃)−2m = (Φ(h)Φ(γ̃)−m)2,

where the second equality holds since Φ(h) and Φ(γ̃) commute. Setting α :=
Φ(h)Φ(γ̃)−m, we get that

Ψ([γ̃]) = [Φ(γ̃)] = [α2].

Note that α is primitive. Indeed, if α = βr, then β2 lifts to a closed loop β̃ such

that γ̃ = β̃r, so that r = 1 since γ̃ is primitive.
Assume now that n = 2m is even. Then, setting again α := Φ(h)Φ(γ̃)−m, we

get

α2 = Φ(h)2Φ(γ̃)−n = Φ(h)2Φ(σh · h)−1 = 1.

Thus, by Lemma 5.3, α is conjugate to an element of the form sP , with P a
puncture.

But α and Φ(γ̃) commute, since Φ(h) and Φ(γ̃) do. Hence, Φ(γ̃) is conjugate
to an element which commutes with sP . The only such elements are 1 and sP ,
by Lemma 5.3. Moreover, by Lemma 5.15, Φ(γ̃) is not conjugate to sP . There-
fore Φ(γ̃) = 1, and since Φ is injective by Proposition 5.5, we get that γ̃ = 1, a
contradition. Thus, n cannot be even.

This proves (1).

We now prove (2). The first implication is clear. Let us prove the second.
Assume that [Φ(γ̃)] = [Φ(γ̃)−1]. Write Φ(γ̃) = zΦ(γ̃)−1z−1, with z ∈ πorb

1 (Σ, x0).

We can lift z to a path z̃ on Σ̃ so that zΦ(γ̃)−1z−1 = Φ(z̃γ̃−1z̃−1).
We can choose z̃ so that one of two cases occurs: either z̃ goes from x+

0 to x−0 , or
it goes from x+

0 to itself. In the first case, we get Φ(z̃γ̃−1z̃−1) = Φ(γ̃) = Φ(σ(γ̃)),
and since Φ is faithful by Proposition 5.5, then σ(γ̃) = z̃γ̃−1z̃−1, so σ[γ̃] = [γ̃].

The second case is impossible. Indeed, in this case, Φ(z̃γ̃−1z̃−1) = Φ(γ̃) implies
that z̃γ̃−1z̃−1 = γ̃ (again by Proposition 5.5), so γ̃ is conjugate to its inverse. But

since π1(Σ̃, x+
0 ) is a free group, this is impossible (since γ̃ is non-trivial).

If Φ(γ̃) is primitve, then so is γ̃. Conversely, assume that γ̃ is primitive and

that Φ(γ̃) = αn for some n ∈ N∗ and α in πorb
1 (Σ, x0). Let α̃ ∈ π1(Σ̃, {x+

0 , x
−
0 })

be a lift of α. If α̃ is a closed loop, then Φ(α̃n) = Φ(γ̃) so n = 1 by faithfulness
of Φ and primitivity of γ̃. If α̃ is a path from x+

0 to x−0 , then two situations may
occur depending on the parity of n. If n is odd, then αn crosses internal arcs of
self-folded triangles an odd number of times, which is impossible by Lemma 5.15,
since αn = Φ(γ̃). If n is even, we obtain

γ̃ = (σα̃ · α̃)
n
2 ,

so σ[γ̃] = [γ̃]. But by hypothesis σ[γ̃] = [γ̃−1] and a non trivial element is never
conjugate to its inverse in a free group, a contradiction. Hence α̃ is a closed loop,
and Φ(γ̃) is primitive.

We now prove (3).
Let γ ∈ πorb

1 (Σ, x0) be primitive and such that [γ] is not in the image of Ψ.
By Lemma 5.15, γ crosses internal arcs of self-folded triangles of τ an odd number
of times. Therefore γ2 crosses such arcs an even number of times, so γ2 is in the
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image of Φ, again by Lemma 5.15. Thus there exists δ̃ such that Φ(δ̃) = γ2, so

Ψ([δ̃]) = [γ2]. Since γ is primitive, then so is δ̃, and by part (1), σ[δ̃] = [δ̃].

Let β̃ ∈ π1(Σ̃, {x+
0 , x

−
0 }) be a path such that Φ(β̃) = γ, and such that β̃ = x+

0 .

Its endpoint is necessarily x−0 since [γ] is not in the image of Ψ. Thus Φ(σβ̃ · β̃) =

γ2 = Φ(δ̃), so

δ̃ = σβ̃ · β̃ = β̃−1 · σδ̃ · β̃,
and so σ[δ̃] = [δ̃].

Finally, we prove (4). Assume [γ] = [γ−1] for some primitive element γ in
πorb

1 (Σ, x0). First we show that [γ] is in the image of Ψ. If not, by (3) there exists

a loop δ̃ such that Φ(δ̃) = γ2 and σ[δ̃] = [δ̃]. Since [γ2] = [γ−2] so σ[δ̃] = [δ̃−1] by

(2). But then [δ̃] = [δ̃−1] which is impossible. The rest follows from (2).
2

Corollary 5.18. (1) We have a bijection between the following sets:

(a)
{
{[γ̃], [σγ̃]} | [γ̃] ∈ πfree

1 (Σ̃) primitive and such that [σγ̃] 6= [γ̃], [γ̃−1]
}

;

(b)
{

[γ] ∈ πorb,free
1 (Σ) | [γ] primitive ∈ Im Ψ, [γ] 6= [γ−1]

}
.

(2) We have a bijection between the sets

(a)
{
{[γ̃], [σγ̃]} | [γ̃] ∈ πfree

1 (Σ̃) primitive and such that [σγ̃] = [γ̃−1]
}

;

(b)
{

[γ] ∈ πorb,free
1 (Σ) | [γ] primitive and [γ] = [γ−1]

}
.

(3) We have a bijection between the sets

(a)
{

[γ̃] | [γ̃] ∈ πfree
1 (Σ̃) primitive and such that [σγ̃] = [γ̃]

}
× k∗ × Z/2Z;

(b)
{

[α] ∈ πorb,free
1 (Σ) | [α] /∈ Im Ψ primitive

}
× k∗.

Proof. The first two bijections are obtained by applying Ψ and Proposition
5.17. The third one is defined by

([γ̃], λ,±1) 7−→ ([α],±λ′),
where [α2] = Ψ(γ̃) as in Proposition 5.17 and (λ′)2 = λ.

2

Corollary 5.19. The Σ̃-band objects in Cτ are in bijections with the union of the
following sets:

•
{

[γ] ∈ πorb,free
1 (Σ)| [γ] 6= [γ−1]

}
× k∗/ ∼

•
{

[γ] ∈ πorb,free
1 (Σ)| γ2 6= 1 and [γ] = [γ−1]

}
× k∗\{±1}/ ∼

•
{

[γ] ∈ πorb,free
1 (Σ)| γ2 6= 1 and [γ] = [γ−1]

}
× (Z/2Z)2

where ([γ], λ) ∼ ([γ−1], λ).

Proof. The only thing to notice is that if γ2 6= 1, then γ is torsionfree in
πorb

1 (Σ, x0), so γ can be written in a unique way as a positive power of a primitive
element. Then the result is a direct consequence of Corollary 5.18 together with
Corollary 4.9. 2
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Remark 5.20. (1) Note that even if the sets described in Corollary 5.19 do no
depend on the choice of the triangulation τ , the bijection heavily depends

on it and on the surface Σ̃. In particular, it is not clear at all what happen
if we perform a sequence of mutations (see Appendix of [ÇS17] for the
unpunctured case).

(2) Note that if apply Corollary 5.10 with Corollary 5.19 in the case where
P is empty, that is if Σ does not have any puncture, then we recover the
descritption of the objects of Cτ given in [BZ11]. Indeed we have πorb

1 (Σ) =
π1(Σ) and any [γ] 6= 1 in πfree

1 (Σ) satisfies [γ] 6= [γ−1].

5.5. Link with (generalized) tagged arcs. To form a link with [FSTh08] and
[QZ17], we would like to relate the last set in Corollary 5.19 in terms of curves
which may go from one puncture to another. Define P ′ as in Definition 5.8. We
think of morphisms in πorb

1 (Σ,P ′) as tagged curves joining two punctures, since
there are two ways to reach a point P ′ ∈ P ′ in πorb

1 (Σ,P ′).

Proposition 5.21. Let γ be a primitive element in πorb
1 (Σ, x0) such that [γ] =

[γ−1]. Then there exist P,Q ∈ P, and v ∈ πorb
1 (Σ, x0) such that [γ] = [sP vsQv

−1].
Moreover (P,Q, v) are uniquely determined by [γ] up to the equivalence generated

by (P,Q, v) ∼ (Q,P, sε
′

Qv
−1sεP ), where ε, ε′ ∈ {0, 1}.

Proof. By Proposition 5.17 (4), γ = Φ(γ̃) for some γ̃ in π1(Σ̃, x+
0 ) satisfying

σ[γ̃] = [γ̃−1]. Then there exists a path h : x+
0 → x−0 such that σγ̃ = hγ̃−1h−1.

Applying σ, we get γ̃ = σh · σγ̃−1 · σh−1, so that σγ̃ = (hσh) · σγ̃ · (hσh)−1.

Since π1(Σ̃, x−0 ) is a free abelian group, this is only possible if hσh is a power of
σγ̃, or equivalently, if σh · h = γ̃n for some integer n.

But then γ̃n = σh · (hσh) · σh−1 = σh · σγ̃n · σh−1 = (σh · h) · γ̃−n · (σh · h)−1.
This implies that n = 0, since the only element conjugate to its inverse in a free
abelian group is the identity.

Therefore, σh = h−1, and Φ(h) is an involution. By Lemma 5.3, we can write
Φ(h) = gP sP g

−1
P , where P is a puncture.

Similarly, we note that γ̃−1h−1 · σ(γ̃−1h−1) = γ̃−1h−1hγ̃h−1σh−1 = 1x+
0

. Thus

Φ(γ̃−1h−1) is an involution, and by Lemma 5.3, we can write Φ(γ̃−1h−1) = gQsQg
−1
Q ,

where Q is a puncture.
Putting this together, we get that

[γ] = [Φ(γ̃)] = [Φ(h)Φ(γ̃−1h−1)] = [gP sP g
−1
P gQsQg

−1
Q ] = [sP vsQv

−1]

with v = g−1
P gQ.

When h is fixed, P (resp. Q) is uniquely determined, and gP (resp. gQ) is

determined up to multiplication by sP (resp. sQ) on the right, so v = g−1
P gQ is

determined up to multiplication by sP on the left and sQ on the right.
Let h′ be such that σγ̃ = h′γ̃−1h′−1, then h′−1h commute with γ̃. Hence since

γ̃ is primitive, there exists ` ∈ Z such that h′ = hγ̃`. Thus we have

Φ(h′) = Φ(h)γ` = (gP sP g
−1
P )(gP sP g

−1
P gQsQg

−1
Q )` = (gQsQg

−1
Q gP sP g

−1
P )`−1(gQsQg

−1
Q ).

We obtain then

Φ(h′) =

{
g′QsQ(g′Q)−1 with g′Q = γ−

`−1
2 gQ if ` is odd;

g′′P sP (g′′P )−1 with g′′P = γ−
`−2
2 gQsQg

−1
Q gP if ` is even and
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Φ(γ̃−1h′) =

{
g′P sP (g′P )−1 with g′P = γ−

`−1
2 gQsQg1

QgP if ` is odd;

g′′QsQ(g′′Q)−1 with g′′Q = γ−
`
2 gP if ` is even.

Consequently if ` is odd, we obtain v′ = (g′Q)−1g′P = (vsQ)−1 and if ` is even we

obtain v′′ = (g′′P )−1g′′Q = sP v. That finishes the proof. 2

Corollary 5.22. There is an injective map from the set{
[γ] ∈ πorb,free

1 (Σ), γ primitive and [γ] = [γ−1]
}
× (Z/2Z)2

to the set {
{w,w−1} ⊂ πorb

1 (Σ,P ′), w2 6= 1
}
.

Proof. Let [γ] be in the first set, let P , Q and v such that [γ] = [sP vsQv
−1]

as in Proposition 5.17. We may chose v such that the reduced expression of v does
not start with sP and does not end with sQ. Then v is uniquely determined up to

the relation v ∼ v−1. Remember from subsection 5.1, that we have sP = wP epw
−1
P

(resp. sQ = wQeQw
−1
Q ) in πorb

1 (Σ, {xT }T ), where eP (resp. Q) is the loop from

P ′ = xTP (resp. Q′ = xTQ) to itself in Γτ around the puncture P (resp. Q). The
above map is then defined to be the assignment

([γ], ε1, ε2) 7→ w = eε1P w
−1
P vwQe

ε2
Q .

If w = 1xR′ then we have P = Q = R and w−1
P vwP = 1, so v = 1x0 . Hence we

have [γ] = [sP vsP v
−1] = [1], which contradicts the fact that γ is primitive.

If w2 = 1 then we can compose w with itself. This implies that P = Q and thus
v2 = 1. Therefore we get

[γ] = [sP vsP v
−1] = [(sP v)2],

which contradicts the primitivity of γ.
An inverse of this map is clearly given by the assignment:

w 7→ ([ePweQw
−1], ε1, ε2)

where Q′ is the starting point of w, P ′ its endpoint and where ε1 (resp. ε2) is 0 or 1
depending on wether the leftmost (resp. rightmost) letter in the reduced expression
of w is eP (resp. eQ) or not. This shows that the map ([γ], ε1, ε2) 7→ w is injective.

2

Remark 5.23. (1) The inverse map can be understood as a map sending a
curve from Q to P to a loop surrounding Q and P as in the following
picture.

• •

w ∈ πorb
1 (Σ,P ′)

• •

[γ] ∈ πorb,free
1 (Σ)

Therefore if P 6= Q and if w is a curve without selfintersection; that is,
a tagged arc in the sense of [FSTh08], then γ can be chosen without self-
intersection. So it cannot be a power greater than 2 of a primitive curve
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on Σ. Therefore, we obtain all tagged arcs from differents punctures. It
is however not clear that all tagged arcs from P to P are in the image.
The next item of the remark shows that the manipulations in the orbifold
fundamental groups can be quite subtle.

(2) We can extend the inverse map to a map from πorb
1 (Σ,P ′) to πorb,free

1 (Σ)×
(Z/2Z)2. However, this map is not injective as shown in the following exam-
ple. Let P and Q be two punctures and let w an element in πorb

1 (Σ, {P ′}) of
the form heQh

−1. Then its image will not be primitive and will be the same
as the image of h−1eQh which is an element in πorb

1 (Σ, {Q′}) so different
from w. Indeed we have

[γ] = [eP (heQh
−1)eP (heQh

−1)−1]
= [(ePheQh

−1)2]
= [eQ(h−1ePh)eQ(h−1ePh)−1].

This can also be interpreted topologically by the following picture:

• •

w = hePh
−1 ∈ πorb

1 (Σ,P ′)

••

w′ = h−1ePh ∈ πorb
1 (Σ,P ′)

• •

[eQweQw
−1]

=

••

[ePw
′ePw

′−1]

• •

=

=
[(eQh

−1ePh)2] in πorb,free
1 (Σ)

(3) In [QZ17], the authors assign to each “generalized” tagged arc an indecom-
posable object in the cluster category Cτ . We expect that their construction
coincide with ours. It does in the examples of the next section, and it should
morally do in general since their construction uses the description of inde-
composable modules over clannish algebras of Crawley-Boevey [C89] that
uses itself the construction of Reiten and Riedtmann [RR85].

6. Examples

6.1. Example of the disc with two punctures. Let (Σ,P,M) be a disc with
two punctures P and Q and two marked points A and B on the boundary. Consider
the following triangulation τ , together with its quiver with potential (Q(τ), S(τ)):

•P •Q

•
A

•
B

2

1

1′

3

3′

Q(τ) = 2

1

1’

3

3’

α

α′

β

β′

S(τ) = 0
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The surface Σ̃ is a cylinder, and its triangulation τ̃ and quiver with potiential
are given by:

•A+ •B−

•A− •B+

•A− •A−•
A+

•A+

• B+

•
B+

<< <<
Q(τ̃) = 1

2+

2−

3
α+

α−

β+

β−

S(τ̃) = 0

Note that Q(τ) is of type D̃4, while Q(τ̃) is of type Ã3. In this case, there is only

one primitive curve (up to inverse) γ̃ ∈ πfree
1 (Σ̃):

>

Note that σ(γ̃) = γ̃−1. Thus, by Lemma 4.8 and Proposition 4.7, we have that

Bτ̃ ([γ], λ)σ ∼= Bτ̃ ([γ−1], λ) ∼= Bτ̃ ([γ], λ−1).

Thus this band module is not fixed by σ, unless λ = ±1. Note that the image of γ
on Σ is a loop surrounding the two punctures :

•P •Q

•
A

•
B

>

As representations, we can express the modules HBτ̃ ([γ], λ) and HFBτ̃ ([γ], λ) as
follows:

HBτ̃ ([γ], λ) = k

k

k

k

λ

1

1

1

HFBτ̃ ([γ], λ) ' k2

k

k

k

k

(
1
1

)

(
1

−1

)

(
λ 1

)

(
λ −1

)
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The computation of the module on the right can be done using the triangles of
Proposition 4.4. We can see that, indeed, the module on the right is indecompos-
able, unless λ = ±1. In this case, HFBτ̃ ([γ], λ) decomposes as

HFBτ̃ ([γ], 1) ' k

k

0

k

0

1

0

1

0

⊕ k

0

k

0

k

0

1

0

1

HFBτ̃ ([γ], 1) ' k

0

k

k

0

0

1

1

0

⊕ k

k

0

0

k

1

0

0

1

The four indecomposable modules appearing in the above pictures correspond to
the four tagged arcs w, ePw, weQ and ePweQ in πorb

1 (Σ,P ′) corresponding to [γ]
(see Corollary 5.22):

•P •Q

•
A

•
B

•P •Q

•
A

•
B

././ •P •Q

•
A

•
B

./ •P •Q

•
A

•
B
./

In this example, we can also say something about the Auslander-Reiten compo-
nents in P(Q(τ), S(τ)) and P(Q(τ̃), S(τ̃)), since they are well understood (see,
for instance, [R84]). For instance, the module HBτ̃ ([γ], λ) lives in a homogenous
tube Tλ. The above computations tell us that if λ 6= ±1, then FTλ = FTλ−1 is a
homogenous tube, while the additive closure of FT±1 is a tube of rank two.

6.2. Example of the cylinder with one puncture. Let (Σ,P,M) be a cylinder
with one puncture P = {P} and three marked points {A,B,C} on the boundary.
Let τ be the following triangulation and let (Q(τ), S(τ)) be the associated quiver
with potential:

•

••

•

>

>
>

C

B

A

P

3

1

1

>>

>>

>

>

A

B

A

B

C

C

P

2

4

5

•

•

•

•

•

•

• Q(τ) = 2

1

3

3′

4

5

a

b

c

d

d′

e

e′
f

S(τ) = fed+ fe′d′

The surface Σ̃ and the triangulation τ̃ are then given as follows:
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>
>
|>

>

• •

• •
•

•

C− C+

P ′+

P+

B− B+

1− 1−

1+1+

>
>
|

>
>
|

>
>

>
>

4−

4+

5−

5+2−

2+

3

•

•

• •

•

•

•• •

•

C−

C−

B− B+

C+

C+

B+B− P+

P ′+

Q(τ̃) =

1+

1−

2+

2−

3

4+

4+

5+

5+

S(τ̃) = f+e+d+ + f−e−d−

The automorphism σ of the surface Σ̃ is represented here as a rotation of angle
π around a line intersecting the arc 3.

6.2.1. Case 1: γ̃ ∈ π1(Σ̃, M̃) and σγ̃ 6= γ̃−1. Let γ̃ be the element in π1(Σ̃, M̃)
intersecting the arc 3 and then 2−. Then the curve σ(γ̃) intersects the arcs 3 and
2+, so is not homotopic to γ̃−1.

>
>
|

>
>
|

>
>

>
>

•

•

• •

•

•

•• •

•

>

>

γ̃

σγ̃

Then we have

HMτ̃ (γ̃) = 3
2−

and HMτ̃ (σγ̃) = 3
2+

as module over the Jacobian algebra Jac((Q(τ̃), S(τ̃)). An easy calculation gives

HFMτ̃ (γ̃) = HFMτ̃ (σγ̃) = 3 3′

2

which corresponds to the following curve γ in πorb
1 (Σ,M):

•

•

•

•

•

•

>>

>>

•

>

>

>

>

γ

6.2.2. Case 2: γ̃ ∈ π1(Σ̃,M̃) and σγ̃ = γ̃−1. Consider now the curve γ̃ in π1(Σ̃,M̃)
intersecting the arcs 2+, 3 and 2−.

>
>
|

>
>
|

>
>

>
>

•

•

• •

•

•

•• •

•

>
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We obtain the following modules over the Jacobian algebras:

HMτ̃ (̃(γ)) = 3
2+ 2−

and HFMτ̃ (γ̃) = 3
2 ⊕ 3′

2 .

The image γ of γ̃ in πorb
1 (Σ,M) is the curve corresponding to the sequence of

arcs 232. It corresponds to the arcs w and ePw in πorb
1 (Σ,M;P ′) by Corollary 5.10.

•

•

•

•

•

•

>>

>>

•

>

>

>

>

γ

•

•

•

•

•

•

>>

>>

•

>

>

>

w

•

•

•

•

•

•

>>

>>

•
>

>

>

./

ePw

6.2.3. Case 3: [γ̃] ∈ πfree
1 (Σ̃) and σ[γ̃] 6= [γ̃], [γ̃−1]. Let γ̃ be a closed curve corre-

sponding the the sequence of arcs 1−5−4−2−, and λ ∈ k∗.

>
>
|

>
>
|

>
>

>
>

•

•

• •

•

•

•• •

•

>[γ̃]

>

σ[γ̃]

•

•

•

•

•

•

>>

>>

•>

>

>[γ]

The corresponding modules are given by the following representations:

HBτ̃ ([γ̃], λ) =

0

k

0

k

0

0

k

0

0

1

1

1

λ
HBτ̃ (σ[γ̃], λ) =

k

0

k

0

0

k

0

k

0

1

1

1
λ

HFBτ̃ ([γ̃], λ) = HFBτ̃ (σ[γ̃], λ) = k

k

0

0

k

k

1

1

1
λ

6.2.4. Case 4: [γ̃] ∈ πfree
1 (Σ̃) and σ[γ̃] = [γ̃]. Let γ̃ be a closed curve on Σ̃ corre-

sponding to the sequence of arcs 1+5+4+32−1−5−4−32+. Then the image of [γ̃] in

πorb,free
1 (Σ) is not primitive but is a square of a primitive element.

>
>
|

>
>
|

>
>

>
>

•

•

• •

•

•

•• •

•

<

>
γ̃ •

•

•

•

•

•

>>

>>

•>

>

>
>

>
γ

The corresponding representations are given as follows:
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HBτ̃ ([γ̃], λ) =

k

k

k

k

k2

k

k

k

k

1

1

1

λ

1

1

( 0
1 )

( 1
0 )

( 0 1 )

( 1 0 )
'

k

k

k

k

k2

k

k

k

k

1

1

λ

1

1

1

( 0
1 )

( 1
0 )

( 0 1 )

( 1 0 )
= HBτ̃ ([γ̃], λ)σ

where each non appearing arrow is the zero map.
A direct computation (using for example the triangles given in Proposition 4.4)

gives:

HFBτ̃ ([γ̃], λ) = k2

k2

k2

k2

k2

k2

( 0 λ
1 0 )

−1
' k

k

k

k

k

k

λ′

−1
⊕ k

k

k

k

k

k

−λ′

−1

where each non appearing arrow is the zero map and each unlabeled arrow is the
identity map, and where λ′2 = λ. Note that these two indecomposable summands
are a σ-orbit.

6.2.5. Case 5: [γ̃] ∈ πfree
1 (Σ̃) and σ[γ̃] = [γ̃−1]. Let γ̃ be a closed curve on Σ̃

corresponding to the sequence of arcs 4−34+5+1+2+32−1−5−.

>
>
|

>
>
|

>
>

>
>

•

•

• •

•

•

•• •

•

<
>

γ̃ •

•

•

•

•

•

>>

>>

•>

>

>

<

>
<

γ

A direct computation gives the following representations:

HBτ̃ ([γ̃], λ) =

k

k

k

k

k2

k

k

k

k

( 1
0 )

( λ0 )

( 0 1 )

( 0 1 )
and HFBτ̃ ([γ̃], λ) = k2

k2

k2

k2

k2

k2

( λ 1
0 0 )

(−λ 1
0 0

)
( 0 1

0 1 )

(
0 1
0 −1

)

One then checks that the module HFBτ̃ ([γ̃], λ) is indecomposable for λ 6= ±1.
For λ = 1 it decomposes into the sum of two indecomposable modules as follows:
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HFBτ̃ ([γ̃], 1) ' k

k

k2

0

k

k

( 1
0 )( 0 1 )

⊕ k

k

0

k2

k

k

( 1
0 )( 0 1 )

These two objects correspond to the tagged arcs w and ePweP in πorb
1 (Σ,P ′)

given by Corollary 5.22.

•

•

•

•

•

•

>>

>>

•

>

>

•

•

•

•

•

•

>>

>>

•
>

>
./

./

For λ = −1 we obtain the following decomposition:

HFBτ̃ ([γ̃],−1) ' k

k

k

k

k

k

⊕ k

k

k

k

k

k

These two objects correspond to the tagged arcs ePw and weP in πorb
1 (Σ,P ′)

defined in Corollary 5.22.

•

•

•

•

•

•

>>

>>

•

>

> ./

•

•

•

•

•

•

>>

>>

•

>

>
./

Note that these two arcs are not tagged arcs in the sense of [FSTh08]. Indeed
if an arc connects a puncture to itself and does not enclose, on either side, a once
punctured monogon, both ends are tagged the same way. One can also easily check
that these modules are not rigid, so are not summands of a cluster-tilting object in
the cluster category.
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[ÇS17] İ. Çanakçı and S. Schroll, Extensions in Jacobian Algebras and Cluster Categories of
Marked Surfaces, with an appendix by C. Amiot , Advances in Mathematics 313 (2017), pp.

1-49.

[DWZ08] H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their represen-
tations. I. Mutations, Selecta Math. (N.S.) 14 (2008), no. 1, 59–119.

[FSTh08] S. Fomin, M. Shapiro, and D. Thurston. Cluster algebras and triangulated surfaces. I.

Cluster complexes. Acta Math. 201 (2008), 83–146.
[FSTu12] Anna Felikson, Michael Shapiro and Pavel Tumarkin, Cluster algebras and triangulated

orbifolds, Adv. Math. 231 (2012), no. 5, 2953–3002.

[FZ02] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15
(2002) 497–529.

[FZ03a] S. Fomin and A. Zelevinsky, Y-systems and generalized associaedra, Annals of Mathe-

matics 158 (2003), 977-1018.
[FZ03b] S. Fomin, and A. Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math.

154, 1 (2003), 63–121.
[GP99] C. Geiss and J. A. de la Peña, Auslander-Reiten components for clans, Boll. Soc. Mat.

Mexicana 5 (1999) 307–326.

[GLS16] C. Geiss, D. Labardini-Fragoso and J. Schröer, The representation type of Jacobian
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Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay,
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