
HAL Id: hal-01619297
https://hal.science/hal-01619297v1

Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS-Driven Self-Adaptation for Critical IoT-Based
Systems

Arthur Gatouillat, Youakim Badr, Bertrand Massot

To cite this version:
Arthur Gatouillat, Youakim Badr, Bertrand Massot. QoS-Driven Self-Adaptation for Critical IoT-
Based Systems. Workshop on Adaptive Service-oriented and Cloud Applications (ASOCA), Nov 2017,
Malaga, Spain. pp.93-105, �10.1007/978-3-319-91764-1_8�. �hal-01619297�

https://hal.science/hal-01619297v1
https://hal.archives-ouvertes.fr

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

QoS-Driven Self-Adaptation for Critical IoT-Based

Systems

Arthur Gatouillat1, Youakim Badr1 and Bertrand Massot2

1 Univ Lyon, INSA Lyon, LIRIS, UMR5205
(arthur.gatouillat,youakim.badr)@insa-lyon.fr

2 Univ Lyon, INSA Lyon, INL, UMR5270
bertrand.massot@insa-lyon.fr

Abstract. The Internet-of-Things, which designates the interconnection of nu-
merous physical devices, is a growing research direction faced with many chal-
lenges. One of these challenges is to provide constant quality-of-service despite
IoT devices being used in a constantly changing physical environment. In order
to answer this problem, we introduce a quality-of-service driven self-adaptation
framework, which can simultaneously handle changing adaptation strategies,
monitoring infrastructure and physical environment while guaranteeing constant
quality-of-service. Because of its formal guarantees, our system is particularly
suited for the control of critical IoT-based systems, and we thus demonstrated its
practicality by applying it to an e-health case-study where the safety of the mon-
itored patients must be assured.

Keywords: Self-adaptive systems, Adaptive IoT, Controller synthesis.

1 Introduction

The Internet-of-Things (IoT) enables the interconnection of virtually every object of
the physical world, such as a variety of sensors, actuators, robots or wearable devices.
This interconnection of various physical-world devices into IoT systems, coupled with
the strong hardware constraints of IoT devices, mandates the study of adaptation strat-
egies to deal with devices failure, especially when dealing with critical systems (e.g.
healthcare systems). To deal with such requirements, self-adaptation software and au-
tonomic frameworks were proposed [1–4]. In particular, self-adaptive software systems
(SAS), which deal with distributed applications in changing environments, normally
require human supervision to sustain despite changes during their executions. These
systems rely on a closed feedback loop to adjust themselves to changes. Based on ob-
served context variables and thresholds, they monitor themselves, their context and en-
tities from the target system environment to decide when and how to apply adaptation
strategies in order to ensure expected behavior (i.e., functional requirements) and guar-
antee quality of services (i.e., non-functional requirements) [5].

In the context of the Internet-of-Things, self-adaptation is a salient property of smart
objects. It allows them to be self-configured and adapted to extreme conditions while

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

2

ensuring the target system objectives such as comfort, automation, security and safety
goals. Self-adaptation mechanisms driven by adaptation goals modify smart objects be-
havior dynamically. However, the IoT is a dynamic and global network infrastructure,
in which “things” are expected to be autonomous and self-configurable. This feature
that the IoT should strive to achieve is not a trivial task since adaptation goals may also
evolve continuously during run-time due to changes in functional or non-functional
requirements and contextual information. These changes affect observed variables,
their thresholds and even alter the monitoring logic when context variables are added
or deleted. As a result, when adaptation goals change at run-time, both monitoring and
self-adaptation mechanisms may become inapplicable because either the adaptation
mechanism deals with outdated goals, or the monitoring mechanism addresses moni-
toring requirements that are irrelevant to the actual adaptation goals.

In this paper, we present a discrete controller synthesis system that ensures self-
adaptation behavior based on quality-of-service properties (QoS) of smart objects dur-
ing their run-time. Our system is resource-aware and ensures simultaneously the sepa-
ration of concerns of adaption objectives, context monitoring and adaptation strategies.
By such, our system makes possible to guarantee the service level agreement (SLA)
which defines the level of smart object services as expected by end-users expressed
them as constrains on non-functional properties. Without loss of generality, our system
focuses on the safety quality as a crucial non-functional property in the context of
healthcare monitoring to detect heart malfunctions with wearable sensors (heart rate
sensor and electrodermal activity sensor) and ambient sensors (occupancy detection
sensor, noise sensor, etc.). In this context, we model the safety quality as a qualitative
property in the SLA of wearable and ambient sensors. The safety quality is initialed
defined as the resource-awareness factor of wearable sensors in response to their battery
consumption levels. During the execution, the safety quality may be renegotiated by
adding resilience as an additional new factor. This new contracted factor states that the
defected objects are subsumed by alternative smart objects (same types) or inferring
their observed values through data collected from other smart objects (different types).
Yet another adaptation of the safety property may include the health-awareness factor,
which enables the detection of critical health crisis from contextual information, medi-
cal sensor values, and patient history patterns. Our discrete controller synthesis system
implements a dynamic monitoring approach that deploys, at run-time, new context
gatherers and new monitoring requirements for new quality properties. These elements
are automatically generated from the non-functional quality-of-service properties in the
SLA and deployed at run-time without interrupting the target system execution or the
adaptation mechanism.

The remaining of the paper is organized as follows. In section 2, we present related
works. Before introducing our discrete controller synthesis system, we briefly introduce
a motivation case-study dealing with safety quality in wearable sensors in section 3. In
section 4, we present our QoS-driven self-adaptation approach which is based on the
DYNAMICO reference model [3] and includes SLA and stated-based failure ontolo-
gies. These ontologies along with knowledge-based rules are used to generate non-

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

3

functional device labeled transition graphs and to generate our discrete controller syn-
thesis system as described in section 5. In section 6, we present our implementations
and conclude our work in section 7.

2 Related Works

The work detailed in this paper is located at the intersection of three distinct but related
communities: home automation, classical control theory and software auto-adaptation.

The home automation community deals with the integration of smart devices such
as sensors, actuators and gateways into houses in order to better monitor and control
living environments. Home automation is a broad concept, including smart home and
ambient intelligence (AmI), which generally refers to architectures, practices, and con-
trollers for proper management of the home life-cycle to address home safety, energy
efficiency, entertainment, ambiance, assisted living, fall detection, elderly care or pa-
tient monitoring [6]. Controllers are key components of home automation. Rule-based
controllers have been widely explored in an AmI context and more particularly in the
context of remote health-monitoring: fuzzy rules were mixed with case reasoning in [7]
to provide both home-automation and health monitoring to elderly patients. Ontology-
derived rules are also used in coordination with rule engines to provide functional in-
telligent building behavior [6]. Rule-based framework in the context of remote moni-
toring where explored by [8] to provided assistance in decision-making for healthcare
providers. Many contributions in the field of rule-based home automation have focused
on the management of functional properties, but they lack consideration of system non-
functional properties and adaption to situation where some sensors are failing but the
system must still perform. The main concern of these contributions is the functional
coordination of distributed sensors and actuators, instrumenting a house in order to
achieve predefined goals. A rule language approach allows, thanks to its relative ex-
pressiveness, the specification of control objectives that can then be executed using
rules engines.

The software adaptation community deals with the integration of strategies enabling
better handling of changing digital and physical environment to modular software sys-
tems. These contributions can be divided into three categories: contributions which
consider the adaptation of classical control frameworks to software systems, contribu-
tions which consider the use of monitor analyzer planner executor and knowledge feed-
back (MAPE-K) loops [9] as the basic building block to enable software adaptation,
and finally contributions combine classical control and MAPE-K loops to implement
adaptive software solutions.

When only classical control solutions are applied to adaptation problems, the main
research challenge resides in the accurate state space modelization of software pro-
cesses. MPC-based [10] and PID-based [11] adaptation framework were able to provide
results in terms of software adaptation. However, we believe that the cumbersome mod-
eling process that must occur for each software system is not suitable for IoT applica-
tions. Indeed, self-adaptation for the IoT must be able to handle potentially very heter-
ogeneous devices, that are not easily modeled using state space representations. Indeed,

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

4

the feedback loop modelization of classical control systems does not provide good mod-
ularity, as elements of the feedback loop are not standard, and can vary between sys-
tems. Standardization of the feedback loop elements is provided by the MAPE-K self-
adaptation framework.

MAPE-K is considered as a gold-standard for self-adaptive systems [12, 3, 4]. The
idea behind the MAPE-K control scheme is to define autonomic elements defining an
adaptation loop from monitors (i.e. sensors) to executors (i.e. actuators) that perform
system reconfiguration using knowledge shared between all the feedback loop ele-
ments. Because this feedback loop is only a reference model, multiple implementations
have been studied such as agent-based implementations [12] or using formal frame-
works such as FORMS [4]. However, such control feedback loops are purely software
based, and are not appropriate for the control of hybrid software-hardware systems such
as IoT systems. Contributions considered the mixed use of classical control loops and
MAPE-K control loops to enable software systems with self-adaptation properties. This
is the case of DYNAMICO [3], an architectural reference model equipped to deal with
changing system requirements and monitoring infrastructure thanks to separation of
concerns. In this architecture, three independent MAPE-K loops are interconnected us-
ing classical control feedback loops in order to deal with changing system objectives,
changing monitoring framework and system adaptation. This reference model is how-
ever oriented at purely software self-adaptive systems, and mandates some modifica-
tions to be used in the context of hybrid IoT systems. Another field of interest when it
comes to control theory is discrete controller synthesis (DCS). In this field, discrete
models of target to-be-controlled systems are used to build correct-by-construction dis-
crete controllers [13]. Such control strategy has been successfully used in the IoT con-
text for functional adaptation of simple home-automation systems [1]. The control ob-
jectives in this contribution are given as first order-logic rules, and some non-functional
concerns are integrated under the form of controlled energy consumption. The strategy
behind such control framework is to divide the systems into a set of controllable and
non-controllable states, and to use the controllable states to guarantee system objectives
fulfilment given non-controllable states. Originally, such discrete control systems were
built using synchronous programming languages such as SIGNAL [13] or BZR [1, 14,
15]. Event-condition-action rules based discrete controller synthesis was explored,
more particularly using an event-condition-action (ECA) rules based high level descrip-
tion language to BZR translation to perform controller synthesis [16, 17]. Asynchro-
nous controller synthesis methods in the context of cloud-based autonomic manager
was studied using the LNT framework [18]. The main advantage about these contribu-
tions is that the controller verification part can be avoided because controller synthesis
is assumed to produce a correct controller. Table 1 summarizes all the contributions
described in this section.

Our contribution is at the center of all the before-mentioned contributions since it
adapts the DYNAMICO reference model to the context of IoT and uses MAPE-K and
classical feedback control loops to enable the capability of dealing with changing sys-
tem objectives and monitoring infrastructures. By using a state-chart model of non-
functional properties and high-level ECA-rules, we generate IoT system controllers
with well-established DCS tools such as the Heptagon/BZR toolbox.

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

5

Table 1. Related contribution synthesis.

Community Concerns Tools Papers

Self-adaptive
software

Enabling software to feature adaptive
behavior to changing environment.

MAPE-K,
DYNAMICO,
FORMS

[9], [12, 3, 4]

Discrete control-
ler synthesis

Build correct controllers using dis-
crete models of controlled systems.

BZR/Heptagon,
LNT, Signal

[1], [14], [15]
[16, 17], [18]

3 Motivation Case-Study

We consider the surveillance of a patient at risk of myocardial infarction recurrence as
a motivation case study. In this context, the patient requires continuous monitoring of
physiological parameters to detect potential recurrences and to urge a rapid medical
response if a heart failure is detected. Continuous monitoring is achieved using weara-
ble wireless sensors, which are battery powered, resulting in different resources con-
straints. In addition, the living environment of the patient is instrumented with sensors
and actuators that are either continuously powered or battery powered. As the case of
most IoT-based applications, connected objects are strongly constrained in terms of
resources: all sensing and actuation devices feature limited computing abilities (CPU
frequency up to a few hundreds of megahertz), storage (up to a few megabytes) and
volatile memory (up to a few hundreds of kilobytes). Constrained resources also imply
limitations in terms of communication protocol, which must be lightweight in order to
avoid the introduction of processing overhead and limit energy consumption.

In this case-study, we particularly focus on the robust detection of heart malfunc-
tions, and the triggering of emergency medical response if such a situation occurs.
There are two main robustness requirements: the avoidance of false positive detection
of heart malfunction (i.e., the system detects a cardiac malfunction while there is none),
but more importantly the detection of cardiac failure even if the system does not operate
at full capacity.

Considering self-adaptive properties of such a system, this case-study is of particular
interest: the adaptation goal is to ensure the safety property while satisfying quality of
service of a continuous and reliable monitoring. To satisfy the safety goal, the adapta-
tion strategy is based on the resource-awareness factor, resilience factor (i.e., substitu-
tion of defected objects with alternatives) and healthcare awareness factor such the re-
quest for medical assistance (i.e., myocardial infarction detection) or technical inter-
vention (i.e., abnormal values). Consequently, a safety-enabled smart home is imple-
mented to support self-adaptation objectives based on resources consumption, resili-
ence and external assistance. The adaptation strategies (i.e., the mechanisms that affect
the target system) consist of modifying smart sensor parameters based on resource mon-
itoring, substituting defected objects with alternatives or inferring their values from
nearby smart-objects as well as call for medical assistance when detecting abnormal
values. The context variables mandating observation are battery levels, absence or ab-
normal values, exceeding medical thresholds that define myocardial infarction.

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

6

In the following sections, we limit ourselves to examples using only three sensors:
the battery-operated heart rate (HR) and heart rate variability (HRV) sensor, the battery-
operated electrodermal activity (EDA) sensor, and the continuously powered occu-
pancy sensor. The cardiac risk is thus evaluated by a cardiac health estimation service
including inputs:

- Continuous streams of HR and HRV values (optimal mode)
- Continuous streams of EDA values with instantaneous or average HR values

(failsoft mode)
- Continuous streams of presence values (critical mode)

Depending on these inputs, the monitoring controller uses its internal cardiac health
estimator model to infer cardiac health status and request medical help for cardiac mal-
functions. Different cardiac health estimation models are out of scope since we only
focus on how the controller is self-adapted to provide estimators with correct inputs at
all time, and how it triggers external tiers notification, if deemed necessary.

4 QoS-Driven Self Adaptation

4.1 Managing Changing SLA and Monitoring Environment

Purely functional and static adaptation was successfully studied in IoT [1, 17]. How-
ever, insuring that IoT-based systems behaves as specified under changing control ob-
jectives of non-functional properties and limited resource-awareness is a relatively un-
explored research field. The DYNAMICO reference model [3] provides a prominent
solution to design and implement self-adaptive software systems where both adaptation
and monitoring infrastructures are enabled with self-adaptive capabilities using three
types of feedback-loops:

- The objectives feedback loop, which governs changes in adaptation goals, also
called control objectives (e.g. SLAs);

- The target system adaptation feedback loop, which regulates the target system
requirements satisfaction and the preservation of the adaptation properties;

- The dynamic monitoring feedback loop, which infers context variables from
the contracted quality of service (QoS) conditions and adapts the architectural
reconfiguration of the monitoring infrastructure to implement the monitoring
logic associated with context variables.

DYNAMICO characterizes the separation of concerns and interactions among dif-
ferent types of feedback loops. Despite its prominent advantages, DYNAMICO imple-
mentations (i.e., SMARTERCONTEXT monitoring infrastructure with the QoS-
CARE/FRASCATI middleware) are not relevant to distributed smart-objects with lim-
ited resources.

Based on the based on the DYNAMICO reference model, we propose an IoT-tar-
geted self-adaptive system, including a distributed adaptation infrastructure and the
controlled IoT system, consisting of gateways, each of which interacts with one or more
devices or sensors (see Fig. 1). Gateways invoke device services to get their data
streams, adjust their functional parameters, monitor their non-functional properties and
perform adaptation operations when deemed necessary, as defined in their SLAs. More

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

7

precisely, the IoT-based self-adaptive system relies on a SLA for each sensor, and a
global SLA for the system as a whole to respectively set adaptation objectives and de-
ploy monitors to gateways to observe each sensor’s QoS. Monitors informs the discrete
controller with events to decide whether that a self-adaption strategy should be applied
to meeting end-users’ SLAs. The adaptation infrastructure in Fig. 1 illustrates the causal
relationships between adaptation objectives, monitors and discrete controller, and in-
teractions between different feedback loops.

Fig. 1. An IoT-based self-adaptive system based on the DYNAMICO reference model

Interactions (i) between the objectives feedback-loop and the adaptation feedback-

loop (the monitoring feedback-loop resp.): These interactions feed the reference control
input computed by the objectives controller to the adaptation loop and the monitoring
loop. For instance, in our use-case, the first resource-aware adaptation to be considered
is related to the sensors’ battery levels by which the reference input will thus be under
the form BatteryLevel > 20%. This reference will be used by the adaptation feedback
loop as an element to be analyzed to decide potential adaptation, and by the monitoring
feedback loop as a reference input for context monitoring.

Interactions (ii) between the Monitoring Feedback Loop and the Objectives Feed-

back Loop: These interactions characterize the detection of the need of a change in the
control objectives by the monitoring feedback loop to be fed to the control objectives
feedback loop. In our use case, if the battery is drained, and if the cardiac status moni-
toring must be inferred using other environmental sensors. This mandates a change of
control objectives that must be decided by the objectives feedback-loop.

Interactions (iii) between the Monitoring Feedback Loop and the Adaptation Feed-

back Loop: These interactions feeds adaptation-triggering events from the monitoring
loop to the adaptation loop. For instance, the consistent and more rapid than normal
decrease of the battery level can be used as an event to trigger faster adaptation of the
system and a quicker adoption of a battery-saving fail-soft mode in order to extend the
duration of quasi-optimal system behavior.

NFP Monitor

System level SLA

NFP Analyzer

Battery powered

physical device

Line powered

physical device

Gateway

NFP Adaptation

Controller

Device-level SLA
Human-level SLA

Adaptation

Monitor

Adaptation

Analyzer

Discrete

Controller

Objectives

Monitor

Objectives

Analyzer

Objectives

Controller

Target IoT system

Adaptation infrastructure

(i)

(ii)

(iii)

(iv)(iv)

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

8

Interactions (iv) between the Adaptation Feedback Loop and the Monitoring Feed-

back Loop: These interactions feed the internal context from the adaptation loop to the
monitoring loop. This interaction can be used to insure system consistency after adap-
tation. For instance, in our use case and if the HR sensor has to be subsided by position
sensor for health monitoring, this interaction is used to ensure that the position sensors
are all in a functional state after the adaptation, thus insuring global system safety.

Fig. 2 describes the self-adaptation meta rules of the target IoT system behavior in
response to changes in the SLAs (i.e. control objectives’ changes) through interaction
(i) and to changes in the monitoring infrastructure (e.g. sensor removed from network)
through interaction (ii).

Fig. 2. Self-adaptation meta rules

4.2 Non-Functional Device Labeled Transition Systems

As illustrated in Fig 3(a), we propose an ontology to describe the global SLA for the
IoT target system. Each non-functional property (i.e., safety) is thus defined in terms of
QoS factors (resource-awareness, resilience, healthcare awareness) each of which has
constraints expressed as service level objectives (SLO) and has a corresponding moni-
tor deployed on the gateway of the sensors related to each QoS factor. We also propose
a failure-adaptation ontology to describe the system global safety in terms of resources
(i.e., low battery), resilience (unattached sensor, interrupted communication), abnormal
data due to critical heart failures or hardware failures (digital/analog failures).

Fig. 3. (a) Global QoS Ontology (b) Failure-Adaption Strategies Ontology

If new control objective (SLA renegotiated)

 Perform objectives analysis

 Generate new control contract

 Deploy monitors in gateways

 Perform discrete controller synthesis

If change in context (devices not available)

 Generate new control contract

 Deploy monitors in gateways

 Perform discrete controller synthesis

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

9

A building block of our IoT-based self-adaptive system is the description of non-
functional behaviors of each sensor using labeled state transition systems (LTS) based
on the failure-adaption strategies’ ontology. In fact, each state corresponds to a failure
and transitions refer to adaptation strategies to ensure safety non-functional property of
the target IoT system. This description allows the expression a qualitative quality-of-
service in terms its quantitative factors which are observed with monitors at run-time
and makes a correlate with appropriate adaptation strategies in case of failures. It also
provides a discrete behavior using states and transitions, making possible to use toolbox
(i.e., Heptagon/BZR) for synthesizing discrete controllers.

Generally speaking, a LTS is defined as a quadruple (S, L, ®, sin), where S is a set of
states, L a set of transition labels, ® ⊆ S × L × S is a transition relation between two
states, and sin is an initial state. The set of transition labels is defined as L = (events, ac-

tions, \), where \ ⊆ events × actions.
LTSs enable an accurate system description, where non-functional and non-control-

lable variables are members of the set events, and services calls are included in the set
actions. This syntactic separation of non-functional and functional variables enables
better expressivity: the statement “e \ a” can be interpreted as the control of event e by
service a when event e during the firing of the transition. When no control service is
provided for a given transition, it implies the non-controllability of the given transition.
Battery operated ‘smart’ sensors are purely uncontrollable (because the system cannot
automatically charge the battery, external human intervention is required for this oper-
ation). Fig. 4 describes the non-functional behavior of the heart-rate sensor used in our
case study. It features both purely event-based and event \ action transitions. It is worth
noticing that while some non-functional states can be self-detected by the sensor itself
(such as the low-battery state or the unattached state), some other can only be inferred
by the controller on a more global view (e.g. the analog malfunction state, which is
accessed through the abnormalValue transition event). Because of space limitation,
we will not detail what is considered as an abnormal value, nor will we detail the LTS
of other sensors, which are assumed to be similar to the heart-rate sensor. The choice
of LTS as a model of computation (MoC) of IoT-based devices was motivated by the
genericity of this MoC, and because IoT-based devices traditionally present a discrete
state-based behavior (e.g. a sensor can be on, measuring, off, etc.). Consequently, both
personal and external-tier devices can be represented using this MoC.

Fig. 4. Non-functional LTS of the Heart Rate sensor

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

10

4.3 Rule Based Modelization of Control Objectives and SLA

Since our self-adaptive approach is based on the DYNAMICO reference model, we
express the control objectives in terms of rules. Rule-based definitions of objectives is
declarative and easily express desired control objectives by end-users. The discrete con-
troller (see Fig. 1) will be provided with rule-based control objectives to decide whether
non-functional properties are guaranteed. Please note that SLA non-functional proper-
ties are considered to be control objectives and they are provided as inputs to the self-
adaptive system. A rule refers to a condition-assertion statement and is defined as fol-
lows:

IF condition ASSERT action

Fig. 5 briefly illustrates couple of rules for safety non-functional property. The goal
of these rules is to make sure that if either of the cardiac sensor is not operating normally
or the EDA sensor is shut down, the position sensor is turned on to allow a better health
status estimation.

Fig. 5. Control objectives for a resilient cardiac monitoring

5 Synthesizing the Discrete Controller

The labeled transition system description of each sensor in terms of functional and
nonfunctional properties leads to a set of distributed systems that run concurrently. In
this context, these descriptions are equivalent to BZR control contracts, that are com-
posed of three elements: an assumption (keyword assume), an enforcement (keyword
enforce) and a declaration of controllable variables (keyword with). Reader may
refer to [14] for a complete description the Heptagon/BZR language. In our work, we
propose to generate the discrete controller by firstly mapping label transition descrip-
tions of all sensors into a Heptagon/BZR programs and secondly synthesizing them into
a discrete controller. Indeed, input of sensor services can be seen as controllable varia-
bles where rules can easily be converted into first-order logic enforcements. Because
Heptagon is a synchronous programming language, the synchrony of our target IoT-
system must be clearly defined. In our context, the synchrony hypothesis states: given

a system, a set of inputs and a set of outputs, the system must be able to compute all of

its outputs between two occurrences of inputs changes events [19].
Considering our use-case where computational abilities of gateways (used as cen-

tralized controllers) are much greater than computational resources of sensors, the IoT
target system tends to behave as a synchronous system. Indeed, because of their gate-
way processing speeds, controllers running on gateways will be able to process all sen-
sor events before receiving new events. Please note that while this kind of behavior is
true for smaller IoT systems such as our wearable and ambient system (made of tens of

R1: IF Not(HR.state == normal) ASSERT Pos.state == normal

R2: IF EDA.state == shutdown ASSERT Pos.state == normal

 …
Rn: IF HR.Battery == Low ASSERT HR.setMode(FailSoft)

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

11

devices), this assumption might not hold for much bigger IoT-based systems made of
thousands of devices, considering the mass of generated events is much higher.

6 Implementation and simulation results

As a preliminary simulation, the LTS of the cardiac parameters sensor introduced in
Fig. 4 was encoded into BZR along with the LTS of both the position and EDA sensors.
A rule set, including rules introduced in Fig. 5, were translated into BZR contracts, and
were then used to successfully synthesize a controller using SIGALI. The simulation was
performed using the simulator included with the Heptagon/BZR compiler, which
demonstrates a correct behavior of the controlled IoT-system with respect to the pro-
vided control objectives. Fig. 6 is a chronogram presenting the behavior of our con-
trolled system in terms of normal states. For example, we can easily see that both rule
r1 and r2 are respected. In fact, when the cardiac sensor leaves the normal mode (i.e.
it goes into any of other failure or shutdown states), the position sensor is turned on.
Similarly, when the EDA sensor leaves the normal state (i.e. it is turned off, since this
sensor is modeled as a binary-state sensor), the position sensor stays on.

Fig. 6. Excerpt of the simulation chronograms

7 Conclusion and Perspectives

In this paper, we introduce a QoS-driven approach to self-adaptive IoT systems based
on the DYNAMICO adaptation reference model and non-functional properties. Our
IoT-based system relies on a set of rules and labeled state transitions to generate a dis-
crete controller synthesis. Current ongoing work focuses on better sensor modeling by
decoupling functional and non-functional behavior into distinct but interacting LTS to
have better separation of concerns (non-functional LTS typically appearing in the mon-
itoring feedback loop, while the functional LTS represents system functional adapta-
tion). Integration of a domain specific rule-based language is also under investigation.
This will enable us to express control objectives and thus improve separation of con-
cerns between objectives feedback loop and the adaptation feedback loop.

Acknowledgement

Funding for this project was provided by a grant from la Région Rhône-Alpes.

References

1. Zhao, M., Privat, G., Rutten, É., Alla, H.: Discrete Control for the Internet of Things and
Smart Environments. In: 8th International Workshop on Feedback Computing, San Jose,
CA, USA, June 25, 2013 (2013).

© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

12

2. Zhao, M., Privat, G., Rutten, E., Alla, H.: Discrete Control for Smart Environments Through
a Generic Finite-State-Models-Based Infrastructure. In: Aarts, E. et. al. (eds.) Ambient In-
telligence. pp. 174–190. (2014).

3. Villegas, N.M., Tamura, G., Müller, H.A., Duchien, L., Casallas, R.: DYNAMICO: A ref-
erence model for governing control objectives and context relevance in self-adaptive soft-
ware systems. In: Software Engineering for Self-Adaptive Systems II. pp. 265–293. (2013).

4. Weyns, D., Malek, S., Andersson, J.: FORMS: a formal reference model for self-adaptation.
In: Proceedings of the 7th International Conference on Autonomic Computing. pp. 205–214.
(2010).

5. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A framework for eval-
uating quality-driven self-adaptive software systems. In: Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. pp. 80–89.
(2011).

6. Bonino, D., Corno, F.: Rule-based intelligence for domotic environments. Automation in
Construction. pp. 183–196 (2010).

7. Yuan, B., Herbert, J.: Context-aware hybrid reasoning framework for pervasive healthcare.
Personal and Ubiquitous Computing. pp. 865–881 (2014).

8. Augusto, J.C., McCullagh, P., McClelland, V., Walkden, J.A.: Enhanced healthcare provi-
sion through assisted decision-making in a smart home environment. In: 2nd Workshop on
Artificial Inteligence Techniques for Ambient Inteligence (2007).

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer. pp. 41–50
(2003).

10. Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E., Mylopoulos, J.: Model predictive
control for software systems with CobRA. In: Proceedings of the 11th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems. pp. 35–46. (2016).

11. Peng, X., Chen, B., Yu, Y., Zhao, W.: Self-tuning of software systems through dynamic
quality tradeoff and value-based feedback control loop. Journal of Systems and Software.
pp. 2707–2719 (2012).

12. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feedback loops
for self-adaptation. In: Proceedings of the 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems. pp. 13–23. (2015).

13. Marchand, H., Bournai, P., Borgne, M.L., Guernic, P.L.: Synthesis of Discrete-Event Con-
trollers based on the Signal Environment. Discrete Event Dynamic Systems. pp. 325–346
(2000).

14. Delaval, G., Marchand, H., Rutten, E.: Contracts for modular discrete controller synthesis.
In: ACM Sigplan Notices. pp. 57–66. (2010).

15. Delaval, G., Rutten, E., Marchand, H.: Integrating discrete controller synthesis into a reac-
tive programming language compiler. Discrete Event Dynamic Systems. pp. 385–418
(2013).

16. Cano, J., Delaval, G., Rutten, E.: Coordination of ECA Rules by Verification and Control.
In: Kühn, E. and Pugliese, R. (eds.) Coordination Models and Languages. pp. 33–48. (2014).

17. Cano, J., Rutten, E., Delaval, G., Benazzouz, Y., Gurgen, L.: ECA Rules for IoT Environ-
ment: A Case Study in Safe Design. In: Proceedings of the 8th International Conference on
Self-Adaptive and Self-Organizing Systems Workshops. pp. 116–121. (2014)

18. Abid, R., Salaün, G., De Palma, N.: Asynchronous synthesis techniques for coordinating
autonomic managers in the cloud. Science of Computer Programming. pp. 87–103 (2017).

19. Gamatié, A.: Synchronous Programming: Overview. In: Designing Embedded Systems with
the SIGNAL Programming Language. pp. 21–39. (2010).

