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Abstract. The Internet-of-Things, which designates the interconnection of nu-
merous physical devices, is a growing research direction faced with many chal-
lenges. One of these challenges is to provide constant quality-of-service despite 
IoT devices being used in a constantly changing physical environment. In order 
to answer this problem, we introduce a quality-of-service driven self-adaptation 
framework, which can simultaneously handle changing adaptation strategies, 
monitoring infrastructure and physical environment while guaranteeing constant 
quality-of-service. Because of its formal guarantees, our system is particularly 
suited for the control of critical IoT-based systems, and we thus demonstrated its 
practicality by applying it to an e-health case-study where the safety of the mon-
itored patients must be assured. 

Keywords: Self-adaptive systems, Adaptive IoT, Controller synthesis. 

1 Introduction 

The Internet-of-Things (IoT) enables the interconnection of virtually every object of 
the physical world, such as a variety of sensors, actuators, robots or wearable devices. 
This interconnection of various physical-world devices into IoT systems, coupled with 
the strong hardware constraints of IoT devices, mandates the study of adaptation strat-
egies to deal with devices failure, especially when dealing with critical systems (e.g. 
healthcare systems). To deal with such requirements, self-adaptation software and au-
tonomic frameworks were proposed [1–4]. In particular, self-adaptive software systems 
(SAS), which deal with distributed applications in changing environments, normally 
require human supervision to sustain despite changes during their executions. These 
systems rely on a closed feedback loop to adjust themselves to changes. Based on ob-
served context variables and thresholds, they monitor themselves, their context and en-
tities from the target system environment to decide when and how to apply adaptation 
strategies in order to ensure expected behavior (i.e., functional requirements) and guar-
antee quality of services (i.e., non-functional requirements) [5]. 

In the context of the Internet-of-Things, self-adaptation is a salient property of smart 
objects. It allows them to be self-configured and adapted to extreme conditions while 
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ensuring the target system objectives such as comfort, automation, security and safety 
goals. Self-adaptation mechanisms driven by adaptation goals modify smart objects be-
havior dynamically. However, the IoT is a dynamic and global network infrastructure, 
in which “things” are expected to be autonomous and self-configurable. This feature 
that the IoT should strive to achieve is not a trivial task since adaptation goals may also 
evolve continuously during run-time due to changes in functional or non-functional 
requirements and contextual information. These changes affect observed variables, 
their thresholds and even alter the monitoring logic when context variables are added 
or deleted. As a result, when adaptation goals change at run-time, both monitoring and 
self-adaptation mechanisms may become inapplicable because either the adaptation 
mechanism deals with outdated goals, or the monitoring mechanism addresses moni-
toring requirements that are irrelevant to the actual adaptation goals. 

In this paper, we present a discrete controller synthesis system that ensures self-
adaptation behavior based on quality-of-service properties (QoS) of smart objects dur-
ing their run-time. Our system is resource-aware and ensures simultaneously the sepa-
ration of concerns of adaption objectives, context monitoring and adaptation strategies. 
By such, our system makes possible to guarantee the service level agreement (SLA) 
which defines the level of smart object services as expected by end-users expressed 
them as constrains on non-functional properties. Without loss of generality, our system 
focuses on the safety quality as a crucial non-functional property in the context of 
healthcare monitoring to detect heart malfunctions with wearable sensors (heart rate 
sensor and electrodermal activity sensor) and ambient sensors (occupancy detection 
sensor, noise sensor, etc.).  In this context, we model the safety quality as a qualitative 
property in the SLA of wearable and ambient sensors. The safety quality is initialed 
defined as the resource-awareness factor of wearable sensors in response to their battery 
consumption levels. During the execution, the safety quality may be renegotiated by 
adding resilience as an additional new factor. This new contracted factor states that the 
defected objects are subsumed by alternative smart objects (same types) or inferring 
their observed values through data collected from other smart objects (different types). 
Yet another adaptation of the safety property may include the health-awareness factor, 
which enables the detection of critical health crisis from contextual information, medi-
cal sensor values, and patient history patterns. Our discrete controller synthesis system 
implements a dynamic monitoring approach that deploys, at run-time, new context 
gatherers and new monitoring requirements for new quality properties. These elements 
are automatically generated from the non-functional quality-of-service properties in the 
SLA and deployed at run-time without interrupting the target system execution or the 
adaptation mechanism. 

The remaining of the paper is organized as follows. In section 2, we present related 
works. Before introducing our discrete controller synthesis system, we briefly introduce 
a motivation case-study dealing with safety quality in wearable sensors in section 3. In 
section 4, we present our QoS-driven self-adaptation approach which is based on the 
DYNAMICO reference model [3] and includes SLA and stated-based failure ontolo-
gies. These ontologies along with knowledge-based rules are used to generate non-
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functional device labeled transition graphs and to generate our discrete controller syn-
thesis system as described in section 5. In section 6, we present our implementations 
and conclude our work in section 7. 

2 Related Works 

The work detailed in this paper is located at the intersection of three distinct but related 
communities: home automation, classical control theory and software auto-adaptation. 

The home automation community deals with the integration of smart devices such 
as sensors, actuators and gateways into houses in order to better monitor and control 
living environments. Home automation is a broad concept, including smart home and 
ambient intelligence (AmI), which generally refers to architectures, practices, and con-
trollers for proper management of the home life-cycle to address home safety, energy 
efficiency, entertainment, ambiance, assisted living, fall detection, elderly care or pa-
tient monitoring [6]. Controllers are key components of home automation. Rule-based 
controllers have been widely explored in an AmI context and more particularly in the 
context of remote health-monitoring: fuzzy rules were mixed with case reasoning in [7] 
to provide both home-automation and health monitoring to elderly patients.  Ontology-
derived rules are also used in coordination with rule engines to provide functional in-
telligent building behavior [6]. Rule-based framework in the context of remote moni-
toring where explored by [8] to provided assistance in decision-making for healthcare 
providers. Many contributions in the field of rule-based home automation have focused 
on the management of functional properties, but they lack consideration of system non-
functional properties and adaption to situation where some sensors are failing but the 
system must still perform. The main concern of these contributions is the functional 
coordination of distributed sensors and actuators, instrumenting a house in order to 
achieve predefined goals. A rule language approach allows, thanks to its relative ex-
pressiveness, the specification of control objectives that can then be executed using 
rules engines. 

The software adaptation community deals with the integration of strategies enabling 
better handling of changing digital and physical environment to modular software sys-
tems. These contributions can be divided into three categories: contributions which 
consider the adaptation of classical control frameworks to software systems, contribu-
tions which consider the use of  monitor analyzer planner executor and knowledge feed-
back (MAPE-K) loops [9] as the basic building block to enable software adaptation, 
and finally contributions combine classical control and MAPE-K loops to implement 
adaptive software solutions. 

When only classical control solutions are applied to adaptation problems, the main 
research challenge resides in the accurate state space modelization of software pro-
cesses. MPC-based [10] and PID-based [11] adaptation framework were able to provide 
results in terms of software adaptation. However, we believe that the cumbersome mod-
eling process that must occur for each software system is not suitable for IoT applica-
tions. Indeed, self-adaptation for the IoT must be able to handle potentially very heter-
ogeneous devices, that are not easily modeled using state space representations. Indeed, 



© Springer International Publishing AG, part of Springer Nature 2018. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in: Gatouillat A.,

 Badr Y., Massot B. (2018) QoS-Driven Self-adaptation for Critical IoT-Based Systems. In: Braubach L. et al. (eds) Service-Oriented 
Computing – ICSOC 2017 Workshops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797.

Springer, Cham, https://doi.org/10.1007/978-3-319-91764-1_8

4 

the feedback loop modelization of classical control systems does not provide good mod-
ularity, as elements of the feedback loop are not standard, and can vary between sys-
tems. Standardization of the feedback loop elements is provided by the MAPE-K self-
adaptation framework. 

MAPE-K is considered as a gold-standard for self-adaptive systems [12, 3, 4]. The 
idea behind the MAPE-K control scheme is to define autonomic elements defining an 
adaptation loop from monitors (i.e. sensors) to executors (i.e. actuators) that perform 
system reconfiguration using knowledge shared between all the feedback loop ele-
ments. Because this feedback loop is only a reference model, multiple implementations 
have been studied such as agent-based implementations [12] or using formal frame-
works such as FORMS [4]. However, such control feedback loops are purely software 
based, and are not appropriate for the control of hybrid software-hardware systems such 
as IoT systems. Contributions considered the mixed use of classical control loops and 
MAPE-K control loops to enable software systems with self-adaptation properties. This 
is the case of DYNAMICO [3], an architectural reference model equipped to deal with 
changing system requirements and monitoring infrastructure thanks to separation of 
concerns. In this architecture, three independent MAPE-K loops are interconnected us-
ing classical control feedback loops in order to deal with changing system objectives, 
changing monitoring framework and system adaptation. This reference model is how-
ever oriented at purely software self-adaptive systems, and mandates some modifica-
tions to be used in the context of hybrid IoT systems. Another field of interest when it 
comes to control theory is discrete controller synthesis (DCS). In this field, discrete 
models of target to-be-controlled systems are used to build correct-by-construction dis-
crete controllers [13]. Such control strategy has been successfully used in the IoT con-
text for functional adaptation of simple home-automation systems [1]. The control ob-
jectives in this contribution are given as first order-logic rules, and some non-functional 
concerns are integrated under the form of controlled energy consumption. The strategy 
behind such control framework is to divide the systems into a set of controllable and 
non-controllable states, and to use the controllable states to guarantee system objectives 
fulfilment given non-controllable states. Originally, such discrete control systems were 
built using synchronous programming languages such as SIGNAL [13] or BZR [1, 14, 
15]. Event-condition-action rules based discrete controller synthesis was explored, 
more particularly using an event-condition-action (ECA) rules based high level descrip-
tion language to BZR translation to perform controller synthesis [16, 17]. Asynchro-
nous controller synthesis methods in the context of cloud-based autonomic manager 
was studied using the LNT framework [18]. The main advantage about these contribu-
tions is that the controller verification part can be avoided because controller synthesis 
is assumed to produce a correct controller. Table 1 summarizes all the contributions 
described in this section. 

Our contribution is at the center of all the before-mentioned contributions since it 
adapts the DYNAMICO reference model to the context of IoT and uses MAPE-K and 
classical feedback control loops to enable the capability of dealing with changing sys-
tem objectives and monitoring infrastructures. By using a state-chart model of non-
functional properties and high-level ECA-rules, we generate IoT system controllers 
with well-established DCS tools such as the Heptagon/BZR toolbox. 
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Table 1. Related contribution synthesis. 

Community Concerns Tools Papers 

Self-adaptive 
software 

Enabling software to feature adaptive 
behavior to changing environment. 

MAPE-K, 
DYNAMICO, 
FORMS 

[9], [12, 3, 4] 

Discrete control-
ler synthesis 

Build correct controllers using dis-
crete models of controlled systems. 

BZR/Heptagon, 
LNT, Signal 

[1], [14], [15] 
[16, 17], [18] 

3 Motivation Case-Study 

We consider the surveillance of a patient at risk of myocardial infarction recurrence as 
a motivation case study. In this context, the patient requires continuous monitoring of 
physiological parameters to detect potential recurrences and to urge a rapid medical 
response if a heart failure is detected. Continuous monitoring is achieved using weara-
ble wireless sensors, which are battery powered, resulting in different resources con-
straints. In addition, the living environment of the patient is instrumented with sensors 
and actuators that are either continuously powered or battery powered. As the case of 
most IoT-based applications, connected objects are strongly constrained in terms of 
resources: all sensing and actuation devices feature limited computing abilities (CPU 
frequency up to a few hundreds of megahertz), storage (up to a few megabytes) and 
volatile memory (up to a few hundreds of kilobytes). Constrained resources also imply 
limitations in terms of communication protocol, which must be lightweight in order to 
avoid the introduction of processing overhead and limit energy consumption.  

In this case-study, we particularly focus on the robust detection of heart malfunc-
tions, and the triggering of emergency medical response if such a situation occurs. 
There are two main robustness requirements: the avoidance of false positive detection 
of heart malfunction (i.e., the system detects a cardiac malfunction while there is none), 
but more importantly the detection of cardiac failure even if the system does not operate 
at full capacity. 

Considering self-adaptive properties of such a system, this case-study is of particular 
interest: the adaptation goal is to ensure the safety property while satisfying quality of 
service of a continuous and reliable monitoring. To satisfy the safety goal, the adapta-
tion strategy is based on the resource-awareness factor, resilience factor (i.e., substitu-
tion of defected objects with alternatives) and healthcare awareness factor such the re-
quest for medical assistance (i.e., myocardial infarction detection) or technical inter-
vention (i.e., abnormal values). Consequently, a safety-enabled smart home is imple-
mented to support self-adaptation objectives based on resources consumption, resili-
ence and external assistance. The adaptation strategies (i.e., the mechanisms that affect 
the target system) consist of modifying smart sensor parameters based on resource mon-
itoring, substituting defected objects with alternatives or inferring their values from 
nearby smart-objects as well as call for medical assistance when detecting abnormal 
values. The context variables mandating observation are battery levels, absence or ab-
normal values, exceeding medical thresholds that define myocardial infarction. 
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In the following sections, we limit ourselves to examples using only three sensors: 
the battery-operated heart rate (HR) and heart rate variability (HRV) sensor, the battery-
operated electrodermal activity (EDA) sensor, and the continuously powered occu-
pancy sensor. The cardiac risk is thus evaluated by a cardiac health estimation service 
including inputs: 

- Continuous streams of HR and HRV values (optimal mode) 
- Continuous streams of EDA values with instantaneous or average HR values 

(failsoft mode) 
- Continuous streams of presence values (critical mode) 

Depending on these inputs, the monitoring controller uses its internal cardiac health 
estimator model to infer cardiac health status and request medical help for cardiac mal-
functions. Different cardiac health estimation models are out of scope since we only 
focus on how the controller is self-adapted to provide estimators with correct inputs at 
all time, and how it triggers external tiers notification, if deemed necessary. 

4 QoS-Driven Self Adaptation 

4.1 Managing Changing SLA and Monitoring Environment 

Purely functional and static adaptation was successfully studied in IoT [1, 17]. How-
ever, insuring that IoT-based systems behaves as specified under changing control ob-
jectives of non-functional properties and limited resource-awareness is a relatively un-
explored research field. The DYNAMICO reference model [3] provides a prominent 
solution to design and implement self-adaptive software systems where both adaptation 
and monitoring infrastructures are enabled with self-adaptive capabilities using three 
types of feedback-loops: 

- The objectives feedback loop, which governs changes in adaptation goals, also 
called control objectives (e.g. SLAs);  

- The target system adaptation feedback loop, which regulates the target system 
requirements satisfaction and the preservation of the adaptation properties;  

- The dynamic monitoring feedback loop, which infers context variables from 
the contracted quality of service (QoS) conditions and adapts the architectural 
reconfiguration of the monitoring infrastructure to implement the monitoring 
logic associated with context variables. 

DYNAMICO characterizes the separation of concerns and interactions among dif-
ferent types of feedback loops. Despite its prominent advantages, DYNAMICO imple-
mentations (i.e., SMARTERCONTEXT monitoring infrastructure with the QoS-
CARE/FRASCATI middleware) are not relevant to distributed smart-objects with lim-
ited resources. 

Based on the based on the DYNAMICO reference model, we propose an IoT-tar-
geted self-adaptive system, including a distributed adaptation infrastructure and the 
controlled IoT system, consisting of gateways, each of which interacts with one or more 
devices or sensors (see Fig. 1). Gateways invoke device services to get their data 
streams, adjust their functional parameters, monitor their non-functional properties and 
perform adaptation operations when deemed necessary, as defined in their SLAs.  More 
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precisely, the IoT-based self-adaptive system relies on a SLA for each sensor, and a 
global SLA for the system as a whole to respectively set adaptation objectives and de-
ploy monitors to gateways to observe each sensor’s QoS. Monitors informs the discrete 
controller with events to decide whether that a self-adaption strategy should be applied 
to meeting end-users’ SLAs. The adaptation infrastructure in Fig. 1 illustrates the causal 
relationships between adaptation objectives, monitors and discrete controller, and in-
teractions between different feedback loops. 

 

Fig. 1.  An IoT-based self-adaptive system based on the DYNAMICO reference model  

Interactions (i) between the objectives feedback-loop and the adaptation feedback-

loop (the monitoring feedback-loop resp.): These interactions feed the reference control 
input computed by the objectives controller to the adaptation loop and the monitoring 
loop. For instance, in our use-case, the first resource-aware adaptation to be considered 
is related to the sensors’ battery levels by which the reference input will thus be under 
the form BatteryLevel > 20%. This reference will be used by the adaptation feedback 
loop as an element to be analyzed to decide potential adaptation, and by the monitoring 
feedback loop as a reference input for context monitoring. 

Interactions (ii) between the Monitoring Feedback Loop and the Objectives Feed-

back Loop: These interactions characterize the detection of the need of a change in the 
control objectives by the monitoring feedback loop to be fed to the control objectives 
feedback loop. In our use case, if the battery is drained, and if the cardiac status moni-
toring must be inferred using other environmental sensors. This mandates a change of 
control objectives that must be decided by the objectives feedback-loop. 

Interactions (iii) between the Monitoring Feedback Loop and the Adaptation Feed-

back Loop: These interactions feeds adaptation-triggering events from the monitoring 
loop to the adaptation loop. For instance, the consistent and more rapid than normal 
decrease of the battery level can be used as an event to trigger faster adaptation of the 
system and a quicker adoption of a battery-saving fail-soft mode in order to extend the 
duration of quasi-optimal system behavior. 
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Interactions (iv) between the Adaptation Feedback Loop and the Monitoring Feed-

back Loop: These interactions feed the internal context from the adaptation loop to the 
monitoring loop. This interaction can be used to insure system consistency after adap-
tation. For instance, in our use case and if the HR sensor has to be subsided by position 
sensor for health monitoring, this interaction is used to ensure that the position sensors 
are all in a functional state after the adaptation, thus insuring global system safety. 

Fig. 2 describes the self-adaptation meta rules of the target IoT system behavior in 
response to changes in the SLAs (i.e. control objectives’ changes) through interaction 
(i) and to changes in the monitoring infrastructure (e.g. sensor removed from network) 
through interaction (ii). 

 

Fig. 2. Self-adaptation meta rules 

4.2 Non-Functional Device Labeled Transition Systems 

As illustrated in Fig 3(a), we propose an ontology to describe the global SLA for the 
IoT target system. Each non-functional property (i.e., safety) is thus defined in terms of 
QoS factors (resource-awareness, resilience, healthcare awareness) each of which has 
constraints expressed as service level objectives (SLO) and has a corresponding moni-
tor deployed on the gateway of the sensors related to each QoS factor. We also propose 
a failure-adaptation ontology to describe the system global safety in terms of resources 
(i.e., low battery), resilience (unattached sensor, interrupted communication), abnormal 
data due to critical heart failures or hardware failures (digital/analog failures). 

 

 

Fig. 3. (a) Global QoS Ontology (b) Failure-Adaption Strategies Ontology 

If new control objective (SLA renegotiated) 

  Perform objectives analysis 

  Generate new control contract 

  Deploy monitors in gateways 

  Perform discrete controller synthesis 

If change in context (devices not available) 

  Generate new control contract 

  Deploy monitors in gateways 

  Perform discrete controller synthesis 
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A building block of our IoT-based self-adaptive system is the description of non-
functional behaviors of each sensor using labeled state transition systems (LTS) based 
on the failure-adaption strategies’ ontology. In fact, each state corresponds to a failure 
and transitions refer to adaptation strategies to ensure safety non-functional property of 
the target IoT system. This description allows the expression a qualitative quality-of-
service in terms its quantitative factors which are observed with monitors at run-time 
and makes a correlate with appropriate adaptation strategies in case of failures. It also 
provides a discrete behavior using states and transitions, making possible to use toolbox 
(i.e., Heptagon/BZR) for synthesizing discrete controllers. 

Generally speaking, a LTS is defined as a quadruple (S, L, ®, sin), where S is a set of 
states, L a set of transition labels, ® ⊆ S × L × S is a transition relation between two 
states, and sin is an initial state. The set of transition labels is defined as L = (events, ac-

tions, \), where \ ⊆ events × actions. 
LTSs enable an accurate system description, where non-functional and non-control-

lable variables are members of the set events, and services calls are included in the set 
actions. This syntactic separation of non-functional and functional variables enables 
better expressivity: the statement “e \ a” can be interpreted as the control of event e by 
service a when event e during the firing of the transition. When no control service is 
provided for a given transition, it implies the non-controllability of the given transition. 
Battery operated ‘smart’ sensors are purely uncontrollable (because the system cannot 
automatically charge the battery, external human intervention is required for this oper-
ation). Fig. 4 describes the non-functional behavior of the heart-rate sensor used in our 
case study. It features both purely event-based and event \ action transitions. It is worth 
noticing that while some non-functional states can be self-detected by the sensor itself 
(such as the low-battery state or the unattached state), some other can only be inferred 
by the controller on a more global view (e.g. the analog malfunction state, which is 
accessed through the abnormalValue transition event). Because of space limitation, 
we will not detail what is considered as an abnormal value, nor will we detail the LTS 
of other sensors, which are assumed to be similar to the heart-rate sensor. The choice 
of LTS as a model of computation (MoC) of IoT-based devices was motivated by the 
genericity of this MoC, and because IoT-based devices traditionally present a discrete 
state-based behavior (e.g. a sensor can be on, measuring, off, etc.). Consequently, both 
personal and external-tier devices can be represented using this MoC. 

 

Fig. 4. Non-functional LTS of the Heart Rate sensor 
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4.3 Rule Based Modelization of Control Objectives and SLA 

Since our self-adaptive approach is based on the DYNAMICO reference model, we 
express the control objectives in terms of rules. Rule-based definitions of objectives is 
declarative and easily express desired control objectives by end-users. The discrete con-
troller (see Fig. 1) will be provided with rule-based control objectives to decide whether 
non-functional properties are guaranteed. Please note that SLA non-functional proper-
ties are considered to be control objectives and they are provided as inputs to the self-
adaptive system. A rule refers to a condition-assertion statement and is defined as fol-
lows: 

IF condition ASSERT action 

Fig. 5 briefly illustrates couple of rules for safety non-functional property. The goal 
of these rules is to make sure that if either of the cardiac sensor is not operating normally 
or the EDA sensor is shut down, the position sensor is turned on to allow a better health 
status estimation. 

 

Fig. 5. Control objectives for a resilient cardiac monitoring 

5 Synthesizing the Discrete Controller  

The labeled transition system description of each sensor in terms of functional and 
nonfunctional properties leads to a set of distributed systems that run concurrently. In 
this context, these descriptions are equivalent to BZR control contracts, that are com-
posed of three elements: an assumption (keyword assume), an enforcement (keyword 
enforce) and a declaration of controllable variables (keyword with). Reader may 
refer to [14] for a complete description the Heptagon/BZR language. In our work, we 
propose to generate the discrete controller by firstly mapping label transition descrip-
tions of all sensors into a Heptagon/BZR programs and secondly synthesizing them into 
a discrete controller. Indeed, input of sensor services can be seen as controllable varia-
bles where rules can easily be converted into first-order logic enforcements. Because 
Heptagon is a synchronous programming language, the synchrony of our target IoT-
system must be clearly defined. In our context, the synchrony hypothesis states: given 

a system, a set of inputs and a set of outputs, the system must be able to compute all of 

its outputs between two occurrences of inputs changes events [19]. 
Considering our use-case where computational abilities of gateways (used as cen-

tralized controllers) are much greater than computational resources of sensors, the IoT 
target system tends to behave as a synchronous system. Indeed, because of their gate-
way processing speeds, controllers running on gateways will be able to process all sen-
sor events before receiving new events. Please note that while this kind of behavior is 
true for smaller IoT systems such as our wearable and ambient system (made of tens of 

R1: IF Not(HR.state == normal) ASSERT Pos.state == normal 

R2: IF EDA.state == shutdown ASSERT Pos.state == normal 

             … 
Rn: IF HR.Battery == Low ASSERT HR.setMode(FailSoft) 
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devices), this assumption might not hold for much bigger IoT-based systems made of 
thousands of devices, considering the mass of generated events is much higher. 

6 Implementation and simulation results 

As a preliminary simulation, the LTS of the cardiac parameters sensor introduced in 
Fig. 4 was encoded into BZR along with the LTS of both the position and EDA sensors. 
A rule set, including rules introduced in Fig. 5, were translated into BZR contracts, and 
were then used to successfully synthesize a controller using SIGALI. The simulation was 
performed using the simulator included with the Heptagon/BZR compiler, which 
demonstrates a correct behavior of the controlled IoT-system with respect to the pro-
vided control objectives. Fig. 6 is a chronogram presenting the behavior of our con-
trolled system in terms of normal states. For example, we can easily see that both rule 
r1 and r2 are respected. In fact, when the cardiac sensor leaves the normal mode (i.e. 
it goes into any of other failure or shutdown states), the position sensor is turned on. 
Similarly, when the EDA sensor leaves the normal state (i.e. it is turned off, since this 
sensor is modeled as a binary-state sensor), the position sensor stays on. 

 

Fig. 6. Excerpt of the simulation chronograms 

7 Conclusion and Perspectives 

In this paper, we introduce a QoS-driven approach to self-adaptive IoT systems based 
on the DYNAMICO adaptation reference model and non-functional properties. Our 
IoT-based system relies on a set of rules and labeled state transitions to generate a dis-
crete controller synthesis. Current ongoing work focuses on better sensor modeling by 
decoupling functional and non-functional behavior into distinct but interacting LTS to 
have better separation of concerns (non-functional LTS typically appearing in the mon-
itoring feedback loop, while the functional LTS represents system functional adapta-
tion). Integration of a domain specific rule-based language is also under investigation. 
This will enable us to express control objectives and thus improve separation of con-
cerns between objectives feedback loop and the adaptation feedback loop. 
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