
HAL Id: hal-01619270
https://hal.science/hal-01619270

Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifiable and Resource-Aware Component Model for
IoT Devices

Arthur Gatouillat, Youakim Badr

To cite this version:
Arthur Gatouillat, Youakim Badr. Verifiable and Resource-Aware Component Model for IoT Devices.
9th International Conference on Management of Digital EcoSystems (MEDES), Nov 2017, Bangkok,
Thailand. pp.235-242, �10.1145/3167020.3167056�. �hal-01619270�

https://hal.science/hal-01619270
https://hal.archives-ouvertes.fr

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

Verifiable and Resource-Aware Component Model for IoT

Devices
Arthur Gatouillat

Univ Lyon, INSA-Lyon
LIRIS, UMR5205
F-69621, France

arthur.gatouillat@insa-lyon.fr

Youakim Badr
Univ Lyon, INSA-Lyon

LIRIS, UMR5205
F-69621, France

youakim.badr@insa-lyon.fr

ABSTRACT

Most connected objects feature very limited capabilities that
present challenges in terms of data processing and connectivity. In
addition, heterogeneity of smart Internet-of-Things devices also
causes interoperability problems. These limitations lead to strong
hardware and software constraints that must be considered as early
as possible during the design process. In this paper, we introduce a
smart object component-based model to build complex smart
objects by composition mechanisms in a similar way to Web
service compositions. The smart object model extends artifact types
and describes its structure and behavior in terms of attribute value
pair, state-based lifecycle and services. Moreover, we propose a
formal specification based on the intuitive multiplicative segment
of intuitionistic linear logic not only to express consumable
resources but also to automate composition from logical proofs.

CCS Concepts

• Computer systems organization→Embedded and cyber-
physical systems • Software and its engineering→Software
system models • Software and its engineering→Formal
methods

Keywords

Linear logic; formal verification; connected objects composition.

1. INTRODUCTION
By 2022, there will be as many as 29 billion Internet-enabled
connected objects [6] that will fall under the Internet-of-Things
(IoT) label. The assertion behind the Internet of Things is to enable
the interconnection of virtually any objects from the physical world
without any human intervention. Connected things, also referred as
smart objects, cover a wide spectrum of sensors, actuators, robots,
unmanned vehicles or even wearable devices. Nowadays, a wide
variety of smart objects is available for a very low price, thus
unlocking unlimited opportunities to build advanced smart services
available to virtually any external tier. The Internet-of-Things,
thanks to seamless connection of people, processes, data and things,
is bringing considerable business and innovation opportunities.
However, the current technical state of the IoT is still in its infancy
and encounters various challenges and limitations that still prevent
the creation of true wide-scale Internet-of-Things applications. One
of these challenges is brought by the unavailability of conventional

programming paradigms and software engineering processes, that
cannot be used for IoT applications because of the limited resources
embedded in traditional IoT devices, along with the hardware and
software heterogeneity of such devices. In order to build full scale
IoT solutions, these challenges must be studied simultaneously:

Limited resources. The scope of what can be considered as a
connected object is wide, and it ranges from small, battery-
operated, and computationally limited sensors to continuously
powered complex systems featuring numerous sensors and
actuators with greater computing potential. However, most
connected objects feature very limited capabilities that present
challenges in terms of data processing and connectivity. The
limitations typically come in terms of computing power (i.e., the
embedded CPU frequency does not usually exceed a few tens of
megahertz), of live memory (i.e., available RAM memory of a few
tens of kilobytes), and in terms of storage (usually not exceeding a
few hundreds of kilobytes). These limitations lead to strong
hardware and software constraints that must be considered as early
as possible during the design process, in order to guarantee that
higher-level systems requirements can and will be achievable using
resources limited connected objects.

Interoperability. Heterogeneity of smart Internet-of-Things
devices also causes interoperability problems. Indeed, the
proliferation of wireless communication standards (e.g., IEEE
802.15.4, WiFi, BLE, …), communication protocols (e.g., CoAP,
LORA, MQTT, …), or cellular communication technologies (e.g.,
GSM, UMTS, LTE, …) leads to potential interoperability issues.
This is an element of concern when integrating a wide range of
smart objects, and it makes their reusability challenging. Despite
many recent initiatives, the emergence of standards remains highly
fragmented, leading to divergence in vocabularies, methods and
models (OneM2M, IoT reference architecture, etc.). The design of
interoperable smart objects remains balkanized without an
integrative approach to make real progress in reducing software,
hardware and communication heterogeneity.

In order to empower users with capabilities to make their own
decisions regarding their smart object data and services, we propose
a holistic approach that attempts to balance the limitation of
resources with model genericity by proposing:

1) a reusable component-based model as a building block for
specifying smart objects and their cyber-physical properties,
and;

2) a resource aware verification framework for connected
objects.

Our reusable component-based model makes possible to build
smart objects “as a combination” of sensors, controllers, actuators,
physical things, people and consumable resources. The “logic of
combinations” already appears in the fields of software engineering
(service composition) and business services (service bundling). The
composition mechanism aims at quickly creating software
applications from existing software components rather than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

MEDES '17, November 7–10, 2017, Bangkok, Thailand
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4895-9/17/11…$15.00
https://doi.org/10.1145/3167020.3167056

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

building them from the ground up. However, our component-based
model for a smart object differs from current component-based
software (Web services, Enterprise JavaBeans) in several important
ways. First, it integrates the cyber and physical domains into a
cohesive unit. Secondly, it includes information models, services
and a lifecycle characterization to describe a smart object structure
and behavior and how it evolves through its lifecycle to achieve
desired user-set goals. The smart object component-based model is
enabled with simple translation into verifiable linear logic
statements, which can then be then used to verify the overall
composition, resulting in better global system reliability.

The remaining paper is organized as follows: section 2 quickly
introduces a motivating example and provides details about
resource aware framework, while section 3 introduces the linear
logic-based verification part for specifying and composing smart
objects. Section 4 describes related works and highlights existing
contributions in regard to our contribution. Eventually, section 5
concludes our work and identifies further research directions and
challenges.

2. A COMPONENT-BASED MODEL FOR
SMART OBJECTS

2.1 Motivation Case-Study
We consider home-automation for e-Health care as a motivation
case-study. A patient is equipped with wearable devices performing
continuous monitoring of their various physiological signals such
as cardiac and respiratory activity, body-core acceleration and skin
resistivity. The patient’s smart-house embeds a variety of
connected objects and smart devices, enabling the adaptation of the
ambient environment and maintaining a safe and high quality-of-
life standard. Devices such as thermostats, blinds and windows
controllers, light bulbs, controllers and a wide range of actuators
make possible to continuously modify the smart home
characteristics, and to ensure pleasant living environment.

The smart home in our case-study is equipped with a gateway,
which can control and subscribe various hardware services. This
gateway is enabled with signal processing capabilities and is
continuously powered, thus relaxing the low energy constraint of
traditional embedded IoT devices. Such gateway can consequently
be equipped with multiprotocol connectivity, and can subscribe to
a variety of devices without having to consider protocol-caused
interoperability problems.

Our concern is to offer comprehensive modelization, composition
and verification framework for all the sensors, actuators and
gateways included in the smart-home, in order to achieve a higher-
level objective requiring collaboration of connect objects that
cannot be implemented using sensors or actuators alone. In our
case-study, the composition makes use of physiological sensors and
environmental actuators to compute and health estimation of the
smart-home occupant that is used to either trigger environmental
actions (such as blind opening, door locking, …) or to trigger
external response if a critical situation is detected (such as a health
crisis).

2.2 Requirements for Reusability
Service computing, including the service-oriented architecture
(SOA), web services and service composition mechanisms provide
a noteworthy computational paradigm to implement distributed
systems by means of agnostic, distant executable and loosely-
coupled services [16]. Service computing can handle problems
relevant in the context of the IoT in terms of modularity, reusability
and scalability. Indeed, these three characteristics are of prime
interest in the study of the IoT, as IoT-based systems must be able
to manage changes in networked devices and their environment,
where devices can be added or removed at any moment. As a result,

modularity and reusability become of important features of IoT-
based systems. In fact, these systems rely on connected devices that
can be reused in various applications and in a wide variety of
contexts. For instance, a heart rate monitor smart device can be used
to monitor physical activity or for detection of heart malfunction.
This leads to two IoT-based applications with different
requirements in terms of reliability and resiliency. The heart rate
monitor smart device must be as reusable as possible. Finally, the
scalability must also be considered when building IoT systems.
Since what is traditionally considered as part of the IoT is wide, the
number of connected devices in IoT-based systems varies greatly
between applications, ranging from home-automation applications
to city-wide data collection. As a result, models and design methods
for building IoT systems must be able to easily scale up, and handle
both smaller-size and massive-size systems.

However, design methods and architectural styles introduced by the
service-oriented community such as Web services and Web
services composition approaches remain inadequate to design and
implement smart objects for several reasons.

Firstly, Web services and other component-based software (e.g.,
EJB, JBI, …) are pure programs. Despite their ability to define
consumable resources and their constraints as non-functional
properties, they do not allow for a complete answer to smart objects
requirements, because the cyber and physical parts can be
represented and taken into account during service composition
mechanisms.

Secondly, the primary disadvantage of Web services and other
component-based software is the separation between data and their
processing. In fact, services are often oriented towards data
processing (i.e., functions or tasks) and aim to be reusable in
workflow processes where data are defined and manipulated in
databases. The separation violates the smart objects modularity and
their capability to be self-contained and interoperable.

In order to tackle these limitations, we propose a component-based
model for smart objects based on the artifact type [13] extended
with capabilities enabling the model to consider constraints on
functional and non-functional properties, consumable resources
and feedback loops. Artifact types, formally known as business
artifacts, are entities which combine both data and their
manipulation into cohesive and modular units. It includes an
informational model, consisting of attribute-value pairs, a set of
services that manipulate attributes, and a lifecycle, which describes
the evolution of the system over time through service invocation. A
component-based model for smart objects based on the artifact type
extends the artifact type as proposed by Bhattacharya et al. [4] and
can be formally defined as the following:

We start by assuming the existence of the following pairwise
disjoint countably infinite sets:

- C of component-based smart object names

- A of attributes names

- Tprim of primitive types, including Boolean, Integer, etc.

- Tcom of complex types, where every element of Tcom is a

set of elements of Tprim

- A type is an element in the union T = Tprim ∪ Tcom.

Definition 1: A component-based smart object is a tuple (C, A,

τ, L), where C ∈ C is the smart object name, A ⊆	A is the set of

attributes, τ is the total function that maps A to the set of types

T ∪	C, L is the lifecycle of the artifact class as defined below.

Definition 2: A component-based smart object lifecycle is a
directed graph with distinguished initial node and final nodes, also

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

called a transition network. Nodes of the digraph represent states of
lifecycles and arcs represent state transitions. We define
component-based smart object lifecycle as a tuple L = (S, s0, F, δ),
where S is the set of states, s0 ∈	S is the initial state, F ∈	S is the set
of final states, δ is the state-transition relation δ ⊆ S × S. The
lifecycle can be defined in two different specifications: 1) as an
imperative specification such as directed graph or automaton. 2) as
a declarative specification as a set of rules (if-condition-action) or
as a guard-stage-milestone (GSM) model. In the next paragraph, we
introduce how component-based smart object is described in terms
of GSM model.

Definition 3: A service is a tuple (v, I, O, Pre, Eff) where v is the

service name, I, O ⊆	C are the finite sets of input and output smart

objects, Pre is the set of pre-conditions whereas Eff is the set of the
conditional effects. Pre and Eff are formulas written in first-order
logic as defined below.

In our use case, both sensors and actuators are abstracted trough a
set of what we define as hardware services. Hardware services
expose connected object functionalities to the external world as
independent and reusable services. They rely on hardware-software
interfaces and can be divided into three categories: hardware
services describing functional properties, internal resource
management services and on-the-fly hardware module
configuration services. It is worth to mention that hardware services
are exposed through radio communication to external connected
devices as members of the set:

HS =	< actuation,	sensing,	resources	management >

Definition 4: A service pre-condition (Pre), is a first order
formula composed as conjunction of defined operator (def(C, A))

and its negation (Notdef(C, A)), where C is an component-based
smart object and A is an attribute belonging to C. Formally, the
service pre-condition is the tuple Pre = (Def, Notdef, θ), where

Def ⊆	A is the set of attributes that should be defined, Notdef ⊆	A

is the set of attributes that should not be defined, θ is the total
function that maps the elements of Def and Notdef to their

corresponding an component-based smart objects in C.

Definition 5: A service effect (Eff) is a first order formula
expressed as a conjunction of defined (def(C, A)) and new
(new(C, A)) operators, where C is an artifact class and A is an
attribute belonging to C. Formally, the effect is a tuple Eff =

(Def, New, θ), where Def ⊆	A is the set of attributes that should

become defined when the service terminates its execution,

New ⊆	A is the set of attributes that should become defined and

refers to newly created component-based smart object instances

when the service finishes executing, θ is the total function that maps

elements of Def and New to artifact classes in	C they belong to.

Definition 6: A Rule is a tuple r = (Evt, Cond, Act), where
Evt ∈ E is an event that causes smart objects to react, Cond is the
condition that must hold before applying any action, Act is the
action such as executing services or changing states. A rule can be
written as:

on event if condition do service

The artifact-centric approach demonstrates many advantages and
benefits, including a natural modularity and componentization of
self-contained entities and a framework of varying levels of
abstraction aimed at the development of goal-oriented components,
instead of the traditional function-oriented components in the case
of Web services.

For our use-case, the component-based smart object requires the
composition of sensors, actuators, controllers and physical plants,
into a standalone (and composite) component, and its artifact-based
representation is given in Figure 1. The composition is ensured by
the feedback loop and supported by the artifact-based model to
include information, rules and services. Feedback loop elements are
instantiated in the lifecycle to describe the logic of operation of the
overall composition (see Figure 3).

The data model of the connected object is specified using a
structured document (which can be specified using languages such
as JSON or XML). This data model contains generic attributes such
as a universal identifier or all the data relevant to the composite
system, such as the respiratory rate value or the heart rate value. It
is accompanied with a list of sensors, actuators, controllers and
plants.

When it comes to hardware services, the example only briefly
details the service acquisition service, associated with the stages
describing physical data acquisition. The pre-condition to execute
the service is the ComputePhysicalActivity variable, while the
condition is the triggering of the variables associated to the
milestones of the stage. This service does not take any input, and
updates the relevant variables included in the data information
model to the newly received biomedical data.

Regarding GSM rules, our example only details a single rule, and
it describes the assignment of a global variable, currentStage, to the
name of the executing stage if the ComputePhysicalActivity event
is triggered. Such global variable can then be exposed to external
tiers and be used to follow the composition execution remotely.

Figure 1. Artifact-based representation of a connected component

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

The traditional approach for lifecycle description is to use a
traditional state-based lifecycle and a set of transition rules that
invoke services and results in changing the artifact current state.
However, this approach was criticized for its lack of reusability and
modularity. Moreover, such lifecycles are often difficult to interpret
from a goal oriented standpoint, resulting in an end-user
unfriendliness when it is necessary for the users to create their own
goals. To tackle this lack of goal-oriented vision, we chose the
guard-stage-milestone lifecycle model in our smart object
description, and such model is described in the following
subsection.

2.3 Smart Object Goal Oriented Lifecycle
The GSM Lifecycle model takes a declarative approach to specify
the smart object lifecycles [11], and features better expressivity
than state transition diagrams. As graphically depicted in Figure 2,
the GSM lifecycle is defined in terms of three components:

- The Guards are the entry point of a stage and denotes a
condition over the information model or an external event
expressed as a sentry. The stage body is activated when
all of the guards are achieved.

- The stage body contains one or multiple services, with
external service invocation capabilities. It also may
contain embedded sub-stages. The stage is deactivated
when all of its milestones are achieved.

- The milestones are, in opposition to guards, conditions
over the component-based smart object attributes or an
external triggering event that deactivated the stage body
when all its services are executed and milestones are
achieved.

Figure 2. Guard-stage-milestone graphical representation

Both guards and milestones are expressed under the form of a
sentry, which is an expression taking the form “on event if
condition,” “on event” or “if condition.” They consist of triggering
event types and/or a condition. Both the triggering events and
conditions on attributes and internal or external stages.

A stage can be represented graphically as depicted in Figure
2Error! Reference source not found.. The rounded rectangle
represents a stage, which may contain sub-stages, the diamond
symbol on the left side represents a guard and whereas the circle
symbol on the right side presents a milestone. A stage may have
one or more guards or milestones. A complete lifecycle consists of
the assembly of several stages and sub-stages. The GSM
representation smart object lifecycles allows an improved
modularity and ease of use because of its declarative and graphical
representation (see Figure 3).

2.4 Smart Object Composition
The expressiveness of GSM-based models lies on their modularity,
which leads to choose it as a modeling framework for smart objects
and investigates a composition mechanism to offer end-users mean
to easily, safely and efficiently combine their smart objects and
build IoT-based systems.functional perspective, component-based

1 ISO/IEC 20922:2016 standard – Message Queuing Telemetry
Transport (MQTT) v3.1.1.

smart objects are seen as compositions or assemblies of hardware
services exposed by sensors and actuators. By composition, smart
objects achieve a goal that cannot be fulfilled alone with existing
sensors and actuators. In our motivation case-study we assume that
the patient is equipped with three biomedical sensors: a two-in-one
sensor for sensing cardiac and respiratory activities, streaming the
heart rate and the respiratory waveform in a real-time. Interacting
with the physical world is accomplished with sensors and actuators
through their hardware services. The electrodermal activity sensor
measures skin resistivity values (as a sensing hardware service)
while the body-core acceleration measures continuously heart
acceleration rate values. At the infrastructure level, such streaming
services are integrated through a publish-subscribe messaging bus
(PubSub Bus) such as MQTT1. The bus allows the integration of
various hardware services through messages or event exchanges.
By such, sensors and actuators play the role of publishers to
disseminate their values and the role of subscribers to receive their
configuration parameters in real-time. All these wearable sensors
are battery-powered, and are thus very constrained in terms of
processing power and storage capabilities. They also must use low-
energy wireless protocols in order to operate with optimal battery
life.

As depicted in Figure 1, the smart object, representing an Ambient
Health Care Component, consists of a data model, services, rules,
GSM-based lifecycle and control loop. The information model
includes various information such as a smart object’s identifier
(Universal Unique ID), a list of object-related attribute-value pairs,
and aggregates sensors (i.e., electrodermal activity sensor, cardiac
and respiratory sensor, body accelerator sensor, …), actuators (i.e.,
lights, blinds, refrigerator, …), a list of controlled physical plants
(i.e., patient body), and controllers (i.e., Intel Edison board to
deploy the MQTT PubSub bus), each of which is a standalone smart
object.

Figure 3 shows the GSM-lifecycle, which consists of 6 stages, each
of which has guards and milestones. The outer stage, named
Ambient Health Care Component, aims at detecting patient
activities in order to adapt the ambient environment accordingly.
For example, if the patient is sitting (accelerometer) and their heart
beat and skin resistivity are above high-risk threshold, the Make
Smart Decision stage is activated to infer whether the remote
emergence must be informed. Nevertheless, if the patient is
practicing his/her sport exercises and the heart rate is accelerated,
the blinds are opened during the summer.

As illustrated in Figure 3, the first stage, called “Acquiring physical
data,” represents the subscription of the ambient health care smart
object to the streaming sensing hardware services offered
respectively by the cardiac and respiratory activity sensor, skin
resistivity sensor and body core acceleration sensor.

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

If the ambient health care component is already subscribed to the
sensing hardware services of the physiological sensors, this stage
just waits for the availability of new data in the gateway reception
buffer. If a sensor stream is interrupted, this stage tries to reconnect
to the relevant sensor. This stage is triggered using a command,
introduced as “ComputePhysicalActivityKind,” and it triggers four
guards upon reception of new data, one guard for each sensed
physiological value. The next four stages are grouped and are
dedicated to sensor data correctness verification (i.e. heart rate data,
respiratory rate data, skin resistivity data and acceleration data).
These stages are triggered upon arrival off new data from the
sensors, and milestones associated with the stages are set when data
was proved to be correct. Operating theses stages causes the
consumption of a CPU token, representing the available
computational capabilities. The 6th and final stage represents high-
level data processing, which uses sensor data in order to compute
the environment for the user, and proceed with remote actuation
hardware services calls to the relevant actuators. This service,
because of the potentially heavy calculation it requires, can be
executed on remote server accessed using traditional Internet-
dedicated protocols. This best environment can thus be computed
accounting for each user requirements (less stressful environment
for cardiac risk patients, best recovering environment if the user
performed exceptional physical activity during the day, etc.).

This lifecycle makes thus use of three services implemented in
three different locations of the system: the data acquisition services
are located in the sensors, the data verification service is in the
gateway, and the remote Internet-based optimal environment
computation service on a remote server. However, the resulting
composition is implemented in the gateway, and the verification
must provide guarantees over the presence of the relevant resources
in order to fulfill the target system goal (i.e., the computation of the
optimal living environment for the smart-home user).

In summary, the desired composition must make use of the
physiological data acquired by the different sensors to compute the
best physical environment and the best diet for a target smart-home
user. The GSM representation of such composition is given in
Figure 3. This composite GSM is implemented in the smart-home
gateway, and guards and milestones highlighted in italic denote
external events.

Finally, the artifact model is augmented with a feedback control
loop describing the interaction between the sensors, actuators,
controllers and plants used in our system. In our use case, the
sensors of the feedback control loop correspond to all the wearable
sensors worn by the smart-home user, the actuators correspond to
all the environmental actuators available in the smart-home (e.g.
blinds, light actuators, etc.). The controller represents the

computing capabilities embedded in the gateway, while the plant of
the feedback control loop represents the human-body as the system
to be controlled.

While artifact and GSM-based model for s of lifecycle enable easy
end-user specification of composition, the overall composition
must be verified in order to guarantee that it is implementable and
that safely executable. In order to deal with this challenge, we
provide a formal representation of the GSM-based lifecycle with
linear-logic axioms and formulas.

3. VERIFIABLE COMPOSITION
3.1 Linear Logic-based Smart Object
Composition
Linear logic was introduced by Jean-Yves Girard in 1987 as an
improvement over the classic logic that keeps track of resource
consumption [9]. Indeed, while the classic logic focuses on the
correctness of the demonstration, the linear logic adds a resource
management aspect by interpreting propositions as consumable
resources.

In the context of Web service composition, several segments of the
linear logic have been studied: Rao et al. have used the intuitionistic
multiplicative-additive fragment of the linear logic [17], while
Papapanagiotou et al. studied the one-sided classical logic because
of its formal equivalency to pi-calculus [14, 15]. However, the
contributions behind both approaches are the same: representing
Web services as linear-logic axioms, that will be used in the sequent
calculus in order to formally verify the composition, but they lack
physical resources modelization.

The main advantage of the linear logic when compared with the
first-order logic relies on logical connectives than can be
interpreted from a resource management perspective. The typical
example is the statement A	Ä	B ⊢ C. In linear logic, this statement
can be interpreted as “the production of resource C consumes
resource A and resource B simultaneously”. In the IoT context, with
strong limitations on hardware resources such as battery or
computing capabilities as well as limitations from a software
perspective, with a limited amount of software component inputs
and outputs, the ability of representing resources consumption is
extremely useful, which makes the linear logic a tool of prime
interest to model and verify IoT-based systems.

Figure 3. Ambient health care component GSM-based lifecycle

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

In order to prove correctness of the composite connected object

lifecycle, we use the multiplicative conjunction (A Ä B), thus
reducing ourselves to the intuitive multiplicative segment of the
intuitionistic linear logic (MILL). The rules of sequent calculus
related to the MILL is given in Figure 4. Roughly speaking, if a
proof tree exists for a given request (also called theorem) such as
the lifecycle expressed in the linear logic, the composition
expressed in terms of the lifecycle, will be considered verified. The
construction of such proof trees consists of applying the set of rules
to a linear logic statements until a known atomic statement is found.
The composition can then be extracted from the proof, which
carries a description of how the different sub-stages are executed.

Figure 4. MILL inference rules

The linear logic is thus used to specify stages, since their opening
guards and closing milestones depend on sentries. We propose to
model the GSM-based lifecycle stages as the following formula:

StageName: Guard ⊢ Milestone

If several guards are available, they will be expressed using the
multiplicative conjunction operator, and several milestones will be
expressed in the same way. If hardware resources are consumed
during the stage, they are also expressed using the multiplicative
conjunction operator. Stages expressed in the linear logic will be
thus considered as hypothesis. The outer stage, resulting of the
composition of several sub-stages can also be expressed using
similar formula.

For example, the hypothesis of our case study can be expressed as:

acquiring: CPAK ⊢ RRR Ä HRR Ä AR Ä SRR

checkingSR: CPU	Ä	SRR ⊢ SROK

chekingRR: CPU	Ä	RRR ⊢ RROK	

chekingAcc: CPU	Ä	AR ⊢ AccOK	

chekingHR: CPU	Ä	HRR ⊢ HROK	

computing: RROK Ä AccOK Ä SROK Ä HROK ⊢ BE

And the composite or the outer stage to verify its correctness is
expressed as the following:

CPU	,
	Ä	CPAK ⊢ BE

2 Available at: https://coq.inria.fr

For conciseness purposes, all guards and milestones are
abbreviated. However, the correspondence between abbreviations
and the original terms can easily be determined through the stage
name. For instance, if we consider the “Acquiring physical data”
stage, we can see that the variable CPAK in the relevant linear logic
statement corresponds to the ComputePhysicalActivityKind guard,
while the RRR and all the other linear logic variables on the right-
hand side corresponds to the RespRateReceived milestone.

The CPU variable represents a CPU load token, representing CPU
usage by the data analysis tasks (for instance, the task will require
10% of the CPU computing capabilities). For example, the
statement CPU	Ä	SRR ⊢ SROK means that in order to confirm the
correctness of the skin resistivity value, the stage needs the skin
resistivity value and 10% of the computing capabilities of the
gateway. Indeed, in linear logic, the sequent representation denotes
resources consumption, and the multiplicative conjunction of
resources on the left-hand side of a sequent mean both resources
will be consumed simultaneously in order to provide the right-hand
side of the sequent. Please note that CPU4 denotes the
multiplicative conjunction of 4 CPU variable occurrences.

The formal verification of the global composition is thus reduced
to the proof of the outer stage statement. The proof of such
statement can be realized using the interactive theorem prover Coq2
augmented with a shallow embedding of the intuitionistic linear
logic3. However, the embedding of the linear logic in such tools is
out of scope of this paper. Interactive theorem proving provides
means to illustrate all the proof steps, and provides indications
about the correctness of each of the proof steps.

The proof tree corresponding the GSM-based lifecycle (i.e., its
outer stage) is illustrated in Figure 5. This proof tree was built using
a backward chaining approach, where the final statement is taken
as a starting point. The rules used for each step of the sequent based
calculus are indicated with reference to the set of rules in Figure 4.

One can note that each of the rule can be mapped to a GSM-related
action. For instance, the cut rule denotes the serial composition of
two (or more) stages: the last cut rule to be applied denotes the
serial composition of the computing stage and all the data analysis
stages. The ÄR and ÄL rules correspond to the parallel composition
of several stages, and it is illustrated in our use case with the parallel
composition of all the data analysis stages. Serial and parallel
composition correspondences can be used to perform a posteriori
analysis of the proof tree, and to deduce higher-level non-functional
properties (a typical example would be the computation of the
overall response time considering the influence of parallel or serial
composition of atomic services on the resulting composition
response time).

The proof tree holds for the verification of the targeted
composition, because it demonstrates that the final statement can
be obtained using only hypothesis defined. This gives a formal

3 Available at: https://perso.ens-lyon.fr/olivier.laurent/l2coq.tgz

Figure 5. Proof tree of the ambient health care component

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

guarantee that the composite systems will behave according to the
provided graphical specification.

4. RELATED WORKS
Considering the relatively wide scope of our work, we identify
several communities have handled similar research problems and
challenges. The first identified relevant research community is
model-based architectures and development. When it comes to
model-driven development, several attempts to unify modelization
languages and frameworks can be found. One of these attempts is
the GEMOC initiative, which pushes towards better integration and
coordination of heterogeneous modeling languages [7]. The
initiative provides an open-source tool, GEMOC Studio, which can
be embedded with a variety of software and hardware modeling
languages. In the context of the IoT, it is worth noting that this tool
was used to model the widely known Arduino hardware and
software platform [5]. However, our main reserve about this
framework is that it requires extensive work to model different
software or hardware architectures, which is a strong argument
against the use of this framework under an IoT perspective,
considering the strong heterogeneity of IoT devices, where
different wireless protocols, CPU architectures or more global
hardware architectures must be integrated into wider-scale systems.
We also believe that diversity in modeling language is not the right
perspective in the Internet-of-Things domain, where research
should be focused on the elaboration of a generic modeling
language that must be able to accurately represent the specificity of
each devices, rather than the use of divers but coordinating
modeling languages. This improves considerably the modeling
experience, as the modeling process occurs using a unique
modeling language. We thus aimed at the specification of a much
simpler but more generic framework, allowing for both
lightweitghness and cross-architecture deployment, with resources
concerns directly embedded into the framework. Another challenge
when considering the modelization of connected objects is the
representation of the lifecycle of the objects. The model-driven
software engineering community proposed the PauWare engine [1],
a tool offering the specification and simulation of state chart XML
and UML states machines. Both these modeling languages are
representing software system reactions to various external and
internal signals. However, this framework is strongly software
oriented, and does not allow for precise resources modelization.
Moreover, lifecycles are not declarative, and modification of a
previously defined lifecycle is often a tedious process. Because the
goal of the Internet of Things is to empower the end users and
allowing them to control their environment that might be changing,
having a flexible lifecycle model is a main priority. This is why we
propose to use a more declarative approach for lifecycle
specification, allowing for easier modification.

Because the work presented in this paper is related to the
composition of connected objects seen as services, the
contributions of the service-oriented computing community related
to services composition must be studied. As mentioned earlier in
our contribution, service-oriented architecture enables the
construction of software systems using modular, reusable,
interoperable and self-contained software components [16]. The
advantages this architectural vision brought in terms of modularity
and interoperability caused service-oriented architectures to be the
principal motor of the development of the Internet and Internet-
based services. Services composition describes the combination of
several services in order to achieved a targeted functional goal, with
respect to desired non-functional properties (such as response time,
global availability, etc.). Formal verification of services

4 Available at: http://www.eprover.org

composition is a widely studied research topic, and several
mathematical formalisms were used in this context [2]: traditional
automata-based representations [3], Petri nets modelization of
services [10] or process algebras such as π-calculus [12]. However,
these composition formalization struggle when it comes to the
accurate resources representation of the connected objects. This can
be solved using linear logic, and its embedded ability to represent
resources consumption [9]. Contributions used linear logic in the
context of web service composition: Rao used intuitionistic linear
logic to model and verify resource-aware service composition in
[12, 17], while Papapanagiotou used classical linear logic and its
proven equivalence to the π-calculus process algebra to model and
verify the resource aware service composition [14, 15]. Zhao used
intuitionistic linear logic in the more restrictive context of RESTful
web service composition [18, 19], and other contributions related
to linear-logic based web-service composition were proposed [8].
However, the main problem when considering these contributions
in the context of the Internet-of-Things is that they are not
considered in addition to a formal and well-studied service model
(at the exception of [18, 19], which rely upon the widely used
RESTful service model).

Our contribution differentiation to the state of the art is twofold: the
first differentiation point resides in the definition of a generic model
enabling the representation of both the digital and physical nature
of connected objects and composite connected objects, augmented
with representations of their evolution over time (i.e., use lifecycle)
and their closed feedback loop behavior. The second differentiating
point comes with the direct mapping of the lifecycle model of the
connected object to intuitionistic linear logic, enabling the
verification of the overall composite connected object.

5. CONCLUSION
In this paper, we presented a smart object component-based model
to build smart connected components using composition techniques
in a similar way to Web service composition. The smart object
model is based on an extension of artifact types and describes
simultaneously its structure and its behavior. Behavioral Modeling
was introduced using guard-stage-milestone lifecycle models.
Additionally, we present a formal specification based on linear
logic, not only to express consumable resources such as battery or
computing capabilities, but also to automate connected objects
composition from logical proof trees.

A promising research direction for our verification system would
be the integration of automated proof search to produce the
composition proof trees. However, while numerous tools of
automated proof search for the first-order logic (such as E4 or
ACL25) there is a lack of formal automated proof tools for the linear
logic. The development of proof automation tools is thus a
promising research direction in order to enable easier verification
of wide-scale composite systems.

Acknowledgements: this work is generously supported by the
COOPERA funding program of the Auvergne Rhône-Alpes.

6. REFERENCES
[1] Ballagny, C. et al. 2007. Endowing PauWare Components

with Autonomic Capabilities. Proceedings of the 1st
Workshop on Model-driven Software Adaptation (Berlin,
Germany, Jul. 2007), 55–60.

[2] ter Beek, M. et al. 2007. Web Service Composition
Approaches: From Industrial Standards to Formal Methods.
Proceedings of the 2nd International Conference on Internet
and Web Applications and Services (Morne, Mauritius, May
2007), 15–21.

5 Available at: http://www.cs.utexas.edu/users/moore/acl2/

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat and Youakim Badr. 2017. Verifiable and Resource-

Aware Component Model for IoT Devices. In Proceedings of the 9th International Conference on Management of
Digital EcoSystems (MEDES '17). ACM, New York, NY, USA, 235-242, http://dx.doi.org/10.1145/3167020.3167056

[3] Berardi, D. et al. 2005. Automatic Composition of Transition-
Based Semantic Web Services with Messaging. Proceedings
of the 31st International Conference on Very Large Data
Bases (Trento, Italy, Sep. 2005), 613–624.

[4] Bhattacharya, K. et al. 2007. Towards Formal Analysis of
Artifact-Centric Business Process Models. Business Process
Management. G. Alonso et al., eds. Springer Berlin
Heidelberg. 288–304.

[5] Bousse, E. et al. 2016. Execution Framework of the GEMOC
Studio (Tool Demo). Proceedings of the 9th International
Conference on Software Language Engineering (Amsterdam,
Netherlands, Oct. 2016), 84–89.

[6] Cerwall, P. 2017. Ericsson Mobility Report.
[7] Combemale, B. et al. 2013. Report on the First Workshop on

the Globalization of Modeling Languages. Proceedings of the
1st International Workshop on the Globalization of Modeling
Languages (Miami, Florida, USA, Sep. 2013), 3–13.

[8] Deng, J. et al. 2014. Complement Service Composition
through Domain Template and Requirement Context.
Proceedings of the 11th International Conference on e-
Business Engineering (Guangzhou, China, Nov. 2014), 320–
325.

[9] Girard, J.-Y. 1987. Linear Logic. Theoretical Computer
Science. 50, 1 (1987), 1–101.

[10] Hamadi, R. and Benatallah, B. 2003. A Petri Net-Based
Model for Web Service Composition. Proceedings of the 14th
Australasian Database Conference (Adelaide, Australia, Feb.
2003), 191–200.

[11] Hull, R. et al. 2011. Introducing the Guard-Stage-Milestone
Approach for Specifying Business Entity Lifecycles. Web
Services and Formal Methods. M. Bravetti and T. Bultan, eds.
Springer Berlin Heidelberg. 1–24.

[12] Jinghai Rao et al. 2004. Logic-Based Web Services
Composition: from Service Description to Process Model.
Proceedings of the 2nd International Conference on Web
Services (San Diego, California, USA, Jul. 2004), 446–453.

[13] Nigam, A. and Caswell, N.S. 2003. Business Artifacts: An
Approach to Operational Specification. IBM Systems Journal.
42, 3 (2003), 428–445.

[14] Papapanagiotou, P. et al. 2012. Diagrammatically-Driven
Formal Verification of Web-Services Composition.
Diagrammatic Representation and Inference. P. Cox et al.,
eds. Springer Berlin Heidelberg. 241–255.

[15] Papapanagiotou, P. and Fleuriot, J. 2011. Formal Verification
of Web Services Composition Using Linear Logic and the Pi-
Calculus. Proceedings of the 9th European Conference on
Web Services (Lugano, Switzerland, Sep. 2011), 31–38.

[16] Papazoglou, M.P. 2003. Service-Oriented Computing:
Concepts, Characteristics and Directions. Proceedings of the
4th International Conference on Web Information Systems
Engineering (Rome, Italy, Dec. 2003), 3–12.

[17] Rao, J. et al. 2003. Application of Linear Logic to Web
Service Composition. Proceedings of the 1st International
Conference on Web Services (Las Vegas, Nevada, USA, Jun.
2003), 3–9.

[18] Zhao, X. et al. 2011. A Two-Stage RESTful Web Service
Composition Method Based on Linear Logic. Proceedings of
the 9th European Conference on Web Services (Lugano,
Switzerland, Sep. 2011), 39–46.

[19] Zhao, X. et al. 2011. RESTful Web Service Composition:
Extracting a Process Model from Linear Logic Theorem
Proving. Proceedings of the 7th International Conference on
Next Generation Web Services Practices (Salamanca, Spain,
Oct. 2011), 398–403.

