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a b s t r a c t

Continuous powder processes, such as continuous powder mixing, are more than ever envisioned as a viable
alternative to batch equipment, in various industries such as pharmaceuticals, specialty chemicals (zeolites,
SiC), bio-renewables or food. In the present work we have implemented an on-line image analysis set-up that
is able to capture all the images of the particles at the outlet of a continuous pilot-scalemixer. This allows the de-
termination of the homogeneity of mixtures of two different compositions, as well as the analysis of their evolu-
tion during steady-state and transitory regimes. The importance of a proper definition of the scale of scrutiny of
the mixture is emphasized by providing homogeneity results obtained at four different scales. Evidence of segre-
gation by percolation giving rise to the enrichment of themixer's bedwith fine particles is given and commented.
The impact of the stirrer's rotational speed on the quality of the mixtures, as provided by the coefficient of vari-
ation CV, is reported. Up to 20Hz, CV's are extremely high, while above 30 Hz, the influence of the impeller speed
ismuchweaker. Finally, the influence of impeller speed's step perturbations ismeasured and commented. Due to
the size – segregation phenomenon inside themixer, negative steps are deeply detrimental to themixing process.
On the contrary, positive steps can be absorbed by the equipment without degradation of the quality of the
mixtures.
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1. Introduction

Bakery mixes, icing sugar, curry powder, aspirin pills, cement bags,
are all common examples of powder mixtures we all deal with in our
everyday life. Acrylic cements for surgery use, uranium-plutonium
oxide mixtures for nuclear fuel, graphite – thermoplastic resin mix for
bipolar plates in fuel cell technology, cobalt-tungsten-diamond mix-
tures for the processing of highly resistant tools, are certainly lesser-
known examples of powder mixtures, while they eventually lead to
higher added value products. For all these applications, and many
more, a specific mixing technology has to be defined and optimized.
And a specific route has to be chosen: batch or continuous?

Continuous processes are usually disregarded when considering
small capacity manufacturing, extremely diversified production, or
reactive systems of slow kinetics. Conversely, they are obvious for
high-profile, low-cost and high-tonnage products. In between, lays the
wide majority of goods for which the above dilemma needs to be

resolved. Chemical engineers, who have gone through an education
scheme inherited from high-volume petrochemicals supplies, are
naturally oriented towards the use of continuous processes.While the sit-
uation tends to change as explained by Roche et al. [1], they are still not
sufficiently present in certain industrial sectors to gain enough leverage,
or to let chemical engineering paradigms make their own way. This is
particularly the case in the pharmaceutical industry, which is the domain
of reference for any person dealing with powder mixing issues.

One of the main reason why such a change is now better envisioned
than in the past lays in the great technological advances made over the
past decade on sensors specifically able tomonitor powder processes, as
well as on the purely analytical part of each technique. NIR spectroscopy
[2,3,4], FT-Raman [5,6], NIR chemical imaging [7], image-processing
techniques [8,9] are indeed radically changing the perception an engi-
neer can have on a mixing process: from partial and biased information
to nearly absolute knowledge. That said, the amount of data produced
by these techniques is usually extremely important, if not complete.
The need is strong for advanced methodologies in data treatment
that must be specific to a desired product property. As an example, for
continuous powder mixing, the coefficient of variation of the distribu-
tion of sample compositions must be derived in real-time from the
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measurement, aswell as thedefinition of its timevariability at the outlet
of the process. Transforming the available data into meaningful criteria
is therefore a true challenge from a chemical engineering's perspective.
It is also the first step that may open the doors to robust process control,
which is one of the main concepts associated with continuous process-
ing. But for this, a deep study of what is happening, and how it can be
modelled, during the transitory operation of a mixer is necessary.
Emptying or feeding the mixer as well as changing of dosage mode to
feed the hoppers are current transitory phases that are very likely to
occur during processing. Their impact on the homogeneity of mixtures
can be strong, andmay compromise the use of a continuousmixer [10].

Main published and recent scientific articles have been concerned
with the effect of the operating conditions on the homogeneity of the
mixtures at the outlet of continuous mixers, always at steady-state. In
their study on screw mixers for pyrolysis applications, Kingston and
Heindel [11,12] investigated the effect of the rotation mode (counter-
rotating or co-rotating, down or up-pumping), as well as screw pitch
and screw speed. They found optimumconfigurations so as tominimize
the variance of the mixture. After their early work on the Gericke250
mixer reported by the works of Portillo et al. [13] or Vanarase et al.
[14], Professor Muzzio's team investigated the effect of blade configura-
tion, mass flow rate and impeller's speed on the Relative Standard Devi-
ation (RSD) at the outlet of a GCG-70 Glatt continuous mixer, operating
with a pharmaceutical particulate system [15]. They claimed an im-
provement of the mixtures' homogeneities with respect to other tech-
nologies with the same materials. Still in the pyrolysis field, Zhan et al.
[16] recently studied the effect of mixer elements, falling height and
mass flow in a CCSM static mixer. They encountered that there exists
an optimumof thenumber of elements (e.g. 4 elements out of 6) driving
to the best RSD. It is worth noting that we have found similar trends in
an unpublished study some years ago. These authors also developed a
Markov chain approach to predict the RSD. To what concerns the effect
of flow properties, such as bulk density or cohesion, on mean residence
time or axial dispersion, one can also refer to another paper by Vanarase
et al. [17] as afirst overviewof a problem that is still at its prime. It is also
clear that this subject may gain subsequent knowledge frommodelling
and simulation, as pointed out in the DEM study presented by Sarkar
and Wassgren [18], or by Mizonov et al. [19] through Markov chain
modelling.

Another side of continuous processing lays in the integration of the
various concerned unit operations (mixing, granulation, roller compac-
tion), as well as certain processing steps such as buffers into a global
framework. While this subject has not yet entered its infancy, it is
worth noting the effort provided by recent pharma-driven studies
[20–21], especially in terms of process control and product quality. In
particular, the importance of detecting and eliminating out of specifica-
tion materials in the early stages of the process is outlined.

However, none of the above-mentioned studies have been dealing
with the transitory dynamics of such technological systems, despite of
their industrial significance. In our previous recentworks [22,23], we in-
vestigated the transitory dynamics of bulk solids flow in a Gericke
GCM500 continuous mixer, using single powders (no mixture). The
transitory phases that correspond to mixer start, emptying, as well as
step changes in inflow rates or rotational speeds, have been studied in
terms of outflow rate and hold-up weight variations. Empirical correla-
tions have been derived to represent these variations in the general
frame of a non-homogeneous Markov chain. For more information
about this type of modelling approach, one can read the review paper
by Berthiaux and Mizonov [24].

In the present study, we will consider mixtures of particles of differ-
ent nature processed in the same equipment, and for which an on-line
image analysis technique has been developed, as well as a specific
data treatment methodology to derive a mixture's homogeneity criteri-
on. Effect, on this criterion, of the scale of scrutiny of themixture, aswell
as the rotational speed of the stirrer and strong perturbations will be
reported and discussed.

2. Experimental set-ups and methods

2.1. Powders used

Our goal is to study the mixer, to gather data on the mixing process,
not to process a specific powder or mixture through it. Therefore, we
have chosen commercial, cheap, products for which the composition
of the mixtures formed can be analyzed in a routine way. Couscous
particles are of nearly spherical shape and are available in specific size
ranges as they process from humidification of wheat, agglomeration,
vapor heating, drying and calibration. Here, we will use coarse and
fine fractions of couscous, the main physical properties of which can
be found in Table 1.

Coarse couscous has been pre-sieved, so that there is no overlap of
the distributions, allowing an easy separation of the components by
sieving, and further recycling of the products for various sets of experi-
ments. Both distributions demonstrate a small and identical value of the
span, meaning that we will practically deal with a binary monodisperse
system that may be able to segregate [25]. The density values are nearly
identical, meaning in turn that density segregation is unlikely to hap-
pen. Finally, the comparison of the compressibility indexes (Carr and
Hausner ratios) built from apparent densities, shows that both systems
are free-flowing, so once again, segregation may be feared.

Fine couscous particles have been colored in black by an iodine ad-
sorption procedure that has been described in previous works [26].
This will allow the further calculation of compositions through image
capture and analysis.

2.2. Mixer studied and image capture system

The Gericke GCM500 continuous mixing system (Fig. 1a) has been
under investigation by our research team since a decade. RTD experi-
ments have been reported and published [27], as well as homogeneous
Markov chain modelling of mixers [28], hold-up weight prediction and
influence of stirrer speed [29] or type [30], always at steady-state.

The system is equipped with two loss-in-weight feeders in order to
feed the mixing section with precision and regularity. The mixer itself
is a hemi-cylindrical tank of 50 cm long, 16.5 cmheight and 20 cmdiam-
eter. The motion of the particles is due to the action of a frame (Fig. 1b)
which is constituted of rectangular blades ensuring a radial dispersion
of the particles inside the vessel. A sort of “screw”, which is placed inside
the frame, serves to the transportation of the powder in the axial direc-
tion. The rotational speed N of the stirrer is expressed in terms of fre-
quency and will be set to 10, 20, 30, 40 or 50 Hz in this study. Because
of the stirrer's design that favors axial particle flow, higher frequencies
are not viable in process terms as they lead to the total emptying of
the mixer when equipped with this type of stirrer.

A variable speed conveyor belt of 30 cmwidth is placed at the outlet
of the mixer, so that the whole volume of the mixture produced is di-
rectly transposed into a 2D mixture. A linear CCD camera (one pixel
width – 5000 pixels length) is placed vertically with respect to the

Table 1
Main physical characteristics of the powders used: particle sizes are measured by sieving,
apparent densities by Erweka “tap-tap” volumenometer, true density by He pycnometer.

Considered property Coarse couscous Fine couscous

d10 (μm) 1375 680
d50 (μm) 1700 860
d90 (μm) 1970 980
(d90 − d10)/2 ∗ d50 0.175 0.170
True density ρ (kg·m−3) 1452 1442
Aerated apparent density
ρa k(g·m−3)

762 759

Tapped apparent density
ρt (kg·m−3)

779 787

Carr index: 100 ∗ (ρt − ρa)/ ρt 2.22 3.60
Hausner ratio: ρt / ρa 1.02 1.04



belt and films themixture as it passes under it (Fig. 2). A powerful light-
ing system composed by two lamps diffusing a white light is placed at
each side of the camera. This standardizes the illumination of the surface
of interest, which becomes insensible to outdoor light. More insight on
this set-up can be found in a previous study (Demeyre [31]).

Each pixel represents a 60 ∗ 60 μm2 surface on the belt, which is
much smaller than the size of any of the particles involved. By grouping
200 consecutive one-pixel-width lines, it gives rise to a 500 ∗ 200 pixel2

image (or 30 ∗ 1.2 cm2 surface). The camera's speed being of 14 images
per second, themixture's film speed is finally of 16.8 cm·s−1. This same
value will therefore be imposed to the belt's linear speed. At that speed,
a single-particle layer is formed on the belt, allowing the counting of
every single particle of the mixture.

This system is connected to a computer equippedwith an Imaq1408
card, which allows the time-continuous acquisition of the images. Each
image is transferred into a buffer memory in the computer before being
erased by the following image. In the meantime, the image is extracted
and treated by the Labview® software and its IMAQ Vision library.
This confers to each pixel a value comprised between 0 (black) and
255 (white). An additional threshold procedure has also been employed
to eliminate the color of the belt (green) from the images. This proce-
dure has been calibrated thanks to partially colored white sheets placed
on the belt, as well as particulate systems of known compositions. Other
validations protocols –not reported here- have been undertaken. They
confirm that the surface measurement is equivalent to the mass
measurement, and that the compositions measured on-line are similar
to those obtained by off-line sieving.

2.3. Sample definition and homogeneity calculation

When evaluating the homogeneity of a mixture, a scale of scrutiny
must be defined in relation with the end-user properties that are
targeted. In the present case, the minimal scale of scrutiny is that of
the elementary images that are stored and analyzed, and will depend
on the outflow rate of the mixer. When the total flow rate is fixed at
40 kg·h−1 (11.11 g·s−1), and as the camera captures 14 images per sec-
ond of the single-layer bed, the mean powder mass contained in an el-
ementary sample will be 794 mg. Elementary samples can be grouped
together in order to build samples of bigger sizes as it can be seen in
Table 2. If the scale of scrutiny is smaller than size 1, the homogeneity
of the mixture will be over-estimated, which is a risky situation. Con-
versely, if a too small sample size is considered in a mixture's homoge-
neity evaluation, it will give rise to an over-quality situation.

Fig. 1. (a) - GCM500 mixing system including loss-in-weight feeders, inlet chute, mixer
body ; (b) – Stirrer type used in the present study showing the frame supporting the
blades and the internal transport screw.

Lighting system
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Acquisition card
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Fig. 2. System used for transfer of the mixture into a conveyor belt and image capture.



Once a key ingredient of a mixture has been defined, mixture homo-
geneity is usually quantified by the segregation intensity σ2, which is
the variance of the distribution of the compositions of the N samples
of a whole mixture, μ being the mean composition and xi the composi-
tion in sample i:

σ2 ¼ 1
N
∑
N

i¼1
xi−μð Þ2 ð1Þ

In the case of complete segregation, as at the mixer's inlet, the vari-
ance reduces to:

σ2
0 ¼ 1−μð Þμ ð2Þ

As it allows to link the standard deviation to the value of the mean
composition, the coefficient of variation CV is more than often used in
the industry:

CV ¼ σ
μ

ð3Þ

For more information on the characterization of powder mixtures,
one may refer to Harnby [32].

In continuous mixing, the homogeneity of a mixture is defined at the
outlet of a mixing process, and is due to the ability of themixer to attenu-
ate the fluctuations in composition caused by the feeding system [33]. It
must be conceptualized by considering a series, a “window”, of n consec-
utive elementary samples taken at the outlet of themixer and further cal-
culation of the variance σ2

n that is attached to these n samples. The time
evolution of σ2

n provides an idea of the fluctuations in the homogeneity
of the mixture that is due to those of the feeding system. For example, a
change of dosage mode due to the filling of a hopper, will be detected by
a rise inσ2

n thatmay drive to an out-of-specification situation. Twometh-
odological strategies can be defined when analyzing the variations of σ2

n:

- Sample sliding method (method 1). In this case, the window of ob-
servation slides at every sample, which means that we have to
wait for n elementary samples to build the next value of the variance
(see Fig. 3).

Table 2
Relation between sample size, sample mass and number of images, for a reference of
40 kg·h−1 outflow rate.

Sample size Number of images Sample mass (g)

1 1 0.794
2 7 5.500
3 14 11.110
4 21 17.776

belt direction

Method 2
belt direction

Method 1

sample i-3
sample i-2

sample i-1
sample i

sample i+1
sample i-4

Fig. 3. Sampling methodologies considered in the study (left: method 1, right: method 2).
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a

b

c

Fig. 5. Coarse (a) and fine (b) particle contents as measured at the outlet of the mixer during starting and at steady-state (mixture A, sample size 2) in the conditions indicated;
(c) definition of 5 cells in the mixer and analysis of their contents at steady-state.



Fig. 6. Effect of the scale of scrutiny of the mixture (sample size) in the evaluation of fine particle contents (mixture A) in the conditions indicated in the graphs.



- Elementary sample sliding method (method 2). The window of ob-
servation slides by the “width” of a single elementary sample at
each time. Although this procedure is supposed to give rise to a
smoother curve, the sampling error may rise due to the increase of
the number of boundaries involved [34].

Fig. 4 shows an example of comparison between the two methods
for the case of size 2 samples (7 elementary samples). The signal

given bymethod 2 is almost continuouswith time andwill be employed
in the present study. In addition, it has been proven to be more able to
detect small defects in the mixture [35].

3. Results and discussion

Twomixture compositions have been under investigation, namely a
50–50% byweight (A) and a 12.5–87.5% byweight (B)mixture of coarse

Fig. 7. Time-evolution of fine fraction contentsmeasured at themixer's outlet (left) andmixture CV's (right) for different sample sizes (a, b, c, d). Results obtained for mixture A processed
at 40 kg·h−1 and N = 40 Hz.



and fine couscous respectively. While fine particles are less represented
in weight in mixture B, they are still in majority in terms of number of
particles. In the following,wewill first examine the existence of a segre-
gation phenomenon that takes place inside the mixer, we will further
discuss the importance of the scale of scrutiny in the appreciation of
thesemixtures, aswell as the effect of the rotational speed of the impel-
ler on their quality. We will finally focus on the significance of step per-
turbations in rotational speed and examine if a change in impeller's
speed can be done without stopping the mixing process.

3.1. Evidence of particle size segregation inside the mixer

Fig. 5a and b shows the time-evolution of both fine and coarse mass
fractions ofmixture A, seen at a scale of scrutiny corresponding to size 2,
for two different rotational speeds of the stirrer. At steady-state, the
composition measured is obviously that of the inlet composition (50%
in both components). But surprisingly during the transitory starting re-
gime, the composition of the mixture is far from the nominal one. The
first particles that are flowing out of the mixer are essentially coarse
particles, as the fine fraction equals 0. The content in fine particles in
the outlet mixture rises then, so as to reach the steady composition of
50%. The content in coarse particles does exactly the reverse process.
The mass balance needing to be held true, this means that fine particles
have been accumulating inside the mixer during the starting period.
Being size the only difference between the two types of particles, it
can be said that particle size segregation has occurred, as was “feared”
when characterizing the particulate systems. It can also be seen that
an increase in stirrer's rotational speed drives to a smaller transitory pe-
riod, meaning that the portion of the out-of-specification period of time
can be reduced by doing so.

This result is confirmed in Fig. 5c, for which the content of themixer
has been analyzed after stopping the process once it has reach steady-
state. To have a better insight, five compartments -or cells- of identical
volumes have been defined and sieved to gather the fine particles. The
fine particles contents of cells 1 to 4, thosewho are closer to themixer's
inlet, are in the range 60–70%, with a slight dependence on impeller's
speed. Cell 5, which is the compartment just before the outlet, shows
a fine content close to the nominal 50%. In other words, the last part of
the mixer is “delivering” the right mixture to the outlet. The same be-
havior has been found for mixture B, while it is not reported here. For

thismixture, it isworth noting that cells 1 to 4 showed fine particle con-
tents in the range 25–30%, cell 5 getting closer to the nominal value
(12.5%).

Because of the collision-driven flow regime inside themixer, we can
assume that segregation is due to the famous “Brazil nuts effect” that
has been widely commented in the literature over the years [36–38].
During the starting period that corresponds to themixer's filling and be-
cause of the size difference that makes small particles sifting between
coarse particles, coarse particles are somewhat “floating” at the top of
the bed. As a result of this percolation mechanism, coarse particles are
the only particles that are exiting the mixer first. At this moment, the
bed structure is probably made of fine particles at its bottom, and layers
of the mixture getting richer and richer in coarse particles at its top. But
as the feeders are still delivering a 50–50 composition and being the bed
structure formed, the particles entering themixer afterwardsmay prac-
tically slide at the surface of the bed and exit the mixture at the right
composition. Unfortunately, neither horizontal sampling nor sample
thief sampling were possible in our case, so this will remain at the
stage of a possible explanation of this astonishing system's dynamic
phenomenon.

By the way, this still poses an issue concerning the efficiency of the
mixer or impeller design that is unable to counter this segregation ef-
fect, andmay be at the source of it. In addition, the answer of this system
when subjected to even small flowrate or impeller speed perturbations
may be feared in terms of its ability to reach a steady-state.

3.2. Scale of scrutiny effect

Fig. 6 shows the effect of the sample's size on the fine particle frac-
tion, as measured at the outlet of the mixer, for mixture A. For the
smallest size considered in this study (approximately 800 mg), it can
be seen that the fluctuations around the mean value are of high ampli-
tudes in the transitory (starting) regime and in the steady-state regime
as well. Individual values are fluctuating in the range 40–60%, with
some points below 30% and others higher than 65%. If this scale of scru-
tiny needed to be adopted in an industrial context, this mixture would
be out-of-specification, as some individual values are out of the range
[−15%μ; +15%μ]. In addition, it does not seem that an influence of
the impeller speed on the extent of these fluctuations really exists.
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Fig. 8. Dependence on the CV measured on the sample mass (or scale of scrutiny).



Fig. 9. Time-evolution of mixture A CV's for different sample sizes and for different impeller speeds (a–d).



Fig. 10. Time-evolution of mixture B CV's for different sample sizes and for different impeller speeds (a–d).



When increasing sample size, whichmeans observing themixture at
a higher scale, those fluctuations are decreasing in terms of amplitude.
For size 2, fluctuations are in the range 42–58% with some points at
35% and others at 60%. For size 3 (fourteen times size 1), they stay in
the range 45–55% with individual values at 41% and 58%. Finally, for
size 4, fluctuations are reduced to a 47–53% range, with the existence
of individual values comparable to those of size 3. As known, the in-
crease of scale drives to a smoother signal, but also to the impossibility
to detect small scale heterogeneities.

In Fig. 7, the corresponding coefficients of variations have been plot-
ted against time, the impeller speed being set to a value N = 40 Hz,
while the inflow rate was equal to 40 kg·h−1. The strong perturbations
evidenced for size 1 can be appreciated in the CV, once it reached a
steady value close to 8%. Industrial standards for CV values are usually
below 6%, which means that this mixture would definitely never pass
a release-to-the-market protocol. The decrease of the steady CV with
the other sample sizes can be observed in Fig. 8. The behavior is abso-
lutely not linear, whichmeans that increasing the scale to reach a better

mixture evaluation would be an extremely dangerous task. Indeed, the
evaluation of the homogeneity of a mixture cannot be dissociated from
a proper definition of the scale at which themixturemust be evaluated.
It is worth noting that in most industrial mixing cases encountered by
our research team over the years, the scale of scrutiny –that of the
end-user properties- was not known, and had to be defined on the
basis of thoughts rather than facts.

3.3. Impeller rotational speed effect

The rotational speed of the stirrer, as well as its design, is known
to be the main factor affecting the homogeneity of a mixture. In
Fig. 9(a-d), the effect on the evolution of the CV at the outlet of the
mixer can be appreciated, for mixture A. First, it can be denoted that
the transitory period corresponding to the start of the mixer is all the
more reduced that the impeller speed is high. This is important in
an industrial perspective as the period of production corresponding
to mixer's start may have to be disregarded because of out-of-

Fig. 11. Effect of a negative step (50 Hz–10 Hz) of the impeller speed on fine fraction values (a) andmixture's CV (b). Results given for mixture A at a flowrate of 40 kg·h−1 and a scale of
scrutiny corresponding to size 2.



specification issues. It also emphasizes the idea that the transitory peri-
od may preferably be driven at high speed, before setting this speed at
the desired value. In the results presented here, all the curves are pre-
senting the same decreasing shape, afterwards the CV stabilizes at a
steady-state value.

For the smallest scale of scrutiny, two impeller speed regimes can be
defined that drive to two different values of the steady-state CV. Up to
20Hz, theCV is roughly equal to 15,which corresponds to a badmixture
case, while above 30 Hz, the CV lays between 7 and 8. For size 2, the CV
jumps from 8 for speeds up to 20 Hz to 3–4 above 30 Hz. In this case, the
mixture reaches typical industrial standards of acceptance. This may be
explained by the fact that, as the powder bed is getting much smaller
(see [10]), the dispersion of the particles becomes easier than at small
speeds. At the biggest sample size, the small scale heterogeneities are al-
most completely hidden by the magnification of the scale of scrutiny,
and the bad mixture detected above looks like acceptable.

Results concerning mixture B are represented in Fig. 10(a–d). As for
mixture A, high impeller speeds allow to reduce the CV during the tran-
sitory phase. The same conclusion can be stated about the influence of
the impeller speed on the steady-state CV, when examining the results

obtained for small size samples. Steady-state CV values are all –and by
far- superior to the 6% standard, and in some cases between five and
eight times this value. For a given impeller speed and scale of scrutiny,
it can be said thatfluctuations observed inmixture B aremuchmore sig-
nificant than for mixture A. This is not surprising since the minor (in
weight %) component in mixture B is the one for which those fluctua-
tions are calculated.

3.4. Effect of strong perturbations on mixture quality

While a continuous process is normally conceived to be operated at
steady-state, it is in practice subjected to multiple transitory periods
while processing. This occur during the start and stop phases of the
mixer itself, the hopper's filling phases for which feeders provide
flowrates of low regularity, micro-stops that can be due to changes in
parts (compression parts for example), etc. We have yet commented
this some years ago [18], and draw the attention to the fact that it
may be better to stop the mixer while filling hoppers. In addition, in
the objective of process control, control of themixer by adjusting a pro-
cess variable, such as impeller speed, will give rise to transitory periods

Fig. 12. Effect of a negative step (50 Hz–20 Hz) of the impeller speed on fine fraction values (a) and mixture's CV (b). Results given for mixture B at a flowrate of 40 kg·h−1 and a scale of
scrutiny corresponding to size 2.



thatmay in turn have an impact onmixture quality. In the following, we
will focus on the effect of strong stepwise changes in impeller speed on
both the fine fraction contents and the associated CV.

As remarked in the previous paragraph, the transitory period corre-
sponding to the start of the mixer can be reduced by setting the stirrer's
speed at its highest value, afterwards it may be fixed at the value that
has been chosen for processing. However, this may not guarantee that
the change in speed will be without impact on the mixture's quality.
Fig. 11 reports on-line measurement of both fine fractions and CV during
a start period forwhich the impeller speedhas been set at 50Hz, and then
abruptly changed to a value of 10 Hz, for mixture A and at a 40 kg·h−1

flowrate. As it can be appreciated, this negative step in impeller speed
has a deep impact on the quality of the mixture, the peak measured on
the CV rising to a value that is close to 30%. The period of time corre-
sponding to this transitory phases can be estimated to 70 s, which is of
the order of magnitude of the time needed to obtain a stable signal at
10 Hz. This also means that the strategy of setting the speed of the stirrer
to a bigger value during mixer's start is finally not worth the pain.

Another result may also be pointed out from the graph showing the
evolution of fine fractions at the mixer's outlet: the abrupt decrease of
fine fractions, from a 50% content to a 25% content, which also means
that fine particles have been trapped in themixer. This may be attribut-
ed to the expansion of the particle bed during the change from a high
speed (small bed volume) to a small speed (higher bed volume), giving
rise to segregation by percolation as commented previously.

A negative step has also been applied to the case of the lower-dosed
mixture B, as it can be seen in Fig. 12. The impact of the change in
impeller speed can also be measured by the time needed to record
fine fractions of the same order than before the perturbation. Once
again, fine particles are getting retained in the mixer because of size
segregation, thanks to the increase in bed volume. Whatever the speed,
and as expected from Fig. 10, the CV values are much higher than 6%.

Fig. 13 reports results obtained during a positive step (10 Hz to
30Hz) formixture B under the same conditions as above. A clear change
on the extent of the fluctuations is denoted, as the CV passes from a
value which is close to 25% to a value of 12% approximatively. At the

Fig. 13. Effect of a positive step (10 Hz–30 Hz) of the impeller speed on fine fraction values (a) and mixture's CV (b). Results given for mixture B at a flowrate of 40 kg·h−1 and a scale of
scrutiny corresponding to size 2.



opposite of the negative steps, no perturbation at all is denoted during
the transition from 10Hz to 30Hz, the decrease of the CVhappens prac-
tically stepwise. This is not exactly the case for outlet fine fractions that
are experiencing an increase just after the step, to reach a smooth peak
around 18%, and then decrease slowly during some 100 s before
reaching the steady-state nominal value of 12.5%. It can be assumed
that fine particles are getting released to the outlet by the segregated
particle bed, which is richer in fine particles, during the decrease in
bed volume. Finally, since mixture B is considered, it is not surprising
to find CV values that would not be accepted in the context of a real
production.

4. Concluding remarks

In this work, we have implemented an on-line image analysis set-up
that is able to capture all the particles flowing out of a continuousmixer
and therefore provide a real knowledge of the homogeneity of the
mixture, without sampling errors. By doing so, we had access to an
essential diagnosis of powder mixing inside the mixer, which is the
presence of segregation by percolation that drove to an enrichment of
the bed infineparticles. Thismay be kept inmindwhendealingwith in-
dustrial products of characteristics that are close to those of the model
particles considered here. In fact, the attainment of a steady-state is
not guaranteed, and things could get even worse at higher filling ratios
of the mixer, or for smaller volume mixers that may not be able to ab-
sorb perturbations.

The increase of the rotational speed drives to small bed hold-ups
that may lead to an emptying of the vessel. However, it also increases
back-mixing and therefore helps the mixer to approach a perfectly
mixed system as opposed to a plug flow situation which is favored by
the horizontal mixer design. It would therefore be a clear improvement
of the process if the outlet gate valve could be adjusted so as to ensure
the same hold-up weight in the mixer, whatever the impeller speed.

The change in impeller speed during continuous operation through
a negative step, is absolutely detrimental to the process. It should
never be considered in case of potentially segregating systems. As a con-
sequence, starting the mixer at a high speed, and then reducing it to a
nominal value as it is sometimes done, is definitely a bad idea. This
also points out that it may not always be possible to control the mixer
by acting solely on the impeller speed, in particular for low-dosed mix-
tures. In this case, a different impeller typemay be chosen, aswell as an-
other strategy for feeding, such as staged-feeding.

Modelling of powder flow and segregation inside the blender is
the next step towards a better understanding of the dynamics of
such systems. In future papers, we will report the results of a non-
homogeneous mesoscopic Markov chain model that has been derived
and used to simulate transitory and steady-state operating of the
GCM500. This will be an important consideration to account for when
implementing a process control loop, which is the main object of our
future research work.
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