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We present a mathematical model for solvated crystallization of a-lactose monohydrate based on popu-
lation, mass and energy balance equations. We prove global existence and uniqueness of solutions under
realistic conditions for a system operated in batch or semi-batch mode.
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1. Introduction

Crystallization is the unitary operation of formation of solids from a liquid solution. In process engi-
neering crystallization is an important separation technique used in the chemical, pharmaceutical, food,
material and semiconductor industries (Mullin et al., 1971; Tavare, 1995). Crystallizers can be operated
in batch, semi-batch or continuous mode (Jones, 2002).

The crystallization process is initiated if a solution becomes supersaturated. This may be triggered
by cooling, evaporation of solvent, addition of anti-solvent, or by a chemical reaction. The principal
processes in crystallization include nucleation or crystal birth, crystal growth, crystal breakage and
attrition, agglomeration, but models should also include external processes like heating and cooling,
or evaporation. Nucleation is the phase where solute molecules dispersed in the surrounding solvent
start to form clusters, which according to the operating conditions are arranged in a defined periodic
manner. Crystal growth is the subsequent accretion process of nuclei, driven by supersaturation. Crystal
birth and growth cease when the solid-liquid system reaches equilibrium because of the exhaustion of
supersaturation (Mersmann, 2001; Jones, 2002).

In the food processing industry there has been growing interest in the crystallization of lactose in
(Mcleod, 2007; Mimouni, 2007; Mimouni A. et al., 2009). For a number of reasons, a-lactose monohy-
drate is the most commonly used form of lactose in making medications. It is affordable, physically and
chemically stable, easy to mix, it readily dissolves in but does not absorb water. Lactose monohydrate
is available as a powder in different grades, density, and flowability. Here we present a mathematical

(© The author 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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model of solvated crystallization of ¢-lactose monohydrate.

Two forms of lactose, a- and B-lactose, exist simultaneously in aqueous solution, the exchange
being described by the process of mutarotation with exchange rates kj,k». For temperatures 7 < 90 °C
only a-lactose crystallizes, with the specificity that a water molecule is integrated in the crystal. Nucle-
ation and growth of crystals are the basic mechanisms, which may be complemented by modeling attri-
tion, breakage, agglomeration and secondary nucleation effects.

Here we are interested in semi-batch crystallization, where the container is initially only partially
filled. The model shown schematically in Figure 1 combines the dynamics of four interacting popula-
tions, one of them aging, governed by an energy balance. For a schematic view of the crystallizer, see
Figure 2.
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FIG. 1. Crystallization of a-lactose monohydrate. The model includes four interacting populations: @-lactose and f3-lactose in
liquid phase, water, and crystals of a-lactose monohydrate. The two forms of lactose, o-lactose and f-lactose, exist simulta-
neously in aqueous solution, the exchange being governed by mutarotation, with exchange rates k; and k», depending on the
temperature, governed in turn by the energy balance. The latter includes the internal heat produced by the crystallization reaction,
and the heating and cooling system used to trigger and control the process. Altogether this involves the temperature of the slurry
(Mersmann, 2001), or suspension, 7'(¢), the temperature of the crystallizer jacket, I]ackel(t) used in cooling the crystallizer, the
set-point temperature Ty, () used to control the crystallizer jacket, and the temperature of the feed added during the process.

Mathematical models of crystallization are known for a variety of processes, but solvated crystalliza-
tion of o-lactose has not been discussed in the literature within a complete model including population,
molar and energy balances. The model we derive here includes breakage and attrition, but does not
include agglomeration, as the latter is negligible. We validate the model mathematically by proving
global existence of solutions based on physically meaningful hypotheses. Our method of proof expands
on Gurtin (see Gurtin et al. (1974)) and Calsina (see Calsina et al. (1995)), see also Smith (1994);
Cushing (1989).
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FIG. 2. Schematic view of the crystallizer, the container in which operated the crystallization process. Control inputs are the
solute feed, and the set-point temperature.

For more general information on crystallization of lactose we mention Thurlby, Bronlund, Butler
and Dincer (Thurlby et al., 1976; Bronlund, 1997; Butler, 1998; Dincer, 2000). In fact, lactose has long
been regarded as a mere admixture, but recent research has revealed several new possibilities for its
utilization (McSweeney et al., 2009).

The structure of the paper is as follows. In the section 2 we present the mathematical model of
semi-batch solvated crystallization of o-lactose monohydrate. In section 3 we present our main result
on global existence and uniqueness of the solution. We conclude the proof of global existence and
uniqueness by way of the characteristic curves and moments in discussed in section 4. In section 3
we present realistic hypotheses which we need in the proof of our result. In section 5 we discuss prior
estimates. Section 6 discuss the proof of our main result, which uses the method of characteristics with
a fixed point argument for an operator, which acts as a contraction with respect to a specific metric. The
final section 7 presents conclusions.

2. Modelling and dynamics of process

In this section we present the population, mass and energy balance equations which describe the dynamic
model of crystallization of ¢-lactose monohydrate.

2.1 Population balance equation

The population balance equation describes a first interaction between the population of solid crystals.
characterized by their length L, and two ageless populations of solute molecules of the constituent
in liquid phase. The population balance equation models birth, growth and death of crystals due to
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breakage and is given by

9 (V(1)n(L1)) 9 (V(1)n(L1))
81‘ +G(Ca( ) CB ) _ 8L (21)
= —a(L)VOn(L)+Vv(@) [ a(L"b(L',Lyn(L',t)dL’
V(0)n(L,0) = Vono(L) (2.2)

B (cq(t),cp(t),T(1))
G (calt).cp(),T()
Here n(L,t) is the distribution of a-lactose crystals, CSD, that is, the number of a-lactose crystals per

unit volume 1 m* and per unit length 1 m, expressed as number-m > -m~'. The quantities cq (), cp (1)
are the dimensionless concentrations of - and -lactose in the liquid phase, that is

n(0,1) = 2.3)

me = CO(mH207 mB = CﬁmH207 (24)

where mg,mg represent the mass of a- respectively B-lactose in the liquid phase, my,o the mass of
water not integrated in crystals.

The total volume of slurry V (¢) in the crystallizer is a dependent variable given in (2.19), G (ca S CBs T)
is the temperature-dependent growth coefficient of a-crystals, or the velocity of crystal growth in m-s~!,
assumed independent of crystal size L.

The boundary condition 1(0,¢) involves the temperature dependent birth coefficient B(cq,cg, T), the
velocity of nucleation or crystal birth in number-m=> - s~!. The initial condition n(L,0) represents the
crystal seed no(L).

The right hand side of (2.1) describes breakage and attrition. The breakage rate a(L) represents the
probability that a particle of size L and volume k,L> undergoes breakage, where k, is a volumic shape
factor. The daughter distribution b(L, L) represents the conditional probability that a particle of size L,
when broken, produces a particle of size L' < L. Following (Ziff, 1985), assuming that a particle breaks
on average into N, parts leads to

L
/O b(L,L")dL' = N,,. (2.5)

In the crystallization literature it is customary to assume binary breakage N, = 2, as this seems general
enough to model practical phenomena. We refer to Ziff (Ziff, 1985), Kostoglou et al. (Kostoglou et al.,
2002), Hounslow et al. (Hounslow et al., 2001), Ramkarishna (Ramkrishna et al., 2000) and Hede
(Hede et al., 2006) for more information on fragmentation.

The sink term on the right of (2.1) gathers particles leaving size L by being broken down to smaller
sizes L' < L,

L
9 (L) = / a(L)b(L,L)n(L,1)dL',
0
On the other hand the source term at size L has the form
2 (L) = / a(L)b(L,L)n(L,1)dL,
L

representing particles broken down from all possible larger sizes L’ > L to size L. Now conservation of

mass is ensured by
Ll
L’b(L',L)dL =L". (2.6)
0
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quantity symbol unit
Crystal size distribution n(L,t) number -m =3 -m~ !
Crystal seed no(L) number-m =3 -m~!

Crystal breakage rate a(L) 1/s

Breakage type b(L',L) 1/m

Table 1. Size related quantities

Indeed, the total mass of crystals being broken is

e () = /0 " a(Lyn(L, 1)L dL.
On the other hand, the total mass of new crystals born due to breakage is
m (1) / / L)n(L',t)dL'L*dL
_ / a(l)n(L 1) / L3p(L, L)dLdL’
= / n(L',0)LPdL = my, ., (1),

using (2.6). This confirms that breakage leaves the total crystal mass invariant. In contrast, if we
compute the balance of number of individuals being broken, we obtain

2 () / / L)n(L',t)dL'dL

/

= / (Ln(L' ¢t / b(L',L)dLdL'
- / a(L)n(L ,)NydL = N, 2., (1),
0

which confirms that breakage multiplies by N,, the total number of individuals of that part of the popu-
lation which undergoes breakage.

2.2 Crystal mass and solvent mass balance

We consider the mass mcry(f) of mono-hydrated c-lactose crystals as a function of time and relate it to
the crystal size distribution n(L,?) through

mCry(l) = kvpcry /0 V<t)n(L7t)L3dL’

where pcy is the crystal density. Therefore, we have

dmey(t) = d (V()n(L,1)) 3
dt —pcrykv/o Tl‘ dL, 2.7)
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the initial condition associated with (2.7) being
Mery0 = kvPeryVo /0 no(L)L3dL. (2.8)

The particularity of solvated crystallization is that the variations of solvent mass, n:;jzo , and of crys-

dmer .
tal mass, ";t Y are coupled. The fact that a-lactose crystals integrate a water molecule means that

molecular weights of the solid and liquid phase of ¢-lactose are related as

Mcry _

R= =1.0525> 1. 2.9

o

Therefore, if we temporarily define the mass of water inside crystals as mpy,occry, We have

1
MH,0ccry = <1 - R) Mery -

In consequence,

dmp,0 _ dmp,0cery
dt dt

1\ dm
+ring o= — (1 —~ R> d;fy +iit o, (2.10)

where mﬁzo includes external sources and sinks, like the feed of water during the semi-batch mode. The
interpretation is that the variation of the free water mass my,o is governed by the inclusion of water
molecules in crystals where it is bound, and by external sources and sinks.

By using the population balance equation (2.1), and by combining (2.10) and (2.7) allows us now to
establish the solvent mass balance

dmy,o(t)

B0 — (R = 1)3hupary G (calt) (1), T (1)) V (1) /Omn(L,t)deL—&-mﬁzo(t). @.11)

2.3 Mass balance of o-lactose

The next step concerns the mass balance for o-lactose in the liquid phase. The variation of mass my of
a-lactose in the liquid phase is related to the variation of crystal mass ncry and the mass mg of -lactose
via

dmg(t) B _1 dmery(t)

— ki (T () ma(t) + ko (T (¢)) mp (1) + g (1)

dt R dt
= f%dm;ty(t) +mu,0(t) [—ki (T(t)) calt) +ka (T () cp(t)] +ring (1), (2.12)

where k; and k; are the mutarotation exchange coefficients. Analytic expressions for k; and k> will be
given in the section 2.7.

The factor 1/R in the first term takes (2.9) into account, while the second term models loss and gain
of a-lactose in the liquid phase due to mutarotation. The third term s, regroups external sources and
sinks for at-lactose. By definition of the concentrations we have mgy = cqmy,0, S0 that

dmyg, dcg n dmy,o
—— =mp,0—_ +¢ .
dt 0 T
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This leads to

o) 2 g PO o) [k (7(0)) ealt) 4o (TO)ep(0)] — £ 2D i),

Substituting (2.11) gives

dea ()1 dmay 1 dmay
¢ dt ~ R dt

R
which can be simplified to

L+ .
MH,0 + muy,0 [—klca + szﬁ] +mgy — Callly, o5

dcgy 1 1 dm ) ]
MH,0—— pr + {R —Cq, <1 — R)} d;ry = mHy,0 [—k]ca —|—kzcﬁ] —|—m(j§ — camﬁzo.

We can interpret the source term i}, as it = c$m§ ot ct mH o- Then we obtain
dc 1 1\|dm
My,0 dta + {R —Cq <1 - R)] d;ry = my,0 [—kico +kacp] +camH o+ (c ( )mH20
Dividing by my,o gives the equation
+ e
dcg 1 1 1\ dmery +My,0 + My, 0
Sl _ _ - _ 1—— —k k ; 2 — 2. 2.13
dt MH,0 [R o ( R)] dt 1CatR2Cp T Ca mMH,0 + (ca—ca) mMH,0 @13)

Our study uses ¢4 = 0 and ¢, = 0, and ¢}, constant, which means the fraction of «-lactose in the feed
does not change, even though the feed rate mHZO( ) is time-varying and may be used to control the
process.

2.4 Mass balance of B-lactose

Proceeding in analogous fashion for the mass balance of 3-lactose, we have

dmﬁ L+

. . . d d d . .
which accounts for mutarotation and feed. Using # = my,0 % +cp m;20 in tandem with (2.11), we

obtain

deg 1Y dmery N
mHQO? —Cp (1 — R) i = My,0 [klcoc kzcl;] +m CﬁmHZO

Again we interpret méﬂ as mg = éﬁmﬁzo + cgmﬁzo, then
dcﬁ cp dmy, mﬁ 0 mﬁ 0
=k _ 1= ) 2 ki — kacg +¢5 20 4 (f —ep) 22, 2.15
dt — mm,o ( R> ar et M0 e my,0 @12

The crucial point about equations (2.13) and (2.15) is that on substituting (2.7), the state m,,y disappears.
Our study uses c"g =0 and c[; = 0. Since in our experiment, we have only a source and no sink, then

i, ~ = 0, so that the source term is +m§20
My,0 =Y € miyo0°

E fixed. For the same reason, we are left with a

it
source term ¢, —22
& my,0

+ 9H,0
B mu,o0-

then the source term will given by ¢
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2.5 Relating volume of slurry to masses

The total volume of slurry V(z) in the crystallizer is a dependent variable, which we now express as a

function of the states mg, mg, and mp,0. Observe that we have the relations
Vo = maPid o Vg = melgclﬁ, Very = MeryPery » Vit,0 = mH20pﬁ210’
with the obvious meanings, so that the total volume is
V(t) = Va(t) +Vg(t) +Via,o(t) + Very (¢)-
Substituting the expressions from the previous sections,
Vo = CamiyoPracar VB =CpMH0PLep:  Vih0 = MHy0Ph,0,

and using
Vry (1) = (kvpcryv(t) /O n(L,t)L3dL) Pt =k V(1) /0 n(L,1)LdL,

we obtain
V() (1 — kv/o n(L,t)L3dL) = mp,o(t) [Ca(f)Pch,a +cp (t)plgc'ﬁ +p§210} .

This may be written as

mu,o ()

Vi =1 Jen(L,n3dL

[plgcl,aca (1) + plgcl,ﬁcﬁ (1) + pl;zlo} :

(2.16)

(2.17)

(2.18)

(2.19)

This expression will have to be substituted for V (¢) in the formulae below and above. The initial condi-

tion V(0) = Vp now leads to

mu,0(0)
1- kv f()Oo no (L)

L3dL [pl;c],aca (0) + pl;clﬁ cp(0) + Pﬁzlo} =V,
where
mu,0(0) = mu,0,0,
which when substituted into (2.20) gives the initial condition
Vo= mcry,op{ry1 ~+mu,0.,0 [plgc‘_yaca,o + plgc‘l,; cgo+ Pﬁzlo .
Using mq = my,0cq and mg = my,0Cp, We obtain

Me,0 = mu,0(0)cq(0),

and

mﬁ’o = mHzo(O)Cﬁ (0)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)
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In addition, if we assume that o-and -lactose are initially at an equilibrium of mutarotation, we have
to add the initial condition

o = km(To)cap, (2.25)
where
Thy=T(0) (2.26)

is the initial temperature of the slurry. Clearly if mp,0,0 and cq, cg o are known, we also know Vj.
Conversely, if Vp and cq 0, cp,o are known, we can determine mp,0,0. Likewise, since we assume that
o and f3 are initially at equilibrium of mutarotation, it suffices to know Vp and cq ¢ + cg ¢ to reconstruct
my,0,0- Quantities depending on temperature and initial values are given in Table 4 and Table 5.

2.6 Energy balance

The energy balance includes the internal heat produced by the crystallization reaction, and the heating
and cooling system used to trigger and control the process. Altogether this involves the state T ()
representing the temperature of the slurry, assumed homogeneous due to stirring, the temperature of the
crystallizer jacket Tiyckei(f), and the set-point temperature Ty, (f), which is used as control input. We
also need Tieeq, the temperature of the feed, which we assume constant, and a reference temperature
Tiet = 25 °C, needed to quantify the heating respectively cooling effect of the feed on the crystallizer
temperature 7'; see Mersmann (2001). This leads to the equation

T — )| BT 0~ Tu) - 312 0AW) (Tusa) - T0)
+qn,0(1) (Cﬁzo +Cica(0) + Cgcﬁ (0)) (Teea — Tref)} ) 2.27)
where
dea;,ik:t(t) = _a(nacket(t) - Tsp(’)) (2.28)

was obtained through identification of the system where a is determined experimentally in the labora-
tory. Note that Tiy(7) is used as a control input to regulate Tjscke(?), and therefore indirectly 7'(¢), via
the heat exchange between the jacket and the crystallizer through the contact surface A(t), which is a
dependent function of V(). The constants Cfbo, ch, Cg are the specific heat capacities, and AH is the

heat of crystallization in kJ/kg, see McSweeney et al. (2009). We have used the abbreviations

P(t) ' = muyo(t)Ciy, o +ma(t)Co +mp (t)cg + ey (1)Chy, (2.29)
and
~dmuyo(t) p dmg(t) ,  dmg(t) ., dmey(1) »
P2 (t) — TCHZO + d[ Ca + d[ CB + d; Ccry? (230)

with mg = cgmu,0, mg = cgmup,o as before.
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2.7 Mutarotation and saturation

The mutarotation exchange coefficients k1, k, depend on temperature via the Arrhenius law

kg(T):koexp(—Rg( Fo ) Ki(T) = ko (T)kn(T),

T +273.15)

where ko, E, are constants, R, is the gas constant, and where according to Mcleod (2007) ,, follows the
affine law
kn(T)=1.64—0.0027-T.

The equilibrium of mutarotation therefore occurs at

01 exp(6:T)

C(x,sat,eq(T) = m’

where 6; = 10.9109 and 6, = 0.02804 are determined experimentally according to Mcleod (2007), so
that the saturation level for the formation of a-crystals is also temperature dependent and expressed as

coc,sat(cﬁyT) = C(x,sat,eq<T) - F(T)(Cﬁ - km(T)C(x,sat,eq(T))7

with F(T) =0.0187-exp(0.0236- T') a correction factor for at-lactose solubility following a Visser type
law according to Mcleod (2007). Note that the saturation concentration varies in time as cq sat(cg (t), T (1)),
because cg(t) and T'(¢) vary in time.

2.8 Nucleation and growth rates

The nucleation and growth rates are based on phenomenological laws which are usually determined
experimentally. Following Mcleod (2007), we used the birth rate

By

3n? ( —Ce
(T +273.15)31n (cwm(%”)

B(cq;cp,T) = kpexp (2.31)

for cq > ¢ sar, While B(cq,cp,T) = 0 for cq < casat(cp,T). Constant k; given in Table 3 determines
the unit of B, while the unit of By is °C (Mimouni, 2007; Mimouni A. et al., 2009).
Similarly, the growth rate was based on Mcleod (2007) and chosen as

G(C(x,Cﬁ,T) = kg (COC - C(X,S&t(cﬁ7T)) )

with unit determined by the unit of the growth coefficient kg in m - s~1. As we can see, cgq > Cosat leads
to G > 0, in which case crystals grow, while c¢q < cq sac means crystals shrink.

3. Main result

In this section we present our main result, the global existence and uniqueness theorem. The complete
model for which this will be proved includes the population balance equation (2.1), coupled with the
mass balances equations (2.7), (2.11), (2.12), (2.14), and the energy balance (2.27). The initial condition
for the population balance is n(L,0) = no(L), while the initial conditions of the mass balances (2.7),
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n(L,t) number /m - m? particle size distribution
me(1) kg mass of o-lactose in solution
mg (t) kg mass of fB-lactose in solution
V(t) m’ volume of slurry

Ar) m? contact surface

Table 2. Units of dynamic quantities

(2.11), (2.12), (2.14), and the energy balance (2.27) are given by the expressions (2.8), (2.21), (2.23),
(2.24) and (2.26).

Let us next present the hypotheses under which global existence of a solution will be shown. These
are motivated by the physics of the process, leading to prior bounds on mass, volume, and temperature.
A detailed discussion of theses hypotheses will be given in the prior estimate section 5.

e Restriction of the total volume of slurry by way of a control constraint limiting the cumulative
feed rate via

1 Vinax —Vo
Ca,0+Cﬁ70+ 1) poc_l +pﬁ_1 +pH20_1 +pcry_1

s

ot

(H) /0 qu,0(7)dT < (

e An allowed range for the set-point temperature, corresponding to a control constraint
(H)) T <Tp(t)<T for t>0:;

e An assumption about the initial mixture of water and lactose in the crystallizer

-1
(H3) 0 <mg(0) +mp(0) < (7;:1) mu,0(0);

e Moreover, mathematically motivated hypotheses on the breakage terms a and b:

a(L) —a(L)
H o i = L) < 400, = - ——— ,
() Nl = s al) < o, lalu= swp D5,
b(L,L') —b(L,L"
(Hs) |b]|e := max b(L',L) < +oo, ||b||L:=sup sup ( ), S, ) ,
oL L>0L<L/<L" L' —L

L/
(H) B(L',L)[*dL < cL”  for some ¢ > 0.

0

A typical example of a and b satisfying these hypotheses are for instance

6L> . ,
all)=1, bLL)y={ 75 T L=2L
0 else

proposed in Marchisio et al.. Other typical breakage rate and daughter distributions based on experi-
ments may for instance be found in Marchisio et al. (Marchisio et al., 2002), Reynolds ef al. (Reynolds
et al., 2005), or Ziff and McGrady (Ziff, 1985).
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quantity symbol value unit
maximum volume Vinax 0.01 m
initial volume Vo 0.0015 m’
crystal density Pery 1545 kg-m=3
a-lactose density Plac,o 1545 kg-m=3
B-lactose density Plac 1590 kg-m=3
water density PH,0 1000 kg-m>3
volumic shape factor ky 0.523598 -
ratio of molar masses R 1.0525 -
universal gas constant R 8.314 J/K /mol
birth rate coefficient kp, 1010 number-m s
nucleation constant By 1.46878 -
nucleation exponent b 2 -
growth rate coefficient kg 1.18-1077 m-s1
growth exponent g 1 -
activation energy E, 7.4-10% J
kinetic mutarotation constant ko 2.25-10% 571
heat of crystallization AH -43.1 kJ kg
heat transfer coefficient U 300 W /m? /K
heat capacity of water Cflzo 4180.5 J/kg/K
heat capacity of a-crystal Cly 1251 J/kg/K
heat capacity of o-lactose ch 1193 J/kg/K
heat capacity of 3-lactose Cg 1193 J/kg/K
fraction of a-lactose in feed cE 0.521 kg/kg water
fraction of B-lactose in feed cg 0.359 kg/kg water
mass of seed Mery 0 0.1 kg
reference temperature Tref 25 °C
feed temperature Treed 20 °C
identified jacket heat coefficient a 0.0019 -

Table 3. Numerical constants of industrial crystallizer

Let us now outline the idea of proof of our main result, which uses the method of characteristics
with a fixed point argument for an operator 2, which will act as a contraction with respect to a specific
metric. This operator 2 is defined by:

Dx =X = (iiiq, g, Mit,0, Mcry, T, B, f1, Ho, W).
where X = (mq,mg,mu,0, T, Mery, K2, 11, Ho,w) is an element of the space
F=C[0,1/]* x C(R* x [0,¢/]) N.Z} (R x [0,¢/],h(L)dL),
where the elements of X are defined by way of the characteristics which will be detailed in the section
introducing characteristics. The space F and the operator 2 will be detailed in the section global exis-

tence and uniqueness. The expressions of the elements of x and X will be given in section 6. Now our
main result, whose proof we will be completed in section 6, is the following
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quantity symbol unit
mutarotation exchange fraction ki (T) -
mutarotation o — 3 exchange rate ki(T) -1
mutarotation § — o exchange rate ko (T) 571
saturation concentration at equilibrium of mutarotation Casateq(T) -
saturation concentration caﬁsat(cﬁ ,T) -

crystal growth rate G(ca,cp,T) ms~!

crystal birth rate B(ca,cp,T) number -m =35~

Table 4. Quantities depending on temperature

THEOREM 3.1 Let hypotheses (H;)-(H3) be satisfied, and suppose the initial condition of the crys-
tallizer respects the global volume bound V.« Assume further that the breakage kernel satisfies the
hypotheses (Hys)-(Hg). Then the crystallizer system (2.1), (2.11), (2.13), (2.15), (2.27) has a unique
global solution on [0, ).

4. Introducing characteristics

In this chapter we present a transformation of the formulation of the model by introducing the moments
and the characteristic curves.

4.1 Moments

We consider the population balance equation

AUOLICH) (V(%’:(L” D _ 6 (calt),c(),T(0)) 7‘9V(’;’2(L’t ) VL +wL) @)

where -
w(L,t) = / a(L)b(L, L)V (t)n(L' 1) dL’ 4.2)
L

is the source term due to breakage and attrition. The boundary condition is

B (cal(r),cp(t),T(1))

n(0,1) = G (calt) s 0).T()) t>20 (4.3)
and the initial condition is
n(L,0) =no(L), L e0,0). (4.4)
Then we can define
Wwo = w(L,0) = /L T (L)L, L)V (O)no(L')dL. 4.5)

Now, we consider the 3rd moment of w(-,#), for which we obtain the estimate

/OWW(L,I)L3dL:V(t)/OooL3/Lma(L’)b(L/7L)n(L/7t)dL’dL

- v(;)/:a(L’)n(L’,t) (/OL L’h(L' L) dL) dr.
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Under (2.6), and with a(-) € L™, we now derive the estimate
[ w8 dL < lallop ™'k ey 1),
Jo

where mery (t) = pky [5°V (¢)n(L,t)L3 dL is the total crystal mass.

The population balance is coupled with the mass balance of o-lactose, the mass balance of B-lactose
and the energy balance equations.

We start by solving (2.11) with respect to m,0(f), (2.13) with respect to cq(t), (2.15) with respect
to cg(t) and (2.27) with respect to T (¢), knowing that mery(t) = kyPery IV (t)n(L,t)L*dL. For the
concentration c,, the mass balance of ¢-lactose gives

/ . aH,0(5) (1= bl (s)
q1,0(7)Ca0 Mery (T) )e_jor (_kl(T(S»‘mszo<s>+'"Hzoc<%)dsd’c]
mup,0(7) Rmy,o(7)

calt) = [ca,w [ (@(Tm)cﬁ(r) +
4.6)

o _ 41,000 (1= Fmlyy (1)
Xefo( k(T (7)) mHZO(r)Jr MH,0(7) dr

using cq 0 = cq(0). Similarly, the mass balance of B-lactose in terms of the concentration cg gives

) a=-4y
— (T =k (T (s _ 91,0 + R / >d
Wcﬁ,o)e f0< 2( <A)) mHzo(s) mHzO(s)mCFY(‘> Ad"[,':|
mHZO(T)

cp(r) = {CB}OJr/Ot (k1(T(T))Ca(T) +
“.7)

e a0 a-f)
(o) SR o))

using cg o = cg(0). Equivalently, we may solve directly for the masses to obtain

t 1 T '
me (1) = [ /0 (kg(T(T))mﬁ (7) = ery (T) +ca,0qﬂ20(r)) el TN gt g, o | o (T ())ds
(4.8)

using mg = mp,0Cq and mg = my,0cg. By solving (2.15) with respect to mg using variation of the
constant, we obtain

(4.9)

t - ;
mp (1) = [ / (k1 (T (7))ma(T) + e oquo(t)) o 2T EDds g mﬁ,o} elo —k(T(9))ds
o :
For the mass balance of solvent we have

! 1
mHzo(f):/O |:(1R)méry(f)+qH20(T)] dt+mu,00, (4.10)
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where mu,0,0 = mu,0(0). Finally, the energy balance is
. 1
T(t) = elo-RADR()-UAD)T [To + / <P1 (7) (Pa(7) Trer — AHm{yy (1) @.11)
0

+ UA(T)EaCkeI(T'-) + QHZO(T) (Cﬁzo + Cgca.,() + Cgcﬁﬁ) (Tfeed - Tref) )>

o~ [F =PI O)Pa(s)-UA(s))ds g T} 7

where Ty = T (0) and mg = cqmu,0, mg = cgmu,0. By using the third moment i3 (t) = [5°V (1)n(L,t)L3dL,
we have mery (1) = pkyus (1) and me, (1) = pkyus (t).
4.2 Characteristic curves

Now we are ready to introduce characteristic curves as follows (Evans, 2001). For 7y and L fixed we let
@11, be the solution of the initial value problem

¢'(t) = G (cal(t),cp(t),T(t)), ¢(to) = Lo. 4.12)

Since the right hand side does not depend on L, we have explicitly

Gy (1) = Lo+ /t"G(ca(r),cB(r),T(r))dr. @.13)

We write specifically z(t) := @,0(¢). Now we introduce a family of functions N; ; which we use later to
define V (1)n(L,t) via Ny, 1, (t) := V (t)n( @1, (t),1). We let L = ¢y, 1, (), then N, 1, satisfies

N < 2V 3(V(t)aiz(L7t)) win

oL
d(V(t)n(L,1)) d(V(t)n(L,1))
ot '

— TG(C(X(I)»CB(I)’T(Z)) +

Therefore (4.1) transforms into

NIIO,LO (t) = _a(¢t0.,L0 (t))Nl(pLo (t) + W(‘PIQ,L() (t)at)v (4.15)

and we consequently use these ODE:s to define the functions N, ;. Integration of (4.15) gives

Mota®) = (Nosalt) + [ w(@sa(0)D0exp{ [ aloy n(@)ic }a)

Jiy

X exp {— /ta(¢,07L0(r))dT} . (4.16)

fo

We can exploit this for two possible situations, where Ny, 7, (fo) can be given an appropriate value.
Before putting this to work, we will need two auxiliary functions 7 and &, which are easily defined
using the characteristics. First we define T = 7(¢,L) implicitly by

¢:0(t) =L, or equivalently, ¢, 1(7) =0, 4.17)
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or again,

/t G (ca(0),cp(0),T(0)) do =L. (4.18)

T(t,L)

0
Then we define & = £(¢,L) = ¢,,(0), which gives & = L+/ G (ca(T),cp(1),T (7)) dt. Using N,
t

respectively (4.16), we can now define

(Vwiiiiiiii’,ii D [ wteanr e /r:aw%.,o(o))dc}ds)
xexp( / a(¢z,0(5) ) if Ly < z(1o)

V(l‘o)n(L(),t()) =

(V(to)no(%Lo )+ /0 (B 14 (), ) xp { /0 a0y 10 (o))da} ds)
X eXp ( /0 ® a(Gus (s))ds) if Lo > 2(10)

4.19)
where 79 = T(f9,Lo) and 7y € [0,#7]. The formula is justified as follows. Let 79, Ly be such that Ly <
z(to) = @o,0(t0). This is the case where 7y = 7(fo,Lo) > 0. Here we consider equation (4.15) for Ny o
with initial value N‘L‘O)O(TO) = V(TO)”(QDTO’O(TO),TO) = V(TO)H(O7T0) = V(’Co)B(C(‘L’()))/G(C(’Co)). This
uses the fact that ¢ o(7o) = 0 according to the definition of ¢;. Integration clearly gives the upper
branch of (4.19).

Next consider #y,Lo such that Ly > z(#y). Then 1 < 0, so that we do not want to use it as initial
value. We therefore apply (4.15), (4.16) to Ny, 1,,, now with initial time ¢ = 0. Then we get

Nig.10(10) = (NtO,LO(O) + /0 (B 10 (5), ) exp { /0 Sa(q),O’LO(G))dG} ds) (4.20)

<exp (= [ al0ua(5)as)

Here N; 1,(0) = V(0)n(¢y,.1,(0),0) = V(0)no(¢y,,2,(0)), so we get the lower branch of (4.19) all right.
This justifies the formula and completes the definition of the characteristic curves and the representation
of V(¢)n(L,t) via the characteristics.

5. A priori estimates

In this section we discuss two hypotheses on the control inputs T, and gy,0, which lead to a priori
estimates, under which later on global existence of a solution will be shown. These conditions are
motivated by the physics of the process and lead to bounds on mass, volume, and temperature. Note that
we do not get a priori estimates on surface, length and number of solids, which as we shall see presents
a difficulty when proving global existence of solutions.
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5.1 Hypothesis on total volume using the feed rate

The total mass of slurry M in the crystallizer is given by
M(t) = mq(t) +mg(t) +mu,o(t) +mery(t), (5.1
hence M(0) = mg (0) +mg(0) +mp,0(0) + mery(0). The total volume of slurry V is

ma(r) | mp(1) | mio(t) | mey(r)

V(t)=Vua(t)+Vg(t)+W )+ Ve (t) =
(1) = V(1) +Vp (1) 4 Vi (1) Very(0) = 0= =0 =4 =0 2 =0

(5.2)

Since we are only allowed a maximum volume Vi, of slurry in the crystallizer, we have to steer the
process such that V() < Vinax at all times ¢. Naturally, this can be arranged by a suitable control of the
feed rate, and this is expressed by hypothesis (H}):

LEMMA 5.1 Suppose the feed rate gy,o satisfies the constraint

! 1 Vinax — VO
H / 7)dT < = 5.3
() Jy a0l S 1) [ T+ pp 1+ Pro T+ Py )
at all times ¢ > 0. Then the total volume of slurry V (¢) satisfies V (f) < Viax.
Proof. From (5.1) we obviously have
M'(t) = ml,(t) —|—m23 (£) 4 mig, o (1) + mepy (1) (5.4
Replacing mﬁ{zo , m, and mk in (5.4) by their expressions (2.11), (2.12) and (2.14), we obtain
M'(t) = (cap+cpo+1) gmo(t) (5.5)
which on integration gives
! M(t) —M(0)
T)dtr= —F——"""+— 5.6
| neo() T (5.6)
for every ¢ > 0. Hence, using the hypothesis (H;) and (5.6), we obtain
V
M(t) < — R — —. (5.7
Pa " +Pg" T PH0" "+ Pery
Using (5.1) and (5.2), this implies V() < Vinax- O

In a practical process, gu,0 could be steered by feedback to avoid overflow of the crystallizer.

5.2 Hypothesis on set-point temperature

As we have seen, bounding the feed rate via (H) gives a bound on the total volume of slurry, and also
on the total mass, namely

Vinax
pail +pﬁ71 +PH2071 "’poryi1

M(t) < Mpyax = (58)
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Now we also need to propose a hypothesis concerning the regulation of temperature, where we specify
arange

(H,) T<Tp(t)<T for t>0 (5.9)

for the set-point temperature. On the one hand this reflects obvious material constraints on the equip-
ment, but more importantly, we have to assure that the regulated temperature of slurry 7'(¢) stays in the
range where ¢t-lactose crystallizes, i.e., T < 90°. We start by deducing a bound on the jacket tempera-
ture.

LEMMA 5.2 Suppose the set-point temperature satisfies (H>). Then the temperature of the jacket satis-
fies

Tlow < 73acket(t) < Thigh (5-10)

at all times ¢, where Tiow = Tjacket(0) + T and Thigh = Tacket(0) + 7.

Proof. Solving the energy balance (2.28) with respect to 7' () using variation of the constant gives
t T e — [ ads
Tacke(t) = { /0 aTyp(T)el “PdT + Toerer(0) | e S0, (5.11)

Hence, using the hypothesis (H>) and( 5.11), we obtain

eiatTjaCket(O) +TI< Tjacket(t) < Tjacket(o) +T
for t > 0, which proves the claim. O

LEMMA 5.3 Suppose the set-point temperature satisfies (Ha), and the feed rate satisfies (H;). Then
there exist bounds 7}, 7}, such that the temperature of slurry satisfies 7; < T(r) < Tj, at all times 7 > 0. In
particular, it can be assured that 7'(r) < 90°, so that only a-lactose crystallizes.

Proof. Solving the energy balance (2.27) with respect to T'(¢) using variation of the constant, we obtain
t
T(t) = /0 Pi(T) [(Pa(T) — (7)) Tret — AHmiyy (T) + UA(T) Tiacket (T) + 0(7) Treea]  (5.12)

_ /O "(Pi(s)Pa(s) + UA(s)) ds

= /T (@R +UAG s |

where 8(7) := gi,0(7) (cgzo +Chea(0) +Cheg (0)) and Py (1), P>(1) are given by (2.29), (2.30). Sub-

stituting the expressions of my (1), mg, (1), mb (t) and my (7) in (2.30), we obtain

Py(t) = omy, (1) +6(1) (5.13)

where 6 := Cliy — Cfy (1 —=R™") =CgR™' <0 and 6(r) as above.

Since the temperature of the jacket satisfies Tiow < Tjacket(f) < Thigh by Lemma 5.3, we obtain now
the bounds 7;,7), on the temperature 7(¢). Namely, using (5.1), hypothesis (H;) and (5.7), we first
obtain 7;(¢) < T(r) < Tj(¢), where

7} = |:(Tfeed — T;ef) (Mmdx —MO) + T(O) +§0_Mmdx} ei(Mmax*M0+lUA()) + gef(Mmax*M())(l _ e*lUAo)
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with & = min{Teer, Tiow }, and

—tPyo Mmax

— e A
Th:(ngax+T(0)) A :(’;‘

_ -1
with & = max{Tiet, Thigh}, Po = (C{:Izo +Ch Jng +Cé)ry) M}, Here Apgy is the maximal surface
which corresponds to Viax and Ay is the surface which corresponds to Vy. Now the bounds are 7; =

min, o 7;(¢) and T}, = max,>( 7j,(¢). Since all the elements used to compute 7, can be computed, we can
arrange Tj, < 90°. O

COROLLARY 5.1 From the bounds 7; < T'(¢) < 7), we obtain bounds
ki(T(t))<x for i€{l,2,m} and t>0
on the mutarotation exchange rates.

Proof. By using the bounds 7; < T'(¢) < Tj, and the expressions of mutarotation k» (T') = ko exp (— W) ,
ki (T) = 1.64 —0.0027T and k| (T) = ko (T )k (T'), we obtain

E, _
ko(T) < koexp [ —————2 ) =k
(1) Oe"p< Rg(Th+273.15)) 2

kn(T) < 1.64 —0.0027T; := ky,
ki(T) < koky :=ky
Then for k = max{ka, ky, k1 }, we deduce
k(T(t)) <x for i€{l,2,m} and t>0.
O

COROLLARY 5.2 From hypotheses (H,) and (H>) we obtain a bound G(cq(t),cp(t),T(t)) < Gy, t >0
on the growth rate.

Proof. By using the hypothesis (H;), (Hy) and the relations mg(t) = co(f)mu,0(¢) and mg(t) =
2 B

. Mrnax MlTlZlX
t 1), bt. 1) < Mpax, N ———=cpandcg(t) < ———— :=c,, forallt >
cp(t)mu,o(t), we obtain mey (t) max Co (1) mmo0(0) cm and cg(?) mmo(0) ¢y for a
0. Now using the bound 7}, obtained in lemma 5.3, we can put ¢, := cq sat,eq(Th) (1 + kn(T3)F (T},)). Then
G(ca,cp,T) < Gy = kg(cm —cy). O

5.3 Hypothesis on mass of water using the feed rate

In this section we discuss a hypothesis which assures that the mass of water does not become too small
and stays bounded away from 0. This has also to be assured either by control of the feed, or via the
initial values by assuring that a sufficient quantity of water is present at t = (0. We start by observing
that (H3) may be written equivalently as

(H3) my,0(0) >0and 6 :=1—(R—1)(ca0+cpo) >0,

where R is introduced in (2.9). Now we have the following
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LEMMA 5.4 Suppose hypothesis (H3) is satisfied. Then the mass of water in the slurry satisfies
mHzo(t) > GmHzo(O) >0 forallt > 0.

Proof. By adding (2.12) and (2.14), we obtain
My (1) = —R [m;x () + iy (t)} +R (ca0+p0) qy0(t)- (5.14)
By substituting (5.14) in (2.11), we obtain
Misyot) = (R=1) |t (t) +miy (1) + Oa,0(0), (5.15)

where 8 = 1 — (R—1) (ca,0+cpp)- By integrating (5.15), we obtain

mi,0(t) = mi,0(0) — (R—1) (mg(0) +mg(0)) + (R—1) (mq(t) +mg (1)) +9/0tqﬁzo(r)dr (5.16)
= emHZO(O) + QAtqHzo(T)dT+ (R—1) (ma(t) +mg (l‘))

In the worst case all lactose molecules in the liquid phase may crystallize, so that

t
my,o(t) > 9/0 q1,0(7)d T+ 0mu,0(0) = Omu,0(0) > 0. (5.17)

O

REMARK 5.1 Hypothesis (H3) assures that the water initially present in the crystallizer cannot be com-
pletely consumed through crystallization in finite time even in batch mode, where g = 0. This corre-
sponds to an upper bound on the fraction of lactose:

M —1
Miactose S ( ]wcry - 1> my,o = 19.04 my, 0,
a

which using (2.25) leads to the temperature-dependent bound

My
Mery —Mg)(1 4k (T))

Mg < ( MH,0 (5.18)

at the equilibrium of mutarotation. This should be compared to the lower bound given by the supersat-
uration constraint, which at the equilibrium of mutarotation according to section 2.7 gives

01 exp(6:7T)

My =2 m”ﬂ}bO. (519)

In (5.19) the solubility concentration ranges from cy = ma/mHzo = 0.0478 at 5°C to c¢q = 0.5678
at 90°C, while the upper bound (5.18) ranges from ¢y = 7.24 at 5°C to ¢ = 7.9433 at 90°C. Since
crystallizers are operated in the range between solubility and supersolubility, which in the case of lactose
is roughly twice the solubility concentration, cf. (Yee ef al., 2011, Fig. 1), concentrations ¢y > 1 are
highly unrealistic, so that the bound (5.18) is in no way restrictive.
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6. Global existence and uniqueness of solutions

In this section we will assemble the results from the previous sections and prove global existence and
uniqueness of solutions of the crystallizer model. We use the method of characteristics with a fixed-point
argument for an operator 2 which we now define.

6.1 Setting up the operator
For the function w defined via (4.2) we introduce the Banach space
E = C(R" x [0,1/]) N2} (RY % [0,17], h(L)dL),

where we set i(L) = max{1,L3}. We introduce the norm on E as

[wil = [lwlle+ sup [ |w(L,2)[h(L)dL.

Oglgtf

where the fact that in the second term a supremum over ¢ € [0,7¢] is formed is indicated by the index u,
for uniform, in %, Let us introduce the moments of the CSD as

i) :/ V()n(L,t)L'dL,i=0,1,..., 6.1)
0
so that m¢ry = pk, 3. The initial conditions are then
Wio = / V(0)no(L)L'dL,i=0,1,.... (6.2)
’ 0
We consider X = (mq,mg,mu,0, T, Mery, U2, L1, ho, w) an element of the space
F = C[0,#/]® X E,
where each copy of C[0, 1] is equipped with the supremum norm, so that the norm on F is
| x| = lImalleo + [lmp o + llmr,0lo0 + 1T lloo + I mery lloo + | 2lleo + 1|11 loo + | o] oo + [[w]]-
We proceed to define the action of the operator 2 on element x € F, writing
‘QX = i = (fﬁavﬁﬁaﬁil‘lzo”:ﬁcr}/vTﬂﬂZvﬁl;ﬂOvﬁ;)'
The initial values at = 0 are
Xp = (ma,o,m[s,o7mH20,07mcry7o,T0>ﬂ2707l~l1,07ll00,w0)7
all specified through table (5).
We define mq as the left hand side of (4.8), so that it is a function of the old elements T, my in X

and the initial values x(0) = xo. Similarly, we define mg as the left hand side of formula (4.9). Note

that we need the derivative m’cry to define these elements, and that can be expressed by the second
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initial value \ expression
M 0 (2.23)
mg o (2.24)
MH,0,0 (2.21)
To (2.26)
Mery 0 (2.8)
Hio (6.2)
wo (4.5)

Table 5. Expression of initial values

moment Uy, which is part of x. In fact by substituting the population balance (4.1) in the expression
me () = phy fo w L3 dL, we obtain

mly (1 pk/ [ (t),T(t))era(L)V(t)n(L,t)fw(L,t) L3dL

= 3pk,G (calt). cp(1).T(1)) /O “VOn(L,)I2dL— ph, /0 T L)V (O)n(L,) L dL
+kaAMw(L,t)L3dL
= 3pk,G (ca(t),cp (1), T(1)) pk/ (L)L dL 6.3)

+ka/ w(L,t)L}dL.
0

The third step in the definition of 2 is to define mp,0 as the left hand side of formula (4.10). The

left hand side of (4.11) defines T, using the elements of x and x on the right. Note that due to the prior
estimates we may consider Tjacke as an input.

In order to define the elements w and icry, we first have to introduce the characteristics ¢ ; via
formula (4.13), using the old elements x on the right. Then we define the functions N;; via formula
(4.16). We are now ready to define ¢y as

(1) = pk/ V(n(L,)L3dL

~ Pk, /O | ( G(caii)(fc)ﬁ f’T + / (0e0(s exp{ /T‘Ya<¢f,o<o>>do}ds)

X eXp (—/T a(gi)f,o(s))ds) L3dL (6.4)

+ ok [ (Vom0 + [ wioul)sexp] [ aou(o)o as)

X eXp ( /0 ta(@;(s))ds) [3dL.
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In the first integral foz(t) we use the change of variables L — 7 = 7(¢,L). Then
0,2(£)] 5L t(t,L) €[0,1],  dL=G/(cqa(t),cp(t),T(1))dT.
In the second integral f;’(’,) we use the change of variables L — &(7,L) := ¢ 1(0). Then

[2(t),0) D L+ & € ]0,00), dL=dE¢.

t
The inverse relation is L = & —|—/ G (ca(0),cp(0),T(0))do = & +z(r). From (6.4) we therefore
0

obtain

@) = b [ (VOB (cale)cp(01 () + [ wtouals).srenp ] [ atveo(oniac o)

« exp( /ta (br0(s) )L(T)3dr 6.5)
a(

i [ (V@) + [ winglo)9exp{ [ alame(ona }d)

p( a(do () )L(€)3dé,

+

where L(7) = [; G (ca(0),cp(0),T(0)) do and L(§) =& + [§ G (ca(0),cp(0),T(0)) do, and where
we use ¢ 1(s) = @y ¢(s) in the second integral. For fixed ¢ the functions L+ 7(¢,L) and 7 — L(7)
are inverses of each other, and similarly, L <> £ are in one-to-one correspondence via the formula L =

£~ [5G (ca(0),cp(0),T(0)) do.

Similarly, continuing to define the operator .2, we define the moments L;, i = 0, 1,2 within X via
/ V(f)n(L,1) L’ dL,

where we express the right hand side via characteristics and the elements of x in much the same way as
done for mry.
We also need to get back to the function w(L,). We introduce

n [ aL)b(LL), ifL>L
BL.L)= { 0, else

then we can write
WL 1) = /L " a(L)b(LL WV (1)n(L,1)dL = /0 CBL LYWV ()n(L1)dL,

which is essentially like the moment integral (6.5), the function L + L being replaced by B(L,L’).
Applying the same technique as in the case of (6.5), we obtain
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w0 = [ (VOB (u®ep (0170 + [ wionohjesp{ [ atoca(o)io pas)

T

X exp (—' / ta((prﬁo(s))ds) B(L(),L))dT  (6.6)

+/0W (V(O)no(i)+/Otw(¢t‘L(s),s) eXp{Asa(¢17L(G))d6}ds>
X exp <— /Ota(q),,L(s))ds) B(L(&),L)dé,

which expresses w in terms of w and the characteristics, hence by elements of x. Here we use w € E,
and it is routine to check that w € E, so that X € F. This completes the definition of 2.
We will also need the following hypotheses on the breakage terms a and b:

a(L) —a(L')
L

iy g <

(Ha) [allee := max a(L) < +eo, lall = sup
0SL<eo o<L<L’

b(L,L")—b(L,L")

(Hs) 1b]leo := max b(L',L) < +eo, ||b]|:=sup sup L

0<LLL L>0L<L/<L"

and

L/
(Hg) / B(L',L)L*dL < cL”  for some ¢ > 0.
0

Note that (Hg) is in particular true if conservation of mass in breakage (2.6) is satisfied.

6.2 Setting up the space

We now have to define a closed subset X of F on which the operator 2 acts as a contraction with respect
to the metric induced by the norm of F. In other words, we need to assure 2(X) C X and

|Qx<1> — 9x® | < ylx(l) _x® |

for a constant 0 < y < 1 and all x(1) x(2) € X. This will be achieved by choosing ¢y small enough, as
usual, but in order to prove global existence, we will have to make a careful quantification of y in terms
of # and the initial values x¢, because we wish to iterate the local existence argument.

We distinguish between globally bounded states and those for which no prior bound can be put
forward. Due to our hypotheses (H), (Hz), (Hs) the masses mq,mg, Mcry, my,0 and the temperature 7
are globally bounded, the bounds being given by formulas (5.8). We write

y = (mohmﬁ ) mH207mCI‘y7 T)

for the globally bounded states. On the other hand, it is not clear whether the moments L, U1, tip nor
w are globally bounded, and whether such a bound can be obtained from the physical constraints. This
is due to particle breakage, which may lead to an exceedingly large number of small particles, or fines.
We write

7= ([.L(),,ul,[.tz) andw e E
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for the unbounded state. Altogether
x = (y,2,w) € F.

During the following we therefore assume that the initial data for the bounded states
Yo = (Mery,0,MH,0,0,Ma,0,Mp o, To) respect these global bounds, that is

Me.0+mg o+ Mery,0 +Mu,0,0 < Mmax, (6.7)
mi,0,0 >0, 0 :=1—(R—1) (ca0+cpo) >0 and for the temperature
T, <T(0) <Tp.
The hypotheses (H1), (H>),(Hsz) on the controls gu,0 and Ty, will then assure that on every interval of
existence of a solution x(¢), the bounded states y(z) satisfy the same global bounds. We split the initial
conditions into xo = (yo,Zo, W), Where y is the bounded part, zg, wo that part which does not have a
prior bound. The state x(¢) is split accordingly as x(¢) = (y(¢),z(¢),w(t)). Now define the moments of
w(L,t) as
poilt) = [ wLoLaL
0
and fix K > |zo| + | tw,0(0)] + | thy,1(0)| + | tw,2(0)| + | 4;3(0)|. Then we define the space X as
3
X ={xeF:x(0) =x0,x = (y,2,w),|2(1)| + ) |thy.i()| <K forall 1 € [0,z7] ¢ .
i=0
LEMMA 6.1 There exists a constant ¢ > 0 depending only on the global volume bound Vpax such that for

every yo satisfying (6.7), every zg,wo, and every K > |zp| + Z?zo |tt,i(0)| the following is true: Suppose
ty > 0 satisfies

3
0<iy < (Kzo|zuw,i<o>|) Je. (6.8)
i=0

Then 2(X) C X.

Proof. Integrating over an interval [0, tf] leads to estimates of the form

t
Z(t) =129 +/ fly(z),2(1),w(1))dt < |20 + (¢ + K) 1/, fOrall 0 <z <ty
0 ; ;

where a global bound ¢ for y(z) is used on [0,7/], while the bounds |z(¢)| < K, |uy,i(t)| < K are used for
the states z, w. Then in order to assure |z(¢)| < K, we have but to force the condition

|zo| +c(1+K)ty <K,

which gives 17 < C’i;‘flg‘) < K}‘z"'. A similar argument applies to the moments y,,; of w, and combining

the two gives (6.8). For the state w, hypothese (Hg) is used to prove |, (¢)| < K. O
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6.3 Provingy€ (0,1)

For the globally bounded states gathered in y we obtain an estimate of the form
7 =5 < er (1t fzo| +K)ey [ 5V —x |

for a global constant ¢; depending only on Vinx. For the state z = (uo, lt1, t2) on the other hand we
obtain an estimation of the form

3
-7 < e (1 + 20l + X [0 0) +K> 1 X -x2),
i=0

=

where ¢, is another global constant. The Lipschitz constant now depends on the intial contition zg,
Wy, (0), for which no global bound is available. A similar estimate

3
|70 7 < 3 (1 +llz0ll+ X It (0)] +K> XV =x®|
i=0

is obtained for the terms involving w. Altogether, we have

LEMMA 6.2 There exists a constant ¢ depending only on Vi« such that for every initial condition yq
satisfying (6.7), every initial z, wo, and every K with ||zo|| + Y7o |i.i(0)| < K, the operator 2 satisfies
the following Lipschitz estimate on X:

3

| 2xV) — 2x@ | <¢ (l + 2o + ) | 1(0)] +K> ty [xV —x®]. 6.9)
i=0

Condition (6.9) in tandem with (6.8) allows us now to apply the Banach contraction theorem to the

operator 2. Using this, we can prove the theorem 3.1.

6.4 Proof of Theorem 3.1

In this section, we present the proof of the theorem 3.1 of existence and uniqueness of solution.
Proof. 1) Suppose we choose K > |zg| 4+ Y3, |t (0)|, then

— —y3 4
tfmin{K ol = Lo (O] ; } (6.10)
‘ ctk 2¢(1+|z0] + Xizo i (0)| + K)

assures that 2 is a self-map and a contraction on X, so that a unique solution with the initial condition
Xo exists on [0,7f].

2) We will now have to iterate the process, and for that we shall change our notation. We write
w(t) = |z(t)] + X3 |twi(t)]. We started the method at fp = 0. Putting wo = w(0), we chose K =
wo+1 > w(0) in part 1) above, so that condition (6.10) re-written at #; = #; becomes

. 1 1
= .
! mln{c+wo—|—1’4c(l+w0)}

This gave a unique solution on [0,7¢] = [fo,71].
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3) Since by construction of X on [f,71] = [0,¢¢] we have w(r) < K for every t € [to,11], we get
wi < K = wo + 1. In addition, the initial condition of the bounded states y respects (6.7) and therefore
the global bound related to Viyax, so that we will be able to continue to use the same global constant ¢ in
the next iteration. We now use x(#1) as the new initial condition at the new initial time #; and repeat the
same argument to the right of 7. That requires choosing a new constant K > |z(t1)| + Y3 [ty (t1)] =
w(t1) = wi. We choose again K = w; + 1. Then the final time corresponding to 7, which is now called
ty —t1, has to satisfy (6.10), which reads

1 1 1
nh—t = i 9 > i 9 .
2 mm{c+w]+1 26(1+w1+K)} mm{c+w0+2 4c(2—|—w0)}

By recursion we find that

1 1
ty —ty,—1 = min
noinel = {chwoJrn’4c(n+wo)}7

so that for some constant ¢’ depending only on Vi, and wg = |zg| + ):?:0 |tw,i (0],

N N
Iy = Ztn_tnfl >C/Z
n=1 n=1

Since the solution can be continued from O to any #y, this proves global existence and uniqueness. [

1
~ =00 (N — o).
. ( )

REMARK 6.1 An interesting consequence of the proof is that no global bound for the moments g, i1, Uy
is found from the physically meaningful assumptions of section 5. In particular, it cannot be excluded
that despite the bounds on volume and mass a large number of exceedingly small crystals, called fines,
may hinder the sustainable growth of larger solids. This phenomenon is really observed in practice. In
continuous crystallizers it is therefore mandatory to employ a third control mechanism, the recycling
of fines, in order to limit their impact on growth. In Apkarian et al. (2011) we have studied feedback
control with recycling of fines.

7. Conclusion

We have presented and discussed a model of the process of crystallization of a-lactose monohydrate.
The model was validated mathematically by proving existence and uniqueness of global solutions under
realistic conditions assuring bounds on mass, volume and temperature of slurry. We observed that no
global bounds on crystal surface, length and number can be obtained, but the result shows that none of
the states can grow infinitely in finite time.
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