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1. Introduction

Crystallization is the unitary operation of formation of solids from a liquid solution. In process engi-
neering crystallization is an important separation technique used in the chemical, pharmaceutical, food,
material and semiconductor industries (Mullin et al., 1971; Tavare, 1995). Crystallizers can be operated
in batch, semi-batch or continuous mode (Jones, 2002).

The crystallization process is initiated if a solution becomes supersaturated. This may be triggered
by cooling, evaporation of solvent, addition of anti-solvent, or by a chemical reaction. The principal
processes in crystallization include nucleation or crystal birth, crystal growth, crystal breakage and
attrition, agglomeration, but models should also include external processes like heating and cooling,
or evaporation. Nucleation is the phase where solute molecules dispersed in the surrounding solvent
start to form clusters, which according to the operating conditions are arranged in a defined periodic
manner. Crystal growth is the subsequent accretion process of nuclei, driven by supersaturation. Crystal
birth and growth cease when the solid-liquid system reaches equilibrium because of the exhaustion of
supersaturation (Mersmann, 2001; Jones, 2002).

In the food processing industry there has been growing interest in the crystallization of lactose in
(Mcleod, 2007; Mimouni, 2007; Mimouni A. et al., 2009). For a number of reasons, α-lactose monohy-
drate is the most commonly used form of lactose in making medications. It is affordable, physically and
chemically stable, easy to mix, it readily dissolves in but does not absorb water. Lactose monohydrate
is available as a powder in different grades, density, and flowability. Here we present a mathematical

c© The author 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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model of solvated crystallization of α-lactose monohydrate.
Two forms of lactose, α- and β -lactose, exist simultaneously in aqueous solution, the exchange

being described by the process of mutarotation with exchange rates k1,k2. For temperatures T 6 90 ◦C
only α-lactose crystallizes, with the specificity that a water molecule is integrated in the crystal. Nucle-
ation and growth of crystals are the basic mechanisms, which may be complemented by modeling attri-
tion, breakage, agglomeration and secondary nucleation effects.

Here we are interested in semi-batch crystallization, where the container is initially only partially
filled. The model shown schematically in Figure 1 combines the dynamics of four interacting popula-
tions, one of them aging, governed by an energy balance. For a schematic view of the crystallizer, see
Figure 2.

FIG. 1. Crystallization of α-lactose monohydrate. The model includes four interacting populations: α-lactose and β -lactose in
liquid phase, water, and crystals of α-lactose monohydrate. The two forms of lactose, α-lactose and β -lactose, exist simulta-
neously in aqueous solution, the exchange being governed by mutarotation, with exchange rates k1 and k2, depending on the
temperature, governed in turn by the energy balance. The latter includes the internal heat produced by the crystallization reaction,
and the heating and cooling system used to trigger and control the process. Altogether this involves the temperature of the slurry
(Mersmann, 2001), or suspension, T (t), the temperature of the crystallizer jacket, Tjacket(t) used in cooling the crystallizer, the
set-point temperature Tsp(t) used to control the crystallizer jacket, and the temperature of the feed added during the process.

Mathematical models of crystallization are known for a variety of processes, but solvated crystalliza-
tion of α-lactose has not been discussed in the literature within a complete model including population,
molar and energy balances. The model we derive here includes breakage and attrition, but does not
include agglomeration, as the latter is negligible. We validate the model mathematically by proving
global existence of solutions based on physically meaningful hypotheses. Our method of proof expands
on Gurtin (see Gurtin et al. (1974)) and Calsina (see Calsina et al. (1995)), see also Smith (1994);
Cushing (1989).
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FIG. 2. Schematic view of the crystallizer, the container in which operated the crystallization process. Control inputs are the
solute feed, and the set-point temperature.

For more general information on crystallization of lactose we mention Thurlby, Bronlund, Butler
and Dincer (Thurlby et al., 1976; Bronlund, 1997; Butler, 1998; Dincer, 2000). In fact, lactose has long
been regarded as a mere admixture, but recent research has revealed several new possibilities for its
utilization (McSweeney et al., 2009).

The structure of the paper is as follows. In the section 2 we present the mathematical model of
semi-batch solvated crystallization of α-lactose monohydrate. In section 3 we present our main result
on global existence and uniqueness of the solution. We conclude the proof of global existence and
uniqueness by way of the characteristic curves and moments in discussed in section 4. In section 3
we present realistic hypotheses which we need in the proof of our result. In section 5 we discuss prior
estimates. Section 6 discuss the proof of our main result, which uses the method of characteristics with
a fixed point argument for an operator, which acts as a contraction with respect to a specific metric. The
final section 7 presents conclusions.

2. Modelling and dynamics of process

In this section we present the population, mass and energy balance equations which describe the dynamic
model of crystallization of α-lactose monohydrate.

2.1 Population balance equation

The population balance equation describes a first interaction between the population of solid crystals.
characterized by their length L, and two ageless populations of solute molecules of the constituent
in liquid phase. The population balance equation models birth, growth and death of crystals due to
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breakage and is given by

∂ (V (t)n(L, t))
∂ t

+G
(
cα(t),cβ (t),T (t)

) ∂ (V (t)n(L, t))
∂L

=−a(L)V (t)n(L, t)+V (t)
∫

∞

L
a(L′)b(L′,L)n(L′, t)dL′

(2.1)

V (0)n(L,0) =V0n0(L) (2.2)

n(0, t) =
B
(
cα(t),cβ (t),T (t)

)
G
(
cα(t),cβ (t),T (t)

) (2.3)

Here n(L, t) is the distribution of α-lactose crystals, CSD, that is, the number of α-lactose crystals per
unit volume 1 m3 and per unit length 1 m, expressed as number ·m−3 ·m−1. The quantities cα(t),cβ (t)
are the dimensionless concentrations of α- and β -lactose in the liquid phase, that is

mα = cα mH2O, mβ = cβ mH2O, (2.4)

where mα ,mβ represent the mass of α- respectively β -lactose in the liquid phase, mH2O the mass of
water not integrated in crystals.

The total volume of slurry V (t) in the crystallizer is a dependent variable given in (2.19), G
(
cα ,cβ ,T

)
is the temperature-dependent growth coefficient of α-crystals, or the velocity of crystal growth in m ·s−1,
assumed independent of crystal size L.

The boundary condition n(0, t) involves the temperature dependent birth coefficient B(cα ,cβ ,T ), the
velocity of nucleation or crystal birth in number ·m−3 · s−1. The initial condition n(L,0) represents the
crystal seed n0(L).

The right hand side of (2.1) describes breakage and attrition. The breakage rate a(L) represents the
probability that a particle of size L and volume kvL3 undergoes breakage, where kv is a volumic shape
factor. The daughter distribution b(L,L′) represents the conditional probability that a particle of size L,
when broken, produces a particle of size L′ < L. Following (Ziff, 1985), assuming that a particle breaks
on average into Np parts leads to ∫ L

0
b(L,L′)dL′ = Np. (2.5)

In the crystallization literature it is customary to assume binary breakage Np = 2, as this seems general
enough to model practical phenomena. We refer to Ziff (Ziff, 1985), Kostoglou et al. (Kostoglou et al.,
2002), Hounslow et al. (Hounslow et al., 2001), Ramkarishna (Ramkrishna et al., 2000) and Hede
(Hede et al., 2006) for more information on fragmentation.

The sink term on the right of (2.1) gathers particles leaving size L by being broken down to smaller
sizes L′ < L,

Q−break(L, t) =
∫ L

0
a(L)b(L,L′)n(L, t)dL′.

On the other hand the source term at size L has the form

Q+
break(L, t) =

∫
∞

L
a(L′)b(L′,L)n(L′, t)dL′,

representing particles broken down from all possible larger sizes L′ > L to size L. Now conservation of
mass is ensured by ∫ L′

0
L3b(L′,L)dL = L′3. (2.6)
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quantity symbol unit
Crystal size distribution n(L, t) number ·m−3 ·m−1

Crystal seed n0(L) number ·m−3 ·m−1

Crystal breakage rate a(L) 1/s
Breakage type b(L′,L) 1/m

Table 1. Size related quantities

Indeed, the total mass of crystals being broken is

m−break(t) =
∫

∞

0
a(L)n(L, t)L3 dL.

On the other hand, the total mass of new crystals born due to breakage is

m+
break(t) =

∫
∞

0

∫
∞

L
a(L′)b(L′,L)n(L′, t)dL′L3dL

=
∫

∞

0
a(L′)n(L′, t)

∫ L′

0
L3b(L′,L)dLdL′

=
∫

∞

0
a(L′)n(L′, t)L′3dL′ = m−break(t),

using (2.6). This confirms that breakage leaves the total crystal mass invariant. In contrast, if we
compute the balance of number of individuals being broken, we obtain

Q+
break(t) =

∫
∞

0

∫
∞

L
a(L′)b(L′,L)n(L′, t)dL′dL

=
∫

∞

0
a(L′)n(L′, t)

∫ L′

0
b(L′,L)dLdL′

=
∫

∞

0
a(L′)n(L′, t)NpdL = NpQ

−
break(t),

which confirms that breakage multiplies by Np the total number of individuals of that part of the popu-
lation which undergoes breakage.

2.2 Crystal mass and solvent mass balance

We consider the mass mcry(t) of mono-hydrated α-lactose crystals as a function of time and relate it to
the crystal size distribution n(L, t) through

mcry(t) = kvρcry

∫
∞

0
V (t)n(L, t)L3dL,

where ρcry is the crystal density. Therefore, we have

dmcry(t)
dt

= ρcrykv

∫
∞

0

∂ (V (t)n(L, t))
∂ t

L3 dL, (2.7)
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the initial condition associated with (2.7) being

mcry,0 = kvρcryV0

∫
∞

0
n0(L)L3dL. (2.8)

The particularity of solvated crystallization is that the variations of solvent mass,
dmH20

dt , and of crys-

tal mass, dmcry
dt , are coupled. The fact that α-lactose crystals integrate a water molecule means that

molecular weights of the solid and liquid phase of α-lactose are related as

R =
Mcry

Mα

= 1.0525 > 1. (2.9)

Therefore, if we temporarily define the mass of water inside crystals as mH20⊂cry, we have

mH20⊂cry =

(
1− 1

R

)
mcry.

In consequence,

dmH2O

dt
=−

dmH2O⊂cry

dt
+ ṁ±H2O =−

(
1− 1

R

)
dmcry

dt
+ ṁ±H2O, (2.10)

where ṁ±H2O includes external sources and sinks, like the feed of water during the semi-batch mode. The
interpretation is that the variation of the free water mass mH2O is governed by the inclusion of water
molecules in crystals where it is bound, and by external sources and sinks.

By using the population balance equation (2.1), and by combining (2.10) and (2.7) allows us now to
establish the solvent mass balance

dmH2O(t)
dt

= (R−1−1)3kvρcryG
(
cα(t),cβ (t),T (t)

)
V (t)

∫
∞

0
n(L, t)L2dL+ ṁ±H2O(t). (2.11)

2.3 Mass balance of α-lactose

The next step concerns the mass balance for α-lactose in the liquid phase. The variation of mass mα of
α-lactose in the liquid phase is related to the variation of crystal mass mcry and the mass mβ of β -lactose
via

dmα(t)
dt

=− 1
R

dmcry(t)
dt

− k1 (T (t))mα(t)+ k2 (T (t))mβ (t)+ ṁ±α (t)

=− 1
R

dmcry(t)
dt

+mH2O(t)
[
−k1 (T (t))cα(t)+ k2 (T (t))cβ (t)

]
+ ṁ±α (t), (2.12)

where k1 and k2 are the mutarotation exchange coefficients. Analytic expressions for k1 and k2 will be
given in the section 2.7.

The factor 1/R in the first term takes (2.9) into account, while the second term models loss and gain
of α-lactose in the liquid phase due to mutarotation. The third term ṁ±α regroups external sources and
sinks for α-lactose. By definition of the concentrations we have mα = cα mH2O, so that

dmα

dt
= mH2O

dcα

dt
+ cα

dmH2O

dt
.
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This leads to

mH2O(t)
dcα(t)

dt
+ cα(t)

dmH2O(t)
dt

= mH2O(t)
[
−k1 (T (t))cα(t)+ k2 (T (t))cβ (t)

]
− 1

R
dmcry(t)

dt
+ ṁ±α (t).

Substituting (2.11) gives

mH2O
dcα

dt
− cα

(
1− 1

R

)
dmcry

dt
=− 1

R
dmcry

dt
+mH2O

[
−k1cα + k2cβ

]
+ ṁ±α − cα ṁ±H2O,

which can be simplified to

mH2O
dcα

dt
+

[
1
R
− cα

(
1− 1

R

)]
dmcry

dt
= mH2O

[
−k1cα + k2cβ

]
+ ṁ±α − cα ṁ±H2O.

We can interpret the source term ṁ±α as ṁ±α = ċ±α m±H2O + c±α ṁ±H2O. Then we obtain

mH2O
dcα

dt
+

[
1
R
− cα

(
1− 1

R

)]
dmcry

dt
= mH2O

[
−k1cα + k2cβ

]
+ ċ±α m±H2O +

(
c±α − cα

)
ṁ±H2O.

Dividing by mH2O gives the equation

dcα

dt
=− 1

mH2O

[
1
R
− cα

(
1− 1

R

)]
dmcry

dt
− k1cα + k2cβ + ċ±α

m±H2O

mH2O
+
(
c±α − cα

) ṁ±H2O

mH2O
. (2.13)

Our study uses ċ±α = 0 and c−α = 0, and c+α constant, which means the fraction of α-lactose in the feed
does not change, even though the feed rate ṁ+

H2O(t) is time-varying and may be used to control the
process.

2.4 Mass balance of β -lactose

Proceeding in analogous fashion for the mass balance of β -lactose, we have

dmβ

dt
= k1mα − k2mβ + ṁ±

β
, (2.14)

which accounts for mutarotation and feed. Using
dmβ

dt = mH2O
dcβ

dt +cβ

dmH2O
dt in tandem with (2.11), we

obtain

mH2O
dcβ

dt
− cβ

(
1− 1

R

)
dmcry

dt
= mH2O

[
k1cα − k2cβ

]
+ ṁ±

β
− cβ ṁ±H2O.

Again we interpret ṁ±
β

as ṁ±
β
= ċ±

β
m±H2O + c±

β
ṁ±H2O, then

dcβ

dt
=

cβ

mH2O

(
1− 1

R

)
dmcry

dt
+ k1cα − k2cβ + ċ±

β

m±H2O

mH2O
+
(

c±
β
− cβ

) ṁ±H2O

mH2O
. (2.15)

The crucial point about equations (2.13) and (2.15) is that on substituting (2.7), the state mcry disappears.
Our study uses ċ±

β
= 0 and c−

β
= 0. Since in our experiment, we have only a source and no sink, then

ṁ−H2O = 0, so that the source term is c+
β

ṁ+
H2O

mH2O
, with c+

β
fixed. For the same reason, we are left with a

source term c+α
ṁ+

H2O
mH2O

on the mass balance of β -lactose. We shall switch to the notation qH2O := ṁ+
H2O,

then the source term will given by c+
β

qH2O
mH2O

.
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2.5 Relating volume of slurry to masses

The total volume of slurry V (t) in the crystallizer is a dependent variable, which we now express as a
function of the states mα , mβ , and mH2O. Observe that we have the relations

Vα = mα ρ
−1
lac,α , Vβ = mβ ρ

−1
lac,β , Vcry = mcryρ

−1
cry , VH2O = mH2Oρ

−1
H2O, (2.16)

with the obvious meanings, so that the total volume is

V (t) =Vα(t)+Vβ (t)+VH2O(t)+Vcry(t). (2.17)

Substituting the expressions from the previous sections,

Vα = cα mH2Oρ
−1
lac,α , Vβ = cβ mH2Oρ

−1
lac,β , VH2O = mH2Oρ

−1
H2O,

and using

Vcry(t) =
(

kvρcryV (t)
∫

∞

0
n(L, t)L3dL

)
ρ
−1
cry = kvV (t)

∫
∞

0
n(L, t)L3dL,

we obtain

V (t)
(

1− kv

∫
∞

0
n(L, t)L3dL

)
= mH2O(t)

[
cα(t)ρ−1

lac,α + cβ (t)ρ
−1
lac,β +ρ

−1
H2O

]
. (2.18)

This may be written as

V (t) =
mH2O(t)

1− kv
∫

∞

0 n(L, t)L3dL

[
ρ
−1
lac,α cα(t)+ρ

−1
lac,β cβ (t)+ρ

−1
H2O

]
. (2.19)

This expression will have to be substituted for V (t) in the formulae below and above. The initial condi-
tion V (0) =V0 now leads to

mH2O(0)
1− kv

∫
∞

0 n0(L)L3dL

[
ρ
−1
lac,α cα(0)+ρ

−1
lac,β cβ (0)+ρ

−1
H2O

]
=V0, (2.20)

where

mH2O(0) = mH2O,0, (2.21)

which when substituted into (2.20) gives the initial condition

V0 = mcry,0ρ
−1
cry +mH2O,0

[
ρ
−1
lac,α cα,0 +ρ

−1
lac,β cβ ,0 +ρ

−1
H2O

]
. (2.22)

Using mα = mH2Ocα and mβ = mH2Ocβ , we obtain

mα,0 = mH2O(0)cα(0), (2.23)

and

mβ ,0 = mH2O(0)cβ (0). (2.24)
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In addition, if we assume that α-and β -lactose are initially at an equilibrium of mutarotation, we have
to add the initial condition

cβ ,0 = km(T0)cα,0, (2.25)

where

T0 = T (0) (2.26)

is the initial temperature of the slurry. Clearly if mH2O,0 and cα,0, cβ ,0 are known, we also know V0.
Conversely, if V0 and cα,0, cβ ,0 are known, we can determine mH2O,0. Likewise, since we assume that
α and β are initially at equilibrium of mutarotation, it suffices to know V0 and cα,0 +cβ ,0 to reconstruct
mH2O,0. Quantities depending on temperature and initial values are given in Table 4 and Table 5.

2.6 Energy balance

The energy balance includes the internal heat produced by the crystallization reaction, and the heating
and cooling system used to trigger and control the process. Altogether this involves the state T (t)
representing the temperature of the slurry, assumed homogeneous due to stirring, the temperature of the
crystallizer jacket Tjacket(t), and the set-point temperature Tsp(t), which is used as control input. We
also need Tfeed, the temperature of the feed, which we assume constant, and a reference temperature
Tref = 25 ◦C, needed to quantify the heating respectively cooling effect of the feed on the crystallizer
temperature T ; see Mersmann (2001). This leads to the equation

dT (t)
dt

= P1(t)
[
−P2(t)(T (t)−Tref)−∆H

dmcry(t)
dt

+UA(t)
(
Tjacket(t)−T (t)

)
+qH2O(t)

(
Cp

H2O +Cp
α cα(0)+Cp

β
cβ (0)

)
(Tfeed−Tref)

]
, (2.27)

where

dTjacket(t)
dt

=−a(Tjacket(t)−Tsp(t)) (2.28)

was obtained through identification of the system where a is determined experimentally in the labora-
tory. Note that Tsp(t) is used as a control input to regulate Tjacket(t), and therefore indirectly T (t), via
the heat exchange between the jacket and the crystallizer through the contact surface A(t), which is a
dependent function of V (t). The constants Cp

H2O, Cp
α , Cp

β
are the specific heat capacities, and ∆H is the

heat of crystallization in kJ/kg, see McSweeney et al. (2009). We have used the abbreviations

P1(t)−1 = mH2O(t)C
p
H2O +mα(t)C

p
α +mβ (t)C

p
β
+mcry(t)Cp

cry, (2.29)

and

P2(t) =
dmH2O(t)

dt
Cp

H2O +
dmα(t)

dt
Cp

α +
dmβ (t)

dt
Cp

β
+

dmcry(t)
dt

Cp
cry, (2.30)

with mα = cα mH2O, mβ = cβ mH2O as before.
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2.7 Mutarotation and saturation

The mutarotation exchange coefficients k1,k2 depend on temperature via the Arrhenius law

k2(T ) = k0 exp
(
− Ea

Rg(T +273.15)

)
, k1(T ) = k2(T )km(T ),

where k0, Ea are constants, Rg is the gas constant, and where according to Mcleod (2007) km follows the
affine law

km(T ) = 1.64−0.0027 ·T.

The equilibrium of mutarotation therefore occurs at

cα,sat,eq(T ) =
θ1 exp(θ2T )

100(1+ km(T ))
,

where θ1 = 10.9109 and θ2 = 0.02804 are determined experimentally according to Mcleod (2007), so
that the saturation level for the formation of α-crystals is also temperature dependent and expressed as

cα,sat(cβ ,T ) = cα,sat,eq(T )−F(T )(cβ − km(T )cα,sat,eq(T )),

with F(T ) = 0.0187 ·exp(0.0236 ·T ) a correction factor for α-lactose solubility following a Visser type
law according to Mcleod (2007). Note that the saturation concentration varies in time as cα,sat(cβ (t),T (t)),
because cβ (t) and T (t) vary in time.

2.8 Nucleation and growth rates

The nucleation and growth rates are based on phenomenological laws which are usually determined
experimentally. Following Mcleod (2007), we used the birth rate

B(cα ,cβ ,T ) = kb exp

− B0

(T +273.15)3 ln2
(

cα

cα,sat(cβ ,T )

)
 (2.31)

for cα > cα,sat, while B(cα ,cβ ,T ) = 0 for cα 6 cα,sat(cβ ,T ). Constant kb given in Table 3 determines
the unit of B, while the unit of B0 is ◦C (Mimouni, 2007; Mimouni A. et al., 2009).

Similarly, the growth rate was based on Mcleod (2007) and chosen as

G(cα ,cβ ,T ) = kg
(
cα − cα,sat(cβ ,T )

)
,

with unit determined by the unit of the growth coefficient kg in m · s−1. As we can see, cα > cα,sat leads
to G > 0, in which case crystals grow, while cα < cα,sat means crystals shrink.

3. Main result

In this section we present our main result, the global existence and uniqueness theorem. The complete
model for which this will be proved includes the population balance equation (2.1), coupled with the
mass balances equations (2.7), (2.11), (2.12), (2.14), and the energy balance (2.27). The initial condition
for the population balance is n(L,0) = n0(L), while the initial conditions of the mass balances (2.7),
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n(L, t) number/m ·m3 particle size distribution
mα (t) kg mass of α-lactose in solution
mβ (t) kg mass of β -lactose in solution
V (t) m3 volume of slurry
A(t) m2 contact surface

Table 2. Units of dynamic quantities

(2.11), (2.12), (2.14), and the energy balance (2.27) are given by the expressions (2.8), (2.21), (2.23),
(2.24) and (2.26).

Let us next present the hypotheses under which global existence of a solution will be shown. These
are motivated by the physics of the process, leading to prior bounds on mass, volume, and temperature.
A detailed discussion of theses hypotheses will be given in the prior estimate section 5.

• Restriction of the total volume of slurry by way of a control constraint limiting the cumulative
feed rate via

(H1)
∫ t

0
qH2O(τ)dτ 6

1(
cα,0 + cβ ,0 +1

) [ Vmax−V0

ρα
−1 +ρβ

−1 +ρH2O−1 +ρcry−1

]
;

• An allowed range for the set-point temperature, corresponding to a control constraint

(H2) T 6 Tsp(t)6 T for t > 0;

• An assumption about the initial mixture of water and lactose in the crystallizer

(H3) 0 < mα(0)+mβ (0)<
(

Mcry

Mα

−1
)−1

mH2O(0);

• Moreover, mathematically motivated hypotheses on the breakage terms a and b:

(H4) ‖a‖∞ := max
06L<∞

a(L)<+∞, ‖a‖L = sup
06L<L′

∣∣∣∣a(L)−a(L′)
L−L′

∣∣∣∣< ∞,

(H5) ‖b‖∞ := max
06L6L′

b(L′,L)<+∞, ‖b‖L := sup
L>0

sup
L6L′<L′′

∣∣∣∣b(L,L′)−b(L,L′′)
L′−L′′

∣∣∣∣< ∞,

(H6)
∫ L′

0
β (L′,L)L3dL6 cL′3 for some c > 0.

A typical example of a and b satisfying these hypotheses are for instance

a(L) = 1, b(L,L′) =

 6L2

L′3
if L> L′

0 else

proposed in Marchisio et al.. Other typical breakage rate and daughter distributions based on experi-
ments may for instance be found in Marchisio et al. (Marchisio et al., 2002), Reynolds et al. (Reynolds
et al., 2005), or Ziff and McGrady (Ziff, 1985).
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quantity symbol value unit
maximum volume Vmax 0.01 m3

initial volume V0 0.0015 m3

crystal density ρcry 1545 kg ·m−3

α-lactose density ρlac,α 1545 kg ·m−3

β -lactose density ρlac,β 1590 kg ·m−3

water density ρH2O 1000 kg ·m−3

volumic shape factor kv 0.523598 –
ratio of molar masses R 1.0525 –
universal gas constant Rg 8.314 J/K/mol
birth rate coefficient kb 1010 number ·m−3s−1

nucleation constant B0 1.46878 –
nucleation exponent b 2 –

growth rate coefficient kg 1.18 ·10−7 m · s−1

growth exponent g 1 –
activation energy Ea 7.4 ·104 J

kinetic mutarotation constant k0 2.25 ·108 s−1

heat of crystallization ∆H -43.1 kJ/kg
heat transfer coefficient U 300 W/m2/K
heat capacity of water Cp

H2O 4180.5 J/kg/K
heat capacity of α-crystal Cp

cry 1251 J/kg/K
heat capacity of α-lactose Cp

α 1193 J/kg/K
heat capacity of β -lactose Cp

β
1193 J/kg/K

fraction of α-lactose in feed c+α 0.521 kg/kg water
fraction of β -lactose in feed c+

β
0.359 kg/kg water

mass of seed mcry,0 0.1 kg
reference temperature Tref 25 ◦C

feed temperature Tfeed 20 ◦C
identified jacket heat coefficient a 0.0019 –

Table 3. Numerical constants of industrial crystallizer

Let us now outline the idea of proof of our main result, which uses the method of characteristics
with a fixed point argument for an operator Q, which will act as a contraction with respect to a specific
metric. This operator Q is defined by:

Qx = x̃ = (m̃α , m̃β , m̃H2O, m̃cry, T̃ , µ̃2, µ̃1, µ̃0, w̃).

where x = (mα ,mβ ,mH2O,T,mcry,µ2,µ1,µ0,w) is an element of the space

F =C[0, t f ]
8×C(R+× [0, t f ])∩L 1

u (R+× [0, t f ],h(L)dL),

where the elements of x̃ are defined by way of the characteristics which will be detailed in the section
introducing characteristics. The space F and the operator Q will be detailed in the section global exis-
tence and uniqueness. The expressions of the elements of x and x̃ will be given in section 6. Now our
main result, whose proof we will be completed in section 6, is the following
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quantity symbol unit
mutarotation exchange fraction km(T ) –

mutarotation α → β exchange rate k1(T ) s−1

mutarotation β → α exchange rate k2(T ) s−1

saturation concentration at equilibrium of mutarotation cα,sat,eq(T ) –
saturation concentration cα,sat(cβ ,T ) –

crystal growth rate G(cα ,cβ ,T ) ms−1

crystal birth rate B(cα ,cβ ,T ) number ·m−3s−1

Table 4. Quantities depending on temperature

THEOREM 3.1 Let hypotheses (H1)-(H3) be satisfied, and suppose the initial condition of the crys-
tallizer respects the global volume bound Vmax. Assume further that the breakage kernel satisfies the
hypotheses (H4)-(H6). Then the crystallizer system (2.1), (2.11), (2.13), (2.15), (2.27) has a unique
global solution on [0,∞).

4. Introducing characteristics

In this chapter we present a transformation of the formulation of the model by introducing the moments
and the characteristic curves.

4.1 Moments

We consider the population balance equation

∂ (V (t)n(L, t))
∂ t

=−G
(
cα(t),cβ (t),T (t)

) ∂V (t)n(L, t)
∂L

−a(L)V (t)n(L, t)+w(L, t) (4.1)

where
w(L, t) =

∫
∞

L
a(L′)b(L′,L)V (t)n(L′, t)dL′ (4.2)

is the source term due to breakage and attrition. The boundary condition is

n(0, t) =
B
(
cα(t),cβ (t),T (t)

)
G
(
cα(t),cβ (t),T (t)

) , t > 0 (4.3)

and the initial condition is

n(L,0) = n0(L), L ∈ [0,∞). (4.4)

Then we can define

w0 = w(L,0) =
∫

∞

L
a(L′)b(L′,L)V (0)n0(L′)dL′. (4.5)

Now, we consider the 3rd moment of w(·, t), for which we obtain the estimate∫
∞

0
w(L, t)L3 dL =V (t)

∫
∞

0
L3
∫

∞

L
a(L′)b(L′,L)n(L′, t)dL′ dL

=V (t)
∫

∞

0
a(L′)n(L′, t)

(∫ L′

0
L3b(L′,L)dL

)
dL′.
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Under (2.6), and with a(·) ∈ L∞, we now derive the estimate

∫
∞

0
w(L, t)L3 dL6 ‖a‖∞ρ

−1k−1
v mcry(t),

where mcry(t) = ρkv
∫

∞

0 V (t)n(L, t)L3 dL is the total crystal mass.
The population balance is coupled with the mass balance of α-lactose, the mass balance of β -lactose

and the energy balance equations.
We start by solving (2.11) with respect to mH2O(t), (2.13) with respect to cα(t), (2.15) with respect

to cβ (t) and (2.27) with respect to T (t), knowing that mcry(t) = kvρcry
∫

∞

0 V (t)n(L, t)L3dL. For the
concentration cα the mass balance of α-lactose gives

cα(t) =
[

cα,0 +
∫ t

0

(
k2(T (τ))cβ (τ)+

qH2O(τ)cα,0

mH2O(τ)
−

m′cry(τ)

RmH2O(τ)

)
e
−
∫

τ
0

(
−k1(T (s))−

qH2O(s)

mH2O(s)+
(1− 1

R )m′cry(s)
mH2O(s)

)
ds

dτ

]
(4.6)

× e
∫ t

0

(
−k1(T (τ))−

qH2O(τ)

mH2O(τ)
+

(1− 1
R )m′cry(τ)

mH2O(τ)

)
dτ

using cα,0 = cα(0). Similarly, the mass balance of β -lactose in terms of the concentration cβ gives

cβ (t) =
[

cβ ,0 +
∫ t

0

(
k1(T (τ))cα(τ)+

qH2O(τ)

mH2O(τ)
cβ ,0

)
e
−
∫

τ
0

(
−k2(T (s))−

qH2O(s)

mH2O(s)+
(1− 1

R )

mH2O(s)m′cry(s)
)

ds
dτ

]
(4.7)

× e
∫ t

0

(
−k2(T (τ))−

qH2O(τ)

mH2O(τ)
+

(1− 1
R )

mH2O(τ)
m′cry(τ)

)
dτ

using cβ ,0 = cβ (0). Equivalently, we may solve directly for the masses to obtain

mα(t) =
[∫ t

0

(
k2(T (τ))mβ (τ)−

1
R

m′cry(τ)+ cα,0qH2O(τ)

)
e
∫

τ
0 k1(T (s))dsdτ +mα,0

]
e
∫ t

0−k1(T (s))ds

(4.8)

using mα = mH2Ocα and mβ = mH2Ocβ . By solving (2.15) with respect to mβ using variation of the
constant, we obtain

(4.9)

mβ (t) =
[∫ t

0

(
k1(T (τ))mα(τ)+ cβ ,0qH2O(τ)

)
e
∫

τ
0 k2(T (s))dsdτ +mβ ,0

]
e
∫ t

0−k2(T (s))ds.

For the mass balance of solvent we have

mH2O(t) =
∫ t

0

[
−(1− 1

R
)m′cry(τ)+qH2O(τ)

]
dτ +mH2O,0, (4.10)
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where mH2O,0 = mH2O(0). Finally, the energy balance is

T (t) = e
∫ t

0(−P1(τ)P2(τ)−UA(τ))dτ

[
T0 +

∫ t

0

(
P1(τ)

(
P2(τ)Tref−∆Hm′cry(τ) (4.11)

+UA(τ)Tjacket(τ)+qH2O(τ)
(

Cp
H2O +Cp

α cα,0 +Cp
β

cβ ,0

)
(Tfeed−Tref)

))
e−

∫
τ
0 (−P1(s)P2(s)−UA(s))dsdτ

]
,

where T0 =T (0) and mα = cα mH2O, mβ = cβ mH2O. By using the third moment µ3(t)=
∫

∞

0 V (t)n(L, t)L3 dL,
we have mcry(t) = ρkvµ3(t) and m′cry(t) = ρkvµ ′3(t).

4.2 Characteristic curves

Now we are ready to introduce characteristic curves as follows (Evans, 2001). For t0 and L0 fixed we let
φt0,L0 be the solution of the initial value problem

φ
′(t) = G

(
cα(t),cβ (t),T (t)

)
, φ(t0) = L0. (4.12)

Since the right hand side does not depend on L, we have explicitly

φt0,L0(t) = L0 +
∫ t

t0
G
(
cα(τ),cβ (τ),T (τ)

)
dτ. (4.13)

We write specifically z(t) := φ0,0(t). Now we introduce a family of functions Nt,L which we use later to
define V (t)n(L, t) via Nt0,L0(t) :=V (t)n(φt0,L0(t), t). We let L = φt0,L0(t), then Nt0,L0 satisfies

N′t0,L0
(t) =

∂ (V (t)n(L, t))
∂L

φ
′
t0,L0

(t)+
∂ (V (t)n(L, t))

∂ t
(4.14)

=
∂ (V (t)n(L, t))

∂L
G
(
cα(t),cβ (t),T (t)

)
+

∂ (V (t)n(L, t))
∂ t

.

Therefore (4.1) transforms into

N′t0,L0
(t) =−a(φt0,L0(t))Nt0,L0(t)+w(φt0,L0(t), t), (4.15)

and we consequently use these ODEs to define the functions Nt,L. Integration of (4.15) gives

Nt0,L0(t) =
(

Nt0,L0(t0)+
∫ t

t0
w(φt0,L0(τ),τ)exp

{∫
τ

t0
a(φt0,L0(σ))dσ

}
dτ

)
× exp

{
−
∫ t

t0
a(φt0,L0(τ))dτ

}
. (4.16)

We can exploit this for two possible situations, where Nt0,L0(t0) can be given an appropriate value.
Before putting this to work, we will need two auxiliary functions τ and ξ , which are easily defined

using the characteristics. First we define τ = τ(t,L) implicitly by

φτ,0(t) = L, or equivalently, φt,L(τ) = 0, (4.17)
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or again,

∫ t

τ(t,L)
G
(
cα(σ),cβ (σ),T (σ)

)
dσ = L. (4.18)

Then we define ξ = ξ (t,L) = φt,L(0), which gives ξ = L+
∫ 0

t
G
(
cα(τ),cβ (τ),T (τ)

)
dτ . Using Nt,L,

respectively (4.16), we can now define

V (t0)n(L0, t0)=



(
V (t0)

B
(
cα(τ0),cβ (τ0),T (τ0)

)
G
(
cα(τ0),cβ (τ0),T (τ0)

) +∫ t0

τ0

w(φτ0,0(s),s)exp
{∫ s

τ0

a(φτ0,0(σ))dσ

}
ds

)
×exp

(
−
∫ t0

τ0

a(φτ0,0(s))ds
)
, if L0 < z(t0)

(
V (t0)n0(φt0,L0(0))+

∫ t0

0
w(φt0,L0(s),s)exp

{∫ s

0
a(φt0,L0(σ))dσ

}
ds
)

×exp
(
−
∫ t0

0
a(φt0,L0(s))ds

)
, if L0 > z(t0)

(4.19)
where τ0 = τ(t0,L0) and t0 ∈ [0, t f ]. The formula is justified as follows. Let t0,L0 be such that L0 <
z(t0) = φ0,0(t0). This is the case where τ0 = τ(t0,L0) > 0. Here we consider equation (4.15) for Nτ0,0
with initial value Nτ0,0(τ0) = V (τ0)n(φτ0,0(τ0),τ0) = V (τ0)n(0,τ0) = V (τ0)B(c(τ0))/G(c(τ0)). This
uses the fact that φτ0,0(τ0) = 0 according to the definition of φτ,0. Integration clearly gives the upper
branch of (4.19).

Next consider t0,L0 such that L0 > z(t0). Then τ0 < 0, so that we do not want to use it as initial
value. We therefore apply (4.15), (4.16) to Nt0,L0 , now with initial time t = 0. Then we get

Nt0,L0(t0) =
(

Nt0,L0(0)+
∫ t0

0
w(φt0,L0(s),s)exp

{∫ s

0
a(φt0,L0(σ))dσ

}
ds
)

(4.20)

× exp
(
−
∫ t0

0
a(φt0,L0(s))ds

)
.

Here Nt0,L0(0) =V (0)n(φt0,L0(0),0) =V (0)n0(φt0,L0(0)), so we get the lower branch of (4.19) all right.
This justifies the formula and completes the definition of the characteristic curves and the representation
of V (t)n(L, t) via the characteristics.

5. A priori estimates

In this section we discuss two hypotheses on the control inputs Tsp and qH2O, which lead to a priori
estimates, under which later on global existence of a solution will be shown. These conditions are
motivated by the physics of the process and lead to bounds on mass, volume, and temperature. Note that
we do not get a priori estimates on surface, length and number of solids, which as we shall see presents
a difficulty when proving global existence of solutions.
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5.1 Hypothesis on total volume using the feed rate

The total mass of slurry M in the crystallizer is given by

M(t) = mα(t)+mβ (t)+mH2O(t)+mcry(t), (5.1)

hence M(0) = mα(0)+mβ (0)+mH2O(0)+mcry(0). The total volume of slurry V is

V (t) =Vα(t)+Vβ (t)+VH2O(t)+Vcry(t) =
mα(t)

ρα

+
mβ (t)

ρβ

+
mH2O(t)

ρH2O
+

mcry(t)
ρcry

. (5.2)

Since we are only allowed a maximum volume Vmax of slurry in the crystallizer, we have to steer the
process such that V (t)6Vmax at all times t. Naturally, this can be arranged by a suitable control of the
feed rate, and this is expressed by hypothesis (H1):

LEMMA 5.1 Suppose the feed rate qH2O satisfies the constraint

(H1)
∫ t

0
qH2O(τ)dτ 6

1(
cα,0 + cβ ,0 +1

) [ Vmax−V0

ρα
−1 +ρβ

−1 +ρH2O−1 +ρcry−1

]
(5.3)

at all times t > 0. Then the total volume of slurry V (t) satisfies V (t)6Vmax.

Proof. From (5.1) we obviously have

M′(t) = m′α(t)+m′
β
(t)+m′H2O(t)+m′cry(t). (5.4)

Replacing m′H2O , m′α and m′
β

in (5.4) by their expressions (2.11), (2.12) and (2.14), we obtain

M′(t) =
(
cα,0 + cβ ,0 +1

)
qH2O(t) (5.5)

which on integration gives ∫ t

0
qH2O(τ)dτ =

M(t)−M(0)
cα,0 + cβ ,0 +1

(5.6)

for every t > 0. Hence, using the hypothesis (H1) and (5.6), we obtain

M(t)6
Vmax

ρα
−1 +ρβ

−1 +ρH2O−1 +ρcry−1 . (5.7)

Using (5.1) and (5.2), this implies V (t)6Vmax. �
In a practical process, qH2O could be steered by feedback to avoid overflow of the crystallizer.

5.2 Hypothesis on set-point temperature

As we have seen, bounding the feed rate via (H1) gives a bound on the total volume of slurry, and also
on the total mass, namely

M(t)6Mmax =
Vmax

ρα
−1 +ρβ

−1 +ρH2O−1 +ρcry−1 . (5.8)
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Now we also need to propose a hypothesis concerning the regulation of temperature, where we specify
a range

(H2) T 6 Tsp(t)6 T for t > 0 (5.9)

for the set-point temperature. On the one hand this reflects obvious material constraints on the equip-
ment, but more importantly, we have to assure that the regulated temperature of slurry T (t) stays in the
range where α-lactose crystallizes, i.e., T 6 90◦. We start by deducing a bound on the jacket tempera-
ture.

LEMMA 5.2 Suppose the set-point temperature satisfies (H2). Then the temperature of the jacket satis-
fies

Tlow 6 Tjacket(t)6 Thigh (5.10)

at all times t, where Tlow = Tjacket(0)+T and Thigh = Tjacket(0)+T .

Proof. Solving the energy balance (2.28) with respect to T (t) using variation of the constant gives

Tjacket(t) =
[∫ t

0
aTsp(τ)e

∫
τ
0 adsdτ +Tjacket(0)

]
e−

∫ t
0 ads. (5.11)

Hence, using the hypothesis (H2) and( 5.11), we obtain

e−atTjacket(0)+T 6 Tjacket(t)6 Tjacket(0)+T

for t > 0, which proves the claim. �

LEMMA 5.3 Suppose the set-point temperature satisfies (H2), and the feed rate satisfies (H1). Then
there exist bounds Tl ,Th such that the temperature of slurry satisfies Tl 6 T (t)6 Th at all times t > 0. In
particular, it can be assured that T (t)6 90◦, so that only α-lactose crystallizes.

Proof. Solving the energy balance (2.27) with respect to T (t) using variation of the constant, we obtain

T (t) =
∫ t

0
P1(τ)

[
(P2(τ)−θ(τ))Tref−∆Hm′cry(τ)+UA(τ)Tjacket(τ)+θ(τ)Tfeed

]
(5.12)

×e
−
∫ t

τ

(P1(τ)P2(s)+UA(s))ds
dτ +T0e

−
∫ t

0
(P1(s)P2(s)+UA(s))ds

,

where θ(τ) := qH2O(τ)
(

Cp
H2O +Cp

α cα(0)+Cp
β

cβ (0)
)

and P1(t),P2(t) are given by (2.29), (2.30). Sub-

stituting the expressions of m′H2O(t), m′α(t), m′
β
(t) and m′cry(t) in (2.30), we obtain

P2(t) = σm′cry(t)+θ(t) (5.13)

where σ :=Cp
cry−Cp

H2O(1−R−1)−Cp
α R−1 < 0 and θ(t) as above.

Since the temperature of the jacket satisfies Tlow 6 Tjacket(t) 6 Thigh by Lemma 5.3, we obtain now
the bounds Tl ,Th on the temperature T (t). Namely, using (5.1), hypothesis (H1) and (5.7), we first
obtain Tl(t)6 T (t)6 Th(t), where

Tl =
[
(Tfeed−Tref)(Mmax−M0)+T (0)+ξ σMmax

]
e−(Mmax−M0+tUA0)+ξ e−(Mmax−M0)(1− e−tUA0)
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with ξ = min{Tref,Tlow}, and

Th =
(

ξ Mmax +T (0)
) e−tP0σMmax

UA0
+

Amax

A0

with ξ = max{Tref,Thigh}, P0 =
(

Cp
H2O +Cp

α +Cp
β
+Cp

cry

)−1
M−1

max. Here Amax is the maximal surface
which corresponds to Vmax and A0 is the surface which corresponds to V0. Now the bounds are Tl =
mint>0 Tl(t) and Th = maxt>0 Th(t). Since all the elements used to compute Th can be computed, we can
arrange Th 6 90◦. �

COROLLARY 5.1 From the bounds Tl 6 T (t)6 Th we obtain bounds

ki(T (t))6 κ for i ∈ {1,2,m} and t > 0

on the mutarotation exchange rates.

Proof. By using the bounds Tl 6T (t)6Th and the expressions of mutarotation k2(T )= k0 exp
(
− Ea

Rg(T+273.15)

)
,

km(T ) = 1.64−0.0027T and k1(T ) = k2(T )km(T ), we obtain

k2(T )6 k0 exp
(
− Ea

Rg(Th +273.15)

)
:= k2

km(T )6 1.64−0.0027Tl := km

k1(T )6 k2km := k1

Then for κ = max{k2,km,k1}, we deduce

ki(T (t))6 κ for i ∈ {1,2,m} and t > 0.

�

COROLLARY 5.2 From hypotheses (H1) and (H2) we obtain a bound G(cα(t),cβ (t),T (t))6 G f , t > 0
on the growth rate.

Proof. By using the hypothesis (H1), (H2) and the relations mα(t) = cα(t)mH2O(t) and mβ (t) =

cβ (t)mH2O(t), we obtain mcry(t)6Mmax, cα(t)6
Mmax

mH2O(0)
:= cm and cβ (t)6

Mmax

mH2O(0)
:= cm for all t >

0. Now using the bound Th obtained in lemma 5.3, we can put cs := cα,sat,eq(Th)(1+ km(Th)F(Th)). Then
G(cα ,cβ ,T )6 G f := kg(cm− cs). �

5.3 Hypothesis on mass of water using the feed rate

In this section we discuss a hypothesis which assures that the mass of water does not become too small
and stays bounded away from 0. This has also to be assured either by control of the feed, or via the
initial values by assuring that a sufficient quantity of water is present at t = 0. We start by observing
that (H3) may be written equivalently as

(H3) mH2O(0)> 0 and θ := 1− (R−1)(cα,0 + cβ ,0)> 0,

where R is introduced in (2.9). Now we have the following
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LEMMA 5.4 Suppose hypothesis (H3) is satisfied. Then the mass of water in the slurry satisfies
mH2O(t)> θmH2O(0)> 0 for all t > 0.

Proof. By adding (2.12) and (2.14), we obtain

m′cry(t) =−R
[
m′α(t)+m′

β
(t)
]
+R

(
cα,0 + cβ ,0

)
qH2O(t). (5.14)

By substituting (5.14) in (2.11), we obtain

m′H2O(t) = (R−1)
[
m′α(t)+m′

β
(t)
]
+θqH2O(t), (5.15)

where θ = 1− (R−1)
(
cα,0 + cβ ,0

)
. By integrating (5.15), we obtain

mH2O(t) = mH2O(0)− (R−1)
(
mα(0)+mβ (0)

)
+(R−1)

(
mα(t)+mβ (t)

)
+θ

∫ t

0
qH2O(τ)dτ (5.16)

= θmH2O(0)+θ

∫ t

0
qH2O(τ)dτ +(R−1)

(
mα(t)+mβ (t)

)
In the worst case all lactose molecules in the liquid phase may crystallize, so that

mH2O(t)> θ

∫ t

0
qH2O(τ)dτ +θmH2O(0)> θmH2O(0)> 0. (5.17)

�

REMARK 5.1 Hypothesis (H3) assures that the water initially present in the crystallizer cannot be com-
pletely consumed through crystallization in finite time even in batch mode, where q = 0. This corre-
sponds to an upper bound on the fraction of lactose:

mlactose 6

(
Mcry

Mα

−1
)−1

mH2O = 19.04 mH2O,

which using (2.25) leads to the temperature-dependent bound

mα 6
Mα

(Mcry−Mα)(1+ km(T ))
mH2O (5.18)

at the equilibrium of mutarotation. This should be compared to the lower bound given by the supersat-
uration constraint, which at the equilibrium of mutarotation according to section 2.7 gives

mα >
θ1 exp(θ2T )

100(1+ km(T ))
mH2O. (5.19)

In (5.19) the solubility concentration ranges from cα = mα/mH2O = 0.0478 at 5◦C to cα = 0.5678
at 90◦C, while the upper bound (5.18) ranges from cα = 7.24 at 5◦C to cα = 7.9433 at 90◦C. Since
crystallizers are operated in the range between solubility and supersolubility, which in the case of lactose
is roughly twice the solubility concentration, cf. (Yee et al., 2011, Fig. 1), concentrations cα > 1 are
highly unrealistic, so that the bound (5.18) is in no way restrictive.
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6. Global existence and uniqueness of solutions

In this section we will assemble the results from the previous sections and prove global existence and
uniqueness of solutions of the crystallizer model. We use the method of characteristics with a fixed-point
argument for an operator Q which we now define.

6.1 Setting up the operator

For the function w defined via (4.2) we introduce the Banach space

E =C(R+× [0, t f ])∩L 1
u (R+× [0, t f ],h(L)dL),

where we set h(L) = max{1,L3}. We introduce the norm on E as

‖w‖= ‖w‖∞ + sup
06t6t f

∫
∞

0
|w(L, t)|h(L)dL.

where the fact that in the second term a supremum over t ∈ [0, t f ] is formed is indicated by the index u,
for uniform, in L 1

u . Let us introduce the moments of the CSD as

µi(t) =
∫

∞

0
V (t)n(L, t)Li dL, i = 0,1, . . . , (6.1)

so that mcry = ρkvµ3. The initial conditions are then

µi,0 =
∫

∞

0
V (0)n0(L)Li dL, i = 0,1, . . . . (6.2)

We consider x = (mα ,mβ ,mH2O,T,mcry,µ2,µ1,µ0,w) an element of the space

F =C[0, t f ]
8×E,

where each copy of C[0, t f ] is equipped with the supremum norm, so that the norm on F isx
= ‖mα‖∞ +‖mβ‖∞ +‖mH2O‖∞ +‖T‖∞ +‖mcry‖∞ +‖µ2‖∞ +‖µ1‖∞ +‖µ0‖∞ +‖w‖.

We proceed to define the action of the operator Q on element x ∈ F, writing

Qx = x̃ = (m̃α , m̃β , m̃H2O, m̃cry, T̃ , µ̃2, µ̃1, µ̃0, w̃).

The initial values at t = 0 are

x0 = (mα,0,mβ ,0,mH2O,0,mcry,0,T0,µ2,0,µ1,0,µ0,0,w0),

all specified through table (5).
We define m̃α as the left hand side of (4.8), so that it is a function of the old elements T,mcry in x

and the initial values x(0) = x0. Similarly, we define m̃β as the left hand side of formula (4.9). Note
that we need the derivative m′cry to define these elements, and that can be expressed by the second
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initial value expression
mα,0 (2.23)
mβ ,0 (2.24)

mH2O,0 (2.21)
T0 (2.26)

mcry,0 (2.8)
µi,0 (6.2)
w0 (4.5)

Table 5. Expression of initial values

moment µ2, which is part of x. In fact by substituting the population balance (4.1) in the expression
m′cry(t) = ρkv

∫
∞

0
∂ (V (t)n(L,t))

∂ t L3 dL, we obtain

m′cry(t) =−ρkv

∫
∞

0

[
G
(
cα(t),cβ (t),T (t)

) ∂ (V (t)n(L, t))
∂L

+a(L)V (t)n(L, t)−w(L, t)
]

L3dL

= 3ρkvG
(
cα(t),cβ (t),T (t)

)∫ ∞

0
V (t)n(L, t)L2 dL−ρkv

∫
∞

0
a(L)V (t)n(L, t)L3 dL

+ρkv

∫
∞

0
w(L, t)L3 dL

= 3ρkvG
(
cα(t),cβ (t),T (t)

)
µ2(t)−ρkv

∫
∞

0
a(L)V (t)n(L, t)L3 dL (6.3)

+ρkv

∫
∞

0
w(L, t)L3 dL.

The third step in the definition of Q is to define m̃H2O as the left hand side of formula (4.10). The
left hand side of (4.11) defines T̃ , using the elements of x and x0 on the right. Note that due to the prior
estimates we may consider Tjacket as an input.

In order to define the elements w̃ and m̃cry, we first have to introduce the characteristics φt,L via
formula (4.13), using the old elements x on the right. Then we define the functions Nt,L via formula
(4.16). We are now ready to define m̃cry as

m̃cry(t) = ρkv

∫
∞

0
V (t)n(L, t)L3dL

= ρkv

∫ z(t)

0

(
V (τ)B

(
cα(τ),cβ (τ),T (τ)

)
G
(
cα(τ),cβ (τ),T (τ)

) +
∫ t

τ

w(φτ,0(s),s)exp
{∫ s

τ

a(φτ,0(σ))dσ

}
ds

)

×exp
(
−
∫ t

τ

a(φτ,0(s))ds
)

L3dL (6.4)

+ ρkv

∫
∞

z(t)

(
V (0)n0(φt,L(0))+

∫ t

0
w(φt,L(s),s)exp

{∫ s

0
a(φt,L(σ))dσ

}
ds
)

×exp
(
−
∫ t

0
a(φt,L(s))ds

)
L3dL.
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In the first integral
∫ z(t)

0 we use the change of variables L→ τ = τ(t,L). Then

[0,z(t)] 3 L 7→ τ(t,L) ∈ [0, t], dL = G
(
cα(t),cβ (t),T (t)

)
dτ.

In the second integral
∫

∞

z(t) we use the change of variables L→ ξ (t,L) := φt,L(0). Then

[z(t),∞) 3 L 7→ ξ ∈ [0,∞), dL = dξ .

The inverse relation is L = ξ +
∫ t

0
G
(
cα(σ),cβ (σ),T (σ)

)
dσ = ξ + z(t). From (6.4) we therefore

obtain

m̃cry(t) = ρkv

∫ t

0

(
V (τ)B

(
cα(τ),cβ (τ),T (τ)

)
+
∫ t

τ

w(φτ,0(s),s)exp
{∫ s

τ

a(φτ,0(σ))dσ

}
ds
)

×exp
(
−
∫ t

τ

a(φτ,0(s))ds
)

L(τ)3 dτ (6.5)

+ ρkv

∫
∞

0

(
V (0)n0(ξ )+

∫ t

0
w(φ0,ξ (s),s)exp

{∫ s

0
a(φ0,ξ (σ))dσ

}
ds
)

×exp
(
−
∫ t

0
a(φ0,ξ (s))ds

)
L(ξ )3dξ ,

where L(τ) =
∫ t

τ
G
(
cα(σ),cβ (σ),T (σ)

)
dσ and L(ξ ) = ξ +

∫ t
0 G
(
cα(σ),cβ (σ),T (σ)

)
dσ , and where

we use φt,L(s) = φ0,ξ (s) in the second integral. For fixed t the functions L 7→ τ(t,L) and τ 7→ L(τ)
are inverses of each other, and similarly, L↔ ξ are in one-to-one correspondence via the formula L =
ξ −

∫ t
0 G
(
cα(σ),cβ (σ),T (σ)

)
dσ .

Similarly, continuing to define the operator Q, we define the moments µ̃i, i = 0,1,2 within x̃ via

µ̃i(t) =
∫

∞

0
V (t)n(L, t)Li dL,

where we express the right hand side via characteristics and the elements of x in much the same way as
done for m̃cry.

We also need to get back to the function w̃(L, t). We introduce

β (L,L′) =
{

a(L)b(L,L′), if L> L′

0, else

then we can write

w̃(L′, t) =
∫

∞

L′
a(L)b(L,L′)V (t)n(L, t)dL =

∫
∞

0
β (L,L′)V (t)n(L, t)dL,

which is essentially like the moment integral (6.5), the function L 7→ Li being replaced by β (L,L′).
Applying the same technique as in the case of (6.5), we obtain
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w̃(L′, t) =
∫ t

0

(
V (τ)B

(
cα(τ),cβ (τ),T (τ)

)
+
∫ t

τ

w(φτ,0(s),s)exp
{∫ s

τ

a(φτ,0(σ))dσ

}
ds
)

× exp
(
−
∫ t

τ

a(φτ,0(s))ds
)

β (L(τ),L′)dτ (6.6)

+
∫

∞

0

(
V (0)n0(ξ )+

∫ t

0
w(φt,L(s),s)exp

{∫ s

0
a(φt,L(σ))dσ

}
ds
)

× exp
(
−
∫ t

0
a(φt,L(s))ds

)
β (L(ξ ),L′)dξ ,

which expresses w̃ in terms of w and the characteristics, hence by elements of x. Here we use w ∈ E,
and it is routine to check that w̃ ∈ E, so that x̃ ∈ F. This completes the definition of Q.

We will also need the following hypotheses on the breakage terms a and b:

(H4) ‖a‖∞ := max
06L<∞

a(L)<+∞, ‖a‖L = sup
06L<L′

∣∣∣∣a(L)−a(L′)
L−L′

∣∣∣∣< ∞,

(H5) ‖b‖∞ := max
06L6L′

b(L′,L)<+∞, ‖b‖L := sup
L>0

sup
L6L′<L′′

∣∣∣∣b(L,L′)−b(L,L′′)
L′−L′′

∣∣∣∣< ∞,

and

(H6)
∫ L′

0
β (L′,L)L3dL6 cL′3 for some c > 0.

Note that (H6) is in particular true if conservation of mass in breakage (2.6) is satisfied.

6.2 Setting up the space

We now have to define a closed subset X of F on which the operator Q acts as a contraction with respect
to the metric induced by the norm of F. In other words, we need to assure Q(X)⊂ X andQx(1)−Qx(2)

6 γ
x(1)−x(2)


for a constant 0 < γ < 1 and all x(1),x(2) ∈ X. This will be achieved by choosing t f small enough, as
usual, but in order to prove global existence, we will have to make a careful quantification of γ in terms
of t f and the initial values x0, because we wish to iterate the local existence argument.

We distinguish between globally bounded states and those for which no prior bound can be put
forward. Due to our hypotheses (H1), (H2),(H3) the masses mα ,mβ ,mcry,mH2O and the temperature T
are globally bounded, the bounds being given by formulas (5.8). We write

y = (mα ,mβ ,mH2O,mcry,T )

for the globally bounded states. On the other hand, it is not clear whether the moments µ2,µ1,µ0 nor
w are globally bounded, and whether such a bound can be obtained from the physical constraints. This
is due to particle breakage, which may lead to an exceedingly large number of small particles, or fines.
We write

z = (µ0,µ1,µ2) and w ∈ E
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for the unbounded state. Altogether

x = (y,z,w) ∈ F.

During the following we therefore assume that the initial data for the bounded states
y0 = (mcry,0,mH2O,0,mα,0,mβ ,0,T0) respect these global bounds, that is

mα,0 +mβ ,0 +mcry,0 +mH2O,0 < Mmax, (6.7)

mH2O,0 > 0, θ := 1− (R−1)
(
cα,0 + cβ ,0

)
> 0 and for the temperature

Tl < T (0)< Th.

The hypotheses (H1),(H2),(H3) on the controls qH2O and Tsp will then assure that on every interval of
existence of a solution x(t), the bounded states y(t) satisfy the same global bounds. We split the initial
conditions into x0 = (y0,z0,w0), where y0 is the bounded part, z0, w0 that part which does not have a
prior bound. The state x(t) is split accordingly as x(t) = (y(t),z(t),w(t)). Now define the moments of
w(L, t) as

µw,i(t) =
∫

∞

0
w(L, t)Li dL

and fix K > |z0|+ |µw,0(0)|+ |µw,1(0)|+ |µw,2(0)|+ |µw,3(0)|. Then we define the space X as

X =

{
x ∈ F : x(0) = x0,x = (y,z,w), |z(t)|+

3

∑
i=0
|µw,i(t)|6 K for all t ∈ [0, t f ]

}
.

LEMMA 6.1 There exists a constant c> 0 depending only on the global volume bound Vmax such that for
every y0 satisfying (6.7), every z0,w0, and every K > |z0|+∑

3
i=0 |µw,i(0)| the following is true: Suppose

t f > 0 satisfies

0 < t f <

(
K−|z0|−

3

∑
i=0
|µw,i(0)|

)
/c. (6.8)

Then Q(X)⊂ X.

Proof. Integrating over an interval [0, t f ] leads to estimates of the form

z̃(t) = z0 +
∫ t

0
f (y(τ),z(τ),w(τ))dτ 6 |z0|+(c+K) t f , for all 06 t 6 t f

where a global bound c for y(t) is used on [0, t f ], while the bounds |z(t)|6 K, |µw,i(t)|6 K are used for
the states z,w. Then in order to assure |̃z(t)|6 K, we have but to force the condition

|z0|+ c(1+K)t f 6 K,

which gives t f 6
K−|z0|
c(1+K) 6

K−|z0|
c . A similar argument applies to the moments µw,i of w, and combining

the two gives (6.8). For the state w, hypothese (H6) is used to prove |µw,i(t)|6 K. �



26 of 28 A. RACHAH ET AL.

6.3 Proving γ ∈ (0,1)

For the globally bounded states gathered in y we obtain an estimate of the form

‖ỹ(1)− ỹ(2)‖6 c1 (1+ |z0|+K) t f
x(1)−x(2)


for a global constant c1 depending only on Vmax. For the state z = (µ0,µ1,µ2) on the other hand we
obtain an estimation of the form

‖z̃(1)− z̃(2)‖6 c2

(
1+ |z0|+

3

∑
i=0
|µw,i(0)|+K

)
t f
x(1)−x(2)

,
where c2 is another global constant. The Lipschitz constant now depends on the intial contition z0,
µw,i(0), for which no global bound is available. A similar estimate

‖w̃(1)− w̃(2)‖6 c3

(
1+‖z0‖+

3

∑
i=0
|µw,i(0)|+K

)
t f
x(1)−x(2)


is obtained for the terms involving w. Altogether, we have

LEMMA 6.2 There exists a constant c depending only on Vmax such that for every initial condition y0
satisfying (6.7), every initial z0,w0, and every K with ‖z0‖+∑

3
i=0 |µw,i(0)|< K, the operator Q satisfies

the following Lipschitz estimate on X:

Qx(1)−Qx(2)
6 c

(
1+ |z0|+

3

∑
i=0
|µw,i(0)|+K

)
t f
x(1)−x(2)

. (6.9)

Condition (6.9) in tandem with (6.8) allows us now to apply the Banach contraction theorem to the
operator Q. Using this, we can prove the theorem 3.1.

6.4 Proof of Theorem 3.1

In this section, we present the proof of the theorem 3.1 of existence and uniqueness of solution.
Proof. 1) Suppose we choose K > |z0|+∑

3
i=0 |µw,i(0)|, then

t f = min
{

K−|z0|−∑
3
i=0 |µw,i(0)|

c+K
,

1
2c(1+ |z0|+∑

3
i=0 |µw,i(0)|+K)

}
(6.10)

assures that Q is a self-map and a contraction on X, so that a unique solution with the initial condition
x0 exists on [0, t f ].

2) We will now have to iterate the process, and for that we shall change our notation. We write
w(t) = |z(t)|+∑

3
i=0 |µw,i(t)|. We started the method at t0 = 0. Putting w0 = w(0), we chose K =

w0 +1 > w(0) in part 1) above, so that condition (6.10) re-written at t f = t1 becomes

t1 = min
{

1
c+w0 +1

,
1

4c(1+w0)

}
.

This gave a unique solution on [0, t f ] = [t0, t1].
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3) Since by construction of X on [t0, t1] = [0, t f ] we have w(t) 6 K for every t ∈ [t0, t1], we get
w1 6 K = w0 +1. In addition, the initial condition of the bounded states y respects (6.7) and therefore
the global bound related to Vmax, so that we will be able to continue to use the same global constant c in
the next iteration. We now use x(t1) as the new initial condition at the new initial time t1 and repeat the
same argument to the right of t1. That requires choosing a new constant K > |z(t1)|+∑

3
i=0 |µw,i(t1)| =

w(t1) = w1. We choose again K = w1 +1. Then the final time corresponding to t f , which is now called
t2− t1, has to satisfy (6.10), which reads

t2− t1 = min
{

1
c+w1 +1

,
1

2c(1+w1 +K)

}
>min

{
1

c+w0 +2
,

1
4c(2+w0)

}
.

By recursion we find that

tn− tn−1 >min
{

1
c+w0 +n

,
1

4c(n+w0)

}
,

so that for some constant c′ depending only on Vmax and w0 = |z0|+∑
3
i=0 |µw,i(0)|,

tN =
N

∑
n=1

tn− tn−1 > c′
N

∑
n=1

1
n
→ ∞ (N→ ∞).

Since the solution can be continued from 0 to any tN , this proves global existence and uniqueness. �

REMARK 6.1 An interesting consequence of the proof is that no global bound for the moments µ0,µ1,µ2
is found from the physically meaningful assumptions of section 5. In particular, it cannot be excluded
that despite the bounds on volume and mass a large number of exceedingly small crystals, called fines,
may hinder the sustainable growth of larger solids. This phenomenon is really observed in practice. In
continuous crystallizers it is therefore mandatory to employ a third control mechanism, the recycling
of fines, in order to limit their impact on growth. In Apkarian et al. (2011) we have studied feedback
control with recycling of fines.

7. Conclusion

We have presented and discussed a model of the process of crystallization of α-lactose monohydrate.
The model was validated mathematically by proving existence and uniqueness of global solutions under
realistic conditions assuring bounds on mass, volume and temperature of slurry. We observed that no
global bounds on crystal surface, length and number can be obtained, but the result shows that none of
the states can grow infinitely in finite time.
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