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IS EULER'S CONSTANT A VALUE OF AN ARITHMETIC SPECIAL

FUNCTION?

TANGUY RIVOAL

Abstract. Euler's constant γ is one of the mathematical constants with the most di�er-
ent analytic representations, probably on par with π. Yet, none of these representations
proves that γ is a value of an E-function, a G-function or an M -function at an algebraic
point. In fact, it is plausible that no such representation of γ exists with these three
arithmetic special functions, and thus the arithmetic nature of γ might not be determined
by the powerful Diophantine theorems of Siegel-Shidlovsky, Chudnovsky and Nishioka.
Nonetheless, we explain here why certain of these representations show that γ is not far
from being a special value of these functions. We also present a new family of series
summing to γ, which generalize an identity of Vacca.

1. Representations of Euler's constant.

The usual de�nition of Euler's constant is

γ := lim
k→+∞

( k∑
n=1

1

n
− log(k)

)
=

∞∑
n=1

( 1
n
− log

(
1 +

1

n

))
, (1)

where the second equality is a trivial reformulation of the �rst one. There exist a lot of
seemingly di�erent analytic representations of γ. We list below thirty three expressions,
all equal to γ. See [4, 8, 10, 13, 16, 17, 18, 19, 26, 29, 15, 21, 36, 37, 38, 39, 40] for proofs,
other identities and references.∫ ∞

1

( 1

⌊x⌋
− 1

x

)
dx, 1−

∫ ∞

1

x− ⌊x⌋
x2

dx,

∫ ∞

0

log(1 + x)

x2(log(x)2 + π2)
dx, (2)

−
∫ ∞

0

log(x)e−xdx, −
∫ ∞

1

log log(x)

x2
dx,

∫ 1

0

( 1

log(x)
+

1

1− x

)
dx, (3)∫ 1

0

∫ 1

0

x− 1

(1− xy) log(xy)
dxdy,

∫ ∞

0

1

x

( 1

1 + x2
− cos(x)

)
dx,

ab

a− b

∫ ∞

0

e−xa − ex
b

x
dx, (4)

1

2
+

∫ ∞

0

2xdx

(1 + x2)(e2πx − 1)
,

∫ 1

0

1− ex − e−1/x

x
dx,

∫ ∞

0

( 1

ex − 1
− 1

xex

)
dx, (5)∫ ∞

0

1

x

( 1

1 + x
− e−x

)
dx,

∫ 1

0

1

x(1 + x)

∞∑
n=1

x2ndx,

∫ 1

0

2 + x

x(1 + x+ x2)

∞∑
n=1

x3ndx, (6)

∞∑
n=1

|
∫ 1

0

(
t
n

)
dt|

n
,

∞∑
n=1

(−1)n−1

n!n
− 1

e

∫ ∞

0

e−x

1 + x
dx,

∞∑
n=2

1

n2

( n∑
k=1

(−1)k
(
n

k

)
k log(k)

)
, (7)
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2

∞∑
n=1

(−1)n
⌊log2(n)⌋

n
, 1−

∞∑
n=2

(−1)n
⌊log2(n)⌋
n+ 1

, 2
∞∑
n=1

cos(2πn
3
)⌊log3(n)⌋
n

, (8)

1

2
+

∞∑
n=1

⌊log2(2n)⌋
2n(2n+ 1)(2n+ 2)

,
1

2
+

∞∑
n=1

(12n+ 6)⌊log3(3n)⌋
3n(3n+ 1)(3n+ 2)(3n+ 3)

, (9)

log(π)− 4 log Γ
(3
4

)
+

4

π

∞∑
k=1

(−1)k+1 log(2k + 1)

2k + 1
,

1

2
+

∞∑
n=2

1

2n+1

n−1∑
k=0

1(
2n−k+k

k

) , (10)

∞∑
n=1

N0(n) +N1(n)

2n(2n+ 1)
, Nj(n) = number of j's in n written in base 2, (11)

∞∑
n=1

( 1

⌊
√
n⌋2

− 1

n
− 1

n2

)
,

1

s− 1

∞∑
n=1

( s
n
−

(n+1)s−1∑
j=ns

1

j

)
, s ≥ 2, (12)

∞∑
n=2

(−1)n
ζ(n)

n
, 1 +

∞∑
n=2

1− ζ(n)

n
, 1 + log

(2
3

)
+

∞∑
n=1

1− ζ(2n+ 1)

(2n+ 1)22n
, (13)

∞∑
n=1

ρ(n)

n
, ρ(n) = −(2k − 1) if n = k2, ρ(n) = 1 otherwise, (14)

∞∑
n=2

Λ(n)− 1

n
, Λ(n) = log(p) if n = pk, Λ(n) = 0 otherwise. (15)

Some of these expressions are merely variations of one another, but it is di�cult to distin-
guish a common pattern because of the diversity of elementary functions involved: �oor,
square root, exponential, cosine, logarithm, zeta, digital, arithmetic functions, binomial
coe�cients, etc. Presumably, π is the only other classical constant with at least as many
representations. However, contrary to π, the arithmetic nature of γ is still an open prob-
lem. Nobody knows whether it is a rational or an irrational number, an algebraic or
a transcendental number, though γ is widely expected to be transcendental. Moreover,
π =

∫∞
−∞

dx
1+x2 is a period; none of the above representations proves that γ is a period and

in fact a folklore conjecture states that γ is not a period, though it is one of the simplest
examples of an exponential period in the sense of Kontsevich-Zagier [20].
Despite very general transcendence results for various classes of arithmetic special func-

tions, none of them is known to apply to γ. In the sequel, we explain that even though
γ is conjecturally not a value at an algebraic point of these arithmetic special functions,
certain representations hidden in (1)�(15) show that it is not very far from being one.

2. Arithmetic special functions.

It is not easy to de�ne the meaning of �special functions� though there exist many books
devoted to them, for instance [7]; a voluntarily imprecise de�nition might be �a mathemat-
ical function used for ages in some part of science and satisfying some sort of functional
equation�. In our Diophantine context, the arithmetic special functions we have in mind
are of three types. Siegel de�ned E-functions and G-functions in [35]: these are series of
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the form
∑∞

n=0
an
n!
zn, respectively

∑∞
n=0 anz

n, where the height of an ∈ Q satis�es a certain

growth condition (see [23]), and solutions of a di�erential equation
∑d

j=0 pj(z)y
(j)(z) = 0

with coe�cients pj(z) ∈ Q(z). Prototypical examples are the exponential and logarithmic
functions respectively, and the intersection of both classes is reduced to polynomials func-
tions. M -functions are power series

∑∞
n=0 anz

n with an ∈ Q, and solutions of a functional

equation
∑d

j=0 pj(z)y(z
ℓj) = 0 for some integers ℓ ≥ 2 and d ≥ 1, and pj(z) ∈ Q(z). A

simple example is the series
∑∞

n=0 z
2n . They were �rst studied by Mahler [27] in a broader

context. E-functions are entire and G-functions can be analytically continued to C minus
a �nite number of cuts; an M -function is either in Q(z) or has the unit circle as natural
boundary ([32, 9]) and moreover if it satis�es a linear di�erential equation, then it must
be a in Q(z) by [12].
The arithmetic nature of the values of E-functions at algebraic points have been studied

for a long time: the Siegel-Shidlovsky Theorem [34] is the landmark result, with re�nements
in [3, 5, 6, 11, 28]. As a result, there exists now an algorithm which, for any given E-
function f(z), provides explicitly the �nite list of algebraic numbers α such that f(α) ∈
Q. Essentially the same things can be said of M -functions. An analogue of the Siegel-
Shidlovsky Theorem was proved by Nishioka [30] and re�ned in [1, 2, 31]. Again, there
exists now an algorithm which, for any given M -function f(z), provides explicitly the list
of algebraic numbers α such that f(α) ∈ Q. On the other hand, the situation is not
completely understood for G-functions. The best general Diophantine result is due to
Chudnosvky [14], but we are far from having an algorithm to perfom the same task as for
E-functions and M -functions.
Let us denote by E, G and M the subsets of C of all the values taken by E-functions and

(analytic continuation of) G-functions and M -functions at algebraic points, respectively.
The �rst two sets have been introduced and studied in [23] and [24] respectively, see
also [25]; in particular it was proved there that E and G are in fact subrings of C. The
set M does not seem to have been considered so far but it is easy to prove that it is a ring
as well. As said above, none of the above Diophantine results has been applied so far to γ
because this number is not known to be in either E or G or M.
In fact, given the long list of series and integral expressions for γ, one can even argue

that if it were such a value, this would be known for a long time. Hence it is plausible that
γ is not in E ∪G ∪M and in this sense, the answer to the title of this note is negative.
Moreover, for similar reasons it is believed that E∩G = Q, E∩M = Q and G∩M = Q.
Let us also say that it is also believed no Liouville number is in E ∪G ∪M, but it would
certainly be surprising if γ were itself a Liouville number.

4. Extension of arithmetic sets.

We claim that γ is in some sense close to be in E∩G∩M. Of course, this statement is
paradoxical because this intersection is expected to contain only algebraic numbers, while
γ is expected to be transcendental. We mean the following: we can �slightly� extend the

sets E and M to certain sets Ẽ and M̃ respectively so that γ ∈ Ẽ ∩ M̃. The extension
process is the same for both classes of functions, which adds value to this observation. The
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process can be applied to G but we get G̃ = G. However, we shall prove the non-trivial

fact that G ⊂ Ẽ, so that Ẽ can be viewed as a common extension of both E and G.

We de�ne Ẽ, respectively M̃, as the set of all convergent evaluations at z ∈ Q∪ {∞} of
the twisted primitives ∫ z

0

Q(x)F (x)dx (16)

where Q(z) ∈ Q(z) and F (z) is an E-function, respectively an M -function, such that QF
is holomorphic at z = 0. Changing the variable z to αz for any algebraic number, we can
in fact assume that z ∈ {1,∞} in (16). The drawback of this voluntarily simple de�nition

is that we do not know if Ẽ and M̃ carry an algebraic structure. Of course, we get two

Q-vector spaces by considering the a priori larger sets of numbers
∫ β

α
Q(x)F (x)dx where

α, β ∈ Q ∪ {∞} and F is an E-function, respectively an M -function.

We have E ⊂ Ẽ and M ⊂ M̃ because if F (z) is an E-function, respectively an M -
function, then F ′(z) is an E-function, respectively an M -function, and F (z) =

∫ z

0
F ′(x)dx.

It is likely however that E ̸= Ẽ and M ̸= M̃, because when F (z) is an E-function or an
M -function, then an integral of the form (16) is in general neither an E-function nor an

M -function. Taking F (z) = 1 and Q(z) = 1
1+z

, we see that log(Q∗
) ⊂ Ẽ ∩ M̃. Values at

algebraic points of iterated primitives vanishing at 0 of E-functions and M -functions are

in Ẽ and M̃ respectively because for any integer p ≥ 1( ∫ z

0

)p
F (x)dx =

(−1)p−1

(p− 1)!

∫ z

0

(x− z)p−1F (x)dx. (17)

But since the class of E-functions is stable by d
dz

and
∫ z

0
, we get nothing more than E if

F is an E-function in (17). On the other hand, F is an M -function if and only if QF is

an M -function, so that M̃ is exactly the set of values at algebraic points of primitives of
M -functions vanishing at 0.

Much more interesting is the property that γ ∈ Ẽ ∩ M̃. Indeed, by (6), we have

γ =

∫ ∞

0

1− (1 + x)e−x

x(1 + x)
dx ∈ Ẽ (18)

=

∫ 1

0

1

x(1 + x)

∞∑
n=1

x2ndx ∈ M̃ (19)

=

∫ 1

0

2 + x

x(1 + x+ x2)

∞∑
n=1

x3ndx ∈ M̃ (20)

because 1− (1+ z)e−z is an E-function and
∑∞

n=1 z
2n ,
∑∞

n=1 z
3n are M -functions. Eq. (18)

is apparently due to Dirichlet, while Eqs. (19) and (20) are due to Catalan and Ramanujan,
respectively. All the series in (8) and (9) can be transformed in a straighforward manner

as integrals
∫ 1

0
Q(x)F (x)dx for some Q(z) ∈ Q(z) and some M -function F (z). Moreover,

the series (11) is just a rewritting of the �rst series in (8).
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With the algebraic numbers, the numbers π and ζ(n) (n any integer ≥ 2) are amongst
the simplest elements of G. So far, no simple relation between γ and G-functions is known,
though γ is often considered to be the regularized value of the divergent ζ(1). The �tilde�
extension presented here can also be applied to G-functions but if F (z) is a G-function
then

∫ z

0
Q(x)F (x)dx is still a G-function and a convergent integral

∫ α

0
Q(x)F (x)dx with

α ∈ Q ∪ {∞} is in G. Hence G̃ = G. However, we have the following property.

Proposition 1. We have G ⊂ Ẽ.
More precisely, G coincides with the set of all convergent integrals

∫∞
0

F (x)dx of E-
functions F . Equivalently, G coincides with the set of all �nite limits of E-functions at
in�nity (along some direction).

Proof. From the stability of the class of E-function by d
dz

and
∫ z

0
, we deduce that the set of

convergent integrals
∫∞
0

F (x)dx of E-functions and the set of �nite limits of E-functions
along some direction as z → ∞ are the same.
Theorem 2(iii) in [24] implies that if an E-function has a a �nite limit as z → ∞ along

some direction, then this limit must be in G.
Conversely, let β ∈ G. By Theorem 1 in [23], there exists a G-function G(z) =∑∞
n=0 anz

n of radius of convergence ≥ 2 (say) such that G(1) = β. Let F (z) =
∑∞

n=0
an
n!
zn

be the associated E-function. Then for any z such that Re(z) > 1
2
, we have

1

z
G
(1
z

)
=

∫ +∞

0

e−xzF (x)dx.

Hence, β =
∫ +∞
0

e−xF (x)dx. Now, e−zF (z) is an E-function, so that β ∈ Ẽ. □

This proposition shows how di�cult it would be to obtain a Siegel-Shidlovsky like result

for the elements of Ẽ. A generalization of Nishioka's Theorem to elements of M̃ would
probably be di�cult to obtain as well. On the other hand, it is not formally necessary to
prove such general theorems if one is only interested in γ, as ad hoc Diophantine arguments
might be simpler to obtain for the integrals (18), (19) or (20).

The number log(4/π) is sometimes named �the alternating Euler's constant� because [37]

log(4/π) =
∞∑
n=1

(−1)n−1
( 1
n
− log

(
1 +

1

n

))
.

(Compare with (1).) The identity [15]

log(4/π) =

∫ 1

0

x2 − x− 1

1− x2

∞∑
n=0

(1− x2n)x2n−1

1 + x2n
dx
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proves that log(4/π) ∈ M̃. There exist other representations similar to certain for γ, for
instance [33, 37, 4]:

log(4/π) =

∫ 1

0

1− x

1 + x

( 1

log(x)
+

1

1− x

)
dx

=

∫ 1

0

∫ 1

0

x− 1

(1 + xy) log(xy)
dxdy

=
∞∑
n=1

N0(n)−N1(n)

2n(2n+ 1)
,

but it does not seem to be known whether log(4/π) ∈ Ẽ or not.

Finally, let us mention that arithmetic special functions could also include �q-analogues�.
It is proved in [22] that

γ = lim
q→1+

(
∞∑
n=1

( 1− q

1− qn

)
+

(q − 1) log(q − 1)

log(q)
+

1− q

2

)
which is a q-analogue of the de�nition of γ stated in (1). But no evaluation of a q-series
or a q-integral in terms of γ seems to be known.

5. Other extensions.

The form of the integral in (16) also suggests to de�ne a subset ẼGM of C as follows:
it is the set of all convergent integrals∫ α

0

e(z)g(z)m(z)dz

where α ∈ {1,∞}, and e(z) is E-fonction, g(z) is a G-function g(z) and m(z) is an M -

function. Since 1−(1+z)e−z

z
is an E-function, 1

1+z
is a G-function (and an M -function as

well), and
∑∞

n=1 z
2n−1 is an M -function, (6) shows in many di�erent ways that γ ∈ ẼGM.

However, this set is quite big because it contains periods, exponential periods, E, G, M, Ẽ

and M̃. This likely makes ẼGM very di�cult to study from a Diophantine point of view.

To get other constants than γ without extending too much E, G or M, we consider the
twisted primitives ∫ z

0

Q(x)F (x)dx

where Q(z) is now an algebraic function over Q(z) and F (z) is either an E-function or an
M -function such that QF is integrable at z = 0. When F (z) is an E-function, respectively
an M -function, any convergent integral

∫ α

0
Q(x)F (x)dx, with α ∈ {1,∞}, de�nes an ele-

ment of
˜̃
E and

˜̃
M. Again, the �double tilde� extension is not interesting for G-functions

and
˜̃
G = G, but obviously we still have G ⊂ ˜̃

E.
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For instance, for any rational number s > 0, we have

Γ(s) =

∫ ∞

0

xs−1e−xdx ∈ ˜̃E
and [10]

Ψ(s) :=
Γ′(s)

Γ(s)
=

∫ 1

0

(
xs−1

1− x
− 2x2s−2

1− x2

) ∞∑
n=0

x2ndx ∈ ˜̃M.

However, it does not seem to be known whether Γ(s) ∈ ˜̃M and Ψ(s) ∈ ˜̃E.
We don't know if ẼGM,

˜̃
E and

˜̃
M carry any interesting algebraic structure. We get three

Q-vector spaces by considering the set of convergent integrals
∫ β

α
e(z)g(z)m(z)dz, where

α, β ∈ Q ∪ {∞}, e, g,m are an E-fonction, a G-function and an M -function respectively,

as well as the two sets of convergent integrals
∫ β

α
Q(x)F (x)dx where α, β ∈ Q∪ {∞}, Q is

algebraic over Q(z) and F an E-function, respectively an M -function.

6. A generalization of Vacca's second identity.

Vacca [39] proved in a geometric way the identity

γ =
∞∑
n=1

n
( 2n+1−1∑

k=2n

(−1)k

k

)
,

which is a variant of the �rst identity displayed in (8). Analytic proofs were quickly found
by Glaisher [17] and Hardy [18], the latter showing that Vacca's identity is also a variant

of Catalan's integral [13] γ =
∫ 1

0
1

x(1+x)

∑∞
n=1 x

2ndx, displayed in (6).

Later on, Vacca proved in [40] a second identity, stated in (12), namely

γ + ζ(2) =
∞∑
n=1

( 1

⌊
√
n⌋2

− 1

n

)
. (21)

Because the paper [40] might be di�cult to �nd, for the reader's convenience, we present
a proof of the following generalization of (21).

Proposition 2. For any integer s ≥ 2, we have

γ =
1

s− 1

∞∑
n=1

( 1

⌊n1/s⌋s
− 1

n
−

s∑
ℓ=2

(
s
ℓ

)
nℓ

)
. (22)
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Proof. Indeed, we have

N∑
n=1

( 1

⌊n1/s⌋s
− 1

n

)

=

⌊N1/s⌋∑
j=1

(j+1)s−1∑
n=js

1

js
−

N∑
n=1

1

n
=

⌊N1/s⌋∑
j=1

(j + 1)s − js

js
−

N∑
n=1

1

n

= s

⌊N1/s⌋∑
j=1

1

j
−

N∑
n=1

1

n
+

s∑
ℓ=2

(
s

ℓ

) ⌊N1/s⌋∑
j=1

1

jℓ

= (s− 1)γ + s log(⌊N1/s⌋)− log(N) +O
( 1

N1/s

)
+

s∑
ℓ=2

(
s

ℓ

) ⌊N1/s⌋∑
j=1

1

jℓ
, N → ∞

= (s− 1)γ +
s∑

ℓ=2

(
s

ℓ

)
ζ(ℓ) + o(1), N → ∞

where we used
∑

1≤j≤x
1
j
= γ + log(x) +O( 1

x
) as x → +∞. Eq. (22) follows. □

The convergence is slow because 1
⌊n1/s⌋s − 1

n
= O( 1

n1+1/s ) and the exponent can not be

improved.
A similar argument enables one to sum the series

∞∑
n=1

( nt−1

⌊n1/s⌋st
− 1

n

)
for any integers s ≥ 2 and t ≥ 1. The formula is slightly more complicated to write down
explicitly. We use the summation formula

(j+1)s−1∑
n=js

nt−1 =
1

t

(
Pt

(
(j + 1)s

)
− Pt(j

s)
)
=:

ts−1∑
m=0

αm,s,tj
m

where Pk(X) is the k-th Bernoulli polynomial, and the αm,s,t ∈ Q could be explicited in
terms of the Bernoulli numbers and binomial coe�cients. We then get

∞∑
n=1

( nt−1

⌊n1/s⌋st
− 1

n

)
= (s− 1)γ +

st−2∑
m=0

αm,s,tζ(st−m).

The case s = t = 2 reads
∞∑
n=1

n
( 1

⌊
√
n⌋4

− 1

n2

)
= γ + 3ζ(2) + ζ(3)

or

γ =
∞∑
n=1

n
( 1

⌊
√
n⌋4

− 1

n2
− 3

n3
− 1

n4

)
.
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None of the identities in this section seems to express γ as a value of an arithmetic special
function.
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