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On the cost of observability in small times for the one-dimensional heat equation

, in which the weight function is derived from the heat kernel and which is therefore particularly easy. We also use explicit computations in the Fourier domain to compute the high-frequency part of the solution in terms of the observations. Finally, we use the Phragmén Lindelöf principle to estimate the low frequency part of the solution. This last step is done carefully with precise estimations coming from conformal mappings.

Introduction

Setting. The goal of this work is to analyze the cost of observability in small times of the one-dimensional heat equation. To fix the ideas, let L, T > 0 and consider the following heat equation, set in the bounded interval (-L, L) and among some time interval (0, T ):

   ∂tu -∂ 2
x u = 0 in (0, T ) × (-L, L), u(t, -L) = u(t, L) = 0 in (0, T ), u(0, x) = u0(x) in (-L, L).

(1.1)

In (1.1), the state u = u(t, x) satisfies a heat equation, with an initial datum u0 ∈ H 1 0 (-L, L). Our main goal is to study the cost of observability in small times T of the problem (1.1) observed from both sides x = -L and x = +L. To be more precise, let us recall that it is by now well-known that there exists C0(T, L) such that all solution u of (1.1) with initial datum u0 ∈ H 1 0 (-L, L) satisfies: u(T ) L 2 (-L,L) C0(T, L) ∂xu(t, -L) L 2 (0,T ) + ∂xu(t, L) L 2 (0,T ) .

(1.2)

In fact, the existence of the constant C0(T, L) is a consequence of the null controllability results in small times obtained by [START_REF] Ju | Some problems in the theory of optimal control[END_REF], [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] in the one-dimensional case. From now on, we denote by C0(T, L) the best constant in the observability inequality (1.2) A precise description of the constant C0(T, L) as T → 0 is still missing, despite several contributions in this direction, which we would like to briefly recall here. First, the article [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF] showed that lim sup

T →0 T log C0(T, L) < ∞, (1.3) 
while [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] proved that lim inf

T →0
T log C0(T, L) > 0.

(1.4)

Besides, due to the scaling of the equation, C0(T, L) depends only on the ratio L 2 /T . Therefore, the quantity T log C0(T, L) should be compared to L 2 . We list below several contributions. lim inf

T →0
T log C0(T, L) L 2 4 , [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF], lim inf

T →0 T log C0(T, L) L 2 2 , [ 29], 
lim sup

T →0
T log C0(T, L) 2 36 37

2 L 2 , [ 34], 
lim sup

T →0
T log C0(T, L)

3 + L 2 4 , [ 37] 
,

where the notation + in the last estimate means that "any strictly larger number is convenient".

Main result. Our contribution comes in this context. Namely we prove the following result:

Theorem 1.1. Setting K0 = 1 4 + Γ(1/4) 2 8 √ 2π 2 n∈N ( -1) n (2n + 1) 
Γ(n + 1/4) Γ(n + 7/4) , ( K0 0.6966), (1.5) where Γ denotes the gamma function, for any K > K0, we have lim sup

T →0
T log C0(T, L) KL 2 .

(1.6)

In fact, there exists a constant C > 0 such for all T ∈ (0, 1], for all solutions u of (1.1) with initial datum u0 ∈ H 1 0 (-L, L), u(T ) exp x 2 4T

L 2 (-L,L)

C exp KL 2 T ∂xu(t, -L) L 2 (0,T ) + ∂xu(t, L) L 2 (0,T ) .

(1.7)

Remark 1.2. The constant K0 in (1.5) can alternatively be written as

K0 = 1 4 + 2 π π 2 0 ln cot t 2 cos(t) dt π 2 0 cos(t) dt , (1.8) 
see Proposition 2.3 in Section 2.

Theorem 1.1 slightly improves the cost of observability in small times when compared to [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF]. However, we do not claim that this bound is sharp, and this remains, to our knowledge, an open problem. In particular, we shall comment in Section 4.6 a possible path to improve the estimates given in Theorem 1.1. In fact, we believe that Theorem 1.1 is interesting mostly by its proof, presented in Section 2, which combines several arguments. In particular, it uses a Carleman type estimate, which was already used in [START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF] to derive a good description of the reachable set for the one-dimensional heat equation in terms of domains of holomorphic extension of the states. This Carleman type estimate is used to reduce the problem of observability to an estimate of the low frequency part of the solution of (1.1). Then, we shall use Fourier analysis on the conjugated heat equation to get an exact formula for the high-frequency part of the solution of (1.1) in terms of the observations. The last part of the argument is a complex analysis argument based on the Phragmén Lindelöf principle. We refer to Sections 2 and 3 for the detailed proof of Theorem 1.1. Let us also mention that Theorem 1.1 is strongly connected to control theory. Indeed, let us consider the following null-controllability problem: Given T > 0 and y0 ∈ L 2 (-L, L), find control functions v-, v+ ∈ L 2 (0, T ) such that the solution y of

       ∂ty -∂ 2
x y = 0 in (0, T ) × (-L, L), y(t, -L) = v-(t) in (0, T ), y(t, +L) = v+(t) in (0, T ), y(0, x) = y0(x) in (-L, L),

(1.9) satisfies y(T, x) = 0 in (-L, L).

(1.10)

It is well-known (see e.g. [START_REF] Ju | Some problems in the theory of optimal control[END_REF] or [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]) that for any T > 0, one can find controls v-, v+ of minimal (L 2 (0, T )) 2 norm, depending linearly on y0 ∈ L 2 (-L, L), such that the controlled trajectory, i.e. the solution of (1.9), satisfies (1.10). Besides, the L (L 2 (-L, L); (L 2 (0, T )) 2 )-norm of the linear map y0 → (v-, v+) is precisely C0(T, L). In other words, C0(T, L) also characterizes the cost of controllability for the one-dimensional heat equation.

We emphasize that Theorem 1.1 also allows to tackle some multi-dimensional settings. Namely, as a consequence of Theorem 1.1 and the control transmutation method (see [START_REF] Miller | The control transmutation method and the cost of fast controls[END_REF]), one gets the following corollary:

Corollary 1.3.
Let Ω be a smooth bounded domain of R d , and let Γ0 be an open subset of ∂Ω. Let a = a(x) ∈ L ∞ (Ω; M d (R)) and ρ ∈ L ∞ (Ω; R) be such that there exist strictly positive numbers ρ-, ρ+, aand a+ such that for all x ∈ Ω and

ξ ∈ R d , a-|ξ| 2 a(x)ξ • ξ a+|ξ| 2 , ρ-ρ(x) ρ+.
Further assume that there exist a time S0 > 0 and a constant C > 0 such that for any (w0, w1)

∈ H 1 0 (Ω) × L 2 (Ω), the solution w of    ρ(x)∂ssw -div (a(x)∇w) = 0 in (0, S) × Ω, w(s, x) = 0 on (0, S) × ∂Ω, (w(0, x), ∂sw(0, x)) = (w0(x), w1(x)) in Ω, (1.11) satisfies (w0, w1) H 1 0 (Ω)×L 2 (Ω) C a(x)∇w • n L 2 ((0,S 0 )×Γ 0 ) . (1.12)
We define C0(T, Ω, Γ0) as the best constant in the following observability inequality: for all u0 ∈ H 1 0 (M ), the solution

u of    ρ(x)∂tu -div (a(x)∇u) = 0 in (0, T ) × Ω, u(t, x) = 0 on (0, T ) × ∂Ω, u(0, x) = u0(x) in Ω (1.13) satisfies u(T ) L 2 (M ) C0(T, Ω, Γ0) a(x)∇u • n L 2 ((0,T )×Γ 0 ) . (1.14) 
Then we have, for any K > K0, lim sup

T →0
T log C0(T, Ω, Γ0) KS 2 0 .

(1.15)

Corollary 1.3 uses the transmutation method and therefore the observability of the corresponding wave equation (1.11), which has been well-studied in the literature. In particular, if the coefficients ρ and a are C 2 (Ω), according to [START_REF] Bardos | Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques[END_REF][START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF][START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF], the wave equation (1.11) satisfies the observability inequality (1.12) if and only if all the rays of Geometric Optics meet Γ0 in a non-diffractive point in time less than S0. In case of coefficients ρ and a which are less regular, let us quote the recent works [START_REF] Fanelli | Weak observability estimates for 1-D wave equations with rough coefficients[END_REF] in the one-dimensional case with ρ and a in the Zygmund class, and [START_REF] Dehman | Observability estimates for the wave equation with rough coefficients[END_REF] in the multi-dimensional case for coefficients ρ ∈ C 0 (Ω) and a = 1, with ρ satisfying a multiplier type condition similar to the one in [START_REF] Ho | Observabilité frontière de l'équation des ondes[END_REF][START_REF] Lions | Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte[END_REF] in the sense of distributions (and ρ locally C 1 close to the boundary, see [START_REF] Dehman | Observability estimates for the wave equation with rough coefficients[END_REF]Section 4.2]). Let us emphasize that Corollary 1.3 can be applied in the one-dimensional case as well for coefficients in the Zygmund class [START_REF] Fanelli | Weak observability estimates for 1-D wave equations with rough coefficients[END_REF]. But even in the case Ω = (-L, L), Γ0 = {-L, L}, ρ(x) = 1, a(x) = 1, we get S0 = 2L and thus we obtain an estimate on the cost of observability of the form lim sup

T →0 T log C0(T, (-L, L), {-L, L}) 4K + 0 L 2 ,
instead of (1.6). In other words, we have a loss of a factor 4. Therefore, we shall also explain how Theorem 1.1 can be extended to a multi-dimensional case directly when the observation is performed on the whole boundary, see Theorems 4.1-4.2.

Let us mention that the proofs of the observability inequality of the heat equation for general smooth bounded domains Ω and observation in an open subset Γ0 of the boundary in [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] yields that lim sup

T →0 T log C0(T, Ω, Γ0) < ∞,
while on the other hand, [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF] proves lim inf

T →0 T log C0(T, Ω, Γ0) sup Ω d(x, Γ0) 2 4 .
To our knowledge, getting more intrinsic geometric upper estimates on the cost of observability in small times in such general settings is still out of reach. However, in geometrical cases which can be obtained by tensorization, some estimates can be obtained, see [START_REF] Miller | On the null-controllability of the heat equation in unbounded domains[END_REF] and Section 4.2 for more details.

We shall also mention that estimating the observability constant in small times for the heat equation in the one-dimensional case is related to the uniform controllability of viscous approximations of the transport equation, see [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF][START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF][START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport diffusion equation[END_REF]. We refer in particular to Section 4.7 for a more precise discussion on this problem. In particular, the proof in [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF], when combined with Theorem 1.1, easily yields an improvement of the results known on this problem, see Section 4.7 and Theorem 4.9 for more details.

As we have seen in the above discussion, there are still some open questions on the observability of the onedimensional constant coefficients parabolic equations, despite the efficiency and robustness of the approach based on Carleman estimates [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. This has justified the development of new manners to derive controllability of parabolic equations, and we shall in particular quote the flatness method developed in [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF][START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF], a heat packet decomposition [START_REF] Gimperlein | A deterministic optimal design problem for the heat equation[END_REF] or the backstepping approach [START_REF] Coron | Null Controllability and Finite Time Stabilization for the Heat Equations with Variable Coefficients in Space in One Dimension via Backstepping Approach[END_REF]. Our method comes in this context and provides what seems to be another approach to obtain observability results for the heat equation.

Outline. Section 2 presents the main strategy of the proof of Theorem 1.1 using several technical results that will be proved afterwards, in Section 3 for the ones using new arguments, in Section A for a Carleman type estimate (Theorem 2.1) which can be found also in [START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF] in a slightly different form. Section 4 provides several comments on Theorem 2.1 and its generalization, including a discussion on what can be done in the multi-dimensional setting in Section 4.1, when the geometry has a tensorized form in Section 4.2, or when the observation is on one side of the domain (Section 4.3) or on some distributed open subset (Section 4.4). We also present in Section 4.5 an alternative proof of a weaker version of Theorem 1.1 based on the uncertainty principles of Landau and Pollack [START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty[END_REF] and the result in [START_REF] Fuchs | On the eigenvalues of an integral equation arising in the theory of band-limited signals[END_REF], recovering the result of [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF]. This led us to discuss the possibility of improving the estimate of the cost of observability in small times in Theorem 1.1 by using a better bound than the one provided by the use of Phragmén Lindelöf principle for entire functions, see Section 4.6 for more details. We end up in Section 4.7 by giving a consequence of our result on the problem of uniform controllability of viscous approximations of transport equations. Section A gives the detailed proof of a rather easy Carleman estimate which is one of the building blocks of our analysis.

Acknowledgments. The authors wish to express their gratitude to Karine Beauchard for stimulating discussions on this work and several comments on a preliminary version of this article.

Proof of Theorem 1.1: main steps

As said in the introduction, the proof of Theorem 1.1 relies on several steps. The first step is the following Carleman type estimate.

Theorem 2.1. For any smooth solution u of (1.1), setting

z(t, x) = u(t, x) exp x 2 -L 2 4t , (t, x) ∈ (0, T ) × (-L, L), (2.1) 
we have the inequality:

L -L |∂xz(T, x)| 2 dx - L 2 4T 2 L -L |z(T, x)| 2 dx L T 2 T 0 t |∂xu(t, -L)| 2 + |∂xu(t, L)| 2 dt. (2.2)
Theorem 2.1 is based on the study of the equation satisfied by z in (2.1). As u satisfies the heat equation (1.1), the function z in (2.1) satisfies the following equation:

       ∂tz + x t ∂xz + 1 2t z -∂ 2 x z - L 2 4t 2 z = 0, (t, x) ∈ (0, ∞) × (-L, L), z(t, -L) = z(t, L) = 0, t ∈ (0, ∞), z(0, x) = 0,
x ∈ (-L, L).

(2.3)

One can therefore perform energy estimates on (2.3), which will eventually lead to (2.2). In Appendix A, we prove a slightly more general result, encompassing also some multi-dimensional settings, see Proposition A.1, from which one immediately derives Theorem 2.1 by setting Ω = (-L, L) and g ≡ 0.

Note that Theorem 2.1 was used in the previous work [START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF] in time T > L 2 /π in order to describe the reachable set of the one-dimensional heat equation. Estimate (2.2) is somehow a Carleman estimate even if here no parameter appears in the proof. In fact, it rather is a limiting Carleman estimate as the conjugated operator (2.3) does not satisfy the usual strict pseudo-convexity conditions of Hörmander [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]. We refer in particular to [START_REF] Santos Ferreira | Limiting Carleman weights and anisotropic inverse problems[END_REF] for other instances of limiting Carleman weights in another context, namely elliptic operators.

The second step of our analysis amounts to realize that the solutions z of (2.3) could be explicitly solved using Fourier analysis if one extends the solution z of (2.3) by zero outside the space interval (-L, L). We therefore introduce, for t ∈ (0, T ],

w(t, x) =    z(t, x) = u(t, x) exp x 2 -L 2 4t for x ∈ (-L, L), 0 for x / ∈ (-L, L). (2.4) 
This function w satisfies the following equation:

   ∂tw + x t ∂xw + 1 2t w -∂ 2 x w - L 2 4t 2 w = ∂xu(t, L)δL -∂xu(t, -L)δ-L, (t, x) ∈ (0, ∞) × R, w(0, x) = 0,
x ∈ R.

(2.5)

Using Fourier transform, one can then compute explicitly

w(T, ξ) = R w(T, x)e -ıξx dx,
at least for some frequency ξ ∈ C: Proposition 2.2. For α 0, define the sets (see Figure 1)

Cα = ξ = a + ıb ∈ C, (a, b) ∈ R 2 , with |a| |b| + α . (2.6)
Let w be given by (2.4) corresponding to some smooth solution u of (1.1).

Then, for any ξ ∈ C L/(2T ) ,

w(T, ξ) = T 0 T t -∂xu(t, -L)e ı ξLT t + ∂xu(t, L)e -ı ξLT t e -ξ 2 T 2 -L 2 4 ( 1 t -1 T ) dt. (2.7)
In particular, for any α > L/(2T ), setting

Cα(T ) = 1 L (α -L/(2T )) , (2.8) 
for all ξ ∈ Cα, we have

| w(T, ξ)| Cα(T ) √ T e | (ξ)|L ∂xu(•, L) L 2 (0,T ) + ∂xu(•, -L) L 2 (0,T ) .
(2.9)

The proof of Proposition 2.2 is done in Section 3.1 and relies on explicit computations. In particular, it gives a precise L ∞ bound on the high-frequency component of w(T ) given by (2.4) corresponding to a smooth solution u of (1.1).

The third step of our analysis consists in the recovery of the low frequency part of w given by (2.4). In order to do that, we recall that w(T, •) is the Fourier transform of a function supported in [-L, L]. Therefore, its growth as | (ξ)| → ∞ is known, while w(T, •) is holomorphic in the whole complex plane C. Combined with the fact that we have nice estimates on w(T, •) in Cα for α > L 2 /(2T ), we are in position to use Phragmén-Lindelöf principles to estimate w(T, •) everywhere in the complex plane, but more importantly on the real axis R.

Proposition 2.3. Let L > 0, α > 0 and f be an holomorphic function on Oα = C \ Cα (see Figure 1) such that:

• There exists a constant C0 such that

∀ξ ∈ ∂Oα, |f (ξ)| C0 exp(| (ξ)|L), ( 2 

.10)

• There exists a constant C1 such that

∀ξ ∈ Oα, |f (ξ)| C1 exp(| (ξ)|L).
(2.11)

Denoting by Õ1 = {(a, b) ∈ R 2 , such that |a| < |b| + 1},
there exists a unique function φ satisfying

     ∆ φ = -2 δ (-1,1)×{0} in Õ1, φ = 0 on ∂ Õ1, lim |b|→∞ sup a∈(-|b|-1,|b|+1) | φ(a, b)| = 0, (2.12)
and we define the function ϕ on O1 as follows:

ϕ(ξ) = φ( (ξ), (ξ)), ξ ∈ O1.
(2.13)

Then we have the following bound:

∀ξ ∈ Oα, |f (ξ)| C0 exp(| (ξ)|L) exp Lα ϕ ξ α . (2.14)
Besides, the maximum of ϕ on O1 is attained in 0:

sup

O 1 ϕ = ϕ(0) = Γ(1/4) 2 4 √ 2π 2 n∈N (-1) n (2n + 1) Γ(n + 1/4) Γ(n + 7/4) , ( 0.893204), (2.15) 
which can be alternatively written as

ϕ(0) = 2 π π 2 0 ln cot t 2 cos(t) dt π 2 0 cos(t) dt . (2.16)
Proposition 2.3 mainly reduces to the application of Phragmén-Lindelöf principle for holomorphic functions. In fact, the main point in Proposition 2.3 is that the maximum of the harmonic function φ can be explicitly computed. This is done using conformal maps to link the solution of the Laplace equation in the domain Õ1 with solutions of the Laplace operator in the half-strip, in which explicit solutions can be computed using Fourier decomposition techniques. We refer to Section 3.2 for the proof of Proposition 2.3. Of course, we shall apply Proposition 2.3 to the function f = w(T, •), which, according to (2.9), satisfies (2.10) for any α > L/(2T ) with

C0 = Cα(T ) √ T ∂xu(•, L) L 2 (0,T ) + ∂xu(•, -L) L 2 (0,T ) ,
while (2.11) holds with

C1 = w(T ) L 1 (-L,L) √ 2L u(T ) L 2 (-L,L) √ 2L u0 L 2 (-L,L) .
We then immediately deduce the following corollary.

Corollary 2.4. Let w be given by (2.4) corresponding to some smooth solution u of (1.1). Then, for any α > L/(2T ),

∀ξ ∈ Oα ∩ R, | w(T, ξ)| Cα(T ) √ T e Lα ϕ(0) ∂xu(•, L) L 2 (0,T ) + ∂xu(•, -L) L 2 (0,T ) , (2.17) 
where Cα(T ) denotes the constant in (2.8).

End of the proof of Theorem 1.1. Let ε > 0, and choose α = (1 + ε)L/(2T ). Combining (2.17) and (2.9), we see that

∀ξ ∈ R, | w(T, ξ)| 2 ε T L exp (1 + ε) L 2 2T ϕ(0) ∂xu(•, L) L 2 (0,T ) + ∂xu(•, -L) L 2 (0,T ) . (2.18)
Then, using Theorem 2.1 and the identity

L -L |∂xz(T, x)| 2 dx - L 2 4T 2 L -L |z(T, x)| 2 dx = R |ξ| 2 - L 2 4T 2 | w(T, ξ)| 2 dξ we have 3L 2 4T 2 |ξ|>L/T | w(T, ξ)| 2 dξ L T ∂xu(•, L) 2 L 2 (0,T ) + ∂xu(•, -L) 2 L 2 (0,T ) + L 2 4T 2 |ξ|<L/(2T ) | w(T, ξ)| 2 dξ.
Combined with (2.18), we obtain

|ξ|>L/T | w(T, ξ)| 2 dξ 4T 3L + 4T 3Lε exp (1 + ε) L 2 T ϕ(0) ∂xu(•, L) 2 L 2 (0,T ) + ∂xu(•, -L) 2 L 2 (0,T ) , (2.19) 
and

|ξ|<L/T | w(T, ξ)| 2 dξ 8T εL exp (1 + ε) L 2 T ϕ(0) ∂xu(•, L) 2 L 2 (0,T ) + ∂xu(•, -L) 2 L 2 (0,T ) . (2.20)
Using Parseval identity and the explicit form of w in (2.4), we easily get, for some constant Cε(T ) that goes to zero as T → 0, that

u(T, x) exp x 2 -L 2 4T L 2 (-L,L) Cε(T ) exp L 2 2T (1 + ε)ϕ(0) ∂xu(•, L) L 2 (0,T ) + ∂xu(•, -L) L 2 (0,T ) ,
which we rewrite as

u(T, x) exp x 2 4T L 2 (-L,L) Cε(T ) exp L 2 T 1 4 + 1 2 (1 + ε)ϕ(0) ∂xu(•, L) L 2 (0,T ) + ∂xu(•, -L) L 2 (0,T ) . (2.21)
This concludes the proof of Theorem 1.1, as Cε(T ) Cε(1) = Cε for T small enough, for some Cε independent of T .

Remark 2.5. Note that the constant Cε in the above proof blows up as ε goes to zero. If it were not the case, one could pass to the limit ε → 0 in (2.21), so that one could choose K = K0 in Theorem 1.1. So far, we do not know if this choice is allowed in Theorem 1.1 or not.

We have thus reduced the proof of Theorem 1.1 to the proofs of Theorem 2.1, Propositions 2.2 and 2.3. The proof of Theorem 2.1 is postponed to Appendix A in which a slightly more general result is proved (Proposition A.1), while the proofs of Propositions 2.2 and 2.3 are detailed in the section afterwards.

Remark 2.6. The above approach allows in fact to recover an explicit formula to compute w(T ) in terms of the observations. Namely, for ξ ∈ R with |ξ| L/(2T ), formula (2.7) yields

w(T, ξ) = T 0 T t -∂xu(t, -L)e ı ξLT t + ∂xu(t, L)e -ı ξLT t e -ξ 2 T 2 -L 2 4 ( 1 t -1 T ) dt. (2.22)
On the other hand, combining the formula (2.7) and Remark 3.2 allowing to get an explicit expression under the assumptions of Proposition 2.3, we get: for all α * > α > L/(2T ), for all ξ ∈ R with |ξ| < L/(2T ),

w(T, ξ) = - T 0 T t ∂xu(t, -L) 1 2ıπ γα e Lα * (φ(ξ/α)-φ(ζ/α)) ζ -ξ e ı ζLT t e -ζ 2 T 2 -L 2 4 ( 1 t -1 T ) dζ dt + T 0 T t ∂xu(t, L) 1 2ıπ γα e Lα * (φ(ξ/α)-φ(ζ/α)) ζ -ξ e -ı ζLT t e -ζ 2 T 2 -L 2 4 ( 1 t -1 T ) dζ dt, (2.23)
where φ is an holomorphic function on

O1 such that (φ(ξ)) = ϕ(ξ) + | (ξ)| for all ξ ∈ O1 (see Section 3.2.2
for the existence of such function φ), and γα is the union of the two connected components of ∂Oα oriented counter-clockwise. But these formula does not seem easy to deal with as the kernels

K∓(t, ξ) = 1 2ıπ γα e Lα * (φ(ξ/α)-φ(ζ/α)) ζ -ξ e ±ı ζLT t e -ζ 2 T 2 -L 2 4 ( 1 t -1 T ) dζ, (t, ξ) ∈ (0, T ) × - L 2T , L 2T ,
are difficult to estimate directly.

3 Proof of Theorem 1.1: intermediate results

Proof of Proposition 2.2

Let w as in Proposition 2.2. Then w satisfies the equation (2.5). When taking its Fourier transform in the space variable, we easily check that

w(t, ξ) = R w(t, x)e -ıξx dx, (t, ξ) ∈ [0, T ] × R, solves the equation    ∂t w - ξ t ∂ ξ w - 1 2t w + ξ 2 w - L 2 4t 2 w = ∂xu(t, L)e -ıξL -∂xu(t, -L)e ıξL , (t, ξ) ∈ (0, ∞) × R, w(0, ξ) = 0, ξ ∈ R. (3.1)
We are thus back to the study of a transport equation. For each ξ0 ∈ R, we therefore introduce the characteristics ξ(t, ξ0) reaching ξ0 at time T :

dξ dt (t, ξ0) = - ξ(t, ξ0) t , t ∈ (0, T ], ξ(T, ξ0) = ξ0, (3.2) 
which is explicitly given by

ξ(t, ξ0) = ξ0T t , t ∈ (0, T ].
We can thus write, for all t ∈ (0, T ],

d dt w t, ξ0T t + 1 t 2 ξ 2 0 T 2 - L 2 4 - 1 2t w t, ξ0T t = ∂xu(t, L)e -ı ξ 0 LT t -∂xu(t, -L)e ı ξ 0 LT t .
This yields the formula

d dt w t, ξ0T t t -1/2 e -(ξ 2 0 T 2 -L 2 /4)/t = ∂xu(t, L)e -ı ξ 0 LT t -∂xu(t, -L)e ı ξ 0 LT t t -1/2 e -(ξ 2 0 T 2 -L 2 /4)/t .
For any η > 0, we can integrate this formula between η and T to get

w (T, ξ0) T 1/2 e -(ξ 2 0 T 2 -L 2 /4)/T -w (η, ξ0) η 1/2 e -(ξ 2 0 T 2 -L 2 /4)/η = T η t -1/2 ∂xu(t, L)e -ı ξ 0 LT t -∂xu(t, -L)e ı ξ 0 LT t e -(ξ 2 0 T 2 -L 2 /4)/t dt.
It is not difficult to check that for ξ0 ∈ R with |ξ0| > L/(2T ), the integral on the right-hand-side converges when η goes to zero, and lim

η→0 w (η, ξ0) η -1/2 e -(ξ 2 0 T 2 -L 2 /4)/η = 0.
Therefore, provided ξ0 ∈ R satisfies |ξ0| > L/(2T ), one gets the formula

w (T, ξ0) = T 0 T t ∂xu(t, L)e -ı Lξ 0 T t -∂xu(t, -L)e ı Lξ 0 T t e -(ξ 2 0 T 2 -L 2 /4)(1/t-1/T ) dt. (3.3)
This formula coincides with the one in (2.7) for ξ0 ∈ C L + /2T ∩ R (here, we use the notation L + to denote any constant strictly larger than L). As w(T, •) is holomorphic on C, we only have to check that the right hand side of formula (3.3) can be extended holomorphically to C L + /2T . In fact, writing ξ = a + ıb with (a, b) ∈ R 2 , the right hand side of (3.3) can be extended holomorphically in the domain in which

           +ıξLT -ξ 2 T 2 - L 2 4 = -bLT -(a 2 -b 2 )T 2 - L 2 4 < 0,
and

-ıξLT -ξ 2 T 2 - L 2 4 = +bLT -(a 2 -b 2 )T 2 - L 2 4 < 0, which is equivalent to |a| > |b| + L 2T ,
i.e. ξ ∈ C L + /(2T ) . We have thus proved that for all ξ ∈ C L + /(2T ) , w(T, ξ) is given by the formula (2.7). In fact, by continuity, this formula also holds for ξ ∈ C L/2T .

In order to deduce (2.9), we start from the formula (2.7) and we use a Cauchy-Schwarz estimate: for ξ ∈ Cα with α > L/(2T ),

| w(T, ξ)| √ T ∂xu(t, L) L 2 (0,T ) t -1/2 exp - iξLT t -ξ 2 T 2 - L 2 4 1 t - 1 T L 2 (0,T ) + √ T ∂xu(t, -L) L 2 (0,T ) t -1/2 exp + iξLT t -ξ 2 T 2 - L 2 4 1 t - 1 T L 2 (0,T ) . (3.4)
Writing ξ ∈ Cα for α > L/(2T ) as ξ = a + ıb with (a, b) ∈ R 2 and using the fact that

∓ıξLT -ξ 2 T 2 - L 2 4 |b|LT -(a 2 -b 2 )T 2 - L 2 4 -T 2 a 2 -|b| + L 2T 2 -T 2 |a| -|b| + L 2T |a| + |b| + L 2T - LT 2 α - L 2T ,
we have the estimates, for s ∈ {-1, 1}:

t -1/2 exp s ıξLT t -ξ 2 T 2 - L 2 4 1 t - 1 T L 2 (0,T ) t -1/2 exp |b|L + |b|LT -(a 2 -b 2 )T 2 - L 2 4 1 t - 1 T L 2 (0,T ) e |b|L t -1/2 exp - LT 2 α - L 2T 1 t - 1 T L 2 (0,T ) . Now, doing the change of variable µ = LT α -L 2T 1 t -1
T , we easily get, for all ξ ∈ Cα,

t -1/2 exp - LT 2 α - L 2T 1 t - 1 T 2 L 2 (0,T ) = ∞ 0 e -µ dµ µ + L (α -L/(2T )) 1 L (α -L/(2T ))
.

Combining (3.4) and this last estimate, we easily conclude estimate (2.9).

Proof of Proposition 2.3

We shall start the proof of Proposition 2.3 by proving the existence of a function φ satisfying (2.12), and we will then explain how it can be used to derive the bound in (2.14).

Notations. In the following arguments, to avoid ambiguities, we will write differently complex sets and their identification as a part of R 2 , for instance denoting

O1 = {ξ ∈ C, with | (ξ)| < | (ξ)| + 1} and Õ1 = {(a, b) ∈ R 2 , with |a| < |b| + 1}
as in Proposition 2.3. To be consistent with this notation, we will also distinguish functions of the complex variable ξ from the corresponding ones considered as functions of the real variables (a, b) using a tilde notation for the function viewed as depending on real variables, as in (2.13).

Existence and uniqueness of a function φ satisfying (2.12)

The first remark is that the uniqueness of a function φ satisfying (2.12) is rather easy to prove. Indeed, if two functions φ1 and φ2 satisfy (2.12), then their difference φ2 -φ1 is harmonic in O1 and vanishes on ∂ Õ1 as well as at infinity. Therefore, the minimum and maximum of φ2 -φ1 is zero, and φ1 and φ2 coincide. Thus, we will focus on the existence of a function φ as in (2.12). In fact, by uniqueness, we see that necessarily φ(a, b) = φ(a, |b|) for all (a, b) ∈ O1. We will thus only look for a solution φ in Õ+ 

1 = Õ1 ∩ (R × R * + ) of the problem    ∆ φ = 0 in Õ+ φ = 0 on ∂ Õ+ 1 \ (-1, 1) ∂ b φ(a, 0) = -1 for a ∈ (-1,
F 3/4 (ζ) = 2 K 3/4 ζ -1 (1 -z 2 ) -1/4 dz -1, with K 3/4 = 1 -1 (1 -x 2 ) -1/4 dx = √ π Γ(3/4) Γ(5/4) ,
where the path integration is arbitrary in C + . The map F 3/4 conformally maps C + into O + 1 , and verifies the following properties:

F 3/4 (-1) = -1, F 3/4 (0) = 0, F 3/4 (1) = 1,
and

F 3/4 ( (-∞, -1) ) = Γ , F 3/4 ( (-1, 1) ) = Γ b , F 3/4 ( (1, ∞) ) = Γr, F 3/4 (ı R + ) = ı R + .
The second conformal mapping we will use is defined, for any ζ ∈ C + , by

F 1/2 (ζ) = 2 π arcsin(ζ) = 2 π ζ -1 (1 -z 2 ) -1/2 dz -1,
which conformally maps C + into the closure of the half strip S + 1 = {Ξ = A + ıB, A ∈ (-1, 1), B > 0} with the following properties:

F 1/2 (-1) = -1, F 1/2 (0) = 0, F 1/2 (1) = 1,
and

F 1/2 ( (-∞, -1] ) = -1 + ı R + , F 1/2 ( (-1, 1) ) = (-1, 1), F 1/2 ( [1, ∞) ) = 1 + ıR + , F 1/2 (ı R + ) = ı R + .
Finally, we define the conformal mapping 

F = F 1/2 • F -1 3/4 , which maps O + 1 into S + 1 . For any ξ = a + ıb ∈ O + 1 ,
       ∆A,B Φ = 0, for A ∈ (-1, 1), B > 0, Φ(-1, B) = Φ(1, B) = 0, for B > 0, ∂B Φ(A, 0) = - π K 3/4 cos π 2 A , for A ∈ (-1 , 1). (3.7) 
If the first two equations are standard, the last one deserves additional details. In fact, it comes from the identity [21, Theorem 5.6a] We therefore have to compute

grd ξ ϕ(ξ) = grd Ξ Φ(F (ξ))F (ξ), (3.8 
F (ξ) = (F 1/2 • F -1 3/4 ) (ξ) = F 1/2 (F -1 3/4 (ξ)) (F -1 3/4 ) (ξ).
To do so, let us define ζ = F -1 3/4 (ξ) ∈ C + . By definition,

F 1/2 (F -1 3/4 (ξ)) = F 1/2 (ζ) = 2 π 1 1 -ζ 2 , whereas (F -1 3/4 ) (ξ) = (F -1 3/4 ) (F 3/4 (ζ)) = 1 F 3/4 (ζ) = K 3/4 2 4 1 -ζ 2 .
Therefore,

F (ξ) = K 3/4 π 1 4 1 -ζ 2 , with ζ = F -1 3/4 (ξ). In particular, for ξ = a ∈ (-1, 1), ζ ∈ (-1, 1) and therefore F (ξ) ∈ R and ∂B Φ(A, 0) = ∂ b φ(a, 0) 1 F (a) = - π K 3/4 4 1 -ζ 2 , with ζ = F -1 3/4 (a).
To conclude, we just note that ζ = F -1 1/2 (A) if and only if ζ = sin(Aπ/2), and the identity (3.7) (3) follows. Problem (3.7) has the advantage of being explicitly solvable. Indeed, as Φ is harmonic in (-1, 1) × (0, ∞), and verifies Φ(-1, B) = Φ(1, B) = 0 for all B > 0, it necessarily has the following decomposition:

Φ(A, B) = k 1 (α k e -k π 2 B + a k e k π 2 B ) sin k π 2 (A + 1) , (A, B) ∈ S + 1 .
Recalling (3.6) on φ, we wish to have Φ going to zero as B → ∞. We thus choose a k = 0 for all k 1, so that Φ writes:

Φ(A, B) = k 1 α k e -k π 2 B sin k π 2 (A + 1) , (A, B) ∈ S + 1 .
But the boundary condition on B = 0 is equivalent to

π 2 k 1 k α k sin k π 2 (A + 1) = π K 3/4 cos π 2 A ,
which explicitly yields the coefficients α k :

∀k ∈ N, α k = 2 k 1 K 3/4 1 -1 sin k π 2 (A + 1) cos π 2 A dA.
As cos (Aπ/2) is an even function and sin (kπ(A + 1)/2) is an odd function for all even k, we have α k = 0 for all even k. On the other hand, we have for any n ∈ N (see [18, equation 3.631.9]),

1 -1 sin (2 n + 1) π 2 (A + 1) cos π 2 A dA = (-1) n 1 -1 cos (2 n + 1) π 2 A cos π 2 A dA = (-1) n 4 π π 2 0 cos ((2 n + 1)t) cos (t) dt = 1 2 √ π Γ n + 1 4 Γ n + 7 4 ,
where Γ(•) stands for the Gamma function, so in the end we obtain

α2 n+1 = 1 π 1 2 n + 1 Γ 5 4 Γ 3 4 Γ n + 1 4 Γ n + 7 4 ,
which can be slightly simplified using that Γ (5/4) = Γ(1/4)/4 and Γ(3/4) = √ 2π/Γ(1/4), giving

α2 n+1 = Γ 1 4 2 4 √ 2 π 2 1 (2 n + 1) Γ n + 1 4 Γ n + 7 4 .
So finally, we have

Φ(A, B) = Γ 1 4 2 4 √ 2 π 2 n∈N 1 (2 n + 1) Γ n + 1 4 Γ n + 7 4 e -(2 n+1) π 2 B sin (2 n + 1) π 2 (A + 1) , (A, B) ∈ S + 1 , (3.9) 
and

Φ(0, 0) = Γ 1 4 2 4 √ 2 π 2 n∈N (-1) n (2 n + 1) Γ n + 1 4 Γ n + 7 4 .
(3.10)

Note that, according to [26, 1.4.25],

1 2 n + 1 Γ n + 1 4 Γ n + 7 4 n→∞ 1 2 n 5 2
hence the above series are well defined. In particular, the identity (3.9) can be understood pointwise and Φ(•, B) goes to zero as B → ∞:

sup A∈(-1,1) {| Φ(A, B)| + |∂A Φ(A, B)|} C exp(-πB/2), B 0. (3.11)
Let us also note that, because Φ(0, 0) is defined through a converging alternating series, we have

Φ(0, 0) < Γ 1 4 2 4 √ 2 π 2 2 n=0 (-1) n (2 n + 1) Γ n + 1 4 Γ n + 7 4 < 9 10
.

Computing the 100th partial sum of the series using Octave [START_REF] Eaton | GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations[END_REF], we obtain Φ(0, 0) ∼ 0.893204.

A different expression for Φ(0, 0) is the following:

Φ(0, 0) = 2 π π 2 0 ln cot t 2 cos(t) dt π 2 0 cos(t) dt , (3.12) 
which easily comes from the equality Φ(0, 0) = n∈N (-1) n α2 n+1, the fact that

α2 n+1 = (-1) n 8 (2 n + 1)π 1 K 3/4 π 2 0 cos((2 n + 1) t) cos(t) dt,
the definition of K 3/4 and the identity (see [18, Note in particular that under the form (3.12), one immediately checks that Φ(0, 0) > 0. (

In agreement with Figure 2, we then show that the maximum of Φ is attained at (A, B) = (0, 0). We first note that the function Φ given by (3.9) is positive in the strip S + 1 . Indeed, since Φ is harmonic in the half strip S + 1 and is not constant, its minimum is attained at the boundary S + 1 or at infinity [15, Lemma 3.4 & Theorem 3.5]. The boundary conditions on ∂ S + 1 and the behavior of Φ as B → ∞ in (3.11) implies that the minimum value of Φ is 0 and is attained on the lateral boundaries {-1, 1} × R+ of the half strip. Consequently, the function Φ is positive in S + 1 , and its minimal value is 0. Besides, as Φ vanishes on the lateral boundaries {-1, 1} × R + of the half strip, ∂A Φ(1, •) is strictly negative by Hopf maximum principle [35, Chapter 2, Theorem 7]. We then consider the function ΦA = ∂A Φ. Formula (3.9) easily yields that ΦA(0, B) = 0 for B > 0, so that ΦA satisfies:

           ∆ ΦA = 0 in S + 1 ∩ {A > 0}, ΦA(0, B) = 0 for B > 0, ΦA(1, B) < 0 for B > 0, ∂B ΦA(A, 0) 0 for A ∈ (0, 1), lim |B|→∞ sup A∈(0,1) | ΦA(A, B)| = 0.
It easily follows that the maximum of ΦA is necessarily non-positive in S + 1 ∩ {A > 0} by the application of the maximum principle. As Φ is harmonic in the half-strip S + 1 and is strictly positive in (0, 0) (see equation (3.13)), the maximum of Φ on the half strip S + 1 is necessarily attained on the boundary of the half-strip or at infinity, therefore on (-1, 1) × {0} according to the boundary conditions satisfied by Φ in (3.7) and the conditions (3.11) as B → ∞. Now, ∂A Φ is non-positive in S + 1 ∩ {A > 0} and Φ(A, B) = Φ(|A|, B) in the half-strip S + 1 according to (3.9), so the maximum of Φ is necessarily attained in (A, B) = (0, 0)1 .

We then come back to the problem (3. 

G(a, b, a0, b0) = 1 4 π ln (a -a0) 2 + (b -b0) 2 (a + a0) 2 + (b + b0 + 2) 2 ((a + b0 + 1) 2 + (b + a0 + 1) 2 ) ((a -b0 -1) 2 + (a0 -b -1) 2 )
.

It is readily verified that for any (a0, b0)

∈ Õ+ 1 , G(•, •, a0, b0) verifies ∆ a,b G(•, •, a0, b0) = δ (a 0 ,b 0 ) in Õ+ 1 G(a, b, a0, b0) = 0 for (a, b) such that |a| = |b| + 1.
Indeed, this comes from the fact that G is the suitable combination of the fundamental solution of the Laplace operator in the sectors

{(a, b) ∈ R 2 , with b = |a| -1} and {(a, b) ∈ R 2 , with b = 1 -|a|}.
Then, standard computations show that φ is a solution of (3.5) if and only if it verifies the integral equation

φ(a0, b0) = - 1 -1 ∂ b G(a, 0, a0, b0) φ(a, 0) da + 1 -1 G(a, 0, a0, b0) da, ∀(a0, b0) ∈ Õ+ 1 . (3.18)
We then introduce G defined by

G (a, a0, b0) = -∂ b G(a, 0, a0, b0) - 1 2 π b0 b 2 0 + (a -a0) 2 .
It is easily seen that for any a0 ∈ (-1, 1),

lim b 0 →0 1 -1 G (a, a0, b0) φ(a, 0) da = 1 -1 G (a, a0, 0) φ(a, 0) da, lim b 0 →0 1 -1 G(a, 0, a0, b0) da = 1 -1 G(a, 0, a0, 0) da, whereas lim b 0 →0 1 2 π 1 -1 b0 b 2 0 + (a -a0) 2 φ(a, 0) da = 1 2 φ(a0, 0).
Therefore, choosing a0 ∈ (-1, 1) and taking the limit b0 → 0 in (3.18) leads to the following integral equation:

1 2 φ(a0, 0) = 1 -1
G (a, a0, 0) φ(a, 0) da + Discretizing equation (3.19), we can obtain a good approximation of φ(a0, 0) for a0 ∈ (-1, 1) (see Figure 3). In dashed blue, Φ(0, 0) = φ(0, 0). Therefore, gα * attains its maximum on ∂Oα, so that

Phragmén Lindelöf principle

∀ξ ∈ Oα, |f (ξ)| C0 exp α * α | (ξ)|L exp Lα * ϕ ξ α .
Taking the limit α * → α, we immediately have

∀ξ ∈ Oα, |f (ξ)| C0 exp(| (ξ)|L) exp Lα ϕ ξ α , (3.21)
that is, (2.14).

Remark 3.2. Let us remark that we can obtain from the above proof an explicit formula for f . Indeed, for α * > α, we can use the Cauchy formula for the function gα * in (3.20) on the contour given by

γα,R = ∂(Oα ∩ { (ξ) < R}), ( with R > 0 )
oriented in a counter-clockwise manner, which yields: for all ξ ∈ R with |ξ| < L/(2T ),

gα * (ξ) = 1 2ıπ γ α,R gα * (ζ) ζ -ξ dζ.
Now, due to the decay of gα * at infinity, one can pass to the limit in the above formula as R → ∞: for all ξ ∈ R with |ξ| < L/(2T ),

gα * (ξ) = 1 2ıπ γα gα * (ζ) ζ -ξ dζ,
where γα is the union of the two connected components of ∂Oα oriented counter-clockwise. Recalling the definition of gα * , we end up with the following formula: for all ξ ∈ R with |ξ| < L/(2T ),

f (ξ) = 1 2ıπ γα e Lα * (φ(ξ/α)-φ(ζ/α)) f (ζ) ζ -ξ dζ. (3.22)
4 Further Comments

Higher dimensional settings

The method developed above applies also to the cost of observability of the heat equation in multi-dimensional balls. More precisely, we consider the following heat equation, set in the ball of radius L > 0 of R d (d 1), denoted by BL in the following, and in the time interval (0, T ):

   ∂tu -∆xu = 0, in (0, T ) × BL, u(t, x) = 0, in (0, T ) × ∂BL, u(0, x) = u0(x), in BL, (4.1)
where the initial datum u0 belongs to H 1 0 (BL). In that setting, we have the following result: Theorem 4.1. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant C > 0 such for all T ∈ (0, 1], for all solutions u of (4.1) with initial datum u0 ∈ H 1 0 (BL),

u(T ) exp |x| 2 4T L 2 (B L ) C exp K L 2 T ∂ν u L 2 ((0,T )×∂B L ) . (4.2) 
Here and in the following, |.| denotes the euclidean norm in R d . The proof of Theorem 4.1 follows closely the one of Theorem 1.1, therefore we only sketch its proof, explaining the main differences with the proof of Theorem 1.1.

Sketch of the proof of Theorem 4.1. We start by considering a smooth solution u of (4.1), and define

z(t, x) = u(t, x) exp |x| 2 -L 2 4 t , (t, x) ∈ (0, T ) × BL, which satisfies      ∂tz + x t • ∇xz + d 2 t z -∆xz - L 2 4 t 2 z = 0 in (0, ∞) × BL, z(t, x) = 0 in (0, T ) × ∂BL, z(0, x) = 0 in BL,
Proposition A.1 with Ω = BL and g ≡ 0 implies directly the following estimate for z:

B L |∇xz(T, x)| 2 dx - L 2 4T 2 B L |z(T, x)| 2 dx L T 2 T 0 ∂B L t |∇xz(t, x) • ν| 2 ds(x) ds. (4.3) 
We define w as the extension of z by 0 outside BL: w verifies the equations

   ∂tw + x t • ∇xw + d 2 t w -∆xw - L 2 4 t w = ∇xu(t, x) • ν δ ∂B L , in (0, ∞) × R d , w(0, x) = 0, x ∈ R d .
Thus, its Fourier transform, defined for (t, ξ)

∈ (0, T ) × C d by w(t, ξ) = R d w(t, x)e -ıξ•x dx, satisfies    ∂t w - ξ t • ∇ ξ w - d 2 t w + ξ 2 w - L 2 4 t 2 w = ∂B L ∇xu(t, x) • ν e -ıξ•x ds(x), (t, ξ) ∈ (0, ∞) × R d , w(0, ξ) = 0, ξ ∈ R d . (4.4) 
As in the one-dimensional case, equation (4.3) gives a high-frequency (|ξ| > L/(2T )) L 2 -estimate of w(T, •) depending on the observation and the low-frequency (|ξ| L/(2T )) L 2 -norm of w(T, •), on which we focus from now. To do so, similarly as in Section 3.1, we solve the transport equation (4.4), and obtain, for

ξ0 ∈ R d such that |ξ0| > L/(2T ), w (T, ξ0) = T 0 T t d 2 ∂B L ∇xu(t, x) • ν e -ı x•ξ 0 T t -(ξ 2 0 T 2 -L 2 /4)(1/t-1/T ) ds(x) dt (4.5) 
with ξ 2 0 = ξ0 • ξ0. Once here, we consider ξ0 = (ξ1, ξ), with ξ ∈ R d-1 fixed, and ξ1 = a + ı b, a, b ∈ R, and define f (ξ1) = w(T, ξ1, ξ) which is an entire function satisfying (2.11). Besides, with similar computations as in Section 3.1, it is easy to obtain that for all α > L 2 /(2T ), there exists Cα(T ) > 0, which may blow up polynomially in T as T → 0 (contrarily to what happens in the one-dimensional setting, the constant Cα(T ) may now blow up as T → 0, but only polynomially in T , so that it will not significantly affect the cost of observability in small times in (4.2), which blows up as an exponential of 1/T as T → 0), such that for all ξ1 ∈ Cα as in (2.6), we have

|f (ξ1)| Cα e | (ξ 1 )|L ∂ν u L 2 ((0,T )×∂B L ) .
From that, we end the proof of Theorem 4.1 exactly as in the one-dimensional case, with the use of Proposition 2.3.

Actually, the method developed above works not only for balls, but also for any bounded domain Ω ⊂ R d . More precisely: Then for any K > K0, there exists C > 0 such that any smooth function u solution of

   ∂tu -∆xu = 0 in (0, T ) × Ω, u(t, x) = 0 in (0, T ) × ∂Ω, u(0, x) = u0(x) in Ω. verifies u(T ) exp |x -x| 2 4T L 2 (Ω) C exp KL 2 Ω /T ∂ν u L 2 ((0,T )×∂Ω) .
Note that this is a geometrical setting in which Corollary 1.3 applies but yields a different estimate on the cost of observability. Indeed, when the observation is done on the whole boundary, one easily checks that the choice S0 = S + Ω , where

SΩ = sup{ Length of segments included in Ω },
is suitable for the application of Corollary 1.3. In particular, when Ω is convex, LΩ SΩ 2LΩ and Theorem 4.2 always yields at least the estimate given by Corollary 1.3 when the observation is done on the whole boundary of Ω, and a better one in general (as in the case of a ball discussed in Theorem 4.1).

Tensorized equations

Another application of our method concerns the cost of observability of the heat equation on a tensorized domain. More precisely, we consider the heat equation set in a tensorized spatial domain Ω = Ωx × Ωy, and want to know the cost of observability in small time when the solution is observed on ∂Ωx × Ωy. Note that the answer is already known: the cost is the same as the one for the heat equation set on Ωx only, when the observation is done on the whole boundary ∂Ωx [33, Theorem 1.5]. Our purpose is therefore just to underline that our approach also applies in that context and allows to retrieve easily this result. To fix ideas, we focus on the case Ωx = (-L, L) (When Ωx is a multi-dimensional domain, similar arguments can be developed, under appropriate geometric conditions, by using Theorem 4.2 instead of Theorem 1.1). Hence we are interested in the following heat equation, set in the domain Ω = (-L, L) × Ωy, with L > 0 and Ωy a smooth bounded domain of R dy , in some time interval (0, T ), T > 0:

       ∂tu -∂ 2
x u -∆yu = 0 for (t, x, y) ∈ (0, T ) × (-L, L) × Ωy, u(t, L, y) = u(t, -L, y) = 0 for (t, y) ∈ (0, T ) × Ωy, u(t, x, y) = 0 for (t, x, y) ∈ (0, T ) × (-L, L) × ∂Ωy, u(0, x, y) = u0(x, y) in (-L, L) × Ωy.

(

As usual, the initial datum u0 belongs to H 1 0 ((-L, L) × Ωy). We have the following: Theorem 4.3. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant C > 0 such for all T ∈ (0, 1], for all solutions u of (4. To prove Theorem 4.3, it is sufficient to prove that each un verifies the following observability inequality un(T, x) exp

x 2 4T L 2 (-L,L) C exp K L 2 T ∂xun(t, -L) L 2 (0,T ) + ∂xun(t, L) L 2 (0,T ) , (4.9) 
with a constant C independent of n. To do so, we consider ũn = un e λ 2 n t , which verifies

   ∂t ũn -∂ 2
x ũn = 0 in (0, T ) × (-L, L), ũn(t, -L) = ũn(t, L) = 0 in (0, T ), ũn(0, x) = un,0(x) in (-L, L).

Applying Theorem 1.1, we get ũn(T, x) exp

x 2 4T L 2 (-L,L) C exp K L 2 T ∂x ũn(t, -L) L 2 (0,T ) + ∂x ũn(t, L) L 2 (0,T ) ,
which directly gives (4.9) as e λ 2 n (t-T )

1 for all t ∈ (0, T ), and therefore ends the proof.

Observation from one side of the domain -Symmetrization argument

In this section, we are interested in the cost of observability for the one dimensional heat equation when observed on one side of the domain. In other words, for L, T > 0 and u0 ∈ H 1 0 (0, L), we consider the system

   ∂tu -∂ 2 x u = 0, in (0, T ) × (0, L), u(t, 0) = u(t, L) = 0, in (0, T ), u(0, x) = u0(x), in (0, L). (4.10) 
We have the following:

Theorem 4.4. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant C > 0 such for all T ∈ (0, 1], for all solutions u of (4.10) with u0 ∈ H 1 0 (0, L), u(T ) exp

x 2 4T L 2 (0,L) C exp K L 2 T ∂xu(t, L) L 2 (0,T ) . (4.11)
Proof. The proof is based on a classical symmetrisation argument: for u solution of (4.10), we define us(t, x) = u(t, x) for (t, x) ∈ (0, T ) × (0, L) -u(t, -x) for (t, x) ∈ (0, T ) × (-L, 0).

It is readily seen that us verifies system (1.1). Therefore, Theorem 1.1 gives

us(T ) exp x 2 4T L 2 (-L,L) C exp KL 2 T ∂xus(t, -L) L 2 (0,T ) + ∂xus(t, L) L 2 (0,T ) .
The result follows easily, as ∂xus(t, -L) = ∂xus(t, L) = ∂xu(t, L) for all t ∈ (0, T ).

Distributed observations

One is sometimes interested in distributed observations, in which case the corresponding observability inequality reads:

u(T ) L 2 (0,L) C(T, L, a, b) u L 2 ((0,T )×(a,b)) , (4.12) 
for smooth solutions u of (4.10), where a, b ∈ R are such that (a, b) ⊂ (0, L) and a < b.

We claim the following:

Theorem 4.5. Let 0 a < b L. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant C > 0 such for all T ∈ (0, 1], for all solutions u of (4.10),

u(T ) L 2 (0,L) C exp K min{a 2 , (L -b) 2 } T u L 2 (0,T ;H 1 (a,b)) . (4.13) 
Proof. As in the proof of Theorem 4.4, we start by symmetrizing the function u, and we call us its symmetric extension. We then take ε > 0 small enough to have a + 2ε < b and we choose an even cut-off function ρ taking value 1 on (-a -ε, a + ε) and vanishing for |x| > a + 2ε. Then the function 

z(t, x) =    ρ(x)
       ∂tz + x t ∂xz + 1 2t z -∂ 2 x z - (a + 2ε) 2 4t 2 z = g, (t, x) ∈ (0, ∞) × (-a -2ε, a + 2ε), z(t, -a -2ε) = z(t, a + 2ε) = 0, t ∈ (0, ∞), z(0, x) = 0, x ∈ (-a -2ε, a + 2ε), (4.14) 
where

g(t, x) = exp x 2 -(a + 2ε) 2 4t (2∂xρ∂xu(t, x) + ∂xxρu(t, x)).
One can then follow the approach developed in Section 2 (using Proposition A.1 instead of Theorem 2.1 and the fact that ∂xz(t, -a -2ε) = ∂xz(t, a + 2ε) = 0) to show that for all K1 > K0, there exists C such that for all T ∈ (0, 1],

z(T ) L 2 (-a-2ε,a+2ε) C exp K1(a + 2ε) 2 T g L 2 ((0,T )×(-a-2ε,a+2ε)) .
Using the definition of z and g, one easily gets

u(T ) L 2 (0,a+ε) C exp K1(a + 2ε) 2 T u L 2 (0,T ;H 1 (a,a+2ε)) .
Similarly, one can obtain

u(T ) L 2 (b-ε,L) C exp K1(L -b + 2ε) 2 T u L 2 (0,T ;H 1 (b-2ε,b)) .
It is besides straightforward to show that

u(T ) L 2 (a+ε,b-ε) C u L 2 (0,T ;H 1 (a,b)) ,
for instance by looking at v(t, x) = η(t)u(t, x)ρ0(x), where η = η(t) is a smooth function of time taking value 0 at t = 0 and 1 at t = T , and ρ0 = ρ0(x) taking value 1 on (a + ε, b -ε) and vanishing for x / ∈ (a, b), and doing energy estimates. Combining the three above estimates, we easily conclude (4.13) by taking K1 ∈ (K0, K) and ε > 0 small enough. Note that the above argument is only based on suitable cut-off arguments. It can therefore be applied as well in multi-dimensional settings, provided some geometric assumptions compatible with Theorem 4.2 are satisfied, namely if the distributed observation set is a neighborhood of the whole boundary.

Related uncertainty principles

One key point to obtain Theorem 1.1 is the complex analysis argument developed in Section 3.2, based principally on the Schwarz-Christoffel conformal mapping and the Phragmén Lindelöf principle. It is nevertheless possible to develop a purely real analysis argument, but it only allows to retrieve the cost of observability for the one-dimensional heat equation known since [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF]: Theorem 4.6. For all K > 3/4, there exists a constant C > 0 such for all T ∈ (0, 1], all solutions u of (1.1) with initial datum u0 ∈ H 1 0 (-L, L) satisfies (1.2).

The proof of Theorem 4.6 is based on the following uncertainty principle result, due to [START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty[END_REF][START_REF] Fuchs | On the eigenvalues of an integral equation arising in the theory of band-limited signals[END_REF]:

Proposition 4.7 ([24, 13]). Let A, B > 0. Let f ∈ L 2 (R) supported in [-A, A], f its Fourier transform. Then B -B | f (ξ)| 2 dξ λ0 R | f (ξ)| 2 dξ (4.15)
where λ0 = λ0(AB) verifies 0 < λ0 < 1 and

λ0 = 1 -4 √ π √ AB e -2AB (1 + AB ) , (4.16) 
where AB → 0 as AB → ∞.

Relation (4.15) is a particular case of [24, Theorem p.68], whereas the proof of the asymptotic behaviour of λ0 can be found in [13, Theorem 1, p.319].

Proof of Theorem 4.6. We start from formula (2.7), which we recall hereafter: for any ξ0 ∈ R such that |ξ0| > L/(2T ), we have

w (T, ξ0) = - T 0 T t ∂xu(t, -L)e ı Lξ 0 T t -(ξ 2 0 T 2 -L 2 /4)(1/t-1/T ) dt + T 0 T t ∂xu(t, L)e -ı Lξ 0 T t -(ξ 2 0 T 2 -L 2 /4)(1/t-1/T ) dt.
Therefore, we directly obtain, for ξ0 ∈ R with |ξ0| > L/(2T ),

| w (T, ξ0) | 2 T ∂xu(t, -L) 2 L 2 (0,T ) + ∂xu(t, L) 2 L 2 (0,T ) T 0 e -2 T 2 (ξ 2 0 -L 2 /4T 2 )(1/t-1/T ) dt t .
For η > 1, we choose ξ0 ∈ R with |ξ0| ηL/(2T ) which implies

ξ 2 0 - L 2 4T 2 η 2 -1 η 2 ξ 2 0 and T 0 e -2 T 2 (ξ 2 0 -L 2 /4T 2 )(1/t-1/T ) dt t T 0 e -2 T 2 η 2 -1 η 2 ξ 2 0 ( 1 t -1 T ) dt t η 2 2 T (η 2 -1) ξ 2 0 . Hence we obtain, for ξ0 ∈ R with |ξ0| > L/(2T ), | w (T, ξ0) | 2 η 2 2 (η 2 -1) ξ 2 0 ∂xu(t, -L) 2 L 2 (0,T ) + ∂xu(t, L) 2 L 2 (0,T )
and

|ξ 0 |>η L 2 T | w (T, ξ0) | 2 dξ0 2 T η (η 2 -1) L ∂xu(t, -L) 2 L 2 (0,T ) + ∂xu(t, L) 2 L 2 (0,T ) . Now, from (4.15) applied to f = w(T ) with A = L, B = ηL/(2T ) and λ0 = λ0(ηL 2 /(2T )), we have R | w (T, ξ0) | 2 dξ0 = |ξ 0 |<η L 2 T | w (T, ξ0) | 2 dξ0 + |ξ 0 |>η L 2 T | w (T, ξ0) | 2 dξ0 λ0 R | w (T, ξ0) | 2 dξ0 + |ξ 0 |>η L 2 T | w (T, ξ0) | 2 dξ0, and thus R | w (T, ξ0) | 2 dξ0 1 1 -λ0 |ξ 0 |>η L 2 T | w (T, ξ0) | 2 dξ0.
We have thus obtained

L -L |w(T, x)| 2 dx = R | w (T, ξ0) | 2 dξ0 1 1 -λ0 2 T η (η 2 -1) L ∂xu(t, -L) 2 L 2 (0,T ) + ∂xu(t, L) 2 L 2 (0,T )
which implies from Proposition 4.7 and (4.16) the existence of a constant C such that for T small enough

L -L |w(T, x)| 2 dx Ce η L 2 T ∂xu(t, -L) 2 L 2 (0,T ) + ∂xu(t, L) 2 L 2 (0,T ) .
The result of Theorem 4.6 follows from the definition of w.

4.6 On a possible improvement of Theorem 1.1

As we said in the introduction, we do not know if the estimate on the cost of observability in small times given by Theorem 1.1 is sharp or not. In fact, when looking at the main steps of the proof of Theorem 1.1 given in Section 2, it seems that one step in which our estimates are not sharp may be the one using Phragmén-Lindelöf principles, i.e. Proposition 2.3. Indeed, introducing the class

Eα = {f ∈ Hol (Oα), s.t. f (ξ)e -| (ξ)| ∈ L ∞ (Oα) and ∀ξ ∈ ∂Oα, |f (ξ)| e | (ξ)| }, Proposition 2.3 shows that sup f ∈Eα sup x∈[-α,α] {|f (x)|} exp(α ϕ(0)), (4.17) 
where ϕ(0) is given by (2.15). Besides, this estimate is sharp as we can construct an holomorphic function φ in O1 whose real part coincides with ϕ(ξ) + | (ξ)| given by (2.12)-(2.13) and check that f φ (ξ) = exp(α φ(ξ/α)) belongs to Eα and saturates the estimate (4.17), so that max

f ∈Eα max x∈[-α,α] {|f (x)|} = exp(α ϕ(0)). (4.18) 
Now, in our approach (in the case L = 1, which can always be assumed by a scaling argument), we apply estimate (4.17 which is precisely the estimate we use, but there is no evidence to support the idea that this estimate gives the good asymptotics as α → ∞.

Let us in particular point out that

• The function f φ given above to show that estimate (4.17) is sharp does not belong to the class E * α . • The constant C * (α) in (4. [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]) blows up at least like exp(α/2) as α → ∞, as otherwise the proof given in Section 2 would yield a cost of observability smaller than exp(L 2 /2T ) in small times, which is known to be false due to [START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport diffusion equation[END_REF]. Combined with [START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport diffusion equation[END_REF], this would entail that lim α→∞ T log(C0(T, L)) = L 2 2 .

•

Uniform controllability of viscous approximations of the transport equation

The problem we considered in this article is intimately related to the question of uniform controllability of viscous approximations of the transport equation raised in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF]. Namely, for all ε > 0, one considers the following viscous approximation of the transport equation at velocity M ∈ R:

      
∂tyε -ε∂ 2

x yε + M ∂xyε = 0, (t, x) ∈ (0, T ) × (0, L), yε(t, 0) = vε(t), t ∈ (0, T ), yε(t, L) = 0, t ∈ (0, T ), yε(0, •) = y0(x),

x ∈ (0, L). For each ε > 0, the equation (4.21) is null-controllable in any time T > 0, and the map Vε,T : y0 → vε which to any y0 ∈ L 2 (0, L) associates the control vε of minimal L 2 (0, T )-norm is linear. The question raised in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] is the following one: Give conditions on the time T guaranteeing that lim sup ε→0 Vε,T L (L 2 (0,L);L 2 (0,T )) < ∞. It is clear that if |M |T < L, (4.22) cannot happen, as otherwise the convergence of (4.21) as ε → 0 would imply the null-controllability of the transport equation in a time which is not enough to make the characteristics go out of the domain. Several conditions on the time T ensuring (4.22) were then proposed in the literature, namely in the works [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF], [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] and [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF]. In fact, to our knowledge, the best results are the ones obtained in [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF], which we recall now: Here, we have used that as z = 0 on ∂Ω, ∇xz = (∇xz Using the assumption on z in (A.1) [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF][START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] , one easily checks limt→0 t 2 D(t) = 0, hence we can integrate (A.4) between 0 and T , which gives (A.3), as |(x • ν)| L for all x ∈ Ω.
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 1 Figure 1: The complex plane, with domains Cα and Oα.

Figure 2 :

 2 Figure 2: Approximation of φ solving (3.5), obtained by a finite element approach (using FreeFem++,[START_REF] Hecht | New development in freefem++[END_REF]).

  we denote Ξ = A + ıB = F (ξ). Using standard computation from conformal transplantation [21, Chapter 5.6], we see that φ solves (3.5) in Õ+ 1 if and only if Φ given by Φ(A, B) = φ(a, b) for A + ıB = F (a + ıb) solves the following problem posed in the half-strip S + 1 :

  )applied to ξ = a ∈ (-1, 1), (implying F (ξ) = A ∈ (-1, 1)), where grd is the complex gradient: for ξ = a + ıb, grd ξ ϕ(ξ) = ∂a φ(a, b) + ı∂ b φ(a, b) and for Ξ = A + ıB, grd Ξ Φ(Ξ) = ∂A Φ(A, B) + ı∂B Φ(A, B).
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 1231 5)-(3.6) and check that the function φ given by φ(a, b) = Φ(A, B), for A + ıB = F (a + ıb), (a, b) ∈ Õ+ 1 , (3.14) with Φ as in (3.9), satisfies (3.5)-(3.6). By construction, φ automatically satisfies (3.5) and its maximum is attained in (a, b) = (0, 0) and takes value φ(0, 0) = Φ(0, 0). We thus only have to check the condition (3.6). In order to do that, let us introduce the real functions à = Ã(a, b) and B = B(a, b) given for (a, b) ∈ Õ+ 1 by F (a + ıb) = Ã(a, b) + ı B(a, b), it were not the case, we could find real sequences (an, bn) n∈N with lim n→∞ bn = +∞, ∀n ∈ N, |an| bn + 1 and sup n B(an, bn) < ∞. (3.17) Then, if we set ζn = F -1 3/4 (an + ıbn), by construction, (ζn) = Ã(an, bn) + ı B(an, bn).Therefore, according to the definition of F 1/2 , ζn = sin π 2 ( Ã(an, bn) + ı B(an, bn)) , so that the sequence (ζn) is uniformly bounded in C as n → ∞. Then the sequence (an, bn) is given by an + ıbn = F 3/4 (ζn). But F 3/4 maps bounded sets of C into bounded sets of C, so this is in contradiction with (3.17), and the property (3.16) holds.We can thus use(3.11) to get that for all b 0,sup |a|<b+1 {| φ(a, b)|} C exp -π 2 inf |a|<b+1 B(a, b) ,which, according to (3.16), implies(3.6). Another approach to obtain informations on φ solution of (3.5) is through integral equations. More precisely, let us define, for ((a, b), (a0, b0)) ∈ ( Õ+ 1 ) 2 , we define G as follows:

1 - 1 G

 11 (a, 0, a0, 0) da.(3.19) 

Figure 3 :

 3 Figure 3: In solid black, φ(a0, 0) for a0 ∈ (-1, 1), obtained by discretization of equation (3.19).In dashed blue, Φ(0, 0) = φ(0, 0).

  With φ as in (2.12), the function (a, b) → φ(a, b) + |b| is harmonic in Õ1, and it is therefore the real part of some holomorphic function φ in O1: ∀(a, b) ∈ Õ1, (φ(a + ıb)) = φ(a, b) + |b|, or, equivalently, for all ξ ∈ O1, (φ(ξ)) = ϕ(ξ) + | (ξ)|. For each α * > α, we consider the function gα * defined for ξ ∈ Oα by gα * (ξ) = f (ξ) exp -Lα * φ ξ α . (3.20) By construction, gα * is holomorphic in Oα and satisfies: ∀ξ ∈ ∂Oα, |gα * (ξ)| C0, and lim | (ξ)|→∞ sup | (ξ)|<| (ξ)|+α |gα * (ξ)| = 0.

Theorem 4 . 2 .

 42 Let Ω be a smooth bounded domain of R d , if we set LΩ = inf x∈Ω sup y∈∂Ω |x -y|, and we choose x ∈ Ω such that sup y∈∂Ω |x -y| = LΩ.

2 4TL 2 ( 7 )

 227 [START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF], u(T, x, y) expx (-L,L)×Ωy )C exp K L 2 T ∂xu(t, -L, y) L 2 ((0,T )×Ωy ) + ∂xu(t, L, y) L 2 ((0,T )×Ωy ) . (4.Sketch of the proof of Theorem 4.3. Let us denote by (vn, λ 2 n ) the family of normalized eigenfunctions and eigenvalues of the Dirichlet-Laplace operator set in Ωy, that is   -∆yvn = λ 2 n vn in Ωy, vn = 0 on ∂Ωy, vn L 2 (Ωy ) = 1.Expanding u solution of (4.6) on the L 2 (Ωy) Hilbert basis (vn), that is u(t, x, y) = n∈N un(t, x)vn(y), we see that each un solves a one dimensional heat equation with potential λ 2 n set in (0, T ) × (-L, L):   ∂tun -∂ 2x un + λ 2 n un = 0 in (0, T ) × (-L, L), un(t, -L) = un(t, L) = 0 in (0, T ), un(0, x) = un,0(x) in (-L, L), (4.8) with un,0(x) = Ω u0(x, y) vn(y) dy.

  ) to the function f = w(T, •)/ w(T, ξ)e -| (ξ)| L ∞ (Cα) , which in fact belongs to a smaller class:E * α = {f ∈ Hol (C), s.t. f (ξ)e -| (ξ)| ∈ L ∞ (C) and ∀ξ ∈ Cα, |f (ξ)| e | (ξ)| .}Therefore, our proof requires an estimate on the constantC * (α) = sup f ∈E * α sup x∈[-α,α] {|f (x)|} ,(4.19)in the asymptotics α → ∞. It is clear thatC * (α) exp(α ϕ(0)),(4.20)
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 22222 Looking at the 2-parameters family of functions of the form fA,γ(ξ) = cos(A ξ 2 -γ 2 ), for parameters A ∈ [0, 1] and γ ∈ [0, α], we find out that sup f ∈{f A,γ }∩E * α sup x∈[-α,α] {|f (x)|} = cosh α and is achieved when taking A = 1/ √ 2 and γ = α/ √ This function yields another evidence of the fact that lim inf α→∞ log(C * (α)) α Let us finally emphasize that if we were able to show that lim sup α→∞ log(C * (α)) α the proof given in Section 2 would yield a cost of observability in small times C0(T, L) satisfying lim sup α→∞ T log(C0(T, L)) L 2 2 .

Theorem 4 . 8 ( 2 √ 3 + 1 - 2 √ 3 ≈ 3 .L 2 2 t 3 Ω |z| 2 dx + 2 Ω∂tz dx = L 2 2 t 3 Ω |z| 2 dx - 2 Ω|S z| 2 dx - 2 ΩS z A z dx + 2 Ω 2 ΩS z A z dx = 2 Ω 2 Ω 2 ∂Ω 2 Ω

 4823123332322222222 [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF]). If M = 0 and|M |T > T (sign (M )),(4641),where sign(M ) = 1 if M > 0 and = -1 if M < 0, we have lim sup ε→0 Vε,T L (L 2 (0,L);L 2 (0,T )) = 0.A direct calculation shows thatD (t) = Sz Sz g dx.Furthermore, as A is a skew-symmetric operator, we have-∆x z A z dx = 1 t Ω ∆xz (2 x • ∇xz + d z) dx.On one hand, we obviously haveΩ ∆xz d z dx = -d Ω |∇xz| 2 dx.On the other hand, we note thatΩ ∆xz 2 x • ∇xzdx = 2 ∂Ω (∇xz • ν) (x • ∇xz) ds(x) -∇xz • ∇x (x • ∇xz) dx = (x • ν)|∇xz • ν| 2 ds(x) -∇xz • ∇x (x • ∇xz) dx.

  identity 1.442.2 p. 46])

	n∈N	cos((2 n + 1) t) 2 n + 1	=	1 2	ln cot	t 2	.

We are indebted to Jean-Michel Roquejoffre for this elegant proof of the fact that the maximum of Φ is attained in (0, 0).

These results are based on the knowledge of the cost of observability of the one-dimensional heat equation in small time obtained in [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF]. Therefore, as Theorem 4.4 improves the one in [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF], following the proof of [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF] immediately improves the known result on the uniform controllability of the viscous approximations (4.21) of the transport equation: Theorem 4.9. Let K0 as in (1.5). Then, if M = 0 and

we have lim sup ε→0 Vε,T L (L 2 (0,L);L 2 (0,T )) = 0. (4.23)

As the proof of Theorem 4.9 follows line to line the one of [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF], it is left to the reader. We are currently investigating if one can do better than the combination of the cost of observability of the one-dimensional heat equation in small times and of the arguments in [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF] to obtain better sufficient conditions on the ratio |M |T /L to guarantee (4.23). We believe that a direct approach following the strategy in Section 2 could help improving Theorem 4.9.

A Carleman-type estimate

We consider the following equation We then have the following result:

Proposition A.1. Any smooth solution z of (A.1) with g ∈ L 2 ((0, T ) × Ω) verifies the following estimate:

(A.3) with Γ+ = {x ∈ ∂Ω, x • ν > 0}, and L is given by (A.2).

Proof. We define the following spatial operators

so that z solution of (A.1) verifies ∂tz + Sz + Az = g in (0, T ) × Ω.

Note that S and A respectively correspond to the symmetric and skew-symmetric parts of the operator in (A.1).

We then consider