
HAL Id: hal-01619211
https://hal.science/hal-01619211v1

Submitted on 23 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the cost of observability in small times for the
one-dimensional heat equation

Jérémi Dardé, Sylvain Ervedoza

To cite this version:
Jérémi Dardé, Sylvain Ervedoza. On the cost of observability in small times for the one-dimensional
heat equation. Analysis & PDE, 2019, �10.2140/apde.2019.12.1455�. �hal-01619211�

https://hal.science/hal-01619211v1
https://hal.archives-ouvertes.fr


On the cost of observability in small times for the one-dimensional

heat equation
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Abstract

In this article, we aim at presenting a new estimate on the cost of observability in small times of the
one-dimensional heat equation, which also provides a new proof of observability for the one-dimensional heat
equation. Our proof combines several tools. First, it uses a Carleman type estimate borrowed from [6], in
which the weight function is derived from the heat kernel and which is therefore particularly easy. We also
use explicit computations in the Fourier domain to compute the high-frequency part of the solution in terms
of the observations. Finally, we use the Phragmén Lindelöf principle to estimate the low frequency part of
the solution. This last step is done carefully with precise estimations coming from conformal mappings.

1 Introduction

Setting. The goal of this work is to analyze the cost of observability in small times of the one-dimensional
heat equation. To fix the ideas, let L, T > 0 and consider the following heat equation, set in the bounded
interval (−L,L) and among some time interval (0, T ):

∂tu− ∂2
xu = 0 in (0, T )× (−L,L),

u(t,−L) = u(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (−L,L).

(1.1)

In (1.1), the state u = u(t, x) satisfies a heat equation, with an initial datum u0 ∈ H1
0 (−L,L).

Our main goal is to study the cost of observability in small times T of the problem (1.1) observed from both
sides x = −L and x = +L. To be more precise, let us recall that it is by now well-known that there exists
C0(T,L) such that all solution u of (1.1) with initial datum u0 ∈ H1

0 (−L,L) satisfies:

‖u(T )‖L2(−L,L) 6 C0(T,L)
(
‖∂xu(t,−L)‖L2(0,T ) + ‖∂xu(t, L)‖L2(0,T )

)
. (1.2)

In fact, the existence of the constant C0(T,L) is a consequence of the null controllability results in small
times obtained by [10], [12] in the one-dimensional case. From now on, we denote by C0(T,L) the best
constant in the observability inequality (1.2)
A precise description of the constant C0(T,L) as T → 0 is still missing, despite several contributions in this
direction, which we would like to briefly recall here. First, the article [36] showed that

lim sup
T→0

T logC0(T,L) <∞, (1.3)
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while [19] proved that
lim inf
T→0

T logC0(T,L) > 0. (1.4)

Besides, due to the scaling of the equation, C0(T,L) depends only on the ratio L2/T . Therefore, the quantity
T logC0(T,L) should be compared to L2. We list below several contributions.

lim inf
T→0

T logC0(T,L) >
L2

4
, [32],

lim inf
T→0

T logC0(T,L) >
L2

2
, [29],

lim sup
T→0

T logC0(T,L) 6 2

(
36

37

)2

L2, [34],

lim sup
T→0

T logC0(T,L) 6
3+L2

4
, [37],

where the notation + in the last estimate means that “any strictly larger number is convenient”.

Main result. Our contribution comes in this context. Namely we prove the following result:

Theorem 1.1. Setting

K0 =
1

4
+

Γ(1/4)2

8
√

2π2

∑
n∈N

(−1)n

(2n+ 1)

Γ(n+ 1/4)

Γ(n+ 7/4)
, (K0 ' 0.6966), (1.5)

where Γ denotes the gamma function, for any K > K0, we have

lim sup
T→0

T logC0(T,L) 6 KL2. (1.6)

In fact, there exists a constant C > 0 such for all T ∈ (0, 1], for all solutions u of (1.1) with initial datum
u0 ∈ H1

0 (−L,L),∥∥∥∥u(T ) exp

(
x2

4T

)∥∥∥∥
L2(−L,L)

6 C exp

(
KL2

T

)(
‖∂xu(t,−L)‖L2(0,T ) + ‖∂xu(t, L)‖L2(0,T )

)
. (1.7)

Remark 1.2. The constant K0 in (1.5) can alternatively be written as

K0 =
1

4
+

2

π

∫ π
2

0

ln

(
cot

(
t

2

))√
cos(t) dt∫ π

2

0

√
cos(t) dt

, (1.8)

see Proposition 2.3 in Section 2.

Theorem 1.1 slightly improves the cost of observability in small times when compared to [37]. However,
we do not claim that this bound is sharp, and this remains, to our knowledge, an open problem. In particular,
we shall comment in Section 4.6 a possible path to improve the estimates given in Theorem 1.1.
In fact, we believe that Theorem 1.1 is interesting mostly by its proof, presented in Section 2, which
combines several arguments. In particular, it uses a Carleman type estimate, which was already used in [6]
to derive a good description of the reachable set for the one-dimensional heat equation in terms of domains
of holomorphic extension of the states. This Carleman type estimate is used to reduce the problem of
observability to an estimate of the low frequency part of the solution of (1.1). Then, we shall use Fourier
analysis on the conjugated heat equation to get an exact formula for the high-frequency part of the solution
of (1.1) in terms of the observations. The last part of the argument is a complex analysis argument based
on the Phragmén Lindelöf principle. We refer to Sections 2 and 3 for the detailed proof of Theorem 1.1.
Let us also mention that Theorem 1.1 is strongly connected to control theory. Indeed, let us consider the
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following null-controllability problem: Given T > 0 and y0 ∈ L2(−L,L), find control functions v−, v+ ∈
L2(0, T ) such that the solution y of

∂ty − ∂2
xy = 0 in (0, T )× (−L,L),

y(t,−L) = v−(t) in (0, T ),
y(t,+L) = v+(t) in (0, T ),
y(0, x) = y0(x) in (−L,L),

(1.9)

satisfies
y(T, x) = 0 in (−L,L). (1.10)

It is well-known (see e.g. [10] or [12]) that for any T > 0, one can find controls v−, v+ of minimal (L2(0, T ))2

norm, depending linearly on y0 ∈ L2(−L,L), such that the controlled trajectory, i.e. the solution of (1.9),
satisfies (1.10). Besides, the L (L2(−L,L); (L2(0, T ))2)-norm of the linear map y0 7→ (v−, v+) is precisely
C0(T,L). In other words, C0(T,L) also characterizes the cost of controllability for the one-dimensional heat
equation.
We emphasize that Theorem 1.1 also allows to tackle some multi-dimensional settings. Namely, as a conse-
quence of Theorem 1.1 and the control transmutation method (see [34]), one gets the following corollary:

Corollary 1.3. Let Ω be a smooth bounded domain of Rd, and let Γ0 be an open subset of ∂Ω. Let
a = a(x) ∈ L∞(Ω;Md(R)) and ρ ∈ L∞(Ω;R) be such that there exist strictly positive numbers ρ−, ρ+, a−
and a+ such that for all x ∈ Ω and ξ ∈ Rd,

a−|ξ|2 6 a(x)ξ · ξ 6 a+|ξ|2, ρ− 6 ρ(x) 6 ρ+.

Further assume that there exist a time S0 > 0 and a constant C > 0 such that for any (w0, w1) ∈ H1
0 (Ω)×

L2(Ω), the solution w of
ρ(x)∂ssw − div (a(x)∇w) = 0 in (0, S)× Ω,
w(s, x) = 0 on (0, S)× ∂Ω,
(w(0, x), ∂sw(0, x)) = (w0(x), w1(x)) in Ω,

(1.11)

satisfies
‖(w0, w1)‖H1

0 (Ω)×L2(Ω) 6 C ‖a(x)∇w · n‖L2((0,S0)×Γ0) . (1.12)

We define C0(T,Ω,Γ0) as the best constant in the following observability inequality: for all u0 ∈ H1
0 (M),

the solution u of 
ρ(x)∂tu− div (a(x)∇u) = 0 in (0, T )× Ω,
u(t, x) = 0 on (0, T )× ∂Ω,
u(0, x) = u0(x) in Ω

(1.13)

satisfies
‖u(T )‖L2(M) 6 C0(T,Ω,Γ0) ‖a(x)∇u · n‖L2((0,T )×Γ0) . (1.14)

Then we have, for any K > K0,
lim sup
T→0

T logC0(T,Ω,Γ0) 6 KS2
0 . (1.15)

Corollary 1.3 uses the transmutation method and therefore the observability of the corresponding wave
equation (1.11), which has been well-studied in the literature. In particular, if the coefficients ρ and a are
C2(Ω), according to [1, 2, 3], the wave equation (1.11) satisfies the observability inequality (1.12) if and
only if all the rays of Geometric Optics meet Γ0 in a non-diffractive point in time less than S0. In case of
coefficients ρ and a which are less regular, let us quote the recent works [11] in the one-dimensional case
with ρ and a in the Zygmund class, and [7] in the multi-dimensional case for coefficients ρ ∈ C0(Ω) and
a = 1, with ρ satisfying a multiplier type condition similar to the one in [22, 27] in the sense of distributions
(and ρ locally C1 close to the boundary, see [7, Section 4.2]).
Let us emphasize that Corollary 1.3 can be applied in the one-dimensional case as well for coefficients in the
Zygmund class [11]. But even in the case Ω = (−L,L), Γ0 = {−L,L}, ρ(x) = 1, a(x) = 1, we get S0 = 2L
and thus we obtain an estimate on the cost of observability of the form

lim sup
T→0

T logC0(T, (−L,L), {−L,L}) 6 4K+
0 L

2,
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instead of (1.6). In other words, we have a loss of a factor 4. Therefore, we shall also explain how Theorem
1.1 can be extended to a multi-dimensional case directly when the observation is performed on the whole
boundary, see Theorems 4.1–4.2.
Let us mention that the proofs of the observability inequality of the heat equation for general smooth
bounded domains Ω and observation in an open subset Γ0 of the boundary in [14, 25] yields that

lim sup
T→0

T logC0(T,Ω,Γ0) <∞,

while on the other hand, [32] proves

lim inf
T→0

T logC0(T,Ω,Γ0) >
supΩ d(x,Γ0)2

4
.

To our knowledge, getting more intrinsic geometric upper estimates on the cost of observability in small
times in such general settings is still out of reach. However, in geometrical cases which can be obtained by
tensorization, some estimates can be obtained, see [33] and Section 4.2 for more details.
We shall also mention that estimating the observability constant in small times for the heat equation in
the one-dimensional case is related to the uniform controllability of viscous approximations of the transport
equation, see [4, 17, 28, 29]. We refer in particular to Section 4.7 for a more precise discussion on this
problem. In particular, the proof in [28], when combined with Theorem 1.1, easily yields an improvement
of the results known on this problem, see Section 4.7 and Theorem 4.9 for more details.
As we have seen in the above discussion, there are still some open questions on the observability of the one-
dimensional constant coefficients parabolic equations, despite the efficiency and robustness of the approach
based on Carleman estimates [14, 25]. This has justified the development of new manners to derive control-
lability of parabolic equations, and we shall in particular quote the flatness method developed in [30, 31],
a heat packet decomposition [16] or the backstepping approach [5]. Our method comes in this context and
provides what seems to be another approach to obtain observability results for the heat equation.

Outline. Section 2 presents the main strategy of the proof of Theorem 1.1 using several technical results
that will be proved afterwards, in Section 3 for the ones using new arguments, in Section A for a Carleman
type estimate (Theorem 2.1) which can be found also in [6] in a slightly different form. Section 4 provides
several comments on Theorem 2.1 and its generalization, including a discussion on what can be done in
the multi-dimensional setting in Section 4.1, when the geometry has a tensorized form in Section 4.2, or
when the observation is on one side of the domain (Section 4.3) or on some distributed open subset (Section
4.4). We also present in Section 4.5 an alternative proof of a weaker version of Theorem 1.1 based on the
uncertainty principles of Landau and Pollack [24] and the result in [13], recovering the result of [37]. This led
us to discuss the possibility of improving the estimate of the cost of observability in small times in Theorem
1.1 by using a better bound than the one provided by the use of Phragmén Lindelöf principle for entire
functions, see Section 4.6 for more details. We end up in Section 4.7 by giving a consequence of our result
on the problem of uniform controllability of viscous approximations of transport equations. Section A gives
the detailed proof of a rather easy Carleman estimate which is one of the building blocks of our analysis.

Acknowledgments. The authors wish to express their gratitude to Karine Beauchard for stimulating
discussions on this work and several comments on a preliminary version of this article.

2 Proof of Theorem 1.1: main steps

As said in the introduction, the proof of Theorem 1.1 relies on several steps.

The first step is the following Carleman type estimate.

Theorem 2.1. For any smooth solution u of (1.1), setting

z(t, x) = u(t, x) exp

(
x2 − L2

4t

)
, (t, x) ∈ (0, T )× (−L,L), (2.1)
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we have the inequality:∫ L

−L
|∂xz(T, x)|2 dx− L2

4T 2

∫ L

−L
|z(T, x)|2 dx 6

L

T 2

∫ T

0

t
(
|∂xu(t,−L)|2 + |∂xu(t, L)|2

)
dt. (2.2)

Theorem 2.1 is based on the study of the equation satisfied by z in (2.1). As u satisfies the heat equation
(1.1), the function z in (2.1) satisfies the following equation:

∂tz +
x

t
∂xz +

1

2t
z − ∂2

xz −
L2

4t2
z = 0, (t, x) ∈ (0,∞)× (−L,L),

z(t,−L) = z(t, L) = 0, t ∈ (0,∞),
z(0, x) = 0, x ∈ (−L,L).

(2.3)

One can therefore perform energy estimates on (2.3), which will eventually lead to (2.2). In Appendix A,
we prove a slightly more general result, encompassing also some multi-dimensional settings, see Proposition
A.1, from which one immediately derives Theorem 2.1 by setting Ω = (−L,L) and g ≡ 0.
Note that Theorem 2.1 was used in the previous work [6] in time T > L2/π in order to describe the reachable
set of the one-dimensional heat equation. Estimate (2.2) is somehow a Carleman estimate even if here no
parameter appears in the proof. In fact, it rather is a limiting Carleman estimate as the conjugated operator
(2.3) does not satisfy the usual strict pseudo-convexity conditions of Hörmander [23]. We refer in particular
to [8] for other instances of limiting Carleman weights in another context, namely elliptic operators.

The second step of our analysis amounts to realize that the solutions z of (2.3) could be explicitly solved
using Fourier analysis if one extends the solution z of (2.3) by zero outside the space interval (−L,L). We
therefore introduce, for t ∈ (0, T ],

w(t, x) =

 z(t, x)

(
= u(t, x) exp

(
x2 − L2

4t

))
for x ∈ (−L,L),

0 for x /∈ (−L,L).
(2.4)

This function w satisfies the following equation: ∂tw +
x

t
∂xw +

1

2t
w − ∂2

xw −
L2

4t2
w = ∂xu(t, L)δL − ∂xu(t,−L)δ−L, (t, x) ∈ (0,∞)× R,

w(0, x) = 0, x ∈ R.
(2.5)

Using Fourier transform, one can then compute explicitly

ŵ(T, ξ) =

∫
R
w(T, x)e−ıξx dx,

at least for some frequency ξ ∈ C:

Proposition 2.2. For α > 0, define the sets (see Figure 1)

Cα =
{
ξ = a+ ıb ∈ C, (a, b) ∈ R2, with |a| > |b|+ α

}
. (2.6)

Let w be given by (2.4) corresponding to some smooth solution u of (1.1).
Then, for any ξ ∈ CL/(2T ),

ŵ(T, ξ) =

∫ T

0

√
T

t

(
−∂xu(t,−L)eı

ξLT
t + ∂xu(t, L)e−ı

ξLT
t

)
e
−
(
ξ2T2−L

2

4

)
( 1
t
− 1
T )
dt. (2.7)

In particular, for any α > L/(2T ), setting

Cα(T ) =
1√

L (α− L/(2T ))
, (2.8)

for all ξ ∈ Cα, we have

|ŵ(T, ξ)| 6 Cα(T )
√
T e|=(ξ)|L

(
‖∂xu(·, L)‖L2(0,T ) + ‖∂xu(·,−L)‖L2(0,T )

)
. (2.9)
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The proof of Proposition 2.2 is done in Section 3.1 and relies on explicit computations. In particular,
it gives a precise L∞ bound on the high-frequency component of w(T ) given by (2.4) corresponding to a
smooth solution u of (1.1).

The third step of our analysis consists in the recovery of the low frequency part of w given by (2.4). In
order to do that, we recall that ŵ(T, ·) is the Fourier transform of a function supported in [−L,L]. Therefore,
its growth as |=(ξ)| → ∞ is known, while ŵ(T, ·) is holomorphic in the whole complex plane C. Combined
with the fact that we have nice estimates on ŵ(T, ·) in Cα for α > L2/(2T ), we are in position to use
Phragmén-Lindelöf principles to estimate ŵ(T, ·) everywhere in the complex plane, but more importantly
on the real axis R.

Proposition 2.3. Let L > 0, α > 0 and f be an holomorphic function on Oα = C \ Cα (see Figure 1) such
that:

• There exists a constant C0 such that

∀ξ ∈ ∂Oα, |f(ξ)| 6 C0 exp(|=(ξ)|L), (2.10)

• There exists a constant C1 such that

∀ξ ∈ Oα, |f(ξ)| 6 C1 exp(|=(ξ)|L). (2.11)

Denoting by
Õ1 = {(a, b) ∈ R2, such that |a| < |b|+ 1},

there exists a unique function ϕ̃ satisfying
∆ϕ̃ = −2 δ(−1,1)×{0} in Õ1,

ϕ̃ = 0 on ∂Õ1,
lim
|b|→∞

sup
a∈(−|b|−1,|b|+1)

|ϕ̃(a, b)| = 0,
(2.12)

and we define the function ϕ on O1 as follows:

ϕ(ξ) = ϕ̃(<(ξ),=(ξ)), ξ ∈ O1. (2.13)

Then we have the following bound:

∀ξ ∈ Oα, |f(ξ)| 6 C0 exp(|=(ξ)|L) exp

(
Lαϕ

(
ξ

α

))
. (2.14)

Besides, the maximum of ϕ on O1 is attained in 0:

sup
O1

ϕ = ϕ(0) =
Γ(1/4)2

4
√

2π2

∑
n∈N

(−1)n

(2n+ 1)

Γ(n+ 1/4)

Γ(n+ 7/4)
, (' 0.893204), (2.15)

which can be alternatively written as

ϕ(0) =
2

π

∫ π
2

0

ln

(
cot

(
t

2

))√
cos(t) dt∫ π

2

0

√
cos(t) dt

. (2.16)

Proposition 2.3 mainly reduces to the application of Phragmén-Lindelöf principle for holomorphic func-
tions. In fact, the main point in Proposition 2.3 is that the maximum of the harmonic function ϕ̃ can be
explicitly computed. This is done using conformal maps to link the solution of the Laplace equation in
the domain Õ1 with solutions of the Laplace operator in the half-strip, in which explicit solutions can be
computed using Fourier decomposition techniques. We refer to Section 3.2 for the proof of Proposition 2.3.
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Figure 1: The complex plane, with domains Cα and Oα.

Of course, we shall apply Proposition 2.3 to the function f = ŵ(T, ·), which, according to (2.9), satisfies
(2.10) for any α > L/(2T ) with

C0 = Cα(T )
√
T
(
‖∂xu(·, L)‖L2(0,T ) + ‖∂xu(·,−L)‖L2(0,T )

)
,

while (2.11) holds with

C1 = ‖w(T )‖L1(−L,L) 6
√

2L ‖u(T )‖L2(−L,L) 6
√

2L ‖u0‖L2(−L,L) .

We then immediately deduce the following corollary.

Corollary 2.4. Let w be given by (2.4) corresponding to some smooth solution u of (1.1). Then, for any
α > L/(2T ),

∀ξ ∈ Oα ∩ R, |ŵ(T, ξ)| 6 Cα(T )
√
TeLαϕ(0)

(
‖∂xu(·, L)‖L2(0,T ) + ‖∂xu(·,−L)‖L2(0,T )

)
, (2.17)

where Cα(T ) denotes the constant in (2.8).

End of the proof of Theorem 1.1. Let ε > 0, and choose α = (1 + ε)L/(2T ). Combining (2.17) and
(2.9), we see that

∀ξ ∈ R, |ŵ(T, ξ)| 6
√

2

ε

T

L
exp

(
(1 + ε)

L2

2T
ϕ(0)

)(
‖∂xu(·, L)‖L2(0,T ) + ‖∂xu(·,−L)‖L2(0,T )

)
. (2.18)

Then, using Theorem 2.1 and the identity∫ L

−L
|∂xz(T, x)|2 dx− L2

4T 2

∫ L

−L
|z(T, x)|2 dx =

∫
R

(
|ξ|2 − L2

4T 2

)
|ŵ(T, ξ)|2 dξ

we have

3L2

4T 2

∫
|ξ|>L/T

|ŵ(T, ξ)|2 dξ 6 L

T

(
‖∂xu(·, L)‖2L2(0,T ) + ‖∂xu(·,−L)‖2L2(0,T )

)
+

L2

4T 2

∫
|ξ|<L/(2T )

|ŵ(T, ξ)|2 dξ.

Combined with (2.18), we obtain∫
|ξ|>L/T

|ŵ(T, ξ)|2 dξ 6
(

4T

3L
+

4T

3Lε
exp

(
(1 + ε)

L2

T
ϕ(0)

))(
‖∂xu(·, L)‖2L2(0,T ) + ‖∂xu(·,−L)‖2L2(0,T )

)
,

(2.19)
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and ∫
|ξ|<L/T

|ŵ(T, ξ)|2 dξ 6 8T

εL
exp

(
(1 + ε)

L2

T
ϕ(0)

)(
‖∂xu(·, L)‖2L2(0,T ) + ‖∂xu(·,−L)‖2L2(0,T )

)
. (2.20)

Using Parseval identity and the explicit form of w in (2.4), we easily get, for some constant Cε(T ) that goes
to zero as T → 0, that∥∥∥∥u(T, x) exp

(
x2 − L2

4T

)∥∥∥∥
L2(−L,L)

6 Cε(T ) exp

(
L2

2T
(1 + ε)ϕ(0)

)(
‖∂xu(·, L)‖L2(0,T ) + ‖∂xu(·,−L)‖L2(0,T )

)
,

which we rewrite as∥∥∥∥u(T, x) exp

(
x2

4T

)∥∥∥∥
L2(−L,L)

6 Cε(T ) exp

(
L2

T

(
1

4
+

1

2
(1 + ε)ϕ(0)

))(
‖∂xu(·, L)‖L2(0,T ) + ‖∂xu(·,−L)‖L2(0,T )

)
. (2.21)

This concludes the proof of Theorem 1.1, as Cε(T ) 6 Cε(1) = Cε for T small enough, for some Cε independent
of T .

Remark 2.5. Note that the constant Cε in the above proof blows up as ε goes to zero. If it were not the
case, one could pass to the limit ε→ 0 in (2.21), so that one could choose K = K0 in Theorem 1.1. So far,
we do not know if this choice is allowed in Theorem 1.1 or not.

We have thus reduced the proof of Theorem 1.1 to the proofs of Theorem 2.1, Propositions 2.2 and 2.3.
The proof of Theorem 2.1 is postponed to Appendix A in which a slightly more general result is proved
(Proposition A.1), while the proofs of Propositions 2.2 and 2.3 are detailed in the section afterwards.

Remark 2.6. The above approach allows in fact to recover an explicit formula to compute ŵ(T ) in terms
of the observations. Namely, for ξ ∈ R with |ξ| > L/(2T ), formula (2.7) yields

ŵ(T, ξ) =

∫ T

0

√
T

t

(
−∂xu(t,−L)eı

ξLT
t + ∂xu(t, L)e−ı

ξLT
t

)
e
−
(
ξ2T2−L

2

4

)
( 1
t
− 1
T )
dt. (2.22)

On the other hand, combining the formula (2.7) and Remark 3.2 allowing to get an explicit expression under
the assumptions of Proposition 2.3, we get: for all α∗ > α > L/(2T ), for all ξ ∈ R with |ξ| < L/(2T ),

ŵ(T, ξ) = −
∫ T

0

√
T

t
∂xu(t,−L)

1

2ıπ

∫
γα

eLα∗(φ(ξ/α)−φ(ζ/α))

ζ − ξ eı
ζLT
t e
−
(
ζ2T2−L

2

4

)
( 1
t
− 1
T )
dζ dt

+

∫ T

0

√
T

t
∂xu(t, L)

1

2ıπ

∫
γα

eLα∗(φ(ξ/α)−φ(ζ/α))

ζ − ξ e−ı
ζLT
t e
−
(
ζ2T2−L

2

4

)
( 1
t
− 1
T )
dζ dt, (2.23)

where φ is an holomorphic function on O1 such that <(φ(ξ)) = ϕ(ξ)+ |=(ξ)| for all ξ ∈ O1 (see Section 3.2.2
for the existence of such function φ), and γα is the union of the two connected components of ∂Oα oriented
counter-clockwise. But these formula does not seem easy to deal with as the kernels

K∓(t, ξ) =
1

2ıπ

∫
γα

eLα∗(φ(ξ/α)−φ(ζ/α))

ζ − ξ e±ı
ζLT
t e
−
(
ζ2T2−L

2

4

)
( 1
t
− 1
T )
dζ, (t, ξ) ∈ (0, T )×

(
− L

2T
,
L

2T

)
,

are difficult to estimate directly.
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3 Proof of Theorem 1.1: intermediate results

3.1 Proof of Proposition 2.2

Let w as in Proposition 2.2. Then w satisfies the equation (2.5). When taking its Fourier transform in the
space variable, we easily check that

ŵ(t, ξ) =

∫
R
w(t, x)e−ıξx dx, (t, ξ) ∈ [0, T ]× R,

solves the equation ∂tŵ −
ξ

t
∂ξŵ −

1

2t
w + ξ2ŵ − L2

4t2
ŵ = ∂xu(t, L)e−ıξL − ∂xu(t,−L)eıξL, (t, ξ) ∈ (0,∞)× R,

ŵ(0, ξ) = 0, ξ ∈ R.
(3.1)

We are thus back to the study of a transport equation. For each ξ0 ∈ R, we therefore introduce the
characteristics ξ(t, ξ0) reaching ξ0 at time T :

dξ

dt
(t, ξ0) = −ξ(t, ξ0)

t
, t ∈ (0, T ], ξ(T, ξ0) = ξ0, (3.2)

which is explicitly given by

ξ(t, ξ0) =
ξ0T

t
, t ∈ (0, T ].

We can thus write, for all t ∈ (0, T ],

d

dt

(
ŵ

(
t,
ξ0T

t

))
+

(
1

t2

(
ξ2
0T

2 − L2

4

)
− 1

2t

)
ŵ

(
t,
ξ0T

t

)
= ∂xu(t, L)e−ı

ξ0LT
t − ∂xu(t,−L)eı

ξ0LT
t .

This yields the formula

d

dt

(
ŵ

(
t,
ξ0T

t

)
t−1/2e−(ξ20T

2−L2/4)/t

)
=
(
∂xu(t, L)e−ı

ξ0LT
t − ∂xu(t,−L)eı

ξ0LT
t

)
t−1/2 e−(ξ20T

2−L2/4)/t.

For any η > 0, we can integrate this formula between η and T to get

ŵ (T, ξ0)T 1/2e−(ξ20T
2−L2/4)/T − ŵ (η, ξ0) η1/2e−(ξ20T

2−L2/4)/η

=

∫ T

η

t−1/2
(
∂xu(t, L)e−ı

ξ0LT
t − ∂xu(t,−L)eı

ξ0LT
t

)
e−(ξ20T

2−L2/4)/t dt.

It is not difficult to check that for ξ0 ∈ R with |ξ0| > L/(2T ), the integral on the right-hand-side converges
when η goes to zero, and

lim
η→0

ŵ (η, ξ0) η−1/2e−(ξ20T
2−L2/4)/η = 0.

Therefore, provided ξ0 ∈ R satisfies |ξ0| > L/(2T ), one gets the formula

ŵ (T, ξ0) =

∫ T

0

√
T

t

(
∂xu(t, L)e−ı

Lξ0T
t − ∂xu(t,−L)eı

Lξ0T
t

)
e−(ξ20T

2−L2/4)(1/t−1/T ) dt. (3.3)

This formula coincides with the one in (2.7) for ξ0 ∈ CL+/2T ∩ R (here, we use the notation L+ to denote
any constant strictly larger than L). As ŵ(T, ·) is holomorphic on C, we only have to check that the right
hand side of formula (3.3) can be extended holomorphically to CL+/2T . In fact, writing ξ = a + ıb with

(a, b) ∈ R2, the right hand side of (3.3) can be extended holomorphically in the domain in which
<
(

+ıξLT −
(
ξ2T 2 − L2

4

))
= −bLT −

(
(a2 − b2)T 2 − L2

4

)
< 0,

and

<
(
−ıξLT −

(
ξ2T 2 − L2

4

))
= +bLT −

(
(a2 − b2)T 2 − L2

4

)
< 0,
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which is equivalent to

|a| > |b|+ L

2T
,

i.e. ξ ∈ CL+/(2T ). We have thus proved that for all ξ ∈ CL+/(2T ), ŵ(T, ξ) is given by the formula (2.7). In
fact, by continuity, this formula also holds for ξ ∈ CL/2T .

In order to deduce (2.9), we start from the formula (2.7) and we use a Cauchy-Schwarz estimate: for
ξ ∈ Cα with α > L/(2T ),

|ŵ(T, ξ)| 6
√
T ‖∂xu(t, L)‖L2(0,T )

∥∥∥∥t−1/2 exp

(
− iξLT

t
−
(
ξ2T 2 − L2

4

)(
1

t
− 1

T

))∥∥∥∥
L2(0,T )

+
√
T ‖∂xu(t,−L)‖L2(0,T )

∥∥∥∥t−1/2 exp

(
+
iξLT

t
−
(
ξ2T 2 − L2

4

)(
1

t
− 1

T

))∥∥∥∥
L2(0,T )

. (3.4)

Writing ξ ∈ Cα for α > L/(2T ) as ξ = a+ ıb with (a, b) ∈ R2 and using the fact that

<
(
∓ıξLT −

(
ξ2T 2 − L2

4

))
6 |b|LT −

(
(a2 − b2)T 2 − L2

4

)
6 −T 2

(
a2 −

(
|b|+ L

2T

)2
)

6 −T 2

(
|a| −

(
|b|+ L

2T

))(
|a|+ |b|+ L

2T

)
6 −LT

2

(
α− L

2T

)
,

we have the estimates, for s ∈ {−1, 1}:∥∥∥∥t−1/2 exp

(
s
ıξLT

t
−
(
ξ2T 2 − L2

4

)(
1

t
− 1

T

))∥∥∥∥
L2(0,T )

6

∥∥∥∥t−1/2 exp

(
|b|L+

(
|b|LT −

(
(a2 − b2)T 2 − L2

4

)(
1

t
− 1

T

)))∥∥∥∥
L2(0,T )

6 e|b|L
∥∥∥∥t−1/2 exp

(
−LT

2

(
α− L

2T

)(
1

t
− 1

T

))∥∥∥∥
L2(0,T )

.

Now, doing the change of variable µ = LT
(
α− L

2T

) (
1
t
− 1

T

)
, we easily get, for all ξ ∈ Cα,∥∥∥∥t−1/2 exp

(
−LT

2

(
α− L

2T

)(
1

t
− 1

T

))∥∥∥∥2

L2(0,T )

=

∫ ∞
0

e−µ
dµ

µ+ L (α− L/(2T ))

6
1

L (α− L/(2T ))
.

Combining (3.4) and this last estimate, we easily conclude estimate (2.9).

3.2 Proof of Proposition 2.3

We shall start the proof of Proposition 2.3 by proving the existence of a function ϕ̃ satisfying (2.12), and
we will then explain how it can be used to derive the bound in (2.14).

Notations. In the following arguments, to avoid ambiguities, we will write differently complex sets and
their identification as a part of R2, for instance denoting O1 = {ξ ∈ C, with |<(ξ)| < |=(ξ)| + 1} and
Õ1 = {(a, b) ∈ R2, with |a| < |b| + 1} as in Proposition 2.3. To be consistent with this notation, we will
also distinguish functions of the complex variable ξ from the corresponding ones considered as functions of
the real variables (a, b) using a tilde notation for the function viewed as depending on real variables, as in
(2.13).

10



3.2.1 Existence and uniqueness of a function ϕ̃ satisfying (2.12)

The first remark is that the uniqueness of a function ϕ̃ satisfying (2.12) is rather easy to prove. Indeed, if
two functions ϕ̃1 and ϕ̃2 satisfy (2.12), then their difference ϕ̃2 − ϕ̃1 is harmonic in O1 and vanishes on ∂Õ1

as well as at infinity. Therefore, the minimum and maximum of ϕ̃2 − ϕ̃1 is zero, and ϕ̃1 and ϕ̃2 coincide.
Thus, we will focus on the existence of a function ϕ̃ as in (2.12). In fact, by uniqueness, we see that necessarily
ϕ̃(a, b) = ϕ̃(a, |b|) for all (a, b) ∈ O1. We will thus only look for a solution ϕ̃ in Õ+

1 = Õ1 ∩ (R× R∗+) of the
problem 

∆ϕ̃ = 0 in Õ+
1

ϕ̃ = 0 on ∂Õ+
1 \ (−1, 1)

∂bϕ̃(a, 0) = −1 for a ∈ (−1, 1),

(3.5)

with the condition at infinity:
lim
b→∞

sup
a∈(−|b|−1,|b|+1)

|ϕ̃(a, b)| = 0, (3.6)

Figure 2: Approximation of ϕ̃ solving (3.5), obtained by a finite element approach (using FreeFem++, [20]).

Let us introduce

Γ` = {ξ ∈ C, with =(ξ) > 0 and −<(ξ) = 1 + =(ξ)}
Γr := {ξ ∈ C, with =(ξ) > 0 and <(ξ) = 1 + =(ξ)},
Γb := {ξ ∈ C, with (<(ξ),=(ξ)) ∈ [−1, 1]× {0}},

the three components of the boundary of O+
1 = O1 ∩ {=(ξ) > 0}.

Our goal is to show the existence of a function ϕ̃ satisfying (3.5). In order to do so, we will rely on two
Schwarz-Christoffel conformal mappings [21, Chapter 5.12].
The first one, F3/4, is defined for all ζ ∈ C+ = {ζ ∈ C,=(ζ) > 0} by

F3/4(ζ) =
2

K3/4

∫ ζ

−1

(1− z2)−1/4 dz − 1, with K3/4 =

∫ 1

−1

(1− x2)−1/4 dx =
√
π

Γ(3/4)

Γ(5/4)
,

where the path integration is arbitrary in C+.

The map F3/4 conformally maps C+ into O+
1 , and verifies the following properties:

F3/4(−1) = −1, F3/4(0) = 0, F3/4(1) = 1,

and
F3/4( (−∞,−1) ) = Γ`, F3/4( (−1, 1) ) = Γb, F3/4( (1,∞) ) = Γr, F3/4(ıR+) = ıR+.
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The second conformal mapping we will use is defined, for any ζ ∈ C+, by

F1/2(ζ) =
2

π
arcsin(ζ) =

2

π

∫ ζ

−1

(1− z2)−1/2 dz − 1,

which conformally maps C+ into the closure of the half strip S +
1 = {Ξ = A+ ıB, A ∈ (−1, 1), B > 0} with

the following properties:
F1/2(−1) = −1, F1/2(0) = 0, F1/2(1) = 1,

and

F1/2( (−∞,−1] ) = −1 + ıR+, F1/2( (−1, 1) ) = (−1, 1),

F1/2( [1,∞) ) = 1 + ıR+, F1/2(ıR+) = ıR+.

Finally, we define the conformal mapping

F = F1/2 ◦ F−1
3/4,

which maps O+
1 into S +

1 .
For any ξ = a + ıb ∈ O+

1 , we denote Ξ = A + ıB = F (ξ). Using standard computation from conformal
transplantation [21, Chapter 5.6], we see that ϕ̃ solves (3.5) in Õ+

1 if and only if Φ̃ given by Φ̃(A,B) = ϕ̃(a, b)
for A+ ıB = F (a+ ıb) solves the following problem posed in the half-strip S̃ +

1 :
∆A,BΦ̃ = 0, for A ∈ (−1, 1), B > 0,

Φ̃(−1, B) = Φ̃(1, B) = 0, for B > 0,

∂BΦ̃(A, 0) = − π

K3/4

√
cos
(π

2
A
)
, for A ∈ (−1, 1).

(3.7)

If the first two equations are standard, the last one deserves additional details. In fact, it comes from the
identity [21, Theorem 5.6a]

grdξϕ(ξ) = grdΞΦ(F (ξ))F ′(ξ), (3.8)

applied to ξ = a ∈ (−1, 1), (implying F (ξ) = A ∈ (−1, 1)), where grd is the complex gradient: for ξ = a+ ıb,
grdξϕ(ξ) = ∂aϕ̃(a, b) + ı∂bϕ̃(a, b) and for Ξ = A+ ıB, grdΞΦ(Ξ) = ∂AΦ̃(A,B) + ı∂BΦ̃(A,B).

We therefore have to compute F ′(ξ) = (F1/2 ◦F−1
3/4)′(ξ) = F ′1/2(F−1

3/4(ξ)) (F−1
3/4)′(ξ). To do so, let us define

ζ = F−1
3/4(ξ) ∈ C+. By definition,

F ′1/2(F−1
3/4(ξ)) = F ′1/2(ζ) =

2

π

1√
1− ζ2

,

whereas

(F−1
3/4)′(ξ) = (F−1

3/4)′(F3/4(ζ)) =
1

F ′3/4(ζ)
=
K3/4

2
4
√

1− ζ2.

Therefore,

F ′(ξ) =
K3/4

π

1
4
√

1− ζ2
,

with ζ = F−1
3/4(ξ). In particular, for ξ = a ∈ (−1, 1), ζ ∈ (−1, 1) and therefore F ′(ξ) ∈ R and

∂BΦ̃(A, 0) = ∂bϕ̃(a, 0)
1

F ′(a)
= − π

K3/4

4
√

1− ζ2, with ζ = F−1
3/4(a).

To conclude, we just note that ζ = F−1
1/2(A) if and only if ζ = sin(Aπ/2), and the identity (3.7)(3) follows.

Problem (3.7) has the advantage of being explicitly solvable. Indeed, as Φ̃ is harmonic in (−1, 1) × (0,∞),
and verifies Φ̃(−1, B) = Φ̃(1, B) = 0 for all B > 0, it necessarily has the following decomposition:

Φ̃(A,B) =
∑
k>1

(αke
−k π

2
B + ake

k π
2
B) sin

(
k
π

2
(A+ 1)

)
, (A,B) ∈ S̃ +

1 .
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Recalling (3.6) on ϕ̃, we wish to have Φ̃ going to zero as B → ∞. We thus choose ak = 0 for all k > 1, so
that Φ̃ writes:

Φ̃(A,B) =
∑
k>1

αke
−k π

2
B sin

(
k
π

2
(A+ 1)

)
, (A,B) ∈ S̃ +

1 .

But the boundary condition on B = 0 is equivalent to

π

2

∑
k>1

k αk sin
(
k
π

2
(A+ 1)

)
=

π

K3/4

√
cos
(π

2
A
)
,

which explicitly yields the coefficients αk:

∀k ∈ N, αk =
2

k

1

K3/4

∫ 1

−1

sin
(
k
π

2
(A+ 1)

)√
cos
(π

2
A
)
dA.

As
√

cos (Aπ/2) is an even function and sin (kπ(A+ 1)/2) is an odd function for all even k, we have αk = 0
for all even k. On the other hand, we have for any n ∈ N (see [18, equation 3.631.9]),∫ 1

−1

sin
(

(2n+ 1)
π

2
(A+ 1)

)√
cos
(π

2
A
)
dA = (−1)n

∫ 1

−1

cos
(

(2n+ 1)
π

2
A
)√

cos
(π

2
A
)
dA

= (−1)n
4

π

∫ π
2

0

cos ((2n+ 1)t)
√

cos (t) dt

=
1

2
√
π

Γ
(
n+ 1

4

)
Γ
(
n+ 7

4

) ,
where Γ(·) stands for the Gamma function, so in the end we obtain

α2n+1 =
1

π

1

2n+ 1

Γ
(

5
4

)
Γ
(

3
4

) Γ
(
n+ 1

4

)
Γ
(
n+ 7

4

) ,
which can be slightly simplified using that Γ (5/4) = Γ(1/4)/4 and Γ(3/4) =

√
2π/Γ(1/4), giving

α2n+1 =
Γ
(

1
4

)2
4
√

2π2

1

(2n+ 1)

Γ
(
n+ 1

4

)
Γ
(
n+ 7

4

) .
So finally, we have

Φ̃(A,B) =
Γ
(

1
4

)2
4
√

2π2

∑
n∈N

1

(2n+ 1)

Γ
(
n+ 1

4

)
Γ
(
n+ 7

4

)e−(2n+1)π
2
B sin

(
(2n+ 1)

π

2
(A+ 1)

)
, (A,B) ∈ S +

1 , (3.9)

and

Φ̃(0, 0) =
Γ
(

1
4

)2
4
√

2π2

∑
n∈N

(−1)n

(2n+ 1)

Γ
(
n+ 1

4

)
Γ
(
n+ 7

4

) . (3.10)

Note that, according to [26, 1.4.25],

1

2n+ 1

Γ
(
n+ 1

4

)
Γ
(
n+ 7

4

) '
n→∞

1

2n
5
2

hence the above series are well defined. In particular, the identity (3.9) can be understood pointwise and
Φ̃(·, B) goes to zero as B →∞:

sup
A∈(−1,1)

{|Φ̃(A,B)|+ |∂AΦ̃(A,B)|} 6 C exp(−πB/2), B > 0. (3.11)

Let us also note that, because Φ̃(0, 0) is defined through a converging alternating series, we have

Φ̃(0, 0) <
Γ
(

1
4

)2
4
√

2π2

2∑
n=0

(−1)n

(2n+ 1)

Γ
(
n+ 1

4

)
Γ
(
n+ 7

4

) < 9

10
.
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Computing the 100th partial sum of the series using Octave [9], we obtain

Φ̃(0, 0) ∼ 0.893204.

A different expression for Φ̃(0, 0) is the following:

Φ̃(0, 0) =
2

π

∫ π
2

0

ln

(
cot

(
t

2

))√
cos(t) dt∫ π

2

0

√
cos(t) dt

, (3.12)

which easily comes from the equality Φ̃(0, 0) =
∑
n∈N(−1)n α2n+1, the fact that

α2n+1 = (−1)n
8

(2n+ 1)π

1

K3/4

∫ π
2

0

cos((2n+ 1) t)
√

cos(t) dt,

the definition of K3/4 and the identity (see [18, identity 1.442.2 p. 46])∑
n∈N

cos((2n+ 1) t)

2n+ 1
=

1

2
ln

(
cot

(
t

2

))
.

Note in particular that under the form (3.12), one immediately checks that

Φ̃(0, 0) > 0. (3.13)

In agreement with Figure 2, we then show that the maximum of Φ̃ is attained at (A,B) = (0, 0). We first
note that the function Φ̃ given by (3.9) is positive in the strip S̃ +

1 . Indeed, since Φ̃ is harmonic in the half
strip S̃ +

1 and is not constant, its minimum is attained at the boundary S̃ +
1 or at infinity [15, Lemma 3.4

& Theorem 3.5]. The boundary conditions on ∂S̃ +
1 and the behavior of Φ̃ as B → ∞ in (3.11) implies

that the minimum value of Φ̃ is 0 and is attained on the lateral boundaries {−1, 1} × R+ of the half strip.
Consequently, the function Φ̃ is positive in S̃ +

1 , and its minimal value is 0. Besides, as Φ̃ vanishes on the
lateral boundaries {−1, 1} × R+ of the half strip, ∂AΦ̃(1, ·) is strictly negative by Hopf maximum principle
[35, Chapter 2, Theorem 7]. We then consider the function Φ̃A = ∂AΦ̃. Formula (3.9) easily yields that
Φ̃A(0, B) = 0 for B > 0, so that Φ̃A satisfies:

∆Φ̃A = 0 in S̃ +
1 ∩ {A > 0},

Φ̃A(0, B) = 0 for B > 0,

Φ̃A(1, B) < 0 for B > 0,

∂BΦ̃A(A, 0) > 0 for A ∈ (0, 1),

lim|B|→∞ supA∈(0,1) |Φ̃A(A,B)| = 0.

It easily follows that the maximum of Φ̃A is necessarily non-positive in S̃ +
1 ∩ {A > 0} by the application of

the maximum principle. As Φ̃ is harmonic in the half-strip S̃ +
1 and is strictly positive in (0, 0) (see equation

(3.13)), the maximum of Φ̃ on the half strip S̃ +
1 is necessarily attained on the boundary of the half-strip or

at infinity, therefore on (−1, 1) × {0} according to the boundary conditions satisfied by Φ̃ in (3.7) and the
conditions (3.11) as B → ∞. Now, ∂AΦ̃ is non-positive in S̃ +

1 ∩ {A > 0} and Φ̃(A,B) = Φ̃(|A|, B) in the
half-strip S̃ +

1 according to (3.9), so the maximum of Φ̃ is necessarily attained in (A,B) = (0, 0)1.

We then come back to the problem (3.5)–(3.6) and check that the function ϕ̃ given by

ϕ̃(a, b) = Φ̃(A,B), for A+ ıB = F (a+ ıb), (a, b) ∈ Õ+
1 , (3.14)

with Φ̃ as in (3.9), satisfies (3.5)–(3.6).
By construction, ϕ̃ automatically satisfies (3.5) and its maximum is attained in (a, b) = (0, 0) and takes

1We are indebted to Jean-Michel Roquejoffre for this elegant proof of the fact that the maximum of Φ̃ is attained in (0, 0).
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value ϕ̃(0, 0) = Φ̃(0, 0). We thus only have to check the condition (3.6). In order to do that, let us introduce
the real functions Ã = Ã(a, b) and B̃ = B̃(a, b) given for (a, b) ∈ Õ+

1 by

F (a+ ıb) = Ã(a, b) + ıB̃(a, b), (3.15)

and let us check that
lim
b→∞

inf
|a|<b+1

B̃(a, b) = +∞. (3.16)

Indeed, if it were not the case, we could find real sequences (an, bn)n∈N with

lim
n→∞

bn = +∞, ∀n ∈ N, |an| 6 bn + 1 and sup
n
B̃(an, bn) <∞. (3.17)

Then, if we set ζn = F−1
3/4(an + ıbn), by construction,

F1/2(ζn) = Ã(an, bn) + ıB̃(an, bn).

Therefore, according to the definition of F1/2,

ζn = sin
(π

2
(Ã(an, bn) + ıB̃(an, bn))

)
,

so that the sequence (ζn) is uniformly bounded in C as n → ∞. Then the sequence (an, bn) is given by
an + ıbn = F3/4(ζn). But F3/4 maps bounded sets of C into bounded sets of C, so this is in contradiction
with (3.17), and the property (3.16) holds.
We can thus use (3.11) to get that for all b > 0,

sup
|a|<b+1

{|ϕ̃(a, b)|} 6 C exp

(
−π

2
inf

|a|<b+1
B̃(a, b)

)
,

which, according to (3.16), implies (3.6).

Remark 3.1. Another approach to obtain informations on ϕ̃ solution of (3.5) is through integral equations.
More precisely, let us define, for ((a, b), (a0, b0)) ∈ (Õ+

1 )2, we define G as follows:

G̃(a, b, a0, b0) =
1

4π
ln

( (
(a− a0)2 + (b− b0)2

) (
(a+ a0)2 + (b+ b0 + 2)2

)
((a+ b0 + 1)2 + (b+ a0 + 1)2) ((a− b0 − 1)2 + (a0 − b− 1)2)

)
.

It is readily verified that for any (a0, b0) ∈ Õ+
1 , G̃(·, ·, a0, b0) verifies{

∆a,bG̃(·, ·, a0, b0) = δ(a0,b0) in Õ+
1

G̃(a, b, a0, b0) = 0 for (a, b) such that |a| = |b|+ 1.

Indeed, this comes from the fact that G̃ is the suitable combination of the fundamental solution of the Laplace
operator in the sectors {(a, b) ∈ R2, with b = |a| − 1} and {(a, b) ∈ R2, with b = 1− |a|}.
Then, standard computations show that ϕ̃ is a solution of (3.5) if and only if it verifies the integral equation

ϕ̃(a0, b0) = −
∫ 1

−1

∂bG̃(a, 0, a0, b0) ϕ̃(a, 0) da+

∫ 1

−1

G̃(a, 0, a0, b0) da, ∀(a0, b0) ∈ Õ+
1 . (3.18)

We then introduce G̃ defined by

G̃ (a, a0, b0) = −∂bG̃(a, 0, a0, b0)− 1

2π

b0

b20 + (a− a0)2 .

It is easily seen that for any a0 ∈ (−1, 1),

lim
b0→0

∫ 1

−1

G̃ (a, a0, b0) ϕ̃(a, 0) da =

∫ 1

−1

G̃ (a, a0, 0) ϕ̃(a, 0) da,

lim
b0→0

∫ 1

−1

G̃(a, 0, a0, b0) da =

∫ 1

−1

G̃(a, 0, a0, 0) da,
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whereas

lim
b0→0

1

2π

∫ 1

−1

b0

b20 + (a− a0)2 ϕ̃(a, 0) da =
1

2
ϕ̃(a0, 0).

Therefore, choosing a0 ∈ (−1, 1) and taking the limit b0 → 0 in (3.18) leads to the following integral equation:

1

2
ϕ̃(a0, 0) =

∫ 1

−1

G̃ (a, a0, 0) ϕ̃(a, 0) da+

∫ 1

−1

G̃(a, 0, a0, 0) da. (3.19)

Discretizing equation (3.19), we can obtain a good approximation of ϕ̃(a0, 0) for a0 ∈ (−1, 1) (see Figure 3).

Figure 3: In solid black, ϕ̃(a0, 0) for a0 ∈ (−1, 1), obtained by discretization of equation (3.19).
In dashed blue, Φ̃(0, 0) = ϕ̃(0, 0).

3.2.2 Phragmén Lindelöf principle

With ϕ̃ as in (2.12), the function (a, b) 7→ ϕ̃(a, b) + |b| is harmonic in Õ1, and it is therefore the real part of
some holomorphic function φ in O1:

∀(a, b) ∈ Õ1, <(φ(a+ ıb)) = ϕ̃(a, b) + |b|,

or, equivalently, for all ξ ∈ O1, <(φ(ξ)) = ϕ(ξ) + |=(ξ)|.
For each α∗ > α, we consider the function gα∗ defined for ξ ∈ Oα by

gα∗(ξ) = f(ξ) exp

(
−Lα∗φ

(
ξ

α

))
. (3.20)

By construction, gα∗ is holomorphic in Oα and satisfies:

∀ξ ∈ ∂Oα, |gα∗(ξ)| 6 C0, and lim
|=(ξ)|→∞

(
sup

|<(ξ)|<|=(ξ)|+α
|gα∗(ξ)|

)
= 0.

Therefore, gα∗ attains its maximum on ∂Oα, so that

∀ξ ∈ Oα, |f(ξ)| 6 C0 exp
(α∗
α
|=(ξ)|L

)
exp

(
Lα∗ ϕ

(
ξ

α

))
.
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Taking the limit α∗ → α, we immediately have

∀ξ ∈ Oα, |f(ξ)| 6 C0 exp(|=(ξ)|L) exp

(
Lαϕ

(
ξ

α

))
, (3.21)

that is, (2.14).

Remark 3.2. Let us remark that we can obtain from the above proof an explicit formula for f . Indeed, for
α∗ > α, we can use the Cauchy formula for the function gα∗ in (3.20) on the contour given by

γα,R = ∂(Oα ∩ {=(ξ) < R}), ( with R > 0 )

oriented in a counter-clockwise manner, which yields: for all ξ ∈ R with |ξ| < L/(2T ),

gα∗(ξ) =
1

2ıπ

∫
γα,R

gα∗(ζ)

ζ − ξ dζ.

Now, due to the decay of gα∗ at infinity, one can pass to the limit in the above formula as R → ∞: for all
ξ ∈ R with |ξ| < L/(2T ),

gα∗(ξ) =
1

2ıπ

∫
γα

gα∗(ζ)

ζ − ξ dζ,

where γα is the union of the two connected components of ∂Oα oriented counter-clockwise. Recalling the
definition of gα∗ , we end up with the following formula: for all ξ ∈ R with |ξ| < L/(2T ),

f(ξ) =
1

2ıπ

∫
γα

eLα∗(φ(ξ/α)−φ(ζ/α)) f(ζ)

ζ − ξ dζ. (3.22)

4 Further Comments

4.1 Higher dimensional settings

The method developed above applies also to the cost of observability of the heat equation in multi-dimensional
balls. More precisely, we consider the following heat equation, set in the ball of radius L > 0 of Rd (d > 1),
denoted by BL in the following, and in the time interval (0, T ):

∂tu−∆xu = 0, in (0, T )× BL,
u(t, x) = 0, in (0, T )× ∂BL,
u(0, x) = u0(x), in BL,

(4.1)

where the initial datum u0 belongs to H1
0 (BL). In that setting, we have the following result:

Theorem 4.1. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant C > 0 such for all
T ∈ (0, 1], for all solutions u of (4.1) with initial datum u0 ∈ H1

0 (BL),∥∥∥∥u(T ) exp

(
|x|2

4T

)∥∥∥∥
L2(BL)

6 C exp

(
K
L2

T

)
‖∂νu‖L2((0,T )×∂BL) . (4.2)

Here and in the following, |.| denotes the euclidean norm in Rd. The proof of Theorem 4.1 follows closely
the one of Theorem 1.1, therefore we only sketch its proof, explaining the main differences with the proof of
Theorem 1.1.

Sketch of the proof of Theorem 4.1. We start by considering a smooth solution u of (4.1), and define

z(t, x) = u(t, x) exp

(
|x|2 − L2

4 t

)
, (t, x) ∈ (0, T )× BL,

which satisfies 
∂tz +

x

t
· ∇xz +

d

2 t
z −∆xz −

L2

4 t2
z = 0 in (0,∞)× BL,

z(t, x) = 0 in (0, T )× ∂BL,
z(0, x) = 0 in BL,
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Proposition A.1 with Ω = BL and g ≡ 0 implies directly the following estimate for z:∫
BL
|∇xz(T, x)|2 dx− L2

4T 2

∫
BL
|z(T, x)|2 dx 6

L

T 2

∫ T

0

∫
∂BL

t |∇xz(t, x) · ν|2ds(x) ds. (4.3)

We define w as the extension of z by 0 outside BL: w verifies the equations ∂tw +
x

t
· ∇xw +

d

2 t
w −∆xw −

L2

4 t
w = ∇xu(t, x) · ν δ∂BL , in (0,∞)× Rd,

w(0, x) = 0, x ∈ Rd.

Thus, its Fourier transform, defined for (t, ξ) ∈ (0, T )× Cd by

ŵ(t, ξ) =

∫
Rd
w(t, x)e−ıξ·x dx,

satisfies ∂tŵ −
ξ

t
· ∇ξŵ −

d

2 t
ŵ + ξ2 ŵ − L2

4 t2
ŵ =

∫
∂BL
∇xu(t, x) · ν e−ıξ·x ds(x), (t, ξ) ∈ (0,∞)× Rd,

ŵ(0, ξ) = 0, ξ ∈ Rd.
(4.4)

As in the one-dimensional case, equation (4.3) gives a high-frequency (|ξ| > L/(2T )) L2-estimate of w(T, ·)
depending on the observation and the low-frequency (|ξ| 6 L/(2T )) L2-norm of w(T, ·), on which we focus
from now. To do so, similarly as in Section 3.1, we solve the transport equation (4.4), and obtain, for ξ0 ∈ Rd
such that |ξ0| > L/(2T ),

ŵ (T, ξ0) =

∫ T

0

(
T

t

) d
2
∫
∂BL
∇xu(t, x) · ν e−ı

x·ξ0T
t
−(ξ20T

2−L2/4)(1/t−1/T ) ds(x) dt (4.5)

with ξ2
0 = ξ0 · ξ0.

Once here, we consider ξ0 = (ξ1, ξ̃), with ξ̃ ∈ Rd−1 fixed, and ξ1 = a + ı b, a, b ∈ R, and define f(ξ1) =
ŵ(T, ξ1, ξ̃) which is an entire function satisfying (2.11). Besides, with similar computations as in Section 3.1,
it is easy to obtain that for all α > L2/(2T ), there exists Cα(T ) > 0, which may blow up polynomially in
T as T → 0 (contrarily to what happens in the one-dimensional setting, the constant Cα(T ) may now blow
up as T → 0, but only polynomially in T , so that it will not significantly affect the cost of observability in
small times in (4.2), which blows up as an exponential of 1/T as T → 0), such that for all ξ1 ∈ Cα as in
(2.6), we have

|f(ξ1)| 6 Cα e
|=(ξ1)|L ‖∂νu‖L2((0,T )×∂BL) .

From that, we end the proof of Theorem 4.1 exactly as in the one-dimensional case, with the use of Propo-
sition 2.3.

Actually, the method developed above works not only for balls, but also for any bounded domain Ω ⊂ Rd.
More precisely:

Theorem 4.2. Let Ω be a smooth bounded domain of Rd, if we set

LΩ = inf
x∈Ω

sup
y∈∂Ω

|x− y|,

and we choose x̄ ∈ Ω such that
sup
y∈∂Ω

|x̄− y| = LΩ.

Then for any K > K0, there exists C > 0 such that any smooth function u solution of
∂tu−∆xu = 0 in (0, T )× Ω,
u(t, x) = 0 in (0, T )× ∂Ω,
u(0, x) = u0(x) in Ω.

verifies ∥∥∥∥u(T ) exp

(
|x− x̄|2

4T

)∥∥∥∥
L2(Ω)

6 C exp
(
KL2

Ω/T
)
‖∂νu‖L2((0,T )×∂Ω) .
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Note that this is a geometrical setting in which Corollary 1.3 applies but yields a different estimate on
the cost of observability. Indeed, when the observation is done on the whole boundary, one easily checks
that the choice S0 = S+

Ω , where

SΩ = sup{ Length of segments included in Ω },

is suitable for the application of Corollary 1.3. In particular, when Ω is convex, LΩ 6 SΩ 6 2LΩ and
Theorem 4.2 always yields at least the estimate given by Corollary 1.3 when the observation is done on the
whole boundary of Ω, and a better one in general (as in the case of a ball discussed in Theorem 4.1).

4.2 Tensorized equations

Another application of our method concerns the cost of observability of the heat equation on a tensorized
domain. More precisely, we consider the heat equation set in a tensorized spatial domain Ω = Ωx ×Ωy, and
want to know the cost of observability in small time when the solution is observed on ∂Ωx ×Ωy. Note that
the answer is already known: the cost is the same as the one for the heat equation set on Ωx only, when
the observation is done on the whole boundary ∂Ωx [33, Theorem 1.5]. Our purpose is therefore just to
underline that our approach also applies in that context and allows to retrieve easily this result.
To fix ideas, we focus on the case Ωx = (−L,L) (When Ωx is a multi-dimensional domain, similar arguments
can be developed, under appropriate geometric conditions, by using Theorem 4.2 instead of Theorem 1.1).
Hence we are interested in the following heat equation, set in the domain Ω = (−L,L)×Ωy, with L > 0 and
Ωy a smooth bounded domain of Rdy , in some time interval (0, T ), T > 0:

∂tu− ∂2
xu−∆yu = 0 for (t, x, y) ∈ (0, T )× (−L,L)× Ωy,

u(t, L, y) = u(t,−L, y) = 0 for (t, y) ∈ (0, T )× Ωy,
u(t, x, y) = 0 for (t, x, y) ∈ (0, T )× (−L,L)× ∂Ωy,
u(0, x, y) = u0(x, y) in (−L,L)× Ωy.

(4.6)

As usual, the initial datum u0 belongs to H1
0 ((−L,L)× Ωy). We have the following:

Theorem 4.3. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant C > 0 such for all
T ∈ (0, 1], for all solutions u of (4.6),∥∥∥∥u(T, x, y) exp

(
x2

4T

)∥∥∥∥
L2((−L,L)×Ωy)

6 C exp

(
K
L2

T

)(
‖∂xu(t,−L, y)‖L2((0,T )×Ωy) + ‖∂xu(t, L, y)‖L2((0,T )×Ωy)

)
. (4.7)

Sketch of the proof of Theorem 4.3. Let us denote by (vn, λ
2
n) the family of normalized eigenfunctions and

eigenvalues of the Dirichlet-Laplace operator set in Ωy, that is
−∆yvn = λ2

nvn in Ωy,
vn = 0 on ∂Ωy,

‖vn‖L2(Ωy) = 1.

Expanding u solution of (4.6) on the L2(Ωy) Hilbert basis (vn), that is

u(t, x, y) =
∑
n∈N

un(t, x)vn(y),

we see that each un solves a one dimensional heat equation with potential λ2
n set in (0, T )× (−L,L):

∂tun − ∂2
xun + λ2

nun = 0 in (0, T )× (−L,L),
un(t,−L) = un(t, L) = 0 in (0, T ),
un(0, x) = un,0(x) in (−L,L),

(4.8)

with

un,0(x) =

∫
Ω

u0(x, y) vn(y) dy.
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To prove Theorem 4.3, it is sufficient to prove that each un verifies the following observability inequality∥∥∥∥un(T, x) exp

(
x2

4T

)∥∥∥∥
L2(−L,L)

6 C exp

(
K
L2

T

)(
‖∂xun(t,−L)‖L2(0,T ) + ‖∂xun(t, L)‖L2(0,T )

)
, (4.9)

with a constant C independent of n. To do so, we consider ũn = un e
λ2
n t, which verifies

∂tũn − ∂2
xũn = 0 in (0, T )× (−L,L),

ũn(t,−L) = ũn(t, L) = 0 in (0, T ),
ũn(0, x) = un,0(x) in (−L,L).

Applying Theorem 1.1, we get∥∥∥∥ũn(T, x) exp

(
x2

4T

)∥∥∥∥
L2(−L,L)

6 C exp

(
K
L2

T

)(
‖∂xũn(t,−L)‖L2(0,T ) + ‖∂xũn(t, L)‖L2(0,T )

)
,

which directly gives (4.9) as eλ
2
n (t−T ) 6 1 for all t ∈ (0, T ), and therefore ends the proof.

4.3 Observation from one side of the domain – Symmetrization argument

In this section, we are interested in the cost of observability for the one dimensional heat equation when
observed on one side of the domain. In other words, for L, T > 0 and u0 ∈ H1

0 (0, L), we consider the system
∂tu− ∂2

xu = 0, in (0, T )× (0, L),
u(t, 0) = u(t, L) = 0, in (0, T ),
u(0, x) = u0(x), in (0, L).

(4.10)

We have the following:

Theorem 4.4. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant C > 0 such for all
T ∈ (0, 1], for all solutions u of (4.10) with u0 ∈ H1

0 (0, L),∥∥∥∥u(T ) exp

(
x2

4T

)∥∥∥∥
L2(0,L)

6 C exp

(
K
L2

T

)
‖∂xu(t, L)‖L2(0,T ) . (4.11)

Proof. The proof is based on a classical symmetrisation argument: for u solution of (4.10), we define

us(t, x) =

{
u(t, x) for (t, x) ∈ (0, T )× (0, L)
−u(t,−x) for (t, x) ∈ (0, T )× (−L, 0).

It is readily seen that us verifies system (1.1). Therefore, Theorem 1.1 gives∥∥∥∥us(T ) exp

(
x2

4T

)∥∥∥∥
L2(−L,L)

6 C exp

(
KL2

T

)(
‖∂xus(t,−L)‖L2(0,T ) + ‖∂xus(t, L)‖L2(0,T )

)
.

The result follows easily, as ∂xus(t,−L) = ∂xus(t, L) = ∂xu(t, L) for all t ∈ (0, T ).

4.4 Distributed observations

One is sometimes interested in distributed observations, in which case the corresponding observability in-
equality reads:

‖u(T )‖L2(0,L) 6 C(T,L, a, b) ‖u‖L2((0,T )×(a,b)) , (4.12)

for smooth solutions u of (4.10), where a, b ∈ R are such that (a, b) ⊂ (0, L) and a < b.
We claim the following:

Theorem 4.5. Let 0 6 a < b 6 L. Setting K0 as in Theorem 1.1, for any K > K0, there exists a constant
C > 0 such for all T ∈ (0, 1], for all solutions u of (4.10),

‖u(T )‖L2(0,L) 6 C exp

(
K min{a2, (L− b)2}

T

)
‖u‖L2(0,T ;H1(a,b)) . (4.13)
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Proof. As in the proof of Theorem 4.4, we start by symmetrizing the function u, and we call us its symmetric
extension. We then take ε > 0 small enough to have a + 2ε < b and we choose an even cut-off function ρ
taking value 1 on (−a− ε, a+ ε) and vanishing for |x| > a+ 2ε. Then the function

z(t, x) =

 ρ(x)us(t, x) exp

(
x2 − (a+ 2ε)2

4t

)
for |x| < a+ 2ε,

0 for |x| > a+ 2ε,

satisfies, similarly as in (2.3),
∂tz +

x

t
∂xz +

1

2t
z − ∂2

xz −
(a+ 2ε)2

4t2
z = g, (t, x) ∈ (0,∞)× (−a− 2ε, a+ 2ε),

z(t,−a− 2ε) = z(t, a+ 2ε) = 0, t ∈ (0,∞),
z(0, x) = 0, x ∈ (−a− 2ε, a+ 2ε),

(4.14)

where

g(t, x) = exp

(
x2 − (a+ 2ε)2

4t

)
(2∂xρ∂xu(t, x) + ∂xxρu(t, x)).

One can then follow the approach developed in Section 2 (using Proposition A.1 instead of Theorem 2.1 and
the fact that ∂xz(t,−a − 2ε) = ∂xz(t, a + 2ε) = 0) to show that for all K1 > K0, there exists C such that
for all T ∈ (0, 1],

‖z(T )‖L2(−a−2ε,a+2ε) 6 C exp

(
K1(a+ 2ε)2

T

)
‖g‖L2((0,T )×(−a−2ε,a+2ε)) .

Using the definition of z and g, one easily gets

‖u(T )‖L2(0,a+ε) 6 C exp

(
K1(a+ 2ε)2

T

)
‖u‖L2(0,T ;H1(a,a+2ε)) .

Similarly, one can obtain

‖u(T )‖L2(b−ε,L) 6 C exp

(
K1(L− b+ 2ε)2

T

)
‖u‖L2(0,T ;H1(b−2ε,b)) .

It is besides straightforward to show that

‖u(T )‖L2(a+ε,b−ε) 6 C ‖u‖L2(0,T ;H1(a,b)) ,

for instance by looking at v(t, x) = η(t)u(t, x)ρ0(x), where η = η(t) is a smooth function of time taking value
0 at t = 0 and 1 at t = T , and ρ0 = ρ0(x) taking value 1 on (a+ ε, b− ε) and vanishing for x /∈ (a, b), and
doing energy estimates.
Combining the three above estimates, we easily conclude (4.13) by taking K1 ∈ (K0,K) and ε > 0 small
enough.

Note that the above argument is only based on suitable cut-off arguments. It can therefore be applied
as well in multi-dimensional settings, provided some geometric assumptions compatible with Theorem 4.2
are satisfied, namely if the distributed observation set is a neighborhood of the whole boundary.

4.5 Related uncertainty principles

One key point to obtain Theorem 1.1 is the complex analysis argument developed in Section 3.2, based prin-
cipally on the Schwarz-Christoffel conformal mapping and the Phragmén Lindelöf principle. It is nevertheless
possible to develop a purely real analysis argument, but it only allows to retrieve the cost of observability
for the one-dimensional heat equation known since [37]:

Theorem 4.6. For all K > 3/4, there exists a constant C > 0 such for all T ∈ (0, 1], all solutions u of
(1.1) with initial datum u0 ∈ H1

0 (−L,L) satisfies (1.2).
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The proof of Theorem 4.6 is based on the following uncertainty principle result, due to [24, 13]:

Proposition 4.7 ([24, 13]). Let A,B > 0. Let f ∈ L2(R) supported in [−A,A], f̂ its Fourier transform.
Then ∫ B

−B
|f̂(ξ)|2 dξ 6 λ0

∫
R
|f̂(ξ)|2 dξ (4.15)

where λ0 = λ0(AB) verifies 0 < λ0 < 1 and

λ0 = 1− 4
√
π
√
AB e−2AB (1 + εAB) , (4.16)

where εAB → 0 as AB →∞.

Relation (4.15) is a particular case of [24, Theorem p.68], whereas the proof of the asymptotic behaviour
of λ0 can be found in [13, Theorem 1, p.319].

Proof of Theorem 4.6. We start from formula (2.7), which we recall hereafter: for any ξ0 ∈ R such that
|ξ0| > L/(2T ), we have

ŵ (T, ξ0) = −
∫ T

0

√
T

t
∂xu(t,−L)eı

Lξ0T
t
−(ξ20T

2−L2/4)(1/t−1/T ) dt

+

∫ T

0

√
T

t
∂xu(t, L)e−ı

Lξ0T
t
−(ξ20T

2−L2/4)(1/t−1/T ) dt.

Therefore, we directly obtain, for ξ0 ∈ R with |ξ0| > L/(2T ),

|ŵ (T, ξ0) |2 6 T
(
‖∂xu(t,−L)‖2L2(0,T ) + ‖∂xu(t, L)‖2L2(0,T )

) ∫ T

0

e−2T2(ξ20−L
2/4T2)(1/t−1/T ) dt

t
.

For η > 1, we choose ξ0 ∈ R with |ξ0| > ηL/(2T ) which implies

ξ2
0 −

L2

4T 2
>
η2 − 1

η2
ξ2
0

and ∫ T

0

e−2T2(ξ20−L
2/4T2)(1/t−1/T ) dt

t
6
∫ T

0

e
−2T2 η2−1

η2
ξ20( 1

t
− 1
T ) dt

t
6

η2

2T (η2 − 1) ξ2
0

.

Hence we obtain, for ξ0 ∈ R with |ξ0| > L/(2T ),

|ŵ (T, ξ0) |2 6
η2

2 (η2 − 1) ξ2
0

(
‖∂xu(t,−L)‖2L2(0,T ) + ‖∂xu(t, L)‖2L2(0,T )

)
and ∫

|ξ0|>η L
2T

|ŵ (T, ξ0) |2 dξ0 6
2T η

(η2 − 1)L

(
‖∂xu(t,−L)‖2L2(0,T ) + ‖∂xu(t, L)‖2L2(0,T )

)
.

Now, from (4.15) applied to f = ŵ(T ) with A = L, B = ηL/(2T ) and λ0 = λ0(ηL2/(2T )), we have∫
R
|ŵ (T, ξ0) |2 dξ0 =

∫
|ξ0|<η L

2T

|ŵ (T, ξ0) |2 dξ0 +

∫
|ξ0|>η L

2T

|ŵ (T, ξ0) |2 dξ0

6 λ0

∫
R
|ŵ (T, ξ0) |2 dξ0 +

∫
|ξ0|>η L

2T

|ŵ (T, ξ0) |2 dξ0,

and thus ∫
R
|ŵ (T, ξ0) |2 dξ0 6

1

1− λ0

∫
|ξ0|>η L

2T

|ŵ (T, ξ0) |2 dξ0.

We have thus obtained∫ L

−L
|w(T, x)|2 dx =

∫
R
|ŵ (T, ξ0) |2 dξ0 6

1

1− λ0

2T η

(η2 − 1)L

(
‖∂xu(t,−L)‖2L2(0,T ) + ‖∂xu(t, L)‖2L2(0,T )

)
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which implies from Proposition 4.7 and (4.16) the existence of a constant C such that for T small enough∫ L

−L
|w(T, x)|2 dx 6 Ceη

L2

T
(
‖∂xu(t,−L)‖2L2(0,T ) + ‖∂xu(t, L)‖2L2(0,T )

)
.

The result of Theorem 4.6 follows from the definition of w.

4.6 On a possible improvement of Theorem 1.1

As we said in the introduction, we do not know if the estimate on the cost of observability in small times
given by Theorem 1.1 is sharp or not. In fact, when looking at the main steps of the proof of Theorem
1.1 given in Section 2, it seems that one step in which our estimates are not sharp may be the one using
Phragmén-Lindelöf principles, i.e. Proposition 2.3.
Indeed, introducing the class

Eα = {f ∈ Hol (Oα), s.t. f(ξ)e−|=(ξ)| ∈ L∞(Oα) and ∀ξ ∈ ∂Oα, |f(ξ)| 6 e|=(ξ)|},

Proposition 2.3 shows that

sup
f∈Eα

(
sup

x∈[−α,α]

{|f(x)|}

)
6 exp(αϕ(0)), (4.17)

where ϕ(0) is given by (2.15). Besides, this estimate is sharp as we can construct an holomorphic function φ in
O1 whose real part coincides with ϕ(ξ) + |=(ξ)| given by (2.12)–(2.13) and check that fφ(ξ) = exp(αφ(ξ/α))
belongs to Eα and saturates the estimate (4.17), so that

max
f∈Eα

(
max

x∈[−α,α]
{|f(x)|}

)
= exp(αϕ(0)). (4.18)

Now, in our approach (in the case L = 1, which can always be assumed by a scaling argument), we apply
estimate (4.17) to the function f = ŵ(T, ·)/‖ŵ(T, ξ)e−|=(ξ)|‖L∞(Cα), which in fact belongs to a smaller class:

E ∗α = {f ∈ Hol (C), s.t. f(ξ)e−|=(ξ)| ∈ L∞(C) and ∀ξ ∈ Cα, |f(ξ)| 6 e|=(ξ)|.}

Therefore, our proof requires an estimate on the constant

C∗(α) = sup
f∈E∗α

(
sup

x∈[−α,α]

{|f(x)|}

)
, (4.19)

in the asymptotics α→∞. It is clear that

C∗(α) 6 exp(αϕ(0)), (4.20)

which is precisely the estimate we use, but there is no evidence to support the idea that this estimate gives
the good asymptotics as α→∞.
Let us in particular point out that

• The function fφ given above to show that estimate (4.17) is sharp does not belong to the class E ∗α .

• The constant C∗(α) in (4.19) blows up at least like exp(α/2) as α→∞, as otherwise the proof given
in Section 2 would yield a cost of observability smaller than exp(L2/2T ) in small times, which is known
to be false due to [29].

• Looking at the 2-parameters family of functions of the form

fA,γ(ξ) = cos(A
√
ξ2 − γ2),

for parameters A ∈ [0, 1] and γ ∈ [0, α], we find out that

sup
f∈{fA,γ}∩E∗α

(
sup

x∈[−α,α]

{|f(x)|}

)
= cosh

(α
2

)
,
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and is achieved when taking A = 1/
√

2 and γ = α/
√

2, i.e.

f(ξ) = cos

(
1√
2

√
ξ2 − α2

2

)
.

This function yields another evidence of the fact that

lim inf
α→∞

log(C∗(α)) >
α

2
.

Let us finally emphasize that if we were able to show that

lim sup
α→∞

log(C∗(α)) 6
α

2
,

the proof given in Section 2 would yield a cost of observability in small times C0(T,L) satisfying

lim sup
α→∞

T log(C0(T,L)) 6
L2

2
.

Combined with [29], this would entail that

lim
α→∞

T log(C0(T,L)) =
L2

2
.

4.7 Uniform controllability of viscous approximations of the transport
equation

The problem we considered in this article is intimately related to the question of uniform controllability
of viscous approximations of the transport equation raised in [4]. Namely, for all ε > 0, one considers the
following viscous approximation of the transport equation at velocity M ∈ R:

∂tyε − ε∂2
xyε +M∂xyε = 0, (t, x) ∈ (0, T )× (0, L),

yε(t, 0) = vε(t), t ∈ (0, T ),
yε(t, L) = 0, t ∈ (0, T ),
yε(0, ·) = y0(x), x ∈ (0, L).

(4.21)

For each ε > 0, the equation (4.21) is null-controllable in any time T > 0, and the map Vε,T : y0 → vε which
to any y0 ∈ L2(0, L) associates the control vε of minimal L2(0, T )-norm is linear. The question raised in [4]
is the following one: Give conditions on the time T guaranteeing that

lim sup
ε→0

‖Vε,T ‖L (L2(0,L);L2(0,T )) <∞. (4.22)

It is clear that if |M |T < L, (4.22) cannot happen, as otherwise the convergence of (4.21) as ε → 0
would imply the null-controllability of the transport equation in a time which is not enough to make the
characteristics go out of the domain.
Several conditions on the time T ensuring (4.22) were then proposed in the literature, namely in the works
[4], [17] and [28]. In fact, to our knowledge, the best results are the ones obtained in [28], which we recall
now:

Theorem 4.8 ([28]). If M 6= 0 and

|M |T > T (2
√

3 + 1− sign (M)), (2
√

3 ≈ 3.4641),

where sign (M) = 1 if M > 0 and = −1 if M < 0, we have

lim sup
ε→0

‖Vε,T ‖L (L2(0,L);L2(0,T )) = 0.
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These results are based on the knowledge of the cost of observability of the one-dimensional heat equation
in small time obtained in [37]. Therefore, as Theorem 4.4 improves the one in [37], following the proof of [28]
immediately improves the known result on the uniform controllability of the viscous approximations (4.21)
of the transport equation:

Theorem 4.9. Let K0 as in (1.5). Then, if M 6= 0 and

|M |T > L(4
√
K0 + 1− sign (M)), (4

√
K0 ≈ 3.3385),

we have
lim sup
ε→0

‖Vε,T ‖L (L2(0,L);L2(0,T )) = 0. (4.23)

As the proof of Theorem 4.9 follows line to line the one of [28], it is left to the reader.
We are currently investigating if one can do better than the combination of the cost of observability of
the one-dimensional heat equation in small times and of the arguments in [28] to obtain better sufficient
conditions on the ratio |M |T/L to guarantee (4.23). We believe that a direct approach following the strategy
in Section 2 could help improving Theorem 4.9.

A Carleman-type estimate

We consider the following equation

∂tz −∆xz +
1

2 t
(2x · ∇xz + d z)− L2

4 t2
z = g in (0, T )× Ω,

z(t, x) = 0 on (0, T )× ∂Ω,

lim
t→0
‖z(t)‖L2(Ω) = 0,

lim
t→0

t ‖∇z(t)‖L2(Ω) = 0,

(A.1)

with T > 0, Ω a bounded domain of Rd, d > 1,

L = sup
x∈Ω
|x|. (A.2)

and
g ∈ L2((0, T )× Ω).

We then have the following result:

Proposition A.1. Any smooth solution z of (A.1) with g ∈ L2((0, T )× Ω) verifies the following estimate:∫
Ω

(
|∇xz(T )|2 − L2

4T 2
|z(T )|2

)
dx 6

L

T 2

∫ T

0

(
t

∫
Γ+

|∇xz(t, x) · ν|2 ds(x)

)
dt+

1

T 2

∫ T

0

∫
Ω

t2|g|2 dx dt.

(A.3)
with Γ+ = {x ∈ ∂Ω, x · ν > 0}, and L is given by (A.2).

Proof. We define the following spatial operators

S z = −∆xz −
L2

4 t2
z, A z =

1

2 t
(2x · ∇xz + d z) ,

so that z solution of (A.1) verifies

∂tz + Sz +Az = g in (0, T )× Ω.

Note that S and A respectively correspond to the symmetric and skew-symmetric parts of the operator in
(A.1).
We then consider

D(t) :=

∫
Ω

(
|∇xz(t, x)|2 − L2

4 t2
|z(t, x)|2

)
dx =

∫
Ω

(Sz)(t, x) z(t, x) dx.
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A direct calculation shows that

D′(t) =
L2

2 t3

∫
Ω

|z|2 dx+ 2

∫
Ω

Sz ∂tz dx

=
L2

2 t3

∫
Ω

|z|2 dx− 2

∫
Ω

|S z|2 dx− 2

∫
Ω

S z A z dx+ 2

∫
Ω

Sz g dx.

Furthermore, as A is a skew-symmetric operator, we have

−2

∫
Ω

S z A z dx = 2

∫
Ω

∆x z A z dx =
1

t

∫
Ω

∆xz (2x · ∇xz + d z) dx.

On one hand, we obviously have ∫
Ω

∆xz d z dx = −d
∫

Ω

|∇xz|2 dx.

On the other hand, we note that∫
Ω

∆xz 2x · ∇xzdx = 2

∫
∂Ω

(∇xz · ν) (x · ∇xz) ds(x)− 2

∫
Ω

∇xz · ∇x (x · ∇xz) dx

= 2

∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x)− 2

∫
Ω

∇xz · ∇x (x · ∇xz) dx.

Here, we have used that as z = 0 on ∂Ω, ∇xz = (∇xz · ν)ν on ∂Ω. As

∇xz · ∇x (x · ∇xz) = |∇xz|2 +
x

2
· ∇x

(
|∇xz|2

)
,

we have ∫
Ω

∇xz · ∇x (x · ∇xz) dx =

∫
Ω

|∇xz|2 dx+

∫
Ω

x

2
· ∇x

(
|∇xz|2

)
dx

=

∫
Ω

|∇xz|2 dx+
1

2

∫
∂Ω

(x · ν)|∇xz|2 ds(x)− d

2

∫
Ω

|∇xz|2 dx

=

∫
Ω

|∇xz|2 dx+
1

2

∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x)− d

2

∫
Ω

|∇xz|2 dx.

Gathering the above computations, we get that

D′(t) + 2

∫
Ω

|Sz|2 dx =
L2

2 t3

∫
Ω

|z|2 dx− 2

t

∫
Ω

|∇xz|2 dx+
1

t

∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x) + 2

∫
Ω

Sz g dx

6 −2

t
D(t) +

1

t

∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x) +

∫
Ω

|Sz|2 dx+

∫
Ω

|g|2 dx,

which implies in particular

(t2 D(t))′ 6 t

∫
Γ+

(x · ν)|∇xz · ν|2 ds(x) + t2
∫

Ω

|g|2 dx. (A.4)

Using the assumption on z in (A.1)(3,4), one easily checks limt→0 t
2 D(t) = 0, hence we can integrate (A.4)

between 0 and T , which gives (A.3), as |(x · ν)| 6 L for all x ∈ Ω.
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