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1. Introduction
Recent advances in computer-aided material and structural fabrication, such as rapid prototyping, three-
dimensional (3D) printing or additive manufacturing, have created avenues for designing materials
with tailored behaviour. These technological developments have also opened unexpected fields of
applications of ancient mathematical problems and methods, whose applications were originally found
in a different context. Indeed, the revolutionary and somehow underestimated contribution by Maxwell
[1] allowed for the exact design, already in 1864, of a wide class of beam lattices; an approach used
later (owing to the vulgarization due to Mohr [2]) for building bridges and, in general, many kinds of
civil engineering structures. This approach due to its mathematical generality, can be applied to design
also lattice microstructures constituting novel modern metamaterials. Maxwell efficiently applied the
principle of virtual work to calculate the relevant physical quantities in truss structures using efficient
algorithms: in the absence of automatic computation tools Maxwell methods were exploited efficiently
by means of Cremona diagrams (e.g. [3]), which transformed the mathematical visions by Maxwell into
engineering artefacts (for a careful historical discussion of some of this subject, see [4]).

While it is nowadays not useful in practice to use Cremona diagrams (notwithstanding the fact that
they are still taught in many engineering curricula), the basic mathematical ideas by Maxwell represent,
till now, the main conceptual tool for investigating the mechanical behaviour of any lattice of beams
(also those which are not trusses!). In the present paper, we used the principle of virtual work, exactly in
the Maxwellian spirit, but we used modern calculation tools: i.e. von Neumann machines and effective
algorithms for finding minima of deformation energy. Energetic methods are useful not only for finding
the equilibrium configuration of beam lattices, but also for determining their optimal topological and
mechanical configurations targeted to specific functional objectives.

In more recent times, using a similar top-down approach, topology optimization is being exploited
for designing materials and structures that can be manufactured using additive manufacturing
[5,6] as well as to develop material microstructure for concurrent multi-scale design of composite
macrostructure [7], or exploit peculiar micro-scale properties to propose optimal structural topologies [8].
Furthermore, metamaterials with exceptional elastic properties have been fabricated using 3D printing
techniques [9,10]. Most of these material designs are conceived within the framework of classical
continuum mechanics and yield materials that conform to the properties predicted by the classical
theories. Alternatively, from a bottom-up approach microstructure can be designed by carefully selecting
the unit building block to obtain ‘metamaterials’ of specified properties, such as granular metamaterials
with frequency band gaps or specific architectures that have a significant effect of microstructure on
macro-scale behaviour [11,12]. Internal structures that replicate certain macro-scale truss systems could
yield unique material-scale behaviour (for some interesting applications, see [13–16]).

In the present work, we explore the development of metamaterials by using a king post truss as the
underlying motif. Through careful simulations, we show that by combining the king post truss into
pantographic microstructures, it is possible to obtain metamaterials with unique and controlled strain
energy responses. In the subsequent discussion, we first present a brief description of the simulation
methodology, we then describe the response of the unit building block, and subsequently, we simulate
the behaviour of two-dimensional structure under tension, shear and bending. The simulation results
show that the proposed metamaterial has unique elastic properties that includes phase transition-like
behaviour. From the viewpoint of macro-scale modelling the proposed metamaterial exhibits strong
second gradient continuum behaviour, such as the predicted zones of quasi-uniform deformation with
transition zones (boundary layers) of finite thickness.

2. Pantographic lattice with king post truss building block
2.1. Mathematical formulation
A class of planar metamaterials has been recently extensively studied (called pantographic sheets in [17]
and studied in detail in [18–21]) showing a rather exotic mechanical behaviour. Their microstructure can
be recognized in figure 1, in which a specimen obtained by using 3D printing technology is shown.

We can distinguish two families of fibres, which behave as beams, connected to each other by
means of cylindrical connections named pivots. Various papers, see for example [17,22,23], show, from
a theoretically point of view, through numerical simulation and also by experiments, that this kind of
metamaterial behaves elastically under very large deformations; see for example [24] for the case of load
applied on single fibres, [25,26] which discuss some non-standard tests such as traction and bending and

      





In our scheme, we distinguish the pantographic beams (depicted in black; see figure 2a–c), the king
post rods (in red and green) which ensure the bending stiffness for each beam, and the auxiliary rods (in
cyan), which prevent lattice rigid body motions. The geometry of the king post rods is completely defined
by using two couples of geometric parameters such as reported in figure 2c, i.e. (ξ1, η1) and (ξ2, η2).
Further, in this paper, we consider two-dimensional sheet structures, as that shown in figure 1, that can be
potentially combined to form laminates or other 3D structures. With a view to focusing our discussion
to the in-plane behaviour of these sheet structures, we remark that no out-of-plane displacements are
considered. We also note that the simulation results presented in the subsequent discussions are for the
case of orthogonal fibres; however, the extension to the more general case of non-orthogonal fibres is
possible as described in [34].

The king post pantographic lattice naturally considers a set of Lagrangian parameters specifying
the position of nodes, both those formed at the connections of the pantographic bars as well as those
for king post bars. These parameters are initially located at the nodes of the reference configuration.
Upon the in-plane deformation of the sheet, the nodes and the corresponding parameters displace to
the current configuration. For planar motions, only a set of 2n coordinates is sufficient (if n is the
number of considered nodes) the generic designation for which in the reference position is given by
Pi. In the deformed configuration, the set of Lagrangian coordinates of the corresponding position are
denoted by pi.

The strain energy of the discrete model is the only kind of energy to be specified in the absence of
relevant volume forces. The postulated expression for the Lagrangian discrete deformation energy Wint
(in terms of the Lagrangian coordinates pi) is completely defined, specifying the contribution of the eth
bar between the ie and je nodes:

We = 1
2

ae(‖pje − pie‖ − ‖Pje − Pie‖)2, (2.1)

where ae is the axial stiffnesses of the eth bar.
To have a complete solution of the considered equilibrium problem, i.e. the displacements (from

which can be easily evaluated the structural reaction), a step-by-step procedure was implemented to
reconstruct the complete equilibrium path of the king post pantographic sheet.

The total energy of the pantographic structure can be computed in a straightforward manner by
simply adding the strain contribution of each bar. Formally, we can write

W(d) = Wint − Wext =
ne∑

e=1

We − Wext, (2.2)

where e ranges on all the ne bars, Wext is the work of the external loads and all quantities on the right-
hand side depend on the vector d, which collects the nodal displacements of the king post pantographic
lattice.

As the equilibrium problem which we want to consider is a mixed one, we assume that the
displacements of some nodes are imposed and that some externally conservative forces are applied
to the remaining nodes. Let us therefore decompose d into the pair composed by two vectors: the
assigned displacements ua and the free displacements u. For notational aims, we will reorder d to get
the decomposition

d = (u, ua)

and, based on our assumptions, Wext depends only on u.
The nonlinear system of equilibrium equations is obtained by imposing that the first variation of W

vanishes, according to the following formula:

s(u) − p(u) = 0, (2.3)

where p(u) is the vector which collects the Lagrangian components of external forces (which may be
assumed to be dead loads, for instance, so that p becomes independent of u and s(u) is the vector of the
internal forces (also called, in the context of structural mechanics, structural reaction), as defined by

s(u) = dWint

du
and p(u) = dWext

du
. (2.4)

The tangent stiffness matrix is defined as the derivative of the structural reaction s(u) with respect to
the displacement vector u, according to the following formulae:

KT(u) = ds(u)
du

= d2Wint

du2 . (2.5)
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Figure 3. King post truss: geometry and rod stiffnesses.

The solution of the nonlinear equilibrium system of equations (2.3) can be found by means of an
incremental–iterative procedure essentially based on the Newton scheme. As we will limit ourselves to
the case of equilibrium paths depending only on imposed displacements, we introduce here only the
parameter λ. Starting from an estimated point of the equilibrium path (λj, uj) verifying that the residue r
of equation (2.3) is

‖r(uj, λj)‖ ≤ η, (2.6)

i.e. with a pair being an η-approximate solution of the equilibrium condition (2.3), the iterative
scheme, once the step �λ is fixed, is obtained by constructing the η-approximate solution (uj+1 =:
uj + �uj, λj+1 := λj + �λ) by using the iterative scheme based on the Riks’ arc-length parameter to
closely follow the equilibrium path. This effective algorithm is well described in [23] for a nonlinear
elastic problem and in [35] for an elasto-plastic problem with some insights into filtering properties of
such a procedure.

2.2. Behaviour of king post truss
Our exploration of the mechanical behaviour of the king post pantographic lattice begins by studying
the response of the basic structural scheme sketched in figure 3. The five rods of the scheme connecting
the four nodes can be distinguished in pantographic rods (in black) and king post rods (in red and cyan)1

(see also figure 2b,c), and fixes the attention, e.g. on the fibres which embrace the red king post.
We studied the strain energy W of the structure corresponding to the displacement triplet u2, u3 and

v3 which have to be considered as imposed displacement. Nonlinear elastic solution of this problem
was obtained by using the tool illustrated in the foregoing §2.1. The strain energy is evaluated using
the following cases: geometry, ε = 1, α = 0.5; stiffnesses: ap = 1, ak = 0.01, 1, 100; range of displacements:
−0.3 ≤ u2 ≤ 0.3, −0.6 ≤ u3 ≤ 0.6 and −0.6 ≤ v3 ≤ 0.6; representing 30% deformation from the original
configuration in the u-direction and 120% in the v-direction.

To examine the behaviour of the king post truss under different deformation conditions, we define
the following strain parameters δ12, δ23 and β:

δ12 = u2, δ23 =
√

(ε + u3 − u2)2 + v2
3 − ε and β = arctan

v3

ε + u3 − u2
, (2.7)

where δ12 is the elongation (compression) of the pantographic rod 1–2, δ23 is the elongation (compression)
of the pantographic rod 2–3 and β is the angular distortion of the truss.

As examples of the king post truss behaviour, we plot the strain-energy variation in figure 4 for
particular cases of the above strain parameters and the stiffness parameter ratio a = ak/ap = 0.01. For
example, in figure 4 the strain energy W is plotted by varying the angle β, in the range (−π/4, π/4), while
holding the elongations δ12 = δ23 = −0.1 (a), 0 (b) and 0.1 (c). We also give the best fit to the strain-energy
variation using both quadratic and cubic fitting. We remark that the king post truss does not have a
symmetrical solution in accordance with the lack of symmetry of the geometry.

Further in figure 5a, we plot W(δ12) for the case δ23 = β = 0 (−0.5 ≤ δ12 ≤ 0.5) and in figure 5b, we plot
W(δ23) (−0.5 ≤ δ23 ≤ 0.5) while holding δ12 = β = 0, along with their respective best fit using quadratic
fitting. We observe from these plots that, for the two elongation deformation modes, the strain energy
of this basic system shows a quadratic variation, while for the angular distortion deformation mode
the strain-energy variation is non-quadratic. The clear indication is that for mixed deformation modes

1More precisely, using the generally adopted terminology for structural trusses, we could distinguish the king post rod (in cyan) and
the rafters (in red).
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Figure 9. King post pantographic unit (the position of nodes 6 and 7 is slightly modified for the sake of illustration).
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Figure 10. King post pantographic unit: evolution of the normalized structural reaction R/(ap�) (a) and normalized strain energy
W/(ap�2) (b) versus the non-dimensional displacement parameterλ varying the ratio a= ak/ap.

Table 1. Nodal coordinates x, y of the king post pantographic unit.

node 1 2 3 4 5 6 7

x 0 0 0.5� � � 0.75� 0.75�
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y 0 � 0.5� 0 � 0.25� 0.75�
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 11. King post pantographic unit: deformation as λ increases for a= 1 (the colour bar represents the global strain energy, the
reference position is indicated in grey). (a)λ = 0.25, (b)λ = 0.5, (c)λ = 0.75 and (d)λ = 1.
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Figure 12. Geometric relationship between the strain of auxiliary rod and the shear deformation of a square field of the pantographic
lattice.

      



3. Numerical simulation under extension, shear and bending
We now consider the numerical simulation of the pantographic lattice sheet subjected to standard
mechanical tests, including extension, shear and bending. Using the foregoing experience gained from
the king post truss and the king post pantographic unit, and taking into account the relationship (2.8),
we assume the following data (figure 2):

(i) geometry: L = 66.114; L/ε = 4
√

2; ξ1 = 0.75; η1 = 0.25; ξ2 = 0.75; η2 = 0.75;
(ii) stiffnesses: ap = 1; ax/ap = 10−5.

The assumed displacements for the three numerical simulations are

extension test u1(0, x2) = u2(0, x2) = u2(3L, x2) = 0 and u1(3L, x2) = umax
1 = 75;

shear test u1(0, x2) = u2(0, x2) = u1(3L, x2) = 0 and u2(3L, x2) = umax
2 = 75;

bending test u1(0, x2) = u2(0, x2) = 0 and u2(3L, x2) = umax
1 (1 − 2(x2/L)), umax

1 = 35.

Figure 13 reports the non-dimensional structural reaction R�/(3L2ap) (figure 13a,c,e) and the non-
dimensional global strain energy W/(3L2ap) (figure 13b,d,f ) for the extension, shear and bending cases,
respectively. In these plots, we indicate using a black triangle, the slope of the linear law (λ) for the
reactions and the quadratic law (λ2) for the strain energies. These simulations amply demonstrate that
the proposed material system exhibits non-classical elastic behaviour even though its fundamental
components are classical rods. Particularly notable is the completely reversible phase transition from
a relatively soft and linear to stiff and hardening material at critical extension and bending, while
retaining a classical behaviour in shear. For the case of the extension (figure 13a,b), the material system
has a classical linear (quadratic in energy) behaviour up to λ ≈ 0.4. Beyond this deformation, there is
an onset of hardening as shown by the departure from the linearity in reaction (quadratic behaviour
in energy). This sudden departure is particularly manifested in the case of a = 0.01. In the case of
bending (figure 13c,d), similar transition from a softer to stiffer material system is observable. However,
in the case of shear (figure 13e,f ), the material system retains a classical linear response (quadratic in
energy) over the applied deformation range. Such a reversible phase transition in a material system
from soft to stiff and vice versa in selected deformation modes could have many hitherto unprecedented
applications. Particularly notable in this context is the transition in the contrast of extension stiffnesses
to the shear stiffness of the material system. The strain energy under extension becomes an order of
magnitude larger than that for shear, indicating a similar increase in the extensional stiffness over the
shear stiffness. Similar phenomena are also observed with respect to the bending to shear behaviour
although at a lesser magnitude. Pantographic structures are characterized at local level by the existence
of floppy modes; more precisely by deformations (infinitesimals and large) corresponding to vanishing
deformation energy. The manifold of floppy modes has a boundary; beyond some thresholds the
pantographic sheet locally becomes a standard plate. This transition transforms a soft material into
a stiff material. When many cells undergo this transition, then a global stiffening occurs (typically
exponentially) and the specimen can be modelled as a first gradient material, for what concerns the
in-plane gradient of displacements. The regions of soft second gradient behaviour and those of stiff first
gradient ones are separated by boundary layers where a large gradient of bending and/or elongation
occurs.

To explore further the macro-scale behaviour of the system from its building block scales, we show in
figures 14–16 the deformed shapes at the end for extension, shear and bending tests, respectively, varying
the stiffness parameter a = ak/ap. In all plots, the colour bar is used to represent the strain-energy level on
the rods. For the sake of clarity pantographic, king post and auxiliary rods are plotted on separate layers.
In the case of extension (figure 14), we observe that the auxiliary rods contribute negligible strain energy,
while the pantographic rods contribute the most for the stiffness parameter a. In the case of bending and
shear (figures 15 and 16), the pantographic and the king post rods contribute the bulk of the strain energy;
however, the distribution depends upon the stiffness parameter a. For a < 1, the king post rods have a
larger contribution, while for a > 1 the pantographic rods have the larger contribution. The contribution
of auxiliary rods is negligible for the stiffness parameter a.

Figure 17 reports, for the extension test, the structural reaction density both in the x1- and x2-
direction varying the stiffness parameter a = ak/ap. The plots show the changes of the structural reaction
distributions. Particularly interesting is the distribution of the horizontal component for the case a = 1,
which is very small compared with the values attained on the outermost.
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Figure 14. Extension test: deformation and strain-energy level (distinct for pantographic, king post and auxiliary rods) forλ = 1 varying
a= ak/ap. (a,d,g) a= 0.01, (b,e,h) a= 1, (c,f ,i) a= 100.

equal to the total deformation energy stored by the system in the same process. This statement, which
is considered fundamental in classical thermodynamics, needs to be suitably formulated and exploited
in the theory of elasticity. Castigliano astonished first Menabrea (see [42]) and then all mechanicians by
getting out of it many fruitful and unexpected consequences in the theory of structures.

The applications conceived by Castigliano and his epigones concerned large length-scale systems of
beams, like those needed for construction of bridges. However, the power of his method was not to be
bound to such particular applications. One of the main tools used to obtain the results presented in this
paper is again the idea subjacent to Castigliano’s theorems, as their scope surely includes also multi-
scale structures whose various length scales can be varying, for instance, from 0.1 mm to 50 cm. The
pantographic structures which we design here have to be built by standard devices used in additive
printing. The elastic pivots interconnecting used beams may have diameters ranging from 0.1 mm
onwards, the constituting beams may have sections whose diameter may range from 0.5 mm onwards
and the distance between pivot may range from 0.5 to 2 mm, which is the same order of magnitude
as the characteristic length of the periodicity cell in which the king post motif is incorporated. The
constructed rectangular specimens may have a short side of a few centimetres and the long side of several
decimetres. This is a multi-scale truss structure: therefore at every scale a specific model can (and must)
be formulated.

At the smallest scale, all considered bodies may be modelled as first gradient continua (see [43]). At
an intermediate meso-scale, the system can be modelled as a discrete system of extensional springs (as it
is done in this paper in §2.1). Finally, at the macro length scale of the whole specimen a second gradient
continuum model is more suitable. Each of these models must be elastic and for all of them Castigliano’s
theorem applies, obviously also in the nonlinear regime. The identification process which equates the
deformation energies of all these introduced elastic models for corresponding deformation states is the
most efficient one, as it is strongly suggested by Castigliano’s theorems, and we have applied it here
systematically. Also, after having started to apply Castigliano’s results to the design of metamaterials,
we must continue to agree with Timoshenko (p. 292 of [44]): ‘Looking through all these applications, it
is easy to see that little has been added to this branch of the theory of structures since Castigliano wrote
his famous book’

Thus, at the macro-scale behaviour a novel continuum description is envisaged that can model the
proposed metamaterial (e.g. [45–52] for a quick insight on this research line). To this end, we apply here
a modified version of the second gradient model presented in [22]. Although the mathematical problems
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Figure 15. Shear test: deformation and strain-energy level (distinct for pantographic, king post and auxiliary rods) for λ = 1 varying
a= ak/ap. (a,d,g) a= 0.01, (b,e,h) a= 1, (c,f ,i) a= 100.

to be confronted in order to prove that such a continuum model is indeed the limit of the discrete
one are rather difficult, we have observed numerically that indeed the continuum model captures
rather efficiently the features of the discrete one also when the size of the characteristic cell is rather
big. The mathematical methods to be used, for instance, to prove the Γ -convergence of the discrete
model to a second gradient continuum one seem to be somehow similar to those exploited in [53];
however, as the problem discussed here involves two-dimensional pantographic structures in presence
of extensible pantographic beams (those depicted in black in figure 2), the needed a priori estimates have
not been found up to now. The present section therefore is further motivated by the need to develop
understanding with numerical simulations that may direct the efforts needed to get a rigorous proof,
which is, on the other hand, needed to understand the application range of continuum models.

We observe that:

(i) The geometry of a king post motif is not symmetric with respect to bending (or angular
distortion). Consequently, under elongation, the equilibrium configuration is attained at a non-
vanishing angle (figure 4) which manifests as curvature at the macro-level. This circumstance
imposes certain properties on the macro-continuum model which is the homogenized limit of
the considered microstructure. In future investigations we will introduce symmetric king post
units in order to avoid that bending energy minima at non-vanishing angles and the elongation
deformation energy remain quadratic in the considered pantographic unit.

      



×10–3
7 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 0.2 0.4 0.6 0.8 1.0 1.2 1.420 1 3 4 5 6

×10–3
7 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 0.2 0.4 0.6 0.8 1.0 1.2 1.420 1 3 4 5 6

×10–3
7 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 0.2 0.4 0.6 0.8 1.0 1.2 1.420 1 3 4 5 6

(a) (b) (c)

(e) ( f )

(g) (h) (i)

(d)

Figure 16. Bending test: deformation and strain-energy level (distinct for pantographic, king post and auxiliary rods) forλ = 1 varying
a= ak/ap. (a,d,g) a= 0.01, (b,e,h) a= 1, (c,f ,i) a= 100.
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Figure 17. Extension test: structural reaction density r on the left-hand side (x = 0) varying a= ak/ap forλ = 1. (a) a= 0.01, (b) a=
1 and (c) a= 100.

(ii) The king post repetitive pantographic unit has been numerically studied and (figure 9) its
deformation energy in flection depends on the bending angle β (previously called also angular
distortion of the king post truss) via a third order (convex) polynomial in the neighbourhood of
the reference configuration.

In view of the above observations, we adapted the conjectured second gradient continuum model
as a limit model for considered pantographic structures in the case of moderate elongation energies
and in the simultaneous presence of negligible localized bending deformation. The main features of the

      



conjectured second gradient continuum model consist of an elongation energy which is quadratic and
of a bending energy which is a suitable cubic polynomial in the referential curvature of pantographic
fibres.2

To define the strain energy (see [22] for a deeper insight), we use the following strain parameters:

εαm = ‖Fdαm‖ − 1, (4.1)

καm =
√

∇F|dαm ⊗ dαm · ∇F|dαm ⊗ dαm

‖Fdαm‖2 −
(

Fdαm

‖Fdαm‖ · ∇F|dαm ⊗ dαm

‖Fdαm‖
)2

(4.2)

and γ = arcsin
(

Fdα1

‖Fdα1‖
· Fdα2

‖Fdα2‖
)

, (4.3)

where F = ∇χ , which is the gradient of the placement field χ , and having used the position:

(∇F|dαm ⊗ dαm )β = Fβ
αm,αm

, (no sum over repeated αm is intended), (4.4)

where the unit vectors dαm agree with the reference system axes.
With this notation, the strain energy can be written as

W(χ ) = 1
2

∫
Ω

(∑
αm

(Aαmε2
αm

+ b(καm , εαm )) + 1
2

Sγ 2

)
dΩ , (4.5)

where a suitable function for the energy density related to the particular behaviour of the king post is
used

b(καm , εαm ) = B1,αm (καm − C1,αmεαm )3 + B2,αm (καm − C2,αmεαm )2 (4.6)

and the stiffness parameters of the continuum model (macro) Aαm , B1,αm , B2,αm , C1,αm , C2,αm and S are
related to the stiffness parameters of the discrete model (meso) ap, ak and ax, i.e. to the stiffnesses of the
pantographic, king post and auxiliary bars.

Analysing the different terms of equation (4.5), we can observe that the pantographic sheet behaves
mechanically as a plane consisting of crossed rods of the Kirchhoff type arranged in two fibre families.
Indeed, the measures of deformation appearing in the stored strain energy can be interpreted as the
stretch of fibres (i.e. the elongation in the direction of each fibre), the fibre ‘curvature’ (i.e. the rate of
change of the current tangent vector to the fibre with respect to arc length along the same fibre in the
reference configuration) and the shear distortion (i.e. the change in the angle between fibres belonging to
different families). We expect that in more general cases coupling bending/elongation effects will have
to be taken into account by the introduction of an expression of bending deformation energy whose
coefficients depend on elongation.

We have simulated the results of a simple extension test, such as reported in §3, but limiting in this
case the maximum imposed displacement to umax = 0.45. In figures 18 and 19, we compare the numerical
simulations for the discrete system composed of repeated king post units and the numerical simulation
for the corresponding second gradient continuum model whose constitutive parameters are found via a
best fit procedure.

More precisely, in figure 18 there is a comparison between the deformation, corresponding to the
maximum value of the imposed displacement (i.e. for the non-dimensional displacement parameter
λ = 1) obtained by using the king post discrete model (figure 18a) and the second gradient continuum
model (figure 18b). Figure 18 also reports the energy density described by means of colours for the
discrete model, whereas for the second gradient continuum model the colours indicate the strain
parameter γ in which it is possible to see three characteristic zones with quasi-uniform deformation
typical for pantographic structures. In figure 19 is shown the evolution of the strain energy W versus
the non-dimensional displacement parameter λ. The strain energy is subdivided into three parts: the
first one is related to the extension (in blue), the second one to the bending (in green) and the last to
the shear (in red). Discrete and continuum model contribution can be identified by the kind of line used
(continuous for the homogenized and dot-dashed for the discrete model). We stress that the strain energy
for the discrete model is only related to the bar elongation, therefore we divided the strain energy into
three parts according to our subdivision of the bars: pantographic bars give contributions on extensional
strain energy, king post bars give contributions on bending strain energy and, finally, auxiliary bars give
contributions on the shear strain energy.

2For an in-depth introduction on more refined beam models, the interested reader is referred to [54,55].

      





present paper, we (i) develop an effective computation tool for the study of the meso-model and, in
particular, the king post motif forming pantographic sheets, (ii) determine the constitutive equations of
the reduced-order model to be used at the length-scale characteristic of the specimen in terms of the
mechanical properties of the king post motif considered, and (iii) prove that the consequent suitable
second gradient model is effective in predicting at the macro-level the behaviour of pantographic
sheets.

The presented simulations show that the strain-energy behaviour of the king post truss can be
exploited in pantographic structures to obtain materials that exhibit reversible phase transition from
soft to stiff and vice versa in selected deformation modes. This remarkable hierarchical material system
is composed at the basic level of linear rods with classical quadratic strain energy. At the next level,
these rods are combined to form the king post truss, which has a unique strain-energy landscape with
respect to its degrees-of-freedom. The king post truss are then combined into pantographic units which
individually exhibit certain abrupt changes in strain-energy behaviour. Finally, these pantographic units
are combined by repetition to form the sheet structures wherein the cooperative behaviour of the units
results in the observed non-classical behaviour. With the rapid advancement in additive manufacturing
and 3D printing, such pantographic structures can indeed be realized as shown in [17,22,34]. As the
resolution of these manufacturing techniques increase, it will be possible to create these structures at
micro-scales with millions of basic building blocks. The simulations presented have shown that the
proposed metamaterial has a wider elastic range, exhibits phase transition-type stiffening behaviour
under particular tuneable loading condition, appears to be more damage resistant, is less susceptible
to compression buckling and at the macro-scale displays behaviour characteristic of a second gradient
continuum.

The proposed ‘metamaterial’ is characterized by many useful mechanical features and, thus, its
technological applications can be related to different fields. In this regard, it is worth mentioning three
possible areas of application: (i) in biomechanics, as prostheses in which the anisotropy due to the
pantographic fibres disposition and the wide range of the elastic deformation could be required; (ii) in
aeronautic, aerospace and naval engineering, due to the lightness of the resulting components as well as
their high toughness and reliability; (iii) as impacting shields or bump devices with proper arrangement
in sandwich composite structures for the possibility to store a considerable amount of elastic energy and
then to dissipate it with proper dampers.

Data accessibility. This article has no additional data.
Authors’ contributions. All the authors contributed equally in the conception and design of the study, numerical
simulations, analysis of the results and in drafting and revising the manuscript. All authors gave their final approval
for publication.
Competing interests. We declare we have no competing interests.
Funding. We received no funding for this study.

References

1. Maxwell JC. 1864 On the calculation of the
equilibrium and stiffness of frames. London,
Edinburgh, Dublin Phil. Mag. J. Sci. 27, 294–299.

2. Mohr O. 1874 Beitrag zur theorie der
bogenfachwerkstrager. Zeitschrift des
Architekten-und Ingenieur Vereins 20.

3. Cremona L. 1890 Graphical statics: two treatises
on the graphical calculus and reciprocal figures in
graphical statics. Oxford, UK: Clarendon Press.

4. Charlton TM. 1971 Maxwell, Jenkin and Cotterill and
the theory of statically-indeterminate structures.
Notes Rec. R. Soc. Lond. 26, 233–246. (doi:10.1098/
rsnr.1971.0021)

5. Leary M, Merli L, Torti F, Mazur M, Brandt M. 2014
Optimal topology for additive manufacture: a
method for enabling additive manufacture of
support-free optimal structures.Mater. Des. 63,
678–690. (doi:10.1016/j.matdes 2014.06.015)

6. Osanov M, Guest JK. 2016 Topology optimization for
architected materials design. Annu. Rev. Mater. Res.

46, 211–233. (doi:10.1146/annurev-matsci-070115-
031826)

7. Zuo H, Huang X, Rong JH, Xie YM. 2013 Multi-scale
design of composite materials and structures for
maximum natural frequencies.Mater. Des. 51,
1023–1034. (doi:10.1016/j.matdes.2013.05.014)

8. Jia H, Misra A, Poorsolhjouy P, Liu C. 2017 Optimal
structural topology of materials with micro-scale
tension-compression asymmetry simulated using
granular micromechanics.Mater. Des. 115, 422–432.
(doi:10.1016/j.matdes 2016.11.059)

9. do Rosario JJ, Berger JB, Lilleoden ET, McMeeking
RM. 2016 The stiffness and strength of
metamaterials based on the inverse opal
architecture. Extreme. Mech. Lett. 12, 86–96.
(doi:10.1016/j.eml 2016.07.006)

10. Davami K, Zhao L, Lu E, Cortes J, Lin C, Lilley DE,
Purohit PK, Bargantin I. 2015 Ultralight
shape-recovering plate mechanical metamaterials.
Nat. Commun. 6, 10019. (doi:10.1038/ncomms10019)

11. Misra A, Poorsolhjouy P. 2016 Granular
micromechanics based micromorphic model
predicts frequency band gaps. Contin. Mech.
Thermodyn. 28, 215–234. (doi:10.1007/s00161-015-
0420-y)

12. Misra A, Poorsolhjouy P. 2015 Identification of
higher-order elastic constants for grain assemblies
based upon granular micromechanics.Math. Mech.
Complex Syst. 3, 285–308. (doi:10.2140/memocs.
2015.3.285)

13. Launay J, Hivet G, Duong AV, Boisse P. 2008
Experimental analysis of the influence of tensions
on in plane shear behaviour of woven composite
reinforcements. Compos. Sci. Technol. 68, 506–515.
(doi:10.1016/j.compscitech.2007.06.021)

14. Harrison P. 2016 Modelling the forming mechanics
of engineering fabrics using a mutually constrained
pantographic beam and membrane mesh. Compos.
Part A: Appl. Sci. Manuf. 81, 145–157. (doi:10.1016/j.
compositesa 2015.11.005)

      



15. Alsayednoor J, Harrison P. 2016 Evaluating the
performance of microstructure generation
algorithms for 2-D foam-like representative volume
elements.Mech. Mater. 98, 44–58. (doi:10.1016/j.
mechmat.2016.04.001)

16. AminPour H, Rizzi N. 2016 A one-dimensional
continuumwith microstructure for single-wall
carbon nanotubes bifurcation analysis.Math. Mech.
Solids. 21, 168–181. (doi:10.1177/10812865155
77037)

17. dell’Isola F, Lekszycki T, Pawlikowski M, Grygoruk R,
Greco L. 2015 Designing a light fabric metamaterial
being highly macroscopically tough under
directional extension: first experimental evidence.
Zeitschrift für angewandte Mathematik und Physik
66, 3473–3498. (doi:10.1007/s00033-015-0556-4)

18. Scerrato D, Zhurba Eremeeva IA, Lekszycki T, Rizzi
NL. 2016 On the effect of shear stiffness on the
plane deformation of linear second gradient
pantographic sheets. Zeitschrift für Angewandte
Mathematik und Mechanik 96, 1268–1279.
(doi:10.1002/zamm.201600066)

19. Cuomo M, dell’Isola F, Greco L. 2016 Simplified
analysis of a generalized bias test for fabrics with
two families of inextensible fibres. Zeitschrift für
angewandte Mathematik und Physik 67, 1–23.
(doi:10.1007/s00033-015-0604-0)

20. Steigmann DJ, dell’Isola F. 2015 Mechanical
response of fabric sheets to three-dimensional
bending, twisting, and stretching. Acta Mechanica
Sinica 31, 373–382. (doi:10.1007/s10409-015-
0413-x)

21. Nadler B, Papadopulos P, Steigmann DJ. 2006
Multiscale constitutive modeling and numerical
simulation of fabric material. Int. J. Solids. Struct. 43,
206–221. (doi:10.1016/j.ijsolstr 2005.05.020)

22. dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL. 2016
Large deformations of planar extensible beams and
pantographic lattices: Heuristic homogenisation,
experimental and numerical examples of
equilibrium. Proc. R. Soc. Lond. A: Math. Phys. Eng.
Sci. 472. 20150790. (doi:10.1098/rspa 2015.0790)

23. Turco E, dell’Isola F, Cazzani A, Rizzi NL. 2016
Hencky-type discrete model for pantographic
structures: numerical comparison with second
gradient continuummodels. Zeitschrift für
Angewandte Mathematik und Physik 67, 1–28.
(doi:10.1007/s00033-015-0604-0)

24. Turco E, Golaszewski M, Cazzani A, Rizzi NL. 2016
Large deformations induced in planar pantographic
sheets by loads applied on fibers: experimental
validation of a discrete Lagrangian model.Mech.
Res. Commun. 76, 51–56. (doi:10.1016/j.mechres
com.2016.07.001)

25. Turco E, Barcz K, Pawlikowski M, Rizzi NL. 2016
Non-standard coupled extensional and bending
bias tests for planar pantographic lattices. Part I:
numerical simulations. Zeitschrift für Angewandte
Mathematik und Physik 67, 1–16. (doi:10.1007/
s00033-015-0604-0)

26. Turco E, Barcz K, Rizzi NL. 2016 Non-standard
coupled extensional and bending bias tests for
planar pantographic lattices. Part II: comparison
with experimental evidence. Zeitschrift für
Angewandte Mathematik und Physik 67, 1–16.
(doi:10.1007/s00033-015-0604-0)

27. Placidi L, Barchiesi E, Turco E, Rizzi NL. 2016 A review
on 2D models for the description of pantographic
fabrics. Zeitschrift für angewandte Mathematik und
Physik 67, 1–20. (doi:10.1007/s00033-015-0604-0)

28. Steigmann DJ, Pipkin AC. 1991 Equilibrium of elastic
nets. Phil. Trans. R. Soc. Lond. A 335, 419–454.
(doi:10.1098/rsta.1991.0056)

29. Atai A, Steigmann DJ. 1997 On the nonlinear
mechanics of discrete networks. Arch. Appl. Mech.
67, 303–319. (doi:10.1007/s004190050119)

30. Challamel N, Wang CM, Elishakoff I. 2014 Discrete
systems behave as nonlocal structural elements:
bending, buckling and vibration analysis. Eur. J.
Mech. A/Solids 44, 125–135. (doi:10.1016/j.euro
mechsol 2013.10.007)

31. Battista A, Rosa L, dell’Erba R, Greco L. 2016
Numerical investigation of a particle system
compared with first and second gradient continua:
Deformation and fracture phenomena.Math. Mech.
Solids (doi:10.1177/1081286516657889)

32. Alibert J-J, Seppecher P, dell’Isola F. 2003 Truss
modular beams with deformation energy
depending on higher displacement gradients.
Math. Mech. Solids. 8, 51–73. (doi:10.1177/10812
86503008001658)

33. Seppecher P, Alibert J-J, dell’Isola F. 2011 Linear
elastic trusses leading to continua with exotic
mechanical interactions. In Journal of Physics:
Conference Series, vol. 319, p. 012018. Bristol, UK: IOP
Publishing.

34. Turco E, Golaszewski M, Giorgio I, D’Annibale F. 2017
Pantographic lattices with non-orthogonal fibres:
experiments and their numerical simulations.
Compos. Part B: Eng. 118, 1–14. (doi:10.1016/j.com
positesb 2017.02.039)

35. Turco E, Caracciolo P. 2000 Elasto-plastic analysis of
Kirchhoff plates by high simplicity finite elements.
Comput. Methods. Appl. Mech. Eng. 190, 691–706.
(doi:10.1016/S0045-7825(99)00438-7)

36. Placidi L, Andreaus U, Giorgio I. 2016 Identification
of two-dimensional pantographic structure via a
linear D4 orthotropic second gradient elastic model.
J. Eng. Math. 103, 1–21. (doi:10.1007/s10665-016-
9856-8)

37. Placidi L, Andreaus U, Della Corte A, Lekszycki T.
2015 Gedanken experiments for the determination
of two-dimensional linear second gradient
elasticity coefficients. Zeitschrift für Angewandte
Mathematik und Physik (ZAMP) 66, 3699–3725.
(doi:10.1007/s00033-015-0588-9)

38. Gerasimov RA, Eremeyev VA, Petrova TO, Egorov VI,
Maksimova OG, Maksimov AV. 2016 Computer
simulation of the mechanical properties of
metamaterials. In Journal of Physics: con. Series,
vol. 738. Bristol, UK: IOP Publishing.

39. Castigliano A. 1875 Intorno all’equilibrio dei sistemi
elastici. Atti della Reale Accademia delle scienze di
Torino 10, 10–53.

40. Castigliano A. 1875 Nuova teoria intorno
all’equilibrio dei sistemi elastici. Atti della Reale
Accademia delle scienze di Torino 11, 127.

41. Castigliano A. 1879 Théorie de l’équilibre des
systèmes élastiques et ses applications. A. F. Negro.

42. Menabrea LF. 1875 Sulla determinazione delle
tensioni e delle pressioni ne’ sistemi elastici. Atti
della Reale Accademia dei Lincei 2, 201–221.

43. Giorgio I. 2016 Numerical identification procedure
between a micro Cauchy model and a macro second
gradient model for planar pantographic structures.
Z. Angew. Math. Mech. 67, 1–17.
(doi:10.1007/s00033-016-0692-5)

44. Timoshenko SP. 1983 History of strength of
materials. New York, NY: Dover.

45. Pideri C, Seppecher P. 1997 A second gradient
material resulting from the homogenization of an
heterogeneous linear elastic medium. Contin. Mech.
Thermodyn. 9, 241–257. (doi:10.1007/s00161005
0069)

46. Altenbach J, Altenbach H, Eremeyev VA. 2010 On
generalized Cosserat-type theories of plates and
shells: a short review and bibliography. Arch. Appl.
Mech. 80, 73–92. (doi:10.1007/s00419-009-
0365-3)

47. Boutin C, Soubestre J. 2011 Generalized inner
bending continua for linear fiber reinforced
materials. Int. J. Solids. Struct. 48, 517–534.
(doi:10.1016/j.ijsolstr 2010.10.017)

48. Chesnais C, Boutin C, Hans S. 2015Wave propagation
and non-local effects in periodic frame materials:
generalized continuummechanics.Math. Mech.
Solids. 20, 929–958. (doi:10.1177/108128651351
1092)

49. Reda H, Goda I, Ganghoffer J, Hostis G, Lakiss H.
2017 Dynamical analysis of homogenized second
gradient anisotropic media for textile composite
structures and analysis of size effects. Compos.
Struct. 161, 540–551. (doi:10.1016/j.compstruct.
2016.10.068)

50. Forest S. 2016 Nonlinear regularization operators as
derived from the micromorphic approach to
gradient elasticity, viscoplasticity and damage.
Proc. R. Soc. A 472, 20150755.
(doi:10.1098/rspa 2015.0755)

51. Chatzigeorgiou G, Javili A, Steinmann P. 2015
Multiscale modelling for composites with energetic
interfaces at the micro- or nanoscale.Math. Mech.
Solids. 20, 1130–1145. (doi:10.1177/108128651351
6122)

52. Neff P, Ghiba ID, Madeo A, Placidi L, Rosi G. 2014
A unifying perspective: the relaxed linear
micromorphic continuum. Contin. Mech. Thermodyn.
26, 639–681. (doi:10.1007/s00161-013-0322-9)

53. Alibert J-J, Della Corte A. 2015 Second-gradient
continua as homogenized limit of pantographic
microstructured plates: a rigorous proof. Z. Angew.
Math. Phys. 66, 2855–2870. (doi:10.1007/s00033-
015-0526-x)

54. Piccardo G, Ranzi G, Luongo A. 2014 A complete
dynamic approach to the generalized beam theory
cross-section analysis including extension and
shear modes.Math. Mech. Solids. 19, 900–924.
(doi:10.1177/1081286513493107)

55. Eugster SR, Hesch C, Betsch P, Glocker Ch. 2014
Director-based beam finite elements relying on the
geometrically exact beam theory formulated in
skew coordinates. Int. J. Numer. Methods Eng. 97,
111–129. (doi:10.1002/nme.4586)

56. Pideri C, Seppecher P. 1997 A homogenization result
for elastic material reinforced periodically with high
rigidity elastic fibres. C. R. Acad. Sci. IIB Mech. Phys.
Chem. Astron. 8, 475–481. (doi:10.1016/S1251-80
69(97)80185-6)

      


