
HAL Id: hal-01619103
https://hal.science/hal-01619103v2

Submitted on 26 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The fleet size and mix dial-a-ride problem with
reconfigurable vehicle capacity

Oscar Tellez, Samuel Vercraene, Fabien Lehuédé, Olivier Péton, Thibaud
Monteiro

To cite this version:
Oscar Tellez, Samuel Vercraene, Fabien Lehuédé, Olivier Péton, Thibaud Monteiro. The fleet size and
mix dial-a-ride problem with reconfigurable vehicle capacity. [Research Report] Laboratoire DISP.
2017. �hal-01619103v2�

https://hal.science/hal-01619103v2
https://hal.archives-ouvertes.fr

TR-DISP-002 September 2017

The fleet size and mix dial-a-ride problem with
reconfigurable vehicle capacity

Oscar Tellez1, Samuel Vercraene1, Fabien Lehuédé2, Olivier Péton2,
Thibaud Monteiro1

1 Laboratoire DISP, INSA de Lyon, Bât Léonard de Vinci, 21 avenue Jean Capelle,
69621 Villeurbanne, France

2 IMT Atlantique, 4 rue Alfred Kastler, F-44307 Nantes Cedex, France
Laboratoire des Sciences du Numérique de Nantes (LS2N, UMR CNRS 6004)

Abstract

This paper introduces a fleet size and mix dial-a-ride problem with mul-
tiple passenger types and a heterogeneous fleet of reconfigurable vehicles.
In this new variant of the dial-a-ride problem, en-route modifications of the
vehicle’s inner configuration are allowed. The main consequence is that the
vehicle capacity is defined by a set of configurations and the choice of vehicle
configuration is associated with binary decision variables.

The problem is modeled as a mixed-integer program derived from the
model of the heterogeneous dial-a-ride problem. Vehicle reconfiguration is
a lever to efficiently reduce transportation costs, but the number of passen-
gers and vehicle fleet setting make this problem intractable for exact solu-
tion methods. A large neighborhood search metaheuristic combined with a
set covering component with a reactive mechanism to automatically adjust
its parameters is therefore proposed. The resulting framework is evaluated
against benchmarks from the literature, used for similar routing problems. It
is also applied to a real case, in the context of the transportation of disabled
children from their home to medical centers in the city of Lyon, France.
Keywords: Dial-A-Ride Problem, Fleet Size and Mix Problem,
reconfigurable vehicles, large neighborhood search, set-covering, feasibility
check.

2

TR-DISP-002 September 2017

1. Introduction

Solving the Dial-A-Ride Problem (DARP) consists in designing vehicle
routes in order to fulfil transportation requests scattered throughout a ge-
ographic area. The objective is to minimize costs while satisfying trans-
portation requests. The DARP is a special case of the Pickup and Delivery
Problem (PDP) in which constraints and objectives related to the quality of
services offered to passengers are integrated (the reader may refer to Parragh
et al. (2008) for a recent survey on PDP). The main applications concern
door-to-door transportation of people, particularly elderly or disabled peo-
ple.

In this paper, we propose a generalization of the heterogeneous PDP with
configurable vehicle capacity introduced by Qu and Bard (2013). This prob-
lem includes both heterogeneous fleets of vehicles and heterogeneous users.
We consider several types of users who do not occupy the same space in the
vehicle (e.g. passengers using seats or wheelchairs). The vehicle capacity
depends on the chosen configuration. A configuration is characterized by a
multidimensional capacity vector indicating the maximum number of users
of each type allowed in the vehicle. Figure 1 presents three configurations
of a vehicle with two types of users (passengers using seats or wheelchairs).
The first configuration has a capacity of 1 wheelchair and 7 seats, including 5
folding seats (the driver’s seat is not available for passengers). In the second
configuration, one folding seat has been lifted and replaced by a wheelchair
space. This configuration has a capacity of 2 wheelchairs and 6 seats. Adding
one more wheelchair requires two additional seats to be folded. This is rep-
resented by the third configuration, which has a capacity of 3 wheelchairs
and 4 seats. Note that there is no linear correspondence between the number
of seats and wheelchairs. Moreover, the total number of passengers can be
either 7 or 8, depending on the chosen configuration.

Qu and Bard (2013) integrate the choice of the initial vehicle configura-
tions as a decision variable in a PDP dedicated to the transport of people
with reduced mobility. In such services, it is actually possible to switch en-
route from one configuration to another to serve additional transportation
requests. As a result, we propose a generalization to the problem presented
by Qu and Bard (2013), by assuming the possibility of en-route reconfig-
uration. This extension is called the DARP with Re-Configurable vehicle
capacity (DARP-RC). The present study considers an arbitrarily large fleet
of heterogeneous vehicles that has to be set: the problem addressed here falls

3

TR-DISP-002 September 2017

=8 =7=8

Figure 1: Vehicle with three configurations [http://handynamic.fr]

within the category of fleet size and mix problems. We therefore call it the
Fleet Size and Mix DARP with reconfigurable vehicle capacity (FSM-DARP-
RC).

This work is motivated by the daily transport of people with disabili-
ties in the city of Lyon operated by the GIHP Company1. Every day, GIHP
transports around 500 children from and to Medico-Social Institutions (MSI).
GIHP works for 60 MSIs with about 180 adapted vehicles. From Mondays to
Fridays, users are picked up at home in the morning and driven to their MSI.
In the afternoon, they are transported back home. For MSIs, transporta-
tion is often considered the second-biggest expense after wages. Optimizing
transport is therefore a priority. In this paper, without loss of generality, we
present the case of morning trips. Every year, the company defines the fleet
mix as well as the vehicles’ itineraries. In addition, routing planners re-assess
decisions daily, if required. All decisions are currently made without vehi-
cle routing software. In order to design routes, route planners have to use
simplifying assumptions, e.g. considering each MSI separately and ignoring
the possibility of en-route vehicle reconfiguration. These assumptions lead
to an over-constrained problem and consequently, to sub-optimal solutions.
One aim of this paper is to solve the problem of having to stop at several
MSIs on the same route. Using reconfigurable vehicles furthermore increases
the possibility to pool routes between MSIs. Another aim of this paper is to

1www.gihp-sa.com

4

http://handynamic.fr
www.gihp-sa.com

TR-DISP-002 September 2017

assess the impact of en-route reconfiguration.
The paper is organized as follows: Section 2 reviews related problems.

Section 3 presents the problem settings and the mathematical formulation
for the FSM-DARP-RC. Section 4 is dedicated to the solution method. In
particular, we detail the Large Neighborhood Search (LNS) operators and
the set covering component. The capacity check and the minimization of
the number of reconfigurations are detailed in Section 5. We report exten-
sive computational results and management insights in Section 6. Finally,
Section 7 gives the conclusions and prospects.

2. Literature review

In this section, we first review some related work on DARP. We then
present papers regarding the design and the routing of a fleet of heterogeneous
vehicles with a special focus on DARP applications. Finally, we discuss
how configuration and reconfiguration have been considered in the Vehicle
Routing Problem (VRP) literature.

2.1. The dial-a-ride problem
The DARP is related to the optimization of a multi-occupancy, door-to-

door transport service for people (Doerner and Salazar-Gonzàlez, 2014). Most
commonly, this problem consists in designing the routes of a homogeneous
fleet of vehicles to satisfy a set of transportation requests. The objective is
to minimize the sum of route costs, satisfying constraints on vehicle capacity,
time windows at origins and destinations of requests, and limits on the ride
time of each passenger. Due to the combinatorial nature of the problem, ex-
act methods (see for instance Ropke et al. (2007); Ropke and Cordeau (2009);
Braekers et al. (2014)) are still limited in their ability to solve large size in-
stances. Accordingly, several metaheuristics have been proposed to solve the
DARP and its variants. In particular, Cordeau and Laporte (2003) developed
a Tabu Search algorithm and proposed a set of instances that are still used
to benchmark new algorithms. The most successful heuristics that have been
applied to these instances in the last ten years are the Variable Neighborhood
Search (VNS) of Parragh et al. (2010), the Hybrid LNS (HLNS) of Parragh
and Schmid (2013), the Adaptive LNS (ALNS) of Masson et al. (2014), the
deterministic annealing algorithm of Braekers et al. (2014), the evolutionary
local search of Chassaing et al. (2016) and the ALNS of Gschwind and Drexl
(2016).

5

TR-DISP-002 September 2017

One of the most challenging parts of DARP heuristics is the scheduling
algorithm. It determines the feasibility of routes with respect to temporal
constraints and, in some case, parts of the objective function such as the
routes’ duration. Several efficient algorithms have thus been designed to
satisfy the most common DARP constraints with the best possible complexity
(see e.g. Hunsaker and Savelsbergh (2002); Tang et al. (2010); Firat and
Woeginger (2011); Gschwind, Timo (2015)). The latest contribution in this
area is Gschwind and Drexl (2016), which proposes an incremental algorithm
to evaluate, in constant time, the feasibility of request insertions in routes.
The minimization of route duration is considered in Cordeau and Laporte
(2003). This algorithm has been used and extended in many papers such as
Parragh et al. (2010) and Braekers et al. (2014).

2.2. Routing a heterogeneous fleet of vehicles
In the FSM-DARP-RC, a heterogeneous fleet of vehicles has to be consti-

tuted to transport several types of users. In the VRP context, the routing of
a heterogeneous fleet of vehicles was recently surveyed in Koç et al. (2016).
Problems of this class fall into two main variants: (i) the Fleet Size and
Mix VRP (FSM-VRP) introduced by Golden et al. (1984), which considers
an unlimited fleet of various vehicle types and fixed costs for using vehicles.
Solving the problem amounts to determining the fleet of vehicles and design-
ing routes simultaneously; (ii) the Heterogeneous VRP (HVRP) introduced
by Taillard (1999), which considers a given fleet of various types of vehicles.
In such problems, vehicle types can induce differences both in constraints
(e.g. capacity) or objectives (e.g. distance related or fixed related costs).

Regarding people transportation problems, the combined transportation
of seated and wheelchair passengers by a heterogeneous fleet of vehicles has
been studied in Toth and Vigo (1997). This problem falls into the class
of Heterogeneous Dial-A-Ride-Problems (HDARP) introduced later by Par-
ragh (2011). In the latter paper, the authors propose a branch-and-cut al-
gorithm which optimally solves instances with up to 40 requests and a hy-
brid method which combines branch-and-price and VNS. The HDARP was
also thoroughly investigated in Braekers et al. (2014). The authors propose
a branch-and-cut algorithm and a deterministic annealing metaheuristic to
solve a multi-depot version of this problem. To our knowledge, variants of
the FSM-DARP have not yet been covered by the literature.

6

TR-DISP-002 September 2017

2.3. Configurable vehicle capacity
Finally, the FSM-DARP-RC extends the notion of vehicle configuration,

which implies having multiple capacity options for some vehicles. To our
knowledge, this notion was first introduced by Qu and Bard (2013) who define
the heterogeneous PDP with configurable vehicle capacity. The problem
could actually be called a DARP since it integrates considerations related
to passenger transportation such as ride time minimization. These authors
consider a limited and heterogeneous fleet of configurable vehicles that serve
transportation requests coming from a heterogeneous set of passengers. In
addition to routing decisions, one configuration must be chosen for each
vehicle. Hence, this problem differs from the FSM-DARP-RC since a vehicle
is assumed to keep the same configurations for its entire route. The authors
propose a multi-start ALNS. The assignment of configurations for a given
set of routes is done in a feasibility check either by a heuristic or by solving
a general assignment problem when the heuristic fails. A branch-and-price
algorithm for this problem was also proposed in Qu and Bard (2015) for
instances with up to 30 requests.

Choosing a vehicle configuration can be compared to determining com-
partment sizes in the flexible multi-compartment VRP described in Derigs
et al. (2011). In this paper, compartment sizes are determined together with
a set of routes for vehicles with flexible compartments. The goal is to deliver
various types of goods, given that some goods cannot be transported in the
same compartment. Compartments can be continuously flexible as presented
in Koch et al. (2016); Derigs et al. (2011), or discretely flexible if compart-
ment options are defined beforehand as in Henke et al. (2015). The difference
with our problem is twofold: first, in the FSM-DARP-RC, the total capacity
changes from one configuration to another, in a non-linear way, whereas in
multi-compartment problems, the sum of compartment sizes is assumed to
remain constant. Second, we consider a PDP. Hence, a vehicle’s load can
increase and decrease along its route and en-route reconfiguration may be
advantageous. In a VRP, a single configuration is needed since all goods are
delivered at once. To our knowledge, the PDP with flexible compartment
sizes has not been studied.

2.4. Contributions with respect to the literature
Regarding the literature, the main contributions of this paper are the fol-

lowing. First, we introduce the FSM-DARP-RC and propose a mathematical
model for this problem. Second, we propose a matheuristic framework that

7

TR-DISP-002 September 2017

combines a LNS with a reactive set covering component to solve this prob-
lem. This matheuristic is proven to be competitive on benchmark instances
for the DARP and the heterogeneous PDP with configurable vehicle capac-
ity. This matheuristic integrates innovative components related to the use of
reconfigurable vehicles: (i) the vehicle selection procedure, which efficiently
determines the minimum cost reconfigurable vehicle that is feasible for a given
route, and (ii) the reconfigurable vehicle capacity test, which determines if a
given vehicle can perform a given route together with its minimum number
of reconfigurations. Finally, we present some managerial insights based on
our experiments on the real instances provided by the GIHP. These insances
will be made available to the community.

3. Problem settings and mathematical model

In this section, we start by providing an example of en-route reconfigura-
tion. Then in Section 3.2 the FSM-DARP-RC problem is formally described,
and is modeled in Section 3.3.

3.1. Example

p1 Depot(D)

Vehicle configurations

p2

p3 p4

p5

p6

without en-route
reconfiguration
en-route reconfiguration

Configuration policies
MSI1 MSI2

Figure 2: Comparison of routes with and without vehicle capacity reconfiguration

The example represented in Figure 2 illustrates the potential benefits of
vehicle reconfiguration. We consider a single vehicle which starts and ter-
minates its routes at depot D. This vehicle has two possible configurations,
denoted as c1 and c2 respectively. Configuration c1 consists of 2 seats and 1
wheelchair space. Configuration c2 consists of 4 seats only. In this example,
six users are transported to two MSIs. Users 1 and 3 are picked up at p1 and
p3 respectively, and get off at MSI1. Users 2, 4, 5 and 6 are picked up at p2,
p4, p5 and p6 respectively, and get off at MSI2. User 3 uses a wheelchair.

8

TR-DISP-002 September 2017

Without an en-route reconfiguration policy, the only solution is to leave
the depot D with configuration c1, which is the only one that includes a
wheelchair space. The optimal solution for this policy is represented with
dashed lines in Figure 2.

However, with en-route reconfiguration policy, the vehicle can be config-
ured with configuration c2 at the depotD and reconfigured with configuration
c1 after visiting MSI1. This solution is represented with solid lines in Fig-
ure 2. This strategy reduces the length of the route by the value of the detour
∆p4,MSI2 + ∆MSI2,p5 −∆p4,p5 , where ∆i,j represents the value of the shortest
path from i to j.

3.2. Problem settings
The FSM-DARP-RC is modeled on a graph G = (V ,A). The set V of

nodes contains the set O+ of starting depots, the set O− of arrival depots,
the set P of pickup locations and the set D of delivery locations. We consider
a large (potentially infinite) heterogeneous fleet of vehicles. We denote by
K the set of vehicle types. Without loss of generality, we consider in this
section that there is a single vehicle of each type, so that K also represents
the set of vehicles. Each vehicle k ∈ K has a starting depot o+

k ∈ O+ and an
ending depot o−k ∈ O−. In practice, o+

k and o−k often correspond to the same
physical location. The set A contains three categories of arcs: Arcs (o+

k , i)
where k ∈ K, i ∈ P . Arcs (i, j) where i, j ∈ P ∪ D, i 6= j. Arcs (i, o−k) where
k ∈ K, i ∈ D. Every arc (i, j) represents the fastest path from nodes i to j.
It is associated with a travel time tij and a distance ∆ij.

The set of transport requests is denoted by R. These requests concern
passengers who may require various types of spaces in vehicles (e.g. seat,
wheelchair). By extension, the type of space required by a passenger in a
vehicle is called a user type and the set of user types is denoted by U . Each
request r ∈ R is characterized by a pickup node pr ∈ P , a delivery node
dr ∈ D, a maximum ride time Tr and a quantity qr,u of users of each type to
be transported from pr to dr. We define the following notations to represent
the load variation at the pickup node and the delivery node of each request
respectively: φpr,u = qr,u and φdr,u = −qr,u.

Each node i ∈ V is associated with a service duration si and a time
window [ai, bi]. At depots o ∈ O+ ∪ O−, we assume that load variations are
null for all user types, vehicles are empty and the service time so is null.

Each vehicle k ∈ K is associated with a fixed cost fk, a cost per kilometer
γk and a set Ck = {1, . . . , c̄k} of possible configuration indexes. The set of

9

TR-DISP-002 September 2017

configurations is defined by a set of capacity vectors Qk = {Qk1, . . . ,Qkc̄k}
with Qkc = (Qkc

1 , . . . , Q
kc
|U|), where Qkc

u represents the maximal number of
users of type u ∈ U that can be carried by vehicle k ∈ K in configuration
c ∈ Ck.
Example 1. Let us consider the vehicle k ∈ K represented in Figure 1. We
have Ck = {1, 2, 3} and Qk = {Qk1,Qk2,Qk3} = {(4, 3), (6, 2), (7, 1)}.

The sequence of nodes visited by a vehicle forms a route. A route is
characterized by a vehicle k ∈ K (and its associated depots o+

k ∈ O+ and
o−k ∈ O−) and a sequence of pickup and delivery nodes.

The maximal allowed route duration is denoted by T . In this study,
reconfigurable vehicles allow fast and easy reconfigurations. That is, for a
given k ∈ K, switching from a configuration c ∈ Ck to a configuration c′ ∈ Ck

can be done at no cost and within negligible time. However, to limit the
inconvenience for the driver, related to this task, we introduce the parameter
R, which denotes the maximum number of reconfigurations allowed within a
route. For each driving hour, there is a cost α related to the driver wages.

The FSM-DARP-RC consists in selecting a set of vehicles, designing their
pickup and delivery routes, determining the time of service at each node and
selecting the configuration used on each arc of the solution. The problem
solutions must satisfy the vehicle capacity for all selected configurations, the
maximum number of reconfigurations for each route, the time window con-
straint for each node and the maximum ride time constraint of each request.

3.3. Mathematical model
Let us introduce the following variables:

xkc
ij is a binary variable which is equal to 1 if vehicle k ∈ K uses arc

(i, j) ∈ A with configuration c ∈ Ck, and 0 otherwise,
zk

i is a binary variable which is equal to 1 if vehicle k ∈ K is reconfig-
ured at node i ∈ V , and 0 otherwise.

lki,u is an integer variable representing the number of users of type u ∈ U
in vehicle k ∈ K after visiting node i ∈ V ,

wk
i is a continuous variable representing the time of service of vehicle

k ∈ K at node i ∈ V .
The FSM-DARP-RC can then be formulated with the following mixed

integer program:

min
∑
k∈K

fk
∑
i∈P

∑
c∈Ck

xkc
o+

k
i
+α

∑
k∈K

(wk
o−

k
− wk

o+
k

)+
∑
k∈K

∑
c∈Ck

∑
(i,j)∈A

γk ∆ij x
kc
ij (1)

10

TR-DISP-002 September 2017

s.t. ∑
c∈Ck

∑
(pr,j)∈A

xkc
prj −

∑
c∈Ck

∑
(j,dr)∈A

xkc
jdr

= 0 ∀r ∈ R, k ∈ K (2)
∑
c∈Ck

∑
k∈K

∑
(j,pr)∈A

xkc
jpr

= 1 ∀r ∈ R (3)
∑
c∈Ck

∑
(j,i)∈A

xkc
ji −

∑
c∈Ck

∑
(i,j)∈A

xkc
ij = 0 ∀i ∈ P ∪ D, k ∈ K (4)

∑
c∈Ck

∑
i∈P

xkc
o+

k
i
−
∑
c∈Ck

∑
i∈D

xkc
io−

k
= 0 ∀k ∈ K (5)

∑
c∈Ck

xkc
ij = 1⇒ wk

j ≥ wk
i + tij + si ∀(i, j) ∈ A, k ∈ K (6)

ai ≤ wk
i ≤ bi ∀i ∈ V , k ∈ K (7)

wk
pr

+ spr + tprdr ≤ wk
dr

∀r ∈ R, k ∈ K (8)

∑
c∈Ck

xkc
ij = 1⇒ lkj,u ≥ lki,u + φj,u ∀(i, j) ∈ A, u ∈ U , k ∈ K (9)

lki,u ≤
∑
c∈Ck

∑
(i,j)∈A

Qkc
u x

kc
ij ∀i ∈ P , u ∈ U , k ∈ K (10)

∑
c′∈Ck/{c}

∑
(i,j)∈A

xc′k
ji +

∑
(i,j)∈A

xck
ij ≤ 1 + zk

i ∀i ∈ P ∪ D, k ∈ K, c ∈ Ck (11)

∑
i∈P∪D

zk
i ≤ R ∀k ∈ K (12)

wk
dr
− wk

pr
− spr ≤ T r ∀r ∈ R, k ∈ K (13)

wk
o−

k
− wk

o+
k
≤ T ∀k ∈ K (14)

xkc
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (15)
lki,u ∈ Z+ ∀i ∈ V , u ∈ U , k ∈ K (16)
wk

i ∈ R+ ∀i ∈ V , k ∈ K (17)
zk

i ∈ {0, 1} ∀i ∈ P ∪ D, k ∈ K. (18)

The objective function (1) to be minimized is the total transportation
cost, including fixed costs associated with each selected vehicle, time-related
costs proportional to the total route duration, and distance-related costs pro-

11

TR-DISP-002 September 2017

portional to the total distance traveled. Constraints (2) and (3) ensure that
all transportation requests are satisfied and carried by a single vehicle. Con-
straints (4) are flow conservation constraints at pickup and delivery nodes.
Constraints (5) state that any vehicle k ∈ K leaving the node o+

k must end-up
at the node o−k . Constraints (6) set arrival time variables. If arc (i, j) ∈ A
is used by a vehicle k, then the arrival time at j is greater than the arrival
time at i plus the service duration at i and the transportation time from i
to j. These constraints can be linearized by using a value Mij = bi + si + tij.
Constraints (6) can then be rewritten as

wk
j ≥ wk

i + tij + si −Mij(1−
∑
c∈Ck

xkc
ij) ∀(i, j) ∈ A, k ∈ K. (19)

Constraints (7) set times windows for variables wk
i . Constraints (8) state

that the arrival at a delivery node cannot occur before the same vehicle
has visited the associated pickup node and traveled between the pickup and
the delivery node. Constraints (9) propagate the load on a vehicle along
its route for each type of user. To linearize this constraint, we define the
value Q̄k

u as the maximum capacity of type u ∈ U among all configurations:
Q̄k

u = maxc∈Ck{Qkc
u }. The load propagation constraints (9) can then be

expressed as follows:

lkj,u ≥ lki,u + φju − Q̄k
u(1−

∑
c∈Ck

xkc
ij) ∀(i, j) ∈ A, u ∈ U , k ∈ K. (20)

Constraints (10) are capacity constraints for each vehicle and each type
of user. Note that, on delivery nodes, the number of users in a vehicle cannot
increase. Thus, constraints (10) are defined at pickup nodes only. Constraints
(11) and (12) concern the reconfiguration of vehicles. In constraints (11), the
variable zk

i is set at value 1 when the vehicle k ∈ K is reconfigured at node
i. Constraints (12) limit the number of reconfigurations to be less than R
for each vehicle. Constraints (13) limit the total ride time (including waiting
and service times) of each user i ∈ R to be less than T i. Constraints (14)
states that the duration of each route should be less than T . Finally, the last
constraints define the decision variables. Note that variables zk

i do not need
to be explicitly declared as binary variables and variables lki,u do not need to
be declared as integer variables.

12

TR-DISP-002 September 2017

4. Solution method

In this section, we describe the solution method that we propose to solve
the FSM-DARP-RC. It relies on a combination of two components: a Large
Neighborhood Search (LNS) and the solution of a Set Covering Problem
(SCP) using a layer with a Reactive adjustment of SCP parameters (denoted
RSCP). The framework is denoted LNS-RSCP. This section is structured
as follows: Section 4.1 presents the general framework of LNS-RSCP. LNS
removal and repair operators are detailed in Section 4.2 and the RSCP is
presented in Section 4.3.

4.1. Matheuristic framework (LNS-RSCP)
LNS was first proposed by Shaw (1998) in a constraint programming

context and introduced under the name ruin and recreate in Schrimpf et al.
(2000). In LNS, the current solution is improved by following an iterative
process of destroying it (i.e. removing a part of it) and repairing it. This
process is repeated until a stopping criterion is reached. In our case, the
stopping criterion is either a maximum number of iterations or a maximum
computational time.

The potential of LNS for solving a large variety of vehicle routing problems
was revealed by Ropke and Pisinger who proposed an Adaptive version of
LNS, known as ALNS, consisting of multiple search operators adaptively
selected according to their past performance (see e.g. Ropke and Pisinger
(2006) and Pisinger and Ropke (2007)). LNS was successfully applied to
many variants of vehicle routing problems. In particular, it remains one of
the best-known approaches to solve PDPs.

The RSCP component acts as a long-term memory. It is based on the
idea that all iterations of the LNS, including the ones that do not yield good
solutions, are likely to contain some good routes. Let Ω = {1, . . . , |Ω|} be
a set of routes collected through LNS iterations, and let Π(ω) ∈ R+ be the
cost of route ω ∈ Ω. Route ω ∈ Ω is said to dominate route ω′ ∈ Ω if both
routes visit the same nodes and Π(ω) ≤ Π(ω′). All non-dominated routes
found by the LNS are stored in a pool of routes. The RSCP has the ability
to put together good routes that were generated at distinct iterations of the
LNS. It can be viewed as a route-based formulation of the FSM-DARP-RC
built from the pool of routes. A SCP is solved with a MILP solver at regular
intervals. The number of iterations between each SCP solution is adjusted in

13

TR-DISP-002 September 2017

a reactive way, as described below. The solver is given a time limit to solve
this problem.

The LNS-RSCP framework is described in Algorithm 1. The algorithm
starts with an initial solution s, a set Σ− of removal operators and a set
of repair operators Σ+. At every iteration, the proportion of requests Φ
to be removed is determined randomly (following a uniform distribution) in
the interval [Φ−,Φ+] in line 6. A removal operator σ− ∈ Σ− and a repair
operator σ+ ∈ Σ+ are selected according to a discrete uniform distribution in
line 7. The operator σ− removes max{1, bΦ.|R|c} requests from the current
solution s (line 8). These requests are placed in a set of unsatisfied requests
called Request Bank (B). From the request bank B, they are reinserted into
the partially destroyed solution using the repair operator σ+ (line 9). If the
solution cannot be completely repaired, its total cost is increased by the value
penalty for each unsatisfied request. Once the solution s′ is repaired, it can be
either accepted or rejected as the next current solution using an acceptance
criterion (line 10). We use the record-to-record acceptance criterion proposed
by Dueck (1993): if objective(s′) ≤ (1 + χ).objective(s∗), then s′ is accepted
as the new current solution where χ is a small positive value. Similarly, the
best solution s∗ is updated every time a new temporary solution s′ cheaper
than s∗ is found (lines 12-13). Finally, lines 14 to 21 describe the RSCP
component of the algorithm. Every η iteration (line 15), SCP is solved with
a MILP solver to find the best combination of routes generated during the
previous iterations (line 14). A parameter tlimit is used to limit the time
allocated to the solver. When the SCP cannot be solved to optimality within
the time limit, the pool of routes Ω is cleared and reinitialized with the routes
of the best-known solution s∗ (line 18). The reactive layer of the RSCP
readjusts parameter η every time the solver fails to optimally solve the SCP
twice consecutively (line 19).

4.2. LNS operators
The sets of removal and repair operators are major components of the

LNS method. Hence, many LNS operators have been developed. Pisinger
and Ropke (2007) proposed a list of 7 destroy and 2 repair operators to solve
a large variety of vehicle routing problems with a good performance. In prac-
tice, LNS operators should enable both intensification and diversification, but
the exact list of implemented operators varies a lot from one implementation
to another. Several papers (see e.g., Christiaens and Vanden Berghe (2016))
have shown that implementing only a few good operators is enough to get

14

TR-DISP-002 September 2017

Algorithm 1: The LNS-RSCP framework
Input: s: initial solution,
Σ−: set of destroy operators,
Σ+: set of repair operators,
tlimit: initial time limit for SCP,
η: initial number of iterations between two solutions of a SCP.
Output: Best solution found s∗.

1 Pool of routes: Ω← ∅
2 Request bank: B ← ∅
3 iter ← 0
4 while Termination criterion not met do

/* LNS component */
5 s′ ← s
6 Destroy quantity: Randomly select a proportion Φ of requests

to remove
7 Operator selection: Randomly select a destroy operator

σ− ∈ Σ− and a repair operator σ+ ∈ Σ+

8 Destroy: Apply σ− to remove max{1, bΦ.|R|c} requests from s′

and place them into the request bank B
9 Repair: Apply σ+ to reinsert requests from B into s′

10 if Acceptance criterion is met then
11 s← s′

12 if Cost of s′ is better than the cost of s? then
13 s∗ ← s′

/* RSCP component */
14 Update Ω with the non-dominated routes of s′
15 if iter modulo η = 0 (every η iterations) then
16 s← Solve SCP(Ω, s∗, tlimit)
17 if the SCP is not solved to proven optimality then
18 Reinitialize Ω with the routes of s∗
19 Every two consecutive failures to optimally solve the SCP:

update parameter η
20 Remove duplicate requests in s
21 s∗ ← s

22 iter ← iter + 1
23 return s∗

15

TR-DISP-002 September 2017

very good solutions. Additional operators may slightly improve the quality
of the solutions. Following this principle, our implementation of LNS uses
only a few operators in order to keep the framework as simple as possible,
without sacrificing the solution quality.

Removal operators
These operators determine the set of requests to be removed from the

current solution according to a given criterion. The following operators have
been used:

• Random removal: This operator removes a proportion Φ of randomly
selected requests from the current solution.

• Historical node-pair removal: This operator consists in removing a
proportion Φ of requests from the current solution that were “better
placed” in previous solutions. The LNS algorithm calculates a score
for each arc (i, j) ∈ A. The initial score of each arc is set to infinity.
It is then updated at each iteration with the value of the best solution
found so far that includes arc (i, j). The removal heuristic calculates
the cost of a request r ∈ R from pickup node i to delivery node j
by summing the score of the arcs that are incident to i and j in the
current solution. It then removes requests according to a probabilistic
rule used in Ropke and Pisinger (2006): Consider the list R of requests
sorted by non-increasing costs. The operator iteratively removes the
request at position ξp × |R|, where 0 ≤ ξ < 1 is a random number
and p ∈ Z is a deterministic parameter. This probabilistic choice gives
higher probability to the requests with the highest cost to be removed.

We also implemented the following operators, that were not kept in the
final version of the LNS: worst removal, which removes the request respon-
sible for the longest detour in the solution; distance-related removal which
removes the nearest nodes, based on a distance-related indicator; and time-
related removal, which removes requests that are similar from a time point
of view. For a full description of these operators, we refer to Pisinger and
Ropke (2007).

Repair operators
Removed requests are stored in the request bank B. Repair operators are

intended to take them out of the request bank and to re-insert them into

16

TR-DISP-002 September 2017

the current partial solution. . We implemented the two most common repair
operators: best insertion and k-regret insertion.

• Best insertion: At each iteration, the best insertion position is calcu-
lated for each request r ∈ B, in each route of the current solution.
The request with the minimal insertion cost is then inserted at its best
position. This process is repeated until the request bank is empty or
no more feasible insertion exists.

• K-regret: This operator generalizes the best insertion with more looking-
ahead information. At each iteration, the best insertion position of
each request r ∈ B is calculated for each route of the current solu-
tion. Let ∆f j

r designate the insertion cost of a request r ∈ R in its
jth best route at its best position. ∆f 1

r denotes the insertion cost
(min additional cost) of inserting request r ∈ R in its best route,
∆f 2

r is the insertion cost for the same request in its 2nd best route,
etc. The request r? selected for insertion at its best position is: r? =

arg max
r∈B

(
k∑

j=2
∆f j

r −∆f 1
r

)
. The heuristic stops when the request bank

is empty or when no more requests can be inserted. In this paper,
we consider K-regret heuristics with values of K between 2 and 4 and
regard them as 3 independent operators.

4.3. Set covering problem (SCP)
The use of heuristic approaches for generating routes to solve a set cover-

ing or set partitioning formulations of the VRP was first proposed by Foster
and Ryan (1976): several routes, called petals are first generated and a set
partitioning problem is then solved to build a VRP solution. This approach
was then extended to multiple applications. In particular, it has been com-
bined with local search methods in Rochat and Taillard (1995) and Subra-
manian et al. (2013) for the VRP, and has been combined with LNS-based
heuristics in Parragh and Schmid (2013) and Gschwind and Drexl (2016) for
the DARP. Note that, whereas Gschwind and Drexl (2016) solve a single
SCP at the very end of their algorithm, the matheuristic of Parragh and
Schmid (2013) uses reduced costs from the SCP solution to guide a variable
neighborhood search that can possibly generate new routes. In the survey of
Archetti and Speranza (2014) for VRP matheuristics, this approach is clas-
sified under the name of column generation based heuristics. The name is

17

TR-DISP-002 September 2017

naturally chosen because of the similarity with set partitioning formulations
in branch-and-price algorithms. More precisely, this method falls into the
class of restricted master heuristics according to the same survey.

The proposed approach is based on the framework of Grangier et al.
(2017) for a VRP with cross-docking. According to this framework, a solver
is called every η iterations to solve the SCP on a pool Ω containing all non-
dominated routes found by LNS in the previous iterations. When the number
of routes in Ω makes the SCP intractable for the solver within a given time
limit tlimit, Ω is cleared and reinitialized with the routes of the best solution
found so far.

In the following sections, we detail the mathematical formulation of the
SCP and the pool management process. We also develop a reactive version
denoted RSCP where parameter η is automatically adjusted from one SCP
solving to another.

Formulation of the SCP
Note that Ω = {1, . . . , |Ω|} is the set of routes collected through LNS

iterations, and πω ∈ R+ denotes the cost of route ω ∈ Ω. Let ρrω be a
parameter equal to 1 if request r ∈ R is served by route ω ∈ Ω, and 0
otherwise.

The SCP aims at building a new solution by selecting a subset of inde-
pendent routes in Ω. The SCP model uses binary variables yω, that are set
at value 1 if route ω ∈ Ω is part of the solution and 0 otherwise. The SCP
can be defined by the following integer linear program.

min
∑
ω∈Ω

πω yω (21)

s.t.∑
ω∈Ω

ρrωyω ≥ 1 ∀r ∈ R (22)

yt ∈ {0, 1} ∀ω ∈ Ω. (23)

SCP solving
As introduced before, the SCP is solved by a MILP solver with a run

time limited to tlimit. To improve the solver performance and guarantee that
a feasible solution is returned, the solver is initialized with the current routes
of s∗ using a so-called warm-start function.

18

TR-DISP-002 September 2017

Given that constraints (22) of the SCP model allow request duplication,
a request may appear in more than one route in the optimal solution of the
SCP. In this case the request is left only in the route that yields the best cost
(line 20, Algorithm 1).

Management of the pool of routes Ω
At each iteration of the LNS-SCP, the non-dominated routes in the cur-

rent solution are added to the pool of routes Ω (line 14, Algorithm 1), possibly
dominating some routes in the pool. Hence, the size of the pool generally
increases after each iteration. Eventually, the pool becomes so large that the
MILP solver cannot optimally solve the SCP within the time tlimit. When
this happens, the pool Ω is cleared and reinitialized with the routes of s∗.
This strategy used in Grangier et al. (2017) allows for the route pool to be
maintained at a reasonable size. Of course, this strategy heavily depends on
the solving time left to the MILP solver.

Reactive adjustment of SCP parameters (RSCP)
The combination of the run time tlimit and the frequency η determine

the overall computational effort spent in solving the SCP. Thus, one issue in
tuning the SCP component is to define a common policy to set the values of
parameters tlimit and η in all instances.

In our numerical experiments we observe that, for a given value of η,
the run time necessary to optimally solve the SCP is considerably longer on
larger instances. Moreover, this time is longer at the beginning of the LNS
execution than at the end. This has already been observed by Subramanian
et al. (2013) in a VRP context. The authors developed a reactive strategy
to limit the number of routes in the SCP. Their approach requires setting 5
parameters. Moreover, a threshold mechanism eliminates bad solutions even
if they contain good routes. Thus, we propose a reactive layer RSCP that
allows a simpler and automatic adjustment of parameter η, reducing its value
geometrically such that η ← η/ψ (Algorithm 1, line 19). This mechanism
uses a single real parameter ψ > 1 and assures that every dominant route
will be considered at least once in a SCP solving. Unlike the re-initialization
of Ω which is done when the solver cannot solve the SCP optimally, the
automatic adjustment of η is performed only when the solver cannot solve
the SCP optimally twice consecutively.

19

TR-DISP-002 September 2017

5. Evaluation of the insertion of requests

In each iteration of the framework LNS-SCP (Algorithm 1), the repair
operator checks the potential insertions of all unplanned requests in all routes
at all positions. This represents a large number of insertion attempts. In
practice, for every unplanned request, only the best insertion is performed.
Repair operators therefore evaluate the feasibility and the performance of a
very large number of unnecessary insertions, which has a major impact on
the performance of the SCP-LNS algorithm. This section describes the core
algorithms involved in the insertion of unplanned requests.

Let ω denote a feasible route with N nodes. Without loss of generality,
let us denote by 1, ..., N the set of nodes visited by this route, where nodes
1 and N are the initial and the final depot of this route. Inserting request
r ∈ R consists in inserting pickup node pr ∈ P between nodes i ∈ ω and
i + 1 ∈ ω and inserting delivery node dr ∈ D between nodes j ∈ ω and
j + 1 ∈ ω. We call ω′ the route resulting from this request insertion, as
represented in Figure 3

1 i i+ 1 j j + 1 N

1 i pr i+ 1 j dr j + 1 N

ω

ω′

Figure 3: Insertion of request r into route ω

The feasibility evaluation of ω′ has two parts: The Capacity evaluation
checks that at least one vehicle type can serve all requests in ω′ with at most
R̄ reconfigurations. The Schedule evaluation computes the minimal route
duration and checks if there is a departure time for route ω′ that complies
with all users time windows and maximum ride times.

Let us denote by time(ω′) the minimal duration of route ω′, K(ω′) the
set of vehicle types compatible with route ω′, k(ω′) ∈ K(ω′) the cheapest
vehicle type compatible with route ω′, and dist(ω′) the total length of route
ω′. Note that dist(ω′) can be computed in constant time with an incremental
approach:

dist(ω′) = dist(ω)+
∆i,pr + ∆pr,i+1 −∆i,i+1 + ∆j,dr + ∆dr,j+1 −∆j,j+1 if i < j,

∆i,pr + ∆pr,dr + ∆dr,i+1 −∆i,i+1 if i = j.

20

TR-DISP-002 September 2017

Remember that α and γk represent the unitary costs related to the route
duration and length respectively. Then, if route ω′ is feasible regarding the
Capacity evaluation and the Schedule evaluation, the minimal cost Π(ω′) of
route ω′ is determined by

Π(ω′) = α time(ω′) + min
k∈K(ω′)

(
fk + γkdist(ω′)

)
,

= α time(ω′) + fk(ω′) + γk(ω′)dist(ω′).
(24)

Note that in our application, all vehicles travel at the same speed. Hence,
the time feasibility and the duration of a route can be evaluated without
knowing the vehicle that travels that route.

Algorithm 2: Evaluation of a route ω′
Input: Routes ω and ω′

Output: Total insertion cost (-1 if unfeasible)
1 time(ω′)← ScheduleEvaluation(ω′) /* Algorithm 3 */ ;
2 if time(ω′) > −1 then
3 k(ω′)← CapacityEvaluation(ω, ω′) /* Algorithm 4 */ ;
4 if k(ω′) > −1 then
5 Π(ω′) = α time(ω′) + fk(ω′) + γk(ω′)dist(ω′);
6 return Π(ω′)

7 return −1

Algorithm 2 shows how the Schedule evaluation and the Capacity evalua-
tion algorithms are organized. Since these algorithms are mutually indepen-
dent, they can be executed in any order. Although this order may impact
computational times, there is no general rule to define which one should
be placed first because the performance always depends on the considered
data. Schedule evaluation (line 3) is performed first because our instances
are mostly constrained by time windows and ride times. Accordingly, the
Capacity evaluation (line 4) is run only on the resulting feasible routes. The
algorithm returns the cost of an insertion, and the value −1 if the insertion
is not possible.

Sections 5.1 and 5.2 detail the Schedule evaluation and the Capacity eval-
uation respectively.

21

TR-DISP-002 September 2017

5.1. Schedule evaluation
The scheduling of a route first consists in determining if the user time

windows and maximum ride time are respected on the route. Second, it
determines a minimal duration schedule. The Schedule evaluation is the
most time-consuming operation in the algorithm due to the large number of
evaluations performed each time a request insertion is evaluated.

The route scheduling for our problem is performed by Algorithm 3. It is
based on Tang et al. (2010) as presented in Gschwind, Timo (2015). We add
forward time slack calculations from Cordeau and Laporte (2003) in order
to determine the minimum route duration. Note that some simple classical
and necessary conditions are checked before running this algorithm. These
are well summarized in Braekers et al. (2014).

5.2. Capacity evaluation
Let us consider a route ω = {1, ..., N}. For each node i ∈ ω, Algorithm 3

determines the beginning of service wi in such a way that route duration is
minimized. This algorithm has three phases. In the first phase, the earliest
possible schedule is computed for every visited node (lines 5 to 9). At the
same time, we calculate the forward time slack of node 1, denoted by F1,
and the total waiting time H on the route. The second phase minimizes the
route duration by shifting the first node w1 by F1 units. Consequently, the
beginning of service in all other nodes i = 2, . . . , N is updated (lines 11 to
13). Once the route duration is minimized, the maximum route duration
constraint is verified in line 14.

The third phase checks ride-time constraints for every request (lines 16 to
27), starting from the end of the route. For any pickup node i, we denote as
r ∈ R the request to which it belongs. Consequently, dr is the corresponding
delivery node and i is equal to pr. The ride-time associated with this request
is then wdr − wpr + sr. If the value (wdr − wpr + sr) − T i is positive, then
the max ride-time constraint associated with pickup pr is violated. In this
case, the beginning of service wpr is shifted by the value of this violation
(line 21). This may lead to unfeasibility on time windows, which is checked
in lines 22 to 25. Finally, since the beginning of service wpr may have been
changed, the ride-time constraint for request r is checked again in line 26. If
no unfeasibility is detected, the minimal route duration wN −w1 is returned
(line 29).

The objective of this section is to complete the evaluation of a route by de-
termining the cheapest vehicle type that satisfies capacity constraints as well

22

TR-DISP-002 September 2017

Algorithm 3: Schedule evaluation
Input: Route ω = {1, ..., N}.
Output: Minimal duration of route ω (-1 if unfeasible)

1 w1 ← a1 /* Beginning of the service */
2 H ← 0 /* Total waiting time on the route */
3 F1 ← b1 − w1 /* Forward time slack at node 1 */
4

/* Phase 1: set up nodes at the earliest start */
5 for i = 2, . . . , N do
6 wi ← max{ai;wi−1 + si−1 + ti−1,i}
7 if wi > bi then return -1
8 H ← H + max{0; ai − (wi−1 + ti−1,i + si−1)}
9 F1 ← min{F1;H + max{0; bi − wi}}

10

/* Phase 2: optimize route duration */
11 w1 ← w1 + F1
12 for i = 2, . . . , N do
13 wi ← max{wi−1 + si−1 + ti−1,i; ai}

/* Check route duration constraint */
14 if (wN − w1) > T then return -1
15

/* Phase 3: check ride time constraints */
16 for i = N − 2, . . . , 1 do
17 if i ∈ P then
18 r ← request of pickup i /* Implies i = pr */
19 δ ← (wdr − wpr + sr)− T r

20 if (δ > 0) then
21 wpr ← wpr + δ
22 if wpr > bpr then return -1
23 for j = pr + 1, . . . , N do
24 wj ← max{aj;wj−1 + sj−1 + tj−1,k}
25 if wj > bj then return -1
26 if T r − (wdr − wpr + sr) < 0 then
27 return -1

28

29 return wN − w1

23

TR-DISP-002 September 2017

as the constraint on the maximal number of reconfigurations. Section 5.2.1
presents the procedure that assigns a vehicle to a given route. Section 5.2.2
details the subroutine that checks if a given reconfigurable vehicle is feasible
for a given route.

5.2.1. Vehicle type selection
We consider the resulting route ω′ after the insertion of a request r ∈ R

in route ω. A first observation is that the set of vehicle types that can
perform route ω′ is included in the set of vehicles that can perform route ω:
K(ω′) ⊂ K(ω). Thus, the Capacity evaluation of ω′ can be limited to the
vehicle types in K(ω).

A second observation is that it is sufficient to check the capacity only
over a smaller subset of key nodes of the route. This leads to the following
definitions:

Definition 1. We call the load profile of a route the list of vectors rep-
resenting its load at every node of this route. The load profile for route ω′
is {l1, . . . , lN}, where li = {li,u, i ∈ 1, . . . , N ;u ∈ U}, and li,u represents the
load of user type u ∈ U at node i ∈ ω′.

Load li,u results from the accumulation of load variations of the route
from node 1 to node i, i.e. li,u = ∑i

j=1 φj,u.

Definition 2. The set of pickup nodes of a route that are immediately
followed by a delivery node is called the kernel of this route. The restriction
of the load profile {l1, . . . , lN} to the nodes of its kernel is denoted by L.

Lemma 1. A vehicle type k ∈ K can be assigned to a route ω′ if, and only if

• each load l ∈ L is compatible with at least one configuration of vehicle
type k

• the number of reconfigurations required to carry every load l ∈ L is less
than or equal to the maximum number of allowed reconfigurations R.

Proof. If i is the delivery node of some request r ∈ R. Then, li,u ≤ li−1,u for
all user types u ∈ U . Thus, if the capacity is satisfied at node i− 1, it is also
satisfied at node i.

If i is a pickup node followed by another pickup node, then li,u ≤ li+1,u

and the capacity at i is satisfied if it is satisfied at i+ 1.
The second condition is straightforward.

24

TR-DISP-002 September 2017

A corollary of Lemma 1 is that, in order to save computation time, the
capacity evaluation of route ω′ can be restricted to its kernel.

Figure 4 presents the successive loads of a vehicle on a route with two
types of users (seats and wheelchairs). In Figure 4, pickup operations are
illustrated by arcs pointing to the right or to the top and deliveries are
represented by arcs pointing to the left or to the bottom. Although the
route has 7 nodes, a sufficient Capacity evaluation of the route requires only
a capacity check in the nodes of the kernel, this is nodes 3 and 5.

L =
{(

6
1

)
,

(
4
3

)}

Seats

W
he

el
ch

ai
rs

0 1 2 3 4 5 6 7

1

2

3

17 2

34

56

Figure 4: Graphical representation of a route load

Algorithm 4 describes the Capacity evaluation procedure. It first evalu-
ates the fixed and distance-related costs for all vehicle types (lines 2–3). The
route load profile is computed in lines 5–10. In line 10, a vertex are appended
to the route kernel if it is a pickup, immediately followed by a delivery vertex.
Checking if a vehicle type k is feasible for L is done on line 13. Considering
that k can be reconfigured and that several types of users are considered,
this evaluation is non-trivial and is detailed in Section 5.2.2.

25

TR-DISP-002 September 2017

Algorithm 4: Capacity evaluation
Input: Routes ω and ω′, list K(ω) of vehicle types compatible with ω,

distance dist(ω′)
Output: Cheapest vehicle type for the route ω′ (−1 if unfeasible)

1

/* Estimate partial route costs */
2 forall k ∈ K(ω) do
3 λk = fk + dist(ω′)vk

4

/* Compute the load profile for the kernel of the route */
5 L = ∅
6 l1 = 0
7 for i← 2, . . . , N do
8 li = li−1 + (φj,u)u∈U
9 if i belongs to the kernel of ω′ then

10 L ← L ∪ {li}

11

/* Find a feasible vehicle type */
12 for k ← K(ω) in non-decreasing order of costs λk do
13 if k can carry L then /* Algorithm 5 */
14 return k

15 return −1

26

TR-DISP-002 September 2017

Proposition 1. The Capacity evaluation algorithm returns k(ω′), the cheap-
est vehicle type for the route ω′, or the value −1 if no vehicle can perform
route ω′.

Proof. From equation (24),

Π(ω′) = α time(ω′) + min
k∈K(ω)

λk,

and
k(ω′) = arg min

k∈K(ω)
λk.

Given that vehicles type k ∈ K(ω) are tested one by one in non-decreasing
order of values λk, as soon as ω′ is feasible for a given k ∈ K(ω′), we have
k = k(ω′).

5.2.2. Vehicle type feasibility
In this section, we focus on solving the question: given a vehicle type

k ∈ K and a load profile L, can this vehicle carry this load? (see line 13,
Algorithm 4)

Recall that Qk is the set of all configuration vectors for a vehicle type
k ∈ K, represented by the |Ck| × |U | matrix:

Qk =

Qk1

. . .

Qk|Ck|

 =

Qk1

1 . . . Qk1
|U |

.

Q
k|Ck|
1 . . . Q

k|Ck|
|U |

 ,
where Qkc represents the cth configuration (c ∈ Ck) of vehicle k and Qkc

u

the capacity of vehicle type k in configuration c for user u ∈ U .

Example 2. Let us consider the vehicle type k described in Figure 1. Figure 5
represents Qk1, Qk2, Qk3.

According to these notations, we can state that a route ω is feasible for
a given vehicle type k if: (i) for each load l in the route kernel L, there is a
capacity vector in Qk that is greater than l; and (ii) if the minimum number
of reconfigurations of k to operate L is less than R.

The efficiency of these two checks is increased by computing a priori the
list of feasible configurations for each possible load vector and for each vehicle

27

TR-DISP-002 September 2017

Seats

W
he

el
ch

ai
rs

0 1 2 3 4 5 6 7

1

2

3

Qk1

Qk2

Qk3

Figure 5: Capacity of the vehicle presented in Figure 1.

type. The envelope set of possible load vectors is defined by

T k = {0, . . . ,max
c∈Ck

Qkc
1 } × · · · × {0, . . . ,max

c∈Ck
Qkc
|U|}.

Mathematically, we define Sk(l) as the function that maps the set of
feasible configurations of vehicle type k for a given load l.

Sk : T k → P(Ck),

where P(.) is the power-set function of set Ck, i.e. the set of all subsets of
Ck, including the empty set and Ck itself.

The function Sk(.) can be pre-processed and written as a matrix with |U|
dimensions. Each vector of feasible configuration in this matrix is encoded
using a bitset. This guarantees a limited size in memory and a O(1) access
to the list of configurations able to carry any element of T k.

Table 1 details the value of function Sk(.) in the case described by Ex-
ample 2 and Figure 5. For each possible load value, this table returns the
list of configurations that are compatible with this load. For example, for a
load of 4 seats and 2 wheelchairs, configurations 1 and 2 are feasible. For a
load of 6 seats and 3 wheelchairs, there is no feasible configuration.

Algorithm 5 presents the procedure for evaluating the feasibility of ve-
hicle k in route ω′. The algorithm initializes the number nr of necessary
reconfigurations to 0 (line 1) and the set ListConfig with all admissible

28

TR-DISP-002 September 2017

Seats
W

he
el

ch
ai

rs 3 {1} {1} {1} {1} {1} ∅ ∅ ∅
2 {1, 2} {1, 2} {1, 2} {1, 2} {1, 2} {2} {2} ∅
1 {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {2, 3} {2, 3} {3}
0 {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {2, 3} {2, 3} {3}

0 1 2 3 4 5 6 7

Table 1: Matrix representation of Sk for the vehicle presented in Figure 1.

configurations (line 2). It then iteratively goes through the nodes of the en-
tire route kernel L. If the current node is not compatible with any vehicle
configuration (line 4), vehicle k is unfeasible and the value −1 is returned.
Otherwise, the list ListConfig is updated with the set of feasible configu-
rations common to this node and ListConfig (line 6). If the load of the
current node l requires a configuration not previously stored in ListConfig,
a reconfiguration is needed. Thus, nr is increased by 1 and the ListConfig is
initialized with the set of feasible configurations of the current node (line 11).
If nr exceeds the maximum value allowed, R, vehicle k is unfeasible and the
value −1 is returned. Finally, if every load in the nodes of the kernel are
compatible with vehicle k the number of reconfigurations nr is returned.

Proposition 2. Algorithm 5 finds the minimal number of reconfigurations.

Proof. We define the graph G = (V,A) in which nodes v1, . . . , v|L| represent
the ordered set of elements of the kernel. We define an arc between any pair
of nodes which can be connected without reconfiguring the vehicle. So, if an
arc (vi, vj) exists, then all arcs of the form (vi′ , vj′), where i ≤ i′ < j′ ≤ j,
also exist.

With all arcs weighted by 1, finding the minimum number of reconfigu-
rations is equivalent to finding a shortest path between v1 and v|L|.

Given a node vi ∈ V , we define the farthest neighbor of vi as the node
vj, such that the arc (vi, vj) exists and the arc (vi, vj+1) does not exist.
Algorithm 5 starts from v1 and iteratively looks for the farthest neighbor of
the current node. Let v1, vopt(2), . . . , v|L| be an optimal path from v1 to v|L|.
We shall prove by contradiction that if some node vi is the farthest neighbor
of v1, then it belongs to an optimal path.

Assume that (v1, vi) is not in the shortest path from v1 to v|L|. Because
(v1, vj) 6∈ A,∀j > i, it is not possible to go from l1 to any successor of vi

with a weight of 1. So, vopt(2) < i and vopt(3) > i. By construction, if arc

29

TR-DISP-002 September 2017

Algorithm 5: Feasibility of vehicle type k and number of necessary
reconfigurations

Input: route ω′, with the load profile L of its kernel
Input: vehicle k, with preprocessed values for Sk(.) and T k

Output: number nr of necessary reconfigurations
1 nr ← 0
2 ListConfig ← Ck

3 forall l ∈ L do
/* capacity test */

4 if l 6∈ T k or Sk(l) = ∅ then
5 return −1

/* number of reconfigurations test */
6 ListConfig ← ListConfig ∩ Sk(l)
7 if ListConfig = ∅ then
8 nr ← nr + 1
9 if nr > R then

10 return −1
11 ListConfig ← Sk(l)

12 return nr

30

TR-DISP-002 September 2017

(vopt(2), vopt(3)) exists and has weight 1, then arc (vi, vopt(3)) also exists and
has the same weight. Thus, the cost of path v1 → vi → vopt(3) is 2. Hence,
(v1, vi) is also an optimal solution.

6. Computational experiments

The matheuristic described in Section 4.1 was coded in C++ and run on
a CPU Intel Xeon E5-1620 v3 @3.5Ghz. The SCP was solved with CPLEX
12.6 running on a single thread. The matheuristic was evaluated using real
and benchmark data. The parameters shown in Table 2 provide the best
average performance for the optimization problems solved in this paper.

After experimentation, we found that: K-regret operators with K > 4
did not improve the solution quality and two removal operators (historical
removal and random removal) are sufficient when the SCP component is
active. Note that values for parameters η, tlimit and ψ, can be automati-
cally modified in the reactive version RSCP for different instance sizes (see
Section 4.3).

χ = 5% Record-to-record acceptance percentage.
penalty = 104 Penalty cost for incomplete solutions.
φ− = 10% Minimal proportion of removed request used by

removal operators.
φ+ = 40% Maximal proportion of removed request used by

removal operators.
p = 6 Roulette wheel parameter for the historical re-

moval operator.
η = 1 000 Launch frequency of the SCP.
tlimit = 3 sec Imposed time limit for the SCP.
ψ = 1.25 RSCP coefficient to recompute the launch fre-

quency of the SCP.

Table 2: Parameters (all defined in Section 4).

Regarding the sequencing of feasibility evaluation, performing the Sched-
ule evaluation (Algorithm 3) before the Capacity evaluation (Algorithm 2)
can reduce computation time up to 50%. This reduction is mostly explained
by the fact our data set (derived from real data) is constrained more in time

31

TR-DISP-002 September 2017

than in capacity. In other words, long pickup legs are seldom feasible be-
cause of time windows and maximum ride times. In addition, sorting vehicle
types in non-increasing order of costs, before testing the vehicles capacity,
can reduce computation time by up to 10% (Algorithm 4).

This section is structured as follows: First, we introduce the instances
used to evaluate the algorithms. In Section 6.2 we present the experiments
that determine the choice and calibration of the main components of the
proposed matheuristic. The proposed algorithms are compared to state-of-
the-art algorithms on benchmarks from Cordeau and Laporte (2003) and Qu
and Bard (2013), which correspond to particular cases of our problem. Fi-
nally, we provide managerial insights, mainly regarding vehicle fleet aspects.

6.1. Description of instances
The real data comes from the GIHP Company2. An instance set of 14

instances is made from a bank of 576 requests decomposed into smaller sub-
sets of three sizes. There are 8 small instances containing from 60 to 80
requests, 4 medium-size instances containing from 120 to 160 requests, and 2
large instances containing from 280 to 295 requests. We consider 2 different
user types: users occupying seats and users with wheelchairs. Each type of
user occupies dedicated spaces in vehicles. Travel times and distances are
obtained from the Open Source Routing Machine3 (OSRM) by Luxen and
Vetter (2011). Common characteristics for the instances are: 1) maximum
ride times are defined according to direct travel time (tpr,dr) by the formula
RT = 15× d(tpr,dr + 15)/15e; 2) time windows at medico-social institutions
are 30 minutes wide while there is no time window at pickup locations; and 3)
the service time for users using seats is 2 minutes at the pickup location and
1 minute at the delivery location. For users in a wheelchair, it is 5 minutes
at pickup locations and 2 minutes at delivery locations.

The characteristics of vehicles considered in experiments are summarized
in Table 4. There are four vehicle types, including one that is not configurable
(V0). Vehicles V1 and V2 have two possible configurations, while vehicles V3
have three configurations. Costs for each vehicle type can be found in Table 4.
Note that in terms of capacity, vehicle V0 is a restricted case of vehicle V3. It
is nevertheless an interesting choice as its fixed cost is considerably lower (50€

2These instances will be made available on www.vrp-rep.org on acceptation of this
paper.

3http://project-osrm.org/

32

www.vrp-rep.org
http://project-osrm.org/

TR-DISP-002 September 2017

against 63€). The fixed cost corresponds to the estimated vehicle ownership
cost per day. The time-related cost corresponds to the driver’s wages, and
the distance-related cost corresponds to the fuel consumption and vehicle
use.

Vehicle Fixed Time-related Distance-related
type cost cost cost
V0 50 € 23.81 €/h 0.17 €/km
V1 79 € 23.81 €/h 0.21 €/km
V2 36 € 23.81 €/h 0.12 €/km
V3 63 € 23.81 €/h 0.17 €/km

Table 3: Vehicle types – costs

Configuration1 Configuration 2 Configuration 3
Type Seats Wheelchairs Seats Wheelchairs Seats Wheelchairs
V0 4 3 - - - -
V1 3 5 4 4 - -
V2 2 1 4 0 - -
V3 4 3 6 2 7 1

Table 4: Vehicle types – configurations

6.2. Evaluation of the metaheuristic components
Table 5 compares several LNS settings in order to evaluate the main com-

ponents of the proposed matheuristic. These experiments are performed on
the presented real instances with the four vehicles described in Table 4. From
left to right, the first column (Inst) is the instance name composed of two
numbers. The first number is the instance number and the second one indi-
cates the number of requests in that instance. The second column (Time) is
the computation time in minutes allowed to each solution method. For small
instances, this time is 16 minutes. It is 40 minutes for medium-size instances
and 100 minutes for large instances. Seven LNS variants are considered: The
first variant is a classic implementation of LNS which implements operators
k-regret, best insertion, random removal, historical node-pair removal, worse
removal, time-related removal and distance related removal, as described in
Pisinger and Ropke (2007). This variant is denoted by LNS(5) because it

33

TR-DISP-002 September 2017

implements 5 destroy operators. The second metaheuristics ALNS(5) adds-
up the adaptive layer of Ropke and Pisinger (2006) to the former LNS im-
plementation; the parameters used can be found in Appendix 7. The third
metaheuristic ALNS(5)–SCP integrates the SCP component described in Sec-
tion 4.3. The fourth variant, denoted LNS(2)–SCP, integrates only 2 destroy
operators (historical node-pair removal and random removal) and no adap-
tive layer. The fifth variant, denoted ALNS(5)–RSCP, is an extension of
ALNS(5)–SCP integrating the reactive layer described in Section 4.3. The
sixth variant, denoted LNS(5)–RSCP, does not include the adaptive layer.
Finally, LNS(2)–RSCP extends the LNS(2)–SCP by including the reactive
layer of Section 4.3.

The first observation is that the SCP component brings significant im-
provement in the solution quality. In addition, it can be observed that the
LNS can be considerably simplified when the SCP component is used. In-
deed, the matheuristic with two destroy operators performs as well as the
versions with five destroy operators. Comparing LNS(2)–SCP with LNS(2)–
RSCP, it can be seen that a second subsequent improvement is obtained
when the SCP includes the reactive layer to adapt its parameters during the
search.

According to this set of experiments, LNS(2)–RSCP configuration seems
to outperform the other variants, either in performance or in simplicity.

34

LNS(5) ALNS(5) ALNS(5)-SCP LNS(2)-SCP ALNS(5)-RSCP LNS(5)-RSCP LNS(2)-RSCP
Inst Time Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg
I01-80 16 1,791.69 1,798.30 1,803.42 1,811.81 1,757.22 1,757.70 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22
I02-60 16 911.79 913.64 911.88 926.49 925.09 926.38 911.79 913.21 915.02 922.48 911.79 914.45 915.34 922.63
I03-80 16 1,869.42 1,882.15 1,881.31 1,893.74 1,838.33 1,838.60 1,838.47 1,838.47 1,811.86 1,811.86 1,811.86 1,811.86 1,811.86 1,811.90
I04-70 16 1,600.54 1,603.65 1,599.53 1,602.58 1,599.49 1,599.52 1,599.49 1,599.50 1,599.49 1,599.51 1,599.49 1,599.49 1,599.49 1,599.49
I05-80 16 1,251.24 1,253.37 1,244.86 1,251.00 1,242.48 1,242.62 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48
I06-80 16 1,451.57 1,452.69 1,460.48 1,464.95 1,418.74 1,421.09 1,418.74 1,422.19 1,418.74 1,421.31 1,418.74 1,420.88 1,418.74 1,418.75
I07-60 16 1,537.63 1,537.63 1,537.63 1,537.79 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63
I08-65 16 1,204.89 1,205.68 1,204.89 1,218.95 1,204.89 1,205.11 1,204.89 1,205.11 1,204.89 1,205.54 1,204.89 1,204.89 1,204.89 1,205.11
I09-120 40 3,165.79 3,186.43 3,178.83 3,189.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00
I10-135 40 2,196.36 2,208.65 2,169.89 2,219.19 2,059.99 2,069.46 2,059.91 2,070.72 2,071.42 2,087.16 2,081.24 2,088.84 2,059.91 2,079.79
I11-160 40 2,343.57 2,347.28 2,310.38 2,331.33 2,224.06 2,238.53 2,226.56 2,243.24 2,225.54 2,229.27 2,222.14 2,225.37 2,222.14 2,228.43
I12-160 40 2,851.89 2,864.54 2,880.07 2,911.25 2,615.00 2,627.80 2,620.93 2,638.95 2,623.44 2,628.19 2,614.47 2,631.98 2,623.24 2,634.22
I13-280 100 5,227.05 5,255.18 5,227.45 5,275.53 5,153.87 5,196.40 5,123.11 5,132.67 4,864.49 4,896.87 4,843.39 4,870.33 4,885.02 4,917.22
I14-295 100 5,475.69 5,497.11 5,476.19 5,533.58 5,352.61 5,411.52 5,387.16 5,431.81 4,893.30 4,927.77 4,921.74 4,948.96 4,904.47 4,931.81

Avg 2,348.51 2,357.59 2,349.06 2,369.08 2,289.81 2,300.03 2,289.74 2,297.23 2,235.25 2,242.52 2,235.36 2,241.60 2,236.46 2,243.91
Avg Gap 3.60% 3.94% 3.61% 4.46% 1.34% 1.64% 1.27% 1.52% 0.13% 0.38% 0.12% 0.31% 0.13% 0.39%
NbBKS 3 2 7 9 9 12 10

Average cost (Avg) is computed over 5 runs. Nb BKS refers to the number of best-known solutions (BKS). Time is expressed in minutes.
The Gap for every instance is computed as (value−BKS)/BKS ∗ 100.
General parameters for all metaheuristics can be found in Table 2. Additional parameters for ALNS can be found in Table A.13.

Table 5: Performance comparison of LNS-based heuristics

TR-DISP-002 September 2017

Figure 6 shows the cost evolution considering the best run of four meta-
heuristics in instance I01-80. The other 3 variants are not shown because
their performance is almost that of LNS(2)–RSP. Two separate groups of al-
gorithms can be identified, corresponding to metaheuristics with and without
an SCP component. The SCP increases not only solution quality, but also
convergence speed.

Figure 7 shows the cost evolution on a large size instance I13-280. The
variants without the reactive layer fail to improve the solution significantly.
This is because the SCP parameters are not adapted to this instances and the
SCP is never solved optimally. The variants with the reactive layer perform
well since the number of iterations between two calls to the SCP is reduced.
This approach proves efficient in large instance as shown in the figure.

6.3. Performance evaluation on benchmarks from the literature
To evaluate the performance of LNS(2)-RSCP, we apply it to two sub-

problems of the FSM-DARP-RC on benchmark instances. The first bench-
mark is made of the DARP instances of Cordeau and Laporte (2003) for
which many elaborate methods were designed. In a second step, LNS(2)-
RSCP is compared to the algorithm of Qu and Bard (2013) that was de-
signed to solve a heterogeneous DARP with configurable vehicle capacity.
This benchmark considers a limited fleet of vehicles that can be configured
at the depot.

6.3.1. Performance evaluation on the DARP
The Cordeau and Laporte (2003) instances are still a reference point to

evaluate the efficiency of algorithms on the DARP. Table 6 compares LNS(2)–
RSCP after 50,000 Iterations to the latest heuristics that have been designed
specifically to solve this problem. The best known solutions (BKS column)
are taken from Gschwind and Drexl (2016) and have been found either by the
cited meta-heuristics, or during the parameter tuning of Gschwind and Drexl
(2016). Looking at the average gap (Avg Gap) we note that our matheuris-
tic competes with those three dedicated methods. LNS(2)–RSCP has the
second-best average gap of 0.72% with 8 solutions among the best known
(Nb. BKS), just after the ALNS of Gschwind and Drexl (2016) with 0.5%
Avg Gap and 9 BKS. An interesting remark is that the reactive layer of
the SCP components was almost never activated since the initial values of
η = 1000 and tlimit = 3 secs is sufficient for these instance sizes. The other

36

TR-DISP-002 September 2017

0 100 200 300 400 500 600 700 800 900
1750

1800

1850

1900

1950

2000

LNS(5)

ALNS(5)

ALNS(5)-SCP

LNS(2)-RSCP

Time (seconds)

C
os

t

Figure 6: Impact of SCP component (Instance I01-80)

0 1000 2000 3000 4000 5000 6000
4800

4900

5000

5100

5200

5300

5400

5500

ALNS(5)

LNS(5)

ALNS(5)-SCP

LNS(2)-SCP

ALNS(5)-RSCP

LNS(5)-RSCP

LNS(2)-RSCP

Time (seconds)

C
os

t

Figure 7: Reactive SCP (Instance I13-280)

37

TR-DISP-002 September 2017

two methods are the threshold acceptance (TA) based local search of Braek-
ers et al. (2014) which has the highest average gap (1.16%) but also by far the
lowest computation time, and the evolutionary local search (ELS) proposed
by Chassaing et al. (2016).

Note that we do not scale computational times here as CPU information
is not available for all methods and our goal is not to compete with these
three methods. Nevertheless, these experiments show that the performance
of LNS(2)–RSCP without any modification from the calibration on the FSM-
DARP-RC instances, remains competitive on simpler benchmark problems.

TA ELS ALNS1 LNS(2)-RSCP2

Braekers et al. (2014) Chassaing et al. (2016) Gschwind and Drexl (2016)
Inst BKS Best Avg Time Best Avg Time Best Avg Time Best Avg Time
pr01 190.02 190.02 190.02 16.6 190.02 190.02 15.0 190.02 190.02 15.1 190.02 190.02 24.0
pr02 301.34 301.34 301.34 42.0 301.34 301.34 75.0 301.34 301.34 41.1 301.34 301.34 145.9
pr03 532.00 532.10 533.54 48.8 532.43 533.86 138.0 532.00 532.01 62.1 532.00 532.00 256.6
pr04 570.25 577.16 580.52 74.6 570.54 574.47 442.2 570.25 570.61 138.7 571.25 572.23 493.9
pr05 625.64 629.80 632.06 89.2 630.82 637.59 724.2 628.59 630.99 267.4 631.38 633.20 735.7
pr06 783.78 797.78 800.68 107.0 792.80 796.10 1,315.2 789.36 790.44 397.5 789.51 790.23 1,216.6
pr07 291.71 292.23 292.23 22.6 291.71 292.96 28.2 291.71 291.71 19.7 291.71 291.71 55.3
pr08 487.84 490.94 491.00 48.6 491.60 493.16 160.8 489.83 491.13 74.1 489.33 492.49 329.4
pr09 653.94 662.64 666.65 72.2 672.86 681.35 675.0 659.69 660.13 151.7 659.10 663.00 668.8
pr10 845.47 853.98 860.83 114.4 857.36 860.68 1,279.8 853.07 857.18 389.2 856.95 860.91 1,236.6
pr11 164.46 164.46 164.46 23.8 164.46 164.46 16.8 164.46 164.46 17.7 164.46 164.46 43.6
pr12 295.66 295.69 296.06 51.4 295.66 295.72 82.2 295.66 296.22 48.1 295.67 296.83 227.6
pr13 484.83 488.61 490.03 76.2 489.00 490.70 222.0 484.83 484.83 101.3 488.30 488.70 478.4
pr14 529.33 534.99 540.99 117.0 531.08 531.98 612.0 531.19 531.92 204.2 529.33 532.13 966.2
pr15 573.56 581.46 584.33 155.2 578.44 580.23 1,195.8 576.70 578.17 491.6 577.00 579.47 1,584.0
pr16 725.22 743.56 747.19 180.6 731.25 736.59 1,939.2 731.50 736.08 692.6 732.60 737.12 2,331.9
pr17 248.21 249.33 249.33 34.0 248.21 248.21 34.8 248.21 248.21 22.8 248.21 248.21 104.8
pr18 458.73 461.77 462.38 81.0 461.21 462.40 259.2 461.48 461.67 103.0 458.73 461.42 520.8
pr19 592.23 598.23 600.63 146.4 595.39 597.53 745.8 593.83 596.77 361.4 594.22 597.65 1,225.3
pr20 783.81 795.08 801.89 162.8 796.60 803.99 1,887.0 787.14 789.83 591.6 789.49 799.38 1,895.8

Avg Gap 0.81% 1.16% 83.2 0.64% 1.04% 592.4 0.32% 0.50% 209.5 0.38% 0.72% 727.1
Nb BKS 3 6 9 8

Average cost (Avg) is computed over 5 runs. (Time) is the average computation time in seconds.
Nb BKS refers to the number of best knows solutions. The Gap for an instance is computed as (value−BKS)/BKS × 100
1 Running 75 000 iterations including the Balas-Simonetti operator Opk = 3 and solve a SCP at the very end of the solution method.
2 Running 50 000 iterations

Table 6: Results on the DARP instances of Cordeau and Laporte (2003)

6.3.2. Performance evaluation on the heterogeneous DARP with configurable
vehicle capacity

Another relevant benchmark was proposed by Qu and Bard (2013) for
the heterogeneous dial-a-ride with configurable vehicle capacity (HDARP-C).
The three main differences between this problem and the FSM-DARP-RC

38

TR-DISP-002 September 2017

are: (i) a limited fleet of heterogeneous vehicles with configurable capacity;
(ii) the vehicle configuration is decided at the depot, not en-route; and (iii)
the presence of users with walkers in some instances, which means that two
seats or one seat and half a wheelchair space are occupied.

These differences were integrated into our algorithm to run Qu and Bard
(2013) instances. The SCP was adapted in a simple manner to consider a
limited fleet of vehicles as follows: first, every route was explicitly assigned
the vehicle type for which it was generated, and second, a constraint limiting
the number of vehicles for each vehicle type was added to the SCP model.

In this benchmark, two instance sets of 100 requests are proposed. A first
set “A” is characterized by integrating various proportions of appointment
requests (between 5% to 25%, distinguished in the first two digits of the
name). The second instance set “B” instead differentiates the proportion of
users with walkers, between 20% to 60% of clients. This proportion is distin-
guished in the first two digits in the name and the number of appointments
is always constant at 10%.

According to Qu and Bard (2013), in the following tables we denote by Ct,
the cost related to travel time. It is computed as the total traveled distance
divided by speed, times the time cost ctime = $0.377/min. Cp denotes the
total passenger ride time cost with the unitary cost τc = $0.0001 per minute.
The vehicle ownership cost is denoted as Cv = $0.01/van. Finally, the total
cost is denoted by Ctotal = Ct + Cp + Cv. For the subsequent experiments,
LNS(2)–RSCP uses the same parameter tuning proposed in Table 2.

Table 7 compares the performance of our algorithm with respect to the
multi-start ALNS (MSALNS) heuristic of Qu and Bard (2013) for the in-
stance set A. From the Avg row we observe an average total cost improvement
of 1.02% over 3 runs and all instances. Looking at the best solution found
over those three runs, a 1.34% improvement is obtained on average over 3
runs with respect to the MSALNS best solutions. 6 new best solutions were
found out of the 10 instances of the benchmark. These results demonstrate
the good performance and stability of LNS(2)-RSCP from an experimental
point of view.

A second set of experiments is performed for instance set “B” with two
scenarios. The first scenario in Table 8 presents the results obtained when
walkers are taken into account. The main difference between set “B” and set
“A” is the presence of very few time windows. The ten instances are built
up upon two instances of set “A”, then varying the proportion of walkers
while all other characteristics remain constant. Looking at the total cost of

39

TR-DISP-002 September 2017

MSALNS LNS(2)-RSCP
Inst Ct Cp Cv Ctotal Ct Cp Cv Ctotal

1 Gap (*) Gap Avg
A051 43.00 0.20 0.04 43.24 42.29 0.22 0.09 42.60 -1.47% -1.71%
A151 49.82 0.23 0.06 50.11 50.18 0.27 0.06 50.51 0.80% 0.18%
A101 43.99 0.22 0.05 44.26 44.75 0.25 0.08 45.07 1.84% 1.17%
A251 62.42 0.29 0.06 62.77 55.18 0.28 0.08 55.54 -11.52% -10.95%
A201 53.57 0.23 0.06 53.86 52.81 0.27 0.06 53.14 -1.33% -2.28%
A052 36.86 0.20 0.05 37.11 42.25 0.23 0.09 42.58 14.73% 13.99%
A102 45.19 0.19 0.05 45.43 45.34 0.30 0.07 45.71 0.61% 2.92%
A152 49.64 0.21 0.05 49.90 44.37 0.29 0.09 44.75 -10.32% -8.17%
A202 49.79 0.24 0.06 50.09 48.56 0.30 0.09 48.94 -2.29% -0.76%
A252 55.21 0.28 0.06 55.55 52.73 0.28 0.09 53.10 -4.42% -4.62%
Avg 48.95 0.23 0.05 49.23 47.85 0.27 0.08 48.19 -1.34% -1.02%
1. Ctotal is the best total cost found over 3 runs. The stopping criteria is 1 hour.
Gaps were computed with respect to Ctotal from Qu and Bard (2013).

Table 7: Benchmark Qu and Bard (2013) instance A scenario (iii) without groups

the solutions returned by LNS(2)-RSCP, we find that it even more clearly
outperforms the MSALNS of Qu and Bard (2013) than on instances A. A
second observation is that LNS(2)-RSCP is barely affected by the proportion
of walkers. This result is confirmed by the second scenario in Table 9 where
walkers requirements are ignored. Without accounting for walkers there is
no difference among all instances ranging from B201 to B601 instances. The
same applies to BX02 instances. In Table 8 we present our aggregated results
for five runs of each instance type BX01 and BX02. Looking at the aver-
age gap, we find that LNS(2)-RSCP improves the solution by 13.32% when
compared to the MSALNS.

MSALNS LNS(2)-RSCP
Inst Ct Cp Cv Ctotal Ct Cp Cv Ctotal

1 Gap Avg Gap
B201 43.99 0.22 0.05 44.25 37.01 0.37 0.06 37.44 -15.39% -15.09%
B301 44.84 0.25 0.05 45.15 37.19 0.30 0.06 37.54 -16.85% -16.07%
B401 47.65 0.21 0.05 47.91 38.82 0.26 0.05 39.13 -18.33% -18.28%
B501 47.87 0.20 0.05 48.12 38.07 0.30 0.05 38.43 -20.15% -19.69%
B601 45.83 0.22 0.05 46.10 40.10 0.20 0.05 40.36 -12.46% -12.12%
B202 45.19 0.19 0.05 45.43 36.34 0.31 0.05 36.70 -19.21% -18.66%
B302 44.42 0.19 0.05 44.66 37.73 0.21 0.05 37.98 -14.95% -14.83%
B402 47.90 0.19 0.05 48.14 36.63 0.24 0.05 36.92 -23.30% -23.10%
B502 46.50 0.18 0.05 46.73 36.93 0.24 0.05 37.21 -20.36% -17.73%
B602 45.72 0.20 0.05 45.97 37.73 0.30 0.05 38.08 -17.16% -16.75%
Avg 45.99 0.21 0.05 46.25 37.66 0.27 0.05 37.98 -17.82% -17.23%
1. Ctotal is the best total cost found over 3 runs. The stopping criteria is 1 hour.
Gaps were computed with respect to Ctotal from Qu and Bard (2013).

Table 8: Benchmark Qu and Bard (2013) instance “B” scenario (iii) without groups

40

TR-DISP-002 September 2017

MSALNS LNS(2)-RSCP
Inst Ct Cp Cv Ctotal Ct Cp Cv Ctotal

1 Gap Avg Gap
B201 43.44 0.22 0.05 43.72 36.34 0.35 0.05 36.74 -15.97%
B301 43.90 0.27 0.05 44.21 36.47 0.35 0.05 36.86 -16.62%
B401 43.99 0.29 0.05 44.32 37.20 0.25 0.04 37.50 -15.39% -15.59%
B501 42.94 0.22 0.05 43.21 36.43 0.32 0.05 36.81 -14.82%
B601 43.22 0.21 0.05 43.48 36.47 0.37 0.05 36.90 -15.14%
B202 42.13 0.27 0.05 42.45 36.87 0.28 0.05 37.19 -12.38%
B302 42.13 0.27 0.05 42.45 36.87 0.28 0.05 37.19 -12.38%
B402 42.13 0.27 0.05 42.45 37.99 0.25 0.04 38.28 -9.82% -9.82%
B502 40.38 0.23 0.04 40.65 37.69 0.26 0.04 37.99 -6.54%
B602 39.70 0.23 0.05 39.98 36.49 0.25 0.05 36.79 -7.99%
Avg 42.40 0.25 0.05 42.69 36.88 0.30 0.05 37.22 -12.71% -12.71%
1. Ctotal after 1 hour of computation time.

Table 9: Benchmark Qu and Bard (2013) instances “B” ignoring walker requirements.

6.4. Managerial insights
Having shown the efficiency of our matheuristic, we performed simula-

tions in order to provide some general insights regarding, in particular, the
relevance of en-route reconfiguration of vehicles. First, we measured the im-
pact of en-route reconfiguration for two variants of the DARP. We then varied
the fixed cost of reconfigurable vehicles to determine under which conditions
it is worth buying the vehicles.

6.4.1. Vehicle fleet insights
In this section we analyze the gain of enabling en-route reconfigurations.

Two variants of the DARP are compared with the real instance set, as shown
in Table 10. Both variants employ the vehicle fleet of Table 4. The first
variant, denoted as FSM-DARP-C, consist in allowing vehicles to be config-
ured only once: at the depot, before starting their respective routes. The
second variant, denoted FSM-DARP-RC, allows vehicles to be reconfigured
en-route. Strictly speaking FSM-DARP-RC is a relaxed problem of FSM-
DARP-C, which explains why gains in the last column are always greater
than 0. Cost reductions can go up to 2.45% of the total cost, depending on
the instance.

Regarding the structure of solutions, let us consider the best solution
(Best) found among the 5 runs for each instance. The next columns (Routes,
Rec, RR) refer to some characteristics of these Best solutions. Passing from
FSM-DARP-C to FSM-DARP-RC, we observe that the number of routes
(Routes) is similar for most instances. However, in some instances, like I14-
280, cost savings are related to a reduction in the number of routes (from 37

41

TR-DISP-002 September 2017

FSM-DARP-C FSM-DARP-RC
Inst Time Avg Best Routes Avg Best Routes Rec RR Savings
I01-80 16 1,774.74 1,774.74 18 1,757.22 1,757.22 18 1 1 0.99%
I02-60 16 924.68 923.51 8 916.22 912.28 8 1 3 1.22%
I03-80 16 1,838.57 1,838.47 15 1,838.41 1,838.33 15 1 1 0.01%
I04-70 16 1,602.48 1,602.48 18 1,599.49 1,599.49 18 1 1 0.19%
I05-80 16 1,242.55 1,242.48 15 1,242.48 1,242.48 15 0 0 0.00%
I06-80 16 1,419.81 1,418.74 12 1,418.75 1,418.74 12 0 0 0.00%
I07-60 16 1,546.61 1,546.61 11 1,537.63 1,537.63 11 2 3 0.58%
I08-65 16 1,223.65 1,223.58 10 1,205.11 1,204.89 10 1 2 1.53%
I09-120 40 3,167.81 3,166.29 23 3,129.75 3,129.15 23 2 5 1.17%
I10-135 40 2,094.77 2,068.71 17 2,083.10 2,061.52 17 1 3 0.35%
I11-160 40 2,283.03 2,271.57 21 2,249.11 2,233.19 21 3 7 1.69%
I12-160 40 2,659.34 2,653.40 24 2,653.78 2,629.19 23 2 3 0.91%
I13-280 100 5,027.30 5,008.69 37 4,901.06 4,885.77 36 4 13 2.45%
I14-295 100 5,017.01 4,982.85 45 5,026.49 4,981.14 44 2 8 0.03%

Table 10: Savings due to en-route configuration

to 36).
The maximum number of performed reconfigurations among the solution

routes (Rec) shows that en-route reconfiguration is usually performed once or
twice inside a route. The number of routes performing en-route reconfigura-
tion (RR) indicates how many configurable vehicles are actually reconfiguring
en-route in the whole solution. For example, in instance I02-60, we find that
3 out of 8 routes actually reconfigure en-route, this is 37.5% of the vehicle
fleet. In average this proportion is 10.28% for small instances, 21.43% for
medium-size and 26% for large instances.

6.4.2. Fixed cost analysis
So far, we have seen that reconfigurations can allow cost reductions; how-

ever, the resulting gain is correlated to the cost of buying reconfigurable
vehicles rather than standard ones. Figure 8 pictures how, for the instance
in I13-280, the percentage of reconfigurable vehicles decreases when their
cost increases compared to the cost of standard vehicles. In this figure, the
point with coordinates (2%;12%) means that re-configurable vehicles are 2%
more expensive than standard vehicles, and in the cheapest solution found,
12% of the vehicles are reconfigurable. In the same way, when reconfigurable
vehicles are 20% more expensive than standard vehicles, they are completely
excluded from the solution.

The set of vehicle types considered in these experiments can be found in
Table 11 and their respective costs in Table 12.

42

TR-DISP-002 September 2017

2 6 10 14 18 22 26 30 34 38
0

2

4

6

8

10

12

Fixed cost increment (%)

R
ec

on
fig

u
ra

bl
e

 v
eh

ic
le

s
(%

)

Figure 8: Fixed cost impact of reconfigurable vehicles (Instance I13-280)

Configuration 1 Configuration 2 Configuration 3
Vehicle

type Seats Wheelchairs Seats Wheelchairs Seats Wheelchairs
V4 7 1 - - - -
V5 6 2 - - - -
V6 4 3 - - - -
V7 4 3 6 2 7 1

Table 11: Vehicle types used in the fixed cost analysis

Vehicle Fixed Time-related Distance-related
type cost cost cost
V4 50€ 23.81 €/h 0.17 €/km
V5 50€ 23.81 €/h 0.17 €/km
V6 50€ 23.81 €/h 0.17 €/km

(+2%) 51€
(+6%) 53€

V7 (+10%) 55€ 23.81 €/h 0.17 €/km
(+20%) 60€
(+30%) 65€
(+40%) 70€

Table 12: Costs of vehicle types used in the fixed cost analysis

43

TR-DISP-002 September 2017

7. Conclusion

In this paper, we investigated a new variant of the dial-a-ride problem
characterized by en-route reconfiguration of vehicle capacity. This feature
was studied in the context of door-to-door transportation of children with
disabilities, considering heterogeneous users and vehicles. We aimed to de-
termine the size and composition of the fleet as a strategic decision. A
matheuristic based on Large Neighbourhood Search and a Reactive Set Cov-
ering Problem (LNS–RSCP)was proposed to solve this problem for real in-
stances of up to 295 user requests. Results on the real data set showed
significant performance compared with six other LNS-based metaheuristics
variants. Experiments show that the SCP component increases not only so-
lution quality but also convergence speed. LNS–RSCP was also tested on
literature instances that achieved competitive results for the classic DARP
and outstanding results in the heterogeneous DARP with configurable vehicle
capacity. Although en-route reconfiguration is not a usual practice in com-
panies, companies often own configurable vehicles, as in the case study. Yet
route designers do not plan routes considering this extra degree of flexibility.
In this study we show that companies can easily save up to 2.5% in the total
cost just by allowing vehicles to use en-route reconfiguration. Finally, we
show that the utilization of reconfigurable vehicles is strongly dependent on
the vehicle ownership cost (fixed cost). For the evaluated instance, supposing
that all operations are the same on each day, we found that reconfigurable
vehicles are advantageous for companies when their cost are no more than
20% of the cost of standard non-reconfigurable vehicles.

44

TR-DISP-002 September 2017

Appendix A. Parameters used for ALNS-based metaheuristics

Reinitialize incumbent solution with the best solution every 2000 iters.
Score for new best solutions σ1= 33
Score for new improving solutions σ2 = 20
Score for new accepted solutions σ3 = 15
Reaction factor r = 0.1
Recompute operator weights = 100 iters
Minimum weight operators = 0.1
Maximum weight operators = 5

Table A.13: ALNS Parameters as in Masson et al. (2014)

References

Archetti, C., Speranza, M. G., 2014. A survey on matheuristics for routing
problems. EURO Journal on Computational Optimization 2 (4), 223–246.

Braekers, K., Caris, A., Janssens, G. K., 2014. Exact and meta-heuristic
approach for a general heterogeneous dial-a-ride problem with multiple
depots. Transportation Research Part B: Methodological 67, 166–186.

Chassaing, M., Duhamel, C., Lacomme, P., 2016. An ELS-based approach
with dynamic probabilities management in local search for the Dial-A-Ride
Problem. Engineering Applications of Artificial Intelligence 48, 119–133.

Christiaens, J., Vanden Berghe, G., 2016. A fresh ruin & recreate implemen-
tation for the capacitated vehicle routing problem. Technical report, KU
Leuven, Department of Computer Science.

Cordeau, J.-F., Laporte, G., 2003. A tabu search heuristic for the static multi-
vehicle dial-a-ride problem. Transportation Research Part B: Methodolog-
ical 37 (6), 579–594.

Derigs, U., Gottlieb, J., Kalkoff, J., Piesche, M., Rothlauf, F., Vogel, U.,
2011. Vehicle routing with compartments: applications, modelling and
heuristics. OR spectrum 33 (4), 885–914.

45

TR-DISP-002 September 2017

Doerner, K. F., Salazar-Gonzàlez, J.-J., 2014. Pickup-and-delivery problems
for people transportation. In: Vigo, D., Toth, P. (Eds.), Vehicle Routing:
Problems, Methods, and Applications. Vol. 18. SIAM, Ch. 7, pp. 193–212.

Dueck, G., 1993. New optimization heuristics. Journal of Computational
Physics 104 (1), 86 – 92.

Firat, M., Woeginger, G. J., 2011. Analysis of the dial-a-ride problem of
Hunsaker and Savelsbergh. Operations Research Letters 39 (1), 32–35.

Foster, B. A., Ryan, D. M., 1976. An integer programming approach to the
vehicle scheduling problem. Journal of the Operational Research Society
27 (2), 367–384.

Golden, B., Assad, A., Levy, L., Gheysens, F., 1984. The fleet size and mix
vehicle routing problem. Computers & Operations Research 11 (1), 49–66.

Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.-M., 2017. A
matheuristic based on large neighborhood search for the vehicle routing
problem with cross-docking. Computers & Operations Research 84, 116–
126.

Gschwind, T., Drexl, M., 2016. Adaptive Large Neighborhood Search with a
Constant-Time Feasibility Test for the Dial-a-Ride Problem. LM-2016-08,
Gutenberg School of Management and Economics, Johannes Gutenberg
University.

Gschwind, Timo, 2015. Route Feasibility Testing and Forward Time Slack for
the Synchronized Pickup and Delivery Problem. Tech. Rep. 1503, Guten-
berg School of Management and Economics, Johannes Gutenberg Univer-
sity.

Henke, T., Speranza, M. G., Wäscher, G., 2015. The multi-compartment
vehicle routing problem with flexible compartment sizes. European Journal
of Operational Research 246 (3), 730–743.

Hunsaker, B., Savelsbergh, M., 2002. Efficient feasibility testing for dial-a-
ride problems. Operations Research Letters 30 (3), 169–173.

Koç, c., Bektas, T., Jabali, O., Laporte, G., 2016. Thirty years of heteroge-
neous vehicle routing. European Journal of Operational Research 249 (1),
1–21.

46

TR-DISP-002 September 2017

Koch, H., Henke, T., Wäscher, G., 2016. A genetic algorithm for the multi-
compartment vehicle routing problem with flexible compartment sizes.
Tech. rep., Otto-von-Guericke-Universität Magdeburg, Faculty of Eco-
nomics and Management.

Luxen, D., Vetter, C., 2011. Real-time routing with openstreetmap data. In:
Proceedings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. GIS’11. ACM, New York,
NY, USA, pp. 513–516.

Masson, R., Lehuédé, F., Péton, O., 2014. The Dial-A-Ride Problem with
Transfers. Computers & Operations Research 41, 12–23.

Parragh, S. N., 2011. Introducing heterogeneous users and vehicles into mod-
els and algorithms for the dial-a-ride problem. Transportation Research
Part C: Emerging Technologies 19 (5), 912–930.

Parragh, S. N., Doerner, K. F., Hartl, R. F., 2008. A survey on pickup and
delivery problems. Journal für Betriebswirtschaft 58 (2), 81–117.

Parragh, S. N., Doerner, K. F., Hartl, R. F., 2010. Variable neighborhood
search for the dial-a-ride problem. Computers & Operations Research
37 (6), 1129–1138.

Parragh, S. N., Schmid, V., 2013. Hybrid column generation and large neigh-
borhood search for the dial-a-ride problem. Computers & Operations Re-
search 40 (1), 490–497.

Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems.
Computers & Operations Research 34 (8), 2403–2435.

Qu, Y., Bard, J. F., 2013. The heterogeneous pickup and delivery prob-
lem with configurable vehicle capacity. Transportation Research Part C:
Emerging Technologies 32, 1–20.

Qu, Y., Bard, J. F., 2015. A Branch-and-Price-and-Cut Algorithm for Het-
erogeneous Pickup and Delivery Problems with Configurable Vehicle Ca-
pacity. Transportation Science 49 (2), 254–270.

Rochat, Y., Taillard, É. D., 1995. Probabilistic diversification and intensifica-
tion in local search for vehicle routing. Journal of heuristics 1 (1), 147–167.

47

TR-DISP-002 September 2017

Ropke, S., Cordeau, J.-F., 2009. Branch and cut and price for the pickup
and delivery problem with time windows. Transportation Science 43 (3),
267–286.

Ropke, S., Cordeau, J.-F., Laporte, G., 2007. Models and branch-and-cut
algorithms for pickup and delivery problems with time windows. Networks
49 (4), 258–272.

Ropke, S., Pisinger, D., Nov. 2006. An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows. Trans-
portation Science 40 (4), 455–472.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G., 2000. Record
breaking optimization results using the ruin and recreate principle. Journal
of Computational Physics 159 (2), 139–171.

Shaw, P., 1998. Using constraint programming and local search methods to
solve vehicle routing problems. In: International Conference on Principles
and Practice of Constraint Programming. Springer, pp. 417–431.

Subramanian, A., Uchoa, E., Ochi, L. S., 2013. A hybrid algorithm for a class
of vehicle routing problems. Computers & Operations Research 40 (10),
2519 – 2531.

Taillard, E. D., 1999. A heuristic column generation method for the hetero-
geneous fleet VRP. RAIRO-Operations Research 33 (1), 1–14.

Tang, J., Kong, Y., Lau, H., Ip, A. W. H., 2010. A note on “Efficient feasibil-
ity testing for dial-a-ride problems”. Operations Research Letters 38 (5),
405–407.

Toth, P., Vigo, D., 1997. Heuristic algorithms for the handicapped persons
transportation problem. Transportation Science 31 (1), 60–71.

48

