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Approximate and exact controllability of the continuity

equation with a localized vector field∗

Michel Duprez† Morgan Morancey‡ Francesco Rossi§

February 20, 2019

Abstract

We study controllability of a Partial Differential Equation of transport type, that
arises in crowd models. We are interested in controlling it with a control being a
vector field, representing a perturbation of the velocity, localized on a fixed control
set. We prove that, for each initial and final configuration, one can steer approxi-
mately one to another with Lipschitz controls when the uncontrolled dynamics allows
to cross the control set. We also show that the exact controllability only holds for
controls with less regularity, for which one may lose uniqueness of the associated
solution.

1 Introduction

In recent years, the study of systems describing a crowd of interacting autonomous agents
has drawn a great interest from the control community (see e.g. the Cucker-Smale model
[22]). A better understanding of such interaction phenomena can have a strong impact
in several key applications, such as road traffic and egress problems for pedestrians. For
a few reviews about this topic, see e.g. [6, 7, 12, 21, 30, 31, 36, 40].

Beside the description of interactions, it is now relevant to study problems of control
of crowds, i.e. of controlling such systems by acting on few agents, or on the crowd
localized in a small subset of the configuration space. The nature of the control problem
relies on the model used to describe the crowd. Two main classes are widely used.

In microscopic models, the position of each agent is clearly identified; the crowd
dynamics is described by a large dimensional ordinary differential equation, in which
couplings of terms represent interactions. For control of such models, a large literature is
available from the control community, under the generic name of networked control (see
e.g. [11, 32, 33]). There are several control applications to pedestrian crowds [26, 34]
and road traffic [13, 29].
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In macroscopic models, instead, the idea is to represent the crowd by the spatial
density of agents; in this setting, the evolution of the density solves a partial differential
equation of transport type. Nonlocal terms (such as convolution) model the interactions
between the agents. In this article, we focus on this second approach, i.e. macroscopic
models. To our knowledge, there exist few studies of control of this family of equations. In
[38], the authors provide approximate alignment of a crowd described by the macroscopic
Cucker-Smale model [22]. The control is the acceleration, and it is localized in a control
region ω which moves in time. In a similar situation, a stabilization strategy has been
established in [14, 15], by generalizing the Jurdjevic-Quinn method to partial differential
equations. Other forms of control of transport equations with non-local terms have been
described in [19, 20] with boundary control. In [17] the authors study optimal control
of transport equations with non-local terms in which the control is the non-local term
itself.

A different approach is given by mean-field type control, i.e. control of mean-field
equations and of mean-field games modeling crowds. See e.g. [1, 2, 16, 27]. In this case,
problems are often of optimization nature, i.e. the goal is to find a control minimizing a
given cost. In this article, we are mainly interested in controllability problems, for which
mean-field type control approaches seem not adapted.

In this article, we study a macroscopic model, thus the crowd is represented by its
density, that is a time-evolving measure µptq defined for positive times t on the space
R
d (d ě 1). The natural (uncontrolled) velocity field for the measure is denoted by

v : Rd Ñ R
d, being a vector field assumed Lipschitz and uniformly bounded.

The control acts on the velocity field in a fixed portion ω of the space, which will
be a nonempty open bounded connected subset of Rd. The admissible controls
are thus functions of the form 1ωu : Rd ˆ R

` Ñ R
d which support in the space variable

is included inside ω. We will discuss later the regularity of such control: nevertheless,
in the classical approach such control is a Lipschitz function with respect to the space
variable in the whole space R

d.
We then consider the following linear transport equation

#
Btµ` ∇ ¨ ppv ` 1ωuqµq “ 0 in R

d ˆ R
`,

µp0q “ µ0 in R
d,

(1)

where µ0 is the initial data (initial configuration of the crowd) and the function u is
an admissible control. The function v ` 1ωu represents the velocity field acting on µ.
System (1) is a first simple approximation for crowd modelling, since the uncontrolled
vector field v is given, and it does not describe interactions between agents. Nevertheless,
it is necessary to understand controllability properties for such simple equation as a first
step, before dealing with velocity fields depending on the crowd itself. Thus, in a future
work, we will study controllability of crowd models with a nonlocal term vrµs, based on
the linear results presented here.

Even though System (1) is linear, the control acts on the velocity, thus the control
problem is nonlinear, which is one of the main difficulties in this study.

The problem presented here has been already studied in very particular cases, when
the control acts everywhere. For example, in [35], the author studies the problem of
finding a homeomorphism sending a volume form (in our language, a measure that is ab-
solutely continuous with respect to the Lebesgue measure with C8 density) to another.
In [23], the authors study the same problem on a manifold with boundary, searching for a
homeomorphism sending a volume form to another keeping the points on the boundary.
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Finally, in [9], a parabolic equation is studied: beside the uncontrolled Laplacian term, a
transport term is added. The presence of the Laplacian introduces more regularity with
respect to our problem, that indeed allows to use solutions of stochastic ODEs instead of
classical ones. For this reason, this article is the first characterizing controllability prop-
erties of the transport equation with localized controls on the velocity field in presence
of an uncontrolled vector field v acting as a drift.

The goal of this work is to study the control properties of System (1). We now recall
the notion of approximate controllability and exact controllability for System (1). We
say that System (1) is approximately controllable from µ0 to µ1 on the time interval r0, T s
if we can steer the solution to System (1) at time T as close to µ1 as we want with an
appropriate control 1ωu. Similarly, we say that System (1) is exactly controllable from
µ0 to µ1 on the time interval r0, T s if we can steer the solution to System (1) at time T
exactly to µ1 with an appropriate control 1ωu. In Definition 5 below, we give a formal
definition of the notion of approximate controllability in terms of Wasserstein distance.

The main results of this article show that approximate and exact controllability de-
pend on two main aspects: first, from a geometric point of view, the uncontrolled vector
field v needs to send the support of µ0 to ω forward in time and the support of µ1 to ω
backward in time. This idea is formulated in the following condition:

Condition 1.1 (Geometric Condition). Let µ0, µ1 be two probability measures on R
d

satisfying:

(i) For each x0 P supppµ0q, there exists t0 ą 0 such that Φv
t0

px0q P ω, where Φv
t is the

flow associated to v, i.e. the solution to the Cauchy problem

#
9xptq “ vpxptqq for a.e. t ą 0,

xp0q “ x0.

(ii) For each x1 P supppµ1q, there exists t1 ą 0 such that Φv
´t1

px1q P ω.

This geometric aspect is illustrated in Figure 1.

supppµ0q
ω supppµ1q

v

Figure 1: Geometric Condition 1.1.

Remark 1. Condition 1.1 is the minimal one that we can expect to steer any initial
condition to any target. Indeed, if there exists a point x0 of the interior of supppµ0q for
which the first item of the Geometrical Condition 1.1 is not satisfied, then there exists
a part of the population of the measure µ0 that never intersects the control region, thus
we cannot act on it.
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The second aspect that we want to highlight is the following: The measures µ0 and
µ1 need to be sufficiently regular with respect to the flow generated by v ` 1ωu. Three
cases are particularly relevant:

a) Controllability with Lipschitz controls
If we impose the classical Carathéodory condition of 1ωu being Lipschitz in space,

measurable in time and uniformly bounded, then the flow Φv`1ωu
t is an homeomorphism

(see [10, Th. 2.1.1]). As a result, one can expect approximate controllability only, since
for general measures there exists no homeomorphism sending one to another. For more
details, see Section 4.1. We then have the following result:

Theorem 1.1 (Main result - Controllability with Lipschitz control). Let µ0, µ1 be two
probability measures on R

d compactly supported, absolutely continuous with respect to the
Lebesgue measure and satisfying Condition 1.1. Then there exists T such that System (1)
is approximately controllable on the time interval r0, T s from µ0 to µ1 with a control
1ωu : Rd ˆ R

` Ñ R
d uniformly bounded, Lipschitz in space and measurable in time.

We give a proof of Theorem 1.1 in Section 3. This proof is a constructive one and
strongly uses the fact that the velocity vector field v is autonomous, i.e. not dependent
on time. Moreover, it is clear that the extension of our work to time dependent velocity
vector fields should require a non-trivial modification of the Geometric Condition 1.1. For
the initial measure µ0 (forward trajectory) the modification is simply the replacement
of the flow of the autonomous vector field with the flow of the non-autonomous one,
starting from t “ 0. Instead, for the final measure µ1 (backward trajectories) one needs
to consider the non-autonomous vector field starting from the final time T , which is an
unknown of the problem.

Remark 2. Due to the finite speed of propagation outside of ω, approximate controllability
cannot hold at arbitrary small time. The study of this minimal controllability time is
carried on in the forthcoming paper [25].

Remark 3. If one removes the assumption of boundedness of v, replacing it with other
conditions ensuring boundedness of the flow for each time (e.g. by imposing sub-linear
growth), then the results presented here still hold. Indeed, it is sufficient to observe that
we mainly deal with properties of the flow, that are preserved in this case.

If one instead removes the assumption of boundedness of the supports of µ0, µ1 keeping
boundedness of v, it is clear that controllability does not hold in general. Indeed, one
needs an infinite time to steer the whole mass of µ0 to the mass of µ1.

Finally, if one removes both boundedness of the supports and boundedness of the
velocity v, it is possible to find examples of approximate controllability in finite time.
For example, in R

` with ω “ R
`, consider the vector field vpxq “ x2, for which the flow is

Φv
t px0q “ x0

1´tx0
, defined only for t ă x´1

0 . Thus, one can verify that µ0 “ 1r0,1s is sent to

µ1 “ 1
px`1q21r0,`8q at time T “ 1. Nevertheless, the problem under such less restrictive

hypotheses seems harder to study in its generality, even though adaptations of the method
presented here seem possible. Moreover, our applications to crowd modeling and control
always assume finite speed of propagation and measures with bounded support.

b) Controllability with vector fields inducing maximal regular flows
To hope to obtain exact controllability of System (1) at least for absolutely continuous

measures, it is then necessary to search among controls 1ωu with less regularity. A
weaker condition on the regularity of the velocity field for the well-posedness of System
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(1) has been recently introduced by Ambrosio-Colombo-Figalli in [5], extending previous
results by Ambrosio [3] and DiPerna-Lions [24]. Examples of vector fields satisfying such
condition are Sobolev vector fields [24], and BV (bounded variation) vector fields with
locally integrable divergence [3]. Thus, if we choose the admissible controls satisfying the
setting of [5], it is not necessary that there exists an homeomorphism between µ0 and µ1.

For all such theories, given a vector field w, a suitable concept of flow Φw
t is introduced,

such as the maximal regular flow [5], generalizing the regular Lagrangian flow of [3]. Even
though such flow does not enjoy all the properties of flows of Lipschitz vector fields, a
common requirement is that the Lebesgue measure L restricted to an open bounded set
A is transported to a measure bounded from above by a multiple of the Lebesgue measure
itself. In other terms, there exists of a constant C ą 0 such that for all t P r0, T s it holds

Φw
t #L|A ď CL (2)

We will show in Section 4.1 that this condition implies the non-existence of controls
exactly steering one absolutely continuous measure to another, for specific choices of
µ0, µ1. Thus, even this setting does not allow to yield exact controllability.

It is also interesting to observe that Property (2) is often required as a necessary
condition for a reasonable generalization of the standard theory of Ordinary Differential
Equations. Indeed, for Lipschitz vector fields w, the constant C is given by eLippwqt.
Then, in DiPerna-Lions such condition is required in [24, Eq. (7)] on both sides, while in
Ambrosio it is required in [3, Eq (6.1)]. In this sense, the non-exact controllability seems
a drawback of a desired condition for an even very general theory of Ordinary Differential
Equations, rather than a goal to be reached.

c) Controllability with L2 controls
We then consider an even larger class of controls, that are general Borel vector fields.

In this setting, we have exact controllability under the Geometric Condition 1.1 for any
pairs of measures, even not absolutely continuous. Moreover, we prove that one can
restrict the set of admissible controls to those that are L2 with respect to the measure
itself, i.e. to controls satisfying

ż 1

0

ż

Rd

|uptq|2dµptqdt ă 8. (3)

The main drawback is that, in this less regular setting, System (1) is not necessarily
well-posed. In particular, one has not necessarily uniqueness of the solution. For this
reason, one needs to describe solutions to System (1) as pairs p1ωu, µq, where µ is one
among the admissible solutions with control 1ωu.

Theorem 1.2 (Main result - Controllability with L2 control). Let µ0, µ1 be two probabil-
ity measures on R

d compactly supported and satisfying Condition 1.1. Then, there exists
T ą 0 such that System (1) is exactly controllable on the time interval r0, T s from µ0

to µ1 in the following sense: there exists a couple p1ωu, µq composed of a L2 vector field
1ωu : Rd ˆ R

` Ñ R
d and a time-evolving measure µ being weak solution to System (1)

(see Definition 3) and satisfying
µpT q “ µ1.

A proof of Theorem 1.2 is given in Section 4.

We now resume the main results of the article in the following table.
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If µ0, µ1 satisfy the Geometric Condition 1.1, then

µ0, µ1

absolutely
continuous

• approx. controllability with Lipschitz con-
trol

• NO exact controllability with control in-
ducing maximal regular flows

µ0, µ1

general
measures

exact controllability with L2 control

This paper is organised as follows. In Section 2, we recall basic properties of the
Wasserstein distance and the continuity equation. Section 3 is devoted to the proof of
Theorem 1.1, i.e. the approximate controllability of System (1) with a Lipschitz localized
vector field. Finally, in Section 4, we first show that exact controllability does not hold
for Lipschitz controls or even vector fields inducing a maximal regular flow; we also prove
Theorem 1.2, i.e. exact controllability of System (1) with a L2 localized vector field.

2 The Wasserstein distance and the continuity equation

In this section, we recall the definition and some properties of the Wasserstein distance
and the continuity equation, which will be used all along this paper. We denote by PcpR

dq
the space of probability measures in R

d with compact support and for µ, ν P PcpR
dq. We

also introduce the classical partial ordering of measures: µ ď ν if A being ν-measurable
implies A being µ-measurable and µpAq ď νpAq.

We denote by Πpµ, νq the set of transference plans from µ to ν, i.e. the probability
measures on R

d ˆ R
d satisfying

ż

Rd

dπpx, ¨q “ dµpxq and

ż

Rd

dπp¨, yq “ dνpyq.

Definition 1. Let p P r1,8q and µ, ν P PcpR
dq. Define

Wppµ, νq “ inf
πPΠpµ,νq

$
’’&
’’%

¨
˚̋

ĳ

RdˆRd

|x ´ y|pdπ

˛
‹‚

1{p
,
//.
//-
. (4)

The quantity is called the Wasserstein distance.

This is the idea of optimal transportation, consisting in finding the optimal way to
transport mass from a given measure to another. For a thorough introduction, see e.g.
[41].

We denote by Γ the set of Borel maps γ : Rd Ñ R
d. We now recall the definition of

the push-forward of a measure:

6
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Definition 2. For a γ P Γ, we define the push-forward γ#µ of a measure µ of Rd as
follows:

pγ#µqpEq :“ µpγ´1pEqq,

for every subset E such that γ´1pEq is µ-measurable.

We denote by “AC measures” the measures which are absolutely continuous with
respect to the Lebesgue measure and by Pac

c pRdq the subset of PcpR
dq of AC measures.

On Pac
c pRdq, the Wasserstein distance can be reformulated as follows:

Property 2.1 (see [41, Chap. 7]). Let p P r1,8q and µ, ν P Pac
c pRdq. It holds

Wppµ, νq “ inf
γPΓ

#ˆż

Rd

|γpxq ´ x|pdµ

˙1{p

: γ#µ “ ν

+
. (5)

The Wasserstein distance satisfies some useful properties:

Property 2.2 (see [41, Chap. 7]). Let p P r1,8q.

(i) The Wasserstein distance Wp is a distance on PcpR
dq.

(ii) The topology induced by the Wasserstein distance Wp on PcpR
dq coincides with the

weak topology.

(iii) For all µ, ν P Pac
c pRdq, the infimum in (5) is achieved by at least one minimizer.

The Wasserstein distance can be extended to all pairs of measures µ, ν compactly
supported with the same total mass µpRdq “ νpRdq ‰ 0, by the formula

Wppµ, νq “ µpRdq1{pWp

ˆ
µ

µpRdq
,

ν

νpRdq

˙
.

In the rest of the paper, the following properties of the Wasserstein distance will be
also helpful:

Property 2.3 (see [37, 41]). Let µ, ρ, ν, η be four positive measures compactly supported
satisfying µpRdq “ νpRdq and ρpRdq “ ηpRdq.

(i) For each p P r1,8q, it holds

W p
p pµ ` ρ, ν ` ηq ď W p

p pµ, νq `W p
p pρ, ηq. (6)

(ii) For each p1, p2 P r1,8q with p1 ď p2, it holds

#
Wp1pµ, νq ď Wp2pµ, νq,

Wp2pµ, νq ď diampXq1´p1{p2W
p1{p2
p1 pµ, νq,

(7)

where X contains the supports of µ and ν.

We now recall the definition of the continuity equation and the associated notion of
weak solutions:

7
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Definition 3. Let T ą 0 and µ0 be a measure in R
d. We said that a pair pµ,wq composed

with a measure µ in R
d ˆ r0, T s and a vector field w : Rd ˆ R

` Ñ R
d satisfying

ż T

0

ż

Rd

|wptq| dµptqdt ă 8

is a weak solution to the system, called the continuity equation,

#
Btµ` ∇ ¨ pwµq “ 0 in R

d ˆ r0, T s,

µp0q “ µ0 in R
d,

(8)

if for every continuous bounded function ξ : Rd Ñ R, the function t ÞÑ
ş
Rd ξ dµptq is

absolutely continuous with respect to t and for all ψ P C8
c pRdq, it holds

d

dt

ż

Rd

ψ dµptq “

ż

Rd

x∇ψ,wptqy dµptq

for a.e. t and µp0q “ µ0.

Note that t ÞÑ µptq is continuous for the weak convergence, it then make sense to
impose the initial condition µp0q “ µ0 pointwisely in time. Before stating a result of
existence and uniqueness of solutions for the continuity equation, we first recall the
definition of the flow associated to a vector field.

Definition 4. Let w : RdˆR
` Ñ R

d be a vector field being uniformly bounded, Lipschitz
in space and measurable in time. We define the flow associated to the vector field w as
the application px0, tq ÞÑ Φw

t px0q such that, for all x0 P R
d, t ÞÑ Φw

t px0q is the solution to
the Cauchy problem #

9xptq “ wpxptq, tq for a.e. t ě 0,

xp0q “ x0.

The following property of the flow will be useful all along the present paper:

Property 2.4 (see [37]). Let µ, ν P PcpR
dq and w : R

d ˆ R Ñ R
d be a vector field

uniformly bounded, Lipschitz in space and measurable in time with a Lipschitz constant
equal to L. For each t P R and p P r1,8q, it holds

WppΦw
t #µ,Φ

w
t #νq ď e

pp`1q
p

L|t|
Wppµ, νq. (9)

Similarly, let µ P Pac
c pRdq and w1, w2 : Rd ˆ R Ñ R

d be two vector fields uniformly
bounded, Lipschitz in space with a Lipschitz constant equal to L and measurable in time.
Then, for each t P R and p P r1,`8q, it holds

WppΦw1

t #µ,Φw2

t #µq ď eL|t|{p e
L|t| ´ 1

L
}w1 ´ w2}C0 . (10)

We now recall a standard result for the continuity equation:

Theorem 2.1 (see [41, Th. 5.34]). Let T ą 0, µ0 P PcpR
dq and w a vector field

uniformly bounded, Lipschitz in space and measurable in time. Then, System (8) admits
a unique solution µ in C0pr0, T s;PcpRdqq, where PcpR

dq is equipped with the weak topology.
Moreover:

(i) If µ0 P Pac
c pRdq, then the solution µ to (8) belongs to C0pr0, T s;Pac

c pRdqq.

(ii) We have µptq “ Φw
t #µ

0 for all t P r0, T s.

8
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We now recall the precise notions of approximate controllability and exact controlla-
bility for System (1):

Definition 5. We say that:

‚ System (1) is approximately controllable from µ0 to µ1 on the time interval
r0, T s if for each ε ą 0 there exists a control 1ωu such that the corresponding
solutions µ to System (1) satisfies

Wppµ1, µpT qq ď ε. (11)

‚ System (1) is exactly controllable from µ0 to µ1 on the time interval r0, T s if
there exists a control 1ωu such that the corresponding solution to System (1) is
equal to µ1 at time T .

It is interesting to remark that, by using properties (7) of the Wasserstein distance,
estimate (11) can be replaced by:

W1pµ1, µpT qq ď ε.

Thus, in this work, we study approximate controllability by considering the distance W1

only.

Remark 4. One can be interested in proving approximate controllability for a smaller set
of controls, for example of class Ck in the space variable with some k ě 1. Due to the
estimate (10), the result of Theorem 1.1 still holds in this case, by density of Ck functions
in the space of Lipschitz function with respect to the C0 norm. Higher regularity in the
time variable can be achieved too with the same techniques.

A careful inspection of our proof shows that controls ensuring approximate control-
lability are not only measurable in time, but they have a finite number of discontinuities
in time, that can be smoothened in a small interval of size τ . The introduced error can
be arbitrarily small, by using the fact that limτÑ0 e

Lτ{ppeLτ ´ 1q “ 0.

3 Approximate controllability with a localized Lipschitz

control

In this section, we study approximate controllability of System (1) with localized Lip-
schitz controls. More precisely, in Sections 3.1, we consider the case where the open
connected control subset ω contains the support of both µ0 and µ1. We then prove
Theorem 1.1 in Section 3.2.

3.1 Approximate controllability with a Lipschitz control

In this section, we prove approximate controllability of System (1) with a Lipschitz
control, when the open connected control subset ω contains the support of both µ0 and
µ1. Without loss of generality, we can assume that the vector field v is identically zero
by replacing u with u´ v in the control set ω.

We then study approximate controllability of system

#
Btµ` divpuµq “ 0 in R

d ˆ R
`,

µp0q “ µ0 in R
d.

(12)

9



Controllability of the continuity equation M. Duprez, M. Morancey, F. Rossi

Proposition 3.1. Let µ0, µ1 P Pac
c pRdq compactly supported in ω. Then, for all T ą 0,

System (12) is approximately controllable on the time interval r0, T s from µ0 to µ1 with
a control u : Rd ˆ R

` Ñ R
d uniformly bounded, Lipschitz in space and measurable in

time. Moreover, the solution µ to System (12) satisfies

supppµptqq Ă ω,

for all t P r0, T s.

Proof of Proposition 3.1. We assume that d :“ 2, but the reader will see that the proof
can be clearly adapted to dimension one or to any other space dimension. In view to
simplify the computations, we suppose that T :“ 1 and supppµiq Ă p0, 1q2 ĂĂ ω for
i “ 1, 2.

We first partition p0, 1q2. Let n P N
˚, consider a0 :“ 0, b0 :“ 0 and define the points

ai, bi for all i P t1, ..., nu by induction as follows: suppose that for a given i P t0, ..., n´1u
the points ai and bi are defined, then the points ai`1 and bi`1 are the smallest values
such that ż

pai,ai`1qˆR

dµ0 “
1

n
and

ż

pbi,bi`1qˆR

dµ1 “
1

n
.

Again, for each i P t0, ..., n ´ 1u, we consider ai,0 :“ 0, bi,0 :“ 0 and supposing that for
a given j P t0, ..., n ´ 1u the points ai,j and bi,j are already defined, ai,j`1 and bi,j`1 are
the smallest values such that

ż

Aij

dµ0 “
1

n2
and

ż

Bij

dµ1 “
1

n2
,

where Aij :“ pai, ai`1q ˆ paij , aipj`1qq and Bij :“ pbi, bi`1q ˆ pbij, bipj`1qq. Since µ0 and
µ1 have a mass equal to 1 and are supported in p0, 1q2, then an, bn ď 1 and ai,n, bi,n ď 1
for all i P t0, ..., n ´ 1u. We give in Figure 2 an example of such partition.

x2

x1
a0 a1

a01

a02

...
...

a0pn´2q

a0pn´1q

a0n

a2

a11

a12

...

a1pn´2q

a1pn´1q

1

n

¨ ¨ ¨

¨ ¨ ¨

ai

ai1

...

aij

aipj`1q

...

1{n2

aipn´1q

ai`1 ¨ ¨ ¨

¨ ¨ ¨

an´2

apn´2q1

apn´2q2

...

apn´2qpn´2q

apn´2qpn´1q

an´1

apn´1q1

apn´1q2

...

apn´1qpn´2q

apn´1qpn´1q

an

Figure 2: Example of a partition for µ0.

If one aims to define a vector field sending each Aij to Bij , then some shear stress
is naturally introduced, as described in Remark 5. To overcome this problem, we first

10
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define sets rAij ĂĂ Aij and rBij ĂĂ Bij for all i, j P t0, ..., n´ 1u. We then send the mass

of µ0 from each rAij to rBij, while we do not control the mass contained in Aijz rAij . More
precisely, for all i, j P t0, ..., n´1u, we define, as in Figure 3, a´

i , a
`
i , a

´
ij , a

`
ij the smallest

values such that ż

pai,a
´
i

qˆpaij ,aipj`1qq
dµ0 “

ż

pa`
i
,ai`1qˆpaij ,aipj`1qq

dµ0 “
1

n3

and ż

pa´
i
,a`

i
qˆpaij ,a

´
ij

q
dµ0 “

ż

pa´
i
,a`

i
qˆpa`

ij
,aipj`1qq

dµ0 “
1

n
ˆ

ˆ
1

n2
´

2

n3

˙
.

We similarly define b`
i , b

´
i , b

`
ij , b

´
ij and finally define

1
n

ˆ
`

1
n2 ´ 2

n3

˘

1

n3

ai a´
i a`

i
ai`1

aij

a´
ij

a`
ij

aipj`1q

rAij

Figure 3: Example of cell.

rAij :“ pa´
i , a

`
i q ˆ pa´

ij, a
`
ijq and rBij :“ pb´

i , b
`
i q ˆ pb´

ij , b
`
ijq.

The goal is to build a solution to System (12) such that the corresponding flow Φu
t

satisfies
Φu
T p rAijq “ rBij, (13)

for all i, j P t0, ..., n´ 1u. We observe that we do not take into account the displacement
of the mass contained in Aijz rAij . We will show that the mass of the corresponding term
tends to zero when n goes to infinity. The rest of the proof is divided into two steps.
In a first step, we build a flow satisfying (13), then the corresponding vector field. In a
second step, we compute the Wasserstein distance between µ1 and µpT q, showing that it
converges to zero when n goes to infinity. Step 1: We first build a flow satisfying (13).
We recall that T :“ 1. For each i P t0, ..., n ´ 1u, we denote by c´

i and c`
i the linear

functions equal to a´
i and a`

i at time t “ 0 and equal to b´
i and b`

i at time t “ T “ 1,
respectively, i.e. the functions defined for all t P r0, T s by:

c´
i ptq “ pb´

i ´ a´
i qt ` a´

i and c`
i ptq “ pb`

i ´ a`
i qt ` a`

i .

Similarly, for all i, j P t0, ..., n ´ 1u, we denote by c´
ij and c`

ij the linear functions equal

to a´
ij and a`

ij at time t “ 0 and equal to b´
ij and b`

ij at time t “ T “ 1, respectively, i.e.
the functions defined for all t P r0, T s by:

c´
ijptq “ pb´

ij ´ a´
ijqt` a´

ij and c`
ijptq “ pb`

ij ´ a`
ijqt` a`

ij .

Consider the application being the following linear combination of c´
i , c

`
i and c´

ij , c
`
ij on

rAij , i.e.

xpx0, tq :“

ˆ
x1px0, tq
x2px0, tq

˙
“

¨
˚̊
˚̋

a`
i ´ x01
a`
i ´ a´

i

c´
i ptq `

x01 ´ a´
i

a`
i ´ a´

i

c`
i ptq

a`
ij ´ x02

a`
ij ´ a´

ij

c´
ijptq `

x02 ´ a´
ij

a`
ij ´ a´

ij

c`
ijptq

˛
‹‹‹‚, (14)

11
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where x0 “ px01, x
0
2q P rAij . Let us prove that an extension of the application px0, tq ÞÑ

xpx0, tq is a flow associated to a vector field u. After some computations, we obtain

$
’&
’%

dx1

dt
px0, tq “ αiptqx1px0, tq ` βiptq @t P r0, T s,

dx2

dt
px0, tq “ αijptqx2px0, tq ` βijptq @t P r0, T s,

where for all t P r0, T s,

$
’’’&
’’’%

αiptq “
b`
i ´ b´

i ` a´
i ´ a`

i

c`
i ptq ´ c´

i ptq
, βiptq “

a`
i b

´
i ´ a´

i b
`
i

c`
i ptq ´ c´

i ptq
,

αijptq “
b`
ij ´ b´

ij ` a´
ij ´ a`

ij

c`
ijptq ´ c´

ijptq
, βijptq “

a`
ijb

´
ij ´ a´

ijb
`
ij

c`
ijptq ´ c´

ijptq
.

The last quantities are well defined since for all i, j P t0, ..., n ´ 1u and t P r0, T s

"
|c`
i ptq ´ c´

i ptq| ě maxt|a`
i ´ a´

i |, |b`
i ´ b´

i |u,
|c`
ijptq ´ c´

ijptq| ě maxt|a`
ij ´ a´

ij|, |b
`
ij ´ b´

ij|u.

For all t P r0, T s, consider the set

rCijptq :“ pc´
i ptq, c`

i ptqq ˆ pc´
ijptq, c`

ijptqq.

We remark that rCijp0q “ rAij and rCijpT q “ rBij. On

rCij :“ tpx, tq : t P r0, T s, x P rCijptqu,

we then define the vector field u by

"
u1px, tq “ αiptqx1 ` βiptq,
u2px, tq “ αijptqx2 ` βijptq,

for all px, tq P rCij (x “ px1, x2q). Notice that the sets rCij do not intersect. Thus, we

extend u by a uniform bounded C8 function outside Yij
rCij , then u is a C8 function and

it satisfies supppuq Ă ω.
Then, System (1) admits an unique solution and the flow on rCij is given by (14).
Step 2: We now prove that the refinement of the grid provides convergence to the

target µ1, i.e.
W1pµ1, µpT qq ÝÑ

nÑ8
0.

We remark that
ż

rBij

dµpT q “

ż

rBij

dµ1 “
1

n2
´

2

n3
´

2

n

ˆ
1

n2
´

2

n3

˙
“

pn´ 2q2

n4
.

Hence, by defining
R :“ p0, 1q2 z

ď

ij

rBij ,

we also have ż

R

dµpT q “

ż

R

dµ1 “ 1 ´
pn´ 2q2

n2
.

12
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Using (6), it holds

W1pµ1, µpT qq ď
nř

i,j“1

W1pµ1
| rBij

, µpT q| rBij
q `W1pµ1|R, µpT q|Rq. (15)

We now estimate each term in the right-hand side of (15). Since we deal with AC
measures, using Properties 2.2,

there exist measurable maps γij : R
2 Ñ R

2, for all i, j P t0, ..., n´1u, and γ : R2 Ñ R
2

such that
$
’’’’&
’’’’%

γij#pµ1
| rBij

q “ µpT q| rBij
,

W1pµ1
| rBij

, µpT q
| rBij

q

“

ż

rBij

|x´ γijpxq|dµ1pxq

and

$
’’’&
’’’%

γ#pµ1|Rq “ µpT q|R,

W1pµ1|R, µpT q|Rq

“

ż

R

|x´ γpxq|dµ1pxq.

In the first term in the right hand side of (15), observe that γij moves masses inside rBij

only. Thus, for all i, j P t0, ..., n ´ 1u, using the triangle inequality,

W1pµ1
| rBij

, µpT q
| rBij

q “

ż

rBij

|x ´ γijpxq|dµ1pxq

ď rpb`
i ´ b´

i q ` pb`
ij ´ b´

ijqs

ż

rBij

dµ1pxq ď pb`
i ´ b´

i ` b`
ij ´ b´

ijq
pn ´ 2q2

n4
.

(16)

For the second term in the right-hand side of (15), observe that γ moves a small mass in
the bounded set p0, 1q. Thus it holds

W1pµ1|R, µpT q|Rq “

ż

R

|x´ γpxq|dµ1pxq ď 2

ˆ
1 ´

pn´ 2q2

n2

˙
“ 8

n´ 1

n2
. (17)

Combining (15), (16) and (17), we obtain

W1pµ1, µpT qq ď

˜
nř

i,j“1

pb`
i ´ b´

i ` b`
ij ´ b´

ijq
pn´ 2q2

n4

¸
` 8

n´ 1

n2

ď 2n
pn´ 2q2

n4
` 8

n´ 1

n2
ÝÑ
nÑ8

0.

Remark 5. It is not possible in general to build a Lipschitz vector field sending directly
each Aij to Bij using the strategy developed in the proof of Proposition 3.1. Indeed, we
would obtain discontinuous velocities on the lines ci. Figure 4 illustrates this phenomenon
in the case n “ 2.

3.2 Approximate controllability with a localized regular control

This section is devoted to prove Theorem 1.1: we aim to prove approximate controlla-
bility of System (1) with a Lipschitz localized control. This means that we remove the
constraints supppµ0q Ă ω, supppµ1q Ă ω and v :“ 0, that we used in Section 3.1. On the
other side, we impose Condition 1.1. Before the main proof, we need three useful results.
First of all, we give a consequence of Condition 1.1:

13
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a0 a1 a2
a00 “ a10

a11

a01

a02 “ a12

b0 b1 b2
b00 “ b10

b11

b01

b02 “ b12

Figure 4: Shear stress (left: µ0, right: µ1)

Condition 3.1. There exist two real numbers T ˚
0 , T

˚
1 ą 0 and a nonempty open set

ω0 ĂĂ ω such that

(i) For each x0 P supppµ0q, there exists t0 P r0, T ˚
0 s such that Φv

t0
px0q P ω0, where Φv

t

is the flow associated to v.

(ii) For each x1 P supppµ1q, there exists t1 P r0, T ˚
1 s such that Φv

´t1
px1q P ω0.

Lemma 3.1. If Condition 1.1 is satisfied for µ0, µ1 P PcpR
dq, then Condition 3.1 is

satisfied too.

Proof. We use a compactness argument. Let µ0 P PcpR
dq and assume that Condition

1.1 holds. Let x0 P supppµ0q. Using Condition 1.1, there exists t0px0q ą 0 such that
Φv
t0px0qpx

0q P ω. Choose rpx0q ą 0 such that Brpx0qpΦ
v
t0px0qpx

0qq ĂĂ ω, where Brpx0q

denotes the open ball of radius r ą 0 centered at point x0 in R
d. Such rpx0q exists, since

ω is open. By continuity of the application x1 ÞÑ Φv
t0px0qpx

1q (see [10, Th. 2.1.1]), there

exists r̂px0q such that

x1 P Br̂px0qpx
0q ñ Φv

t0px0qpx
1q P Brpx0qpΦ

v
t0px0qpx

0qq.

Since µ0 is compactly supported, we can find a set tx01, ..., x
0
N0

u Ă supppµ0q such that

supppµ0q Ă
N0ď

i“1

Br̂px0

i qpx
0
i q.

We similarly build a set tx11, ..., x
1
N1

u Ă supppµ1q. Thus Condition 3.1 is satisfied for

T ˚
k :“ maxttkpxki q : i P t1, ..., Nkuu,

with k “ 0, 1 and

ω0 :“

˜
N0ď

i“1

Brpx0

i qpΦ
v
t0px0

i qpx
0
i qq

¸
ď

˜
N1ď

i“1

Brpx1

i qpΦ
v
´t1px1

i qpx
1
i qq

¸
ĂĂ ω.

The second useful result is the following proposition, showing that we can store a
large part of the mass of µ0 in ω, under Condition 3.1.

14
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Proposition 3.2. Let µ0 P Pac
c pRdq satisfying the first item of Condition 3.1. Then, for

all ε ą 0, there exists a space-dependent vector field 1ωu Lipschitz and uniformly bounded
and a Borel set A Ă R

d such that

µ0pAq “ ε and supppΦv`1ωu

T˚
0

#µ0|Acq Ă ω. (18)

Proof. For each k P N
˚, we denote by ωk the closed set defined by

ωk :“ tx0 P R
d : dpx0, ωc

0q ě 1{ku

and a cutoff function θk P C8pRdq satisfying

$
&
%

0 ď θk ď 1,
θk “ 1 in ωc

0,

θk “ 0 in ωk.

For all x0 P supppµ0q, we define

t0px0q :“ inftt P R
` : Φv

t px0q P ω0u and tkpx0q :“ inftt P R
`
: Φv

t px0q P ωku.

For all k P N
˚, we consider

uk :“ pθk ´ 1qv (19)

and
Sk :“ tx0 P supppµ0qzω0 : Ds P pt0px0q, tkpx0qq, s.t. Φv

spx0q P ωc
0u.

The rest of the proof is divided into three steps:

• In Step 1, we prove that the range of the flow associated to x0 with the control uk is
included in the range of the flow associated to x0 without control, i.e. tΦv`uk

t px0q :
t ě 0u Ă tΦv

t px0q : t ě 0u.

• In Step 2, we show that Sk is a Borel set for all k P N
˚.

• In Step 3, we prove that for a K large enough we have

µ0pωzωKq ` µ0pSKq ď ε. (20)

Step 1: Consider the flow yptq :“ Φv
t px0q associated to x0 without control, i.e. the

solution to #
9yptq “ vpyptqq, t ě 0,

yp0q “ x0

and the flow zkptq :“ Φv`uk
t px0q associated to x0 with the control uk given in (19), i.e.

the solution to
#

9zkptq “ pv ` ukqpzkptqq “ θkpzkptqq ˆ vpzkptqq, t ě 0,

zkp0q “ x0.
(21)

We use the time change γk defined as the solution to the following system

#
9γkptq “ θkpypγkptqqq, t ě 0,

γkp0q “ 0.
(22)

15
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Since θk and y are Lipschitz, then System (22) admits a solution defined for all times.
We remark that ξk :“ y ˝ γk is solution to System (21). Indeed, for all t ě 0 it holds

#
9ξkptq “ 9γkptq ˆ 9ypγkptqq “ θkpξkptqq ˆ vpξkptqq, t ě 0,

ξkp0q “ ypγkp0qq “ yp0q.

By uniqueness of the solution to System (21), we obtain

ypγkptqq “ zkptq for all t ě 0.

Using the fact that 0 ď θ ď 1 and the definition of γk, we have
$
&
%

γk increasing,
γkptq ď t @t P r0, tkpx0qs,
γkptq ď tkpx0q @t ě tkpx0q.

We deduce that, for all x0 P supppµ0q, it holds

tzkptq : t ě 0u Ă typsq : s P r0, tkpx0qsu.

Step 2: We now prove that Sk is a Borel set by showing that the set

Rk :“ tx0 P R
d : t0px0q ă 8 and Ds P pt0px0q, tkpx0qq s.t. Φv

spx0q P ωc
0u

is open. Let k P N
˚, x0 be an element of Rk and search rpx0q ą 0 such that Brpx0qpx

0q Ă
Rk.

There exists s P pt0px0q, tkpx0qq such that Φv
spx0q P ωc

0. Since ω
c
0 is open, for a β ą 0,

we have BβpΦv
spx0qq Ă ωc

0. By continuity of the application x1 ÞÑ Φv
spx1q, there exists

rpx0q ą 0 such that
x1 P Brpx0qpx

0q ñ Φv
spx1q P BβpΦv

spx0qq.

Thus, for all k P N
˚, Rk is open. As Sk “ Rk X supppµ0q X ωc

0, Sk is a Borel set.
Step 3: We now prove that (20) holds for a K large enough. Since we deal with we

AC measure, there exists K0 P N
˚ such that for all k ě K0

µ0pω0zωkq ď ε{2.

Argue now by contradiction to prove that there exists K1 ě K0 such that

µ0pSK1
q ď ε{2.

Assume that µ0pSkq ą ε{2 for all k ě K0. Using the inclusion Sk`1 Ă Sk, we deduce
that

µ0

˜
č

kPN˚

Sk

¸
ě ε{2.

Since µ0 is absolute continuous with respect to λ (the Lebesgue measure), there exists
α ą 0 such that

λ

˜
č

kPN˚

Sk

¸
ě α.

We deduce that the intersection of the set Sk is nonempty. Let x0 P supppµ0qzω0 be an
element of this intersection. By definition of Sk, for all k ě K0, there exists sk satisfying

"
sk P pt0px0q, tkpx0qq,
Φv
sk

px0q P ωc
0.

(23)
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Moreover, the convergence of tkpx0q to t0px0q, implies that

sk Ñ t0px0q. (24)

Using the continuity of x1 ÞÑ Φv
t px1q and the definition of t0px0q, there exists β ą 0 such

that
Φv
t px0q P ω0 for all t P pt0, t0 ` βq. (25)

We deduce that (25) contradicts (23) and (24). Thus there exists K P N
˚ such that

µ0pSKq ` µ0pωzωKq ď ε.

Since we deal with AC measures, we add a Borel set to have the equality in (18), i.e.
there exists a Borel set S such that

µ0pSK Y ωzωK Y Sq “ ε.

We conclude that, for u defined by

uptq :“ u1 :“ uK for all t P r0, T ˚
0 s,

and A :“ SK Y ωzωK Y S, Properties (18) are satisfied.

The third useful result for the proof of Theorem 1.1 allows to approximately steer a
measure contained in ω to a measure contained in an open hypercube S ĂĂ ω.

Proposition 3.3. Let µ0 P Pac
c pRdq satisfying supppµ0q Ă ω. Define an open hypercube

S strictly included in ωz supppµ0q and choose δ ą 0. Then, for all ε ą 0, there exists a
vector field 1ωu, Lipschitz and uniformly bounded and a Borel set A such that

µ0pAq “ ε and supppΦv`1ωu
δ #µ0|Acq Ă S.

Proof. Consider S0 a nonempty open set of Rd of class C8 strictly included in S and rω
an open set of Rd of class C8 satisfying

supppµ0q Y S ĂĂ rω ĂĂ ω.

An example is given in Figure 5. From [28, Lemma 1.1, Chap. 1] (see also [18, Lemma
2.68, Chap. 2]), there exists a function η P C2prωq satisfying

κ0 ď |∇η| ď κ1 in rωzS0, η ą 0 in rω and η “ 0 on Brω, (26)

with κ0, κ1 ą 0. Let k P N
˚. Consider uk : Rd Ñ R

d Lipschitz and uniformly bounded
satisfying

uk :“

"
k∇η ´ v in rω,
0 in ωc.

Let x0 P supppµ0q. Consider the flow zkptq “ Φv`uk
t px0q associated to x0 with the

control uk, i.e. the solution to system
#

9zkptq “ vpzkptqq ` ukpzkptqq, t ě 0,

zkp0q “ x0.
(27)

The different conditions in (26) imply that

n ¨ ∇η ă C ă 0 on Brω, (28)
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ω
rω

S

S0supppµ0q

Figure 5: Construction of rω

where n represents the outward unit normal to Brω. Since supppµ0q Ă rω, it holds zkptq P rω
for all t ě 0, otherwise, by taking the scalar product of (27) and n on Brω, we obtain a
contradiction with (28). We now prove that there exists Kpx0q P N

˚ such that for all k ě
Kpx0q there exists tkpx0q P p0, δq such that zkptkpx0qq belongs to S0. By contradiction,
assume that there exists a sequences tknunPN˚ Ă N

˚ such that for all t P p0, δq

zknptq P Sc
0. (29)

Consider the function fn defined for all t P r0, δs by

fnptq :“ knηpzknptqq. (30)

Its time derivative is given for all t P r0, δs by

9fnptq “ kn 9zknptq ¨ ∇ηpzknptqq “ k2n|∇ηpzknptqq|2

Then, using (29), properties (26) of η and definition (30) of fn, it holds

fnpδq ě k2nκ
2
0δ and fnpδq ď kn}η}8.

We observe that the two last inequalities are in contradiction for n large enough. Then
there exists Kpx0q P N

˚ such that for all k ě Kpx0q there exists tkpx0q P p0, δq such that

zkptkpx0qq belongs to S0. By continuity, there exists rpx0q ą 0 such that Φ
v`u

Kpx0q

t
Kpx0qpx0q

px1q

belongs to S0 for all x1 P Brpx0qpx
0q. Since v ` uk is linear with respect to k in rω, then,

using the same argument as in Step 1 of the proof of Proposition 3.2, the range of the
flow Φv`uk

¨ is independent of k. Thus, for all k ě Kpx0q there exists t0kpx0q P p0, δq such
that Φv`uk

t0
k

px0q
px1q P S0 for all x1 P Brpx0qpx

0q. By compactness, there exists tx01, ..., x
0
N0

u

such that

supppµ0q Ă
N0ď

i“1

Brpx0

i qpx
0
i q.

We deduce that for K :“ maxitKpx0i qu, for all x0 P supppµ0q there exists t0px0q for
which Φv`uK

t0px0q
px0q belongs to S0. We remark that the first item of Condition 3.1 holds

replacing ω, ω0 and T ˚
0 by S, S0 and δ, respectively. We conclude applying Proposition

3.2 replacing ω, ω0, T
˚
0 and v by S, S0, δ and v ` uK , respectively.
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Remark 6. An alternative method to prove Proposition 3.3 involves building an explicit
flow composed with straight lines as in the proof of Proposition 3.1. However, for such
method we need to assume that ω is convex, contrarily to the more general approach
developed in the proof of Proposition 3.3.

We now have all the tools to prove Theorem 1.1.

Proof of Theorem 1.1. Consider µ0, µ1 satisfying Condition 1.1. By Lemma 3.1, there
exist T ˚

0 , T
˚
1 , ω0 for which µ

0, µ1 satisfy Condition 3.1. Let δ, ε ą 0 and T :“ T ˚
0 `T ˚

1 `δ.
We now prove that we can construct a Lipschitz uniformly bounded and control 1ωu such
that the corresponding solution µ to System (1) satisfies

W1pµpT q, µ1q ď ε.

Denote by T0 :“ 0, T1 :“ T ˚
0 , T2 :“ T ˚

0 ` δ{3, T3 :“ T ˚
0 ` 2δ{3, T4 :“ T ˚

0 ` δ and
T5 :“ T ˚

0 ` T ˚
1 ` δ. Also fix an open hypercube S ĂĂ ωzω0. There exists R ą 0 such

that the supports of µ0 and µ1 are strictly included in a hypercube with edges of length
R. Define

R :“ R ` T ˆ sup
Rd

|v|.

Applying Proposition 3.2 on rT0, T1s Y rT4, T5s and Proposition 3.3 on rT1, T2s Y rT3, T4s,
we can construct some space-dependent controls u1, u2, u4, u5 Lipschitz and uniformly
bounded, with supppuiq Ă ω, and two Borel sets A0 and A1 such that

µ0pA0q “ µ1pA1q “
ε

2dR
,

the solution forward in time to
$
’&
’%

Btρ0 ` ∇ ¨ ppv ` 1ωu
1qρ0q “ 0 in R

d ˆ rT0, T1s,

Btρ0 ` ∇ ¨ ppv ` 1ωu
2qρ0q “ 0 in R

d ˆ rT1, T2s,

ρ0pT0q “ µ0|Ac
0

in R
d

and the solution backward in time to
$
’&
’%

Btρ1 ` ∇ ¨ ppv ` 1ωu
5qρ1q “ 0 in R

d ˆ rT4, T5s,

Btρ1 ` ∇ ¨ ppv ` 1ωu
4qρ1q “ 0 in R

d ˆ rT3, T4s,

ρ1pT5q “ µ1|Ac
1

in R
d

satisfy supppρ0pT2qq Ă S and supppρ1pT3qq Ă S. By conservation of the mass, we remark
that |ρ0pT2q| “ |ρ1pT3q| “ 1 ´ ε{2dR. We now apply Proposition 3.1 to approximately
steer ρ0pT2q to ρ1pT3q inside S as follows: we find a control u3 on the time interval rT2, T3s
satisfying supppu3q Ă S such that the solution ρ to

#
Btρ` ∇ ¨ ppv ` 1ωu

3qρq “ 0 in R
d ˆ rT2, T3s,

ρpT2q “ ρ0pT2q in R
d

satisfies
W1pρpT3q, ρ1pT3qq ď

ε

2e2LpT5´T3q
,

where L is the uniform Lipschitz constant for u4 and u5. Thus, denoting by u the
concatenation of u1, u2, u3, u4, u5 on the time interval r0, T s, we approximately steer
µ0|Ac

0

to µ1|Ac
1

, since by (9) the solution µ to

#
Btµ` ∇ ¨ ppv ` 1ωu

iqµq “ 0 in R
d ˆ rTi´1, Tis, i P t1, ..., 5u,

µp0q “ µ0|Ac
0

in R
d
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satisfies

W1pΦv`u
T #µ0|Ac

0

, µ1|Ac
0

q “ W1pµpT5q, µ1|Ac
1

q ď e2LpT5´T3q ε

2e2LpT5´T3q
“
ε

2
. (31)

Since we deal with AC measures, using Properties 2.2, there exists a measurable map
γ : Rd Ñ R

d such that

$
&
%

γ#µ1|A1
“ Φv`u

T #µ0|A0
,

W1pΦv`u
T #µ0|A0

, µ1|A1
q “

ż

Rd

|x ´ γpxq|dµ1|A1
pxq.

We deduce that

W1pΦv`u
T #µ0|A0

, µ1|A1
q “

ż

Rd

|x ´ γpxq|dµ1|A1
pxq ď dR ˆ

ε

2dR
“
ε

2
. (32)

Inequalities (6), (31) and (32) leads to the conclusion:

W1pΦv`u
T #µ0, µ1q ď W1pΦv`u

T #µ0|Ac
0

, µ1|Ac
1

q `W1pΦv`u
T #µ0|A0

, µ1|A1
q ď ε.

4 Exact controllability

In this section, we study exact controllability for System (1). In Section 4.1, we show
that exact controllability of System (1) does not hold for Lipschitz or controls inducing
maximal regular flows. In Section 4.2, we prove Theorem 1.2, i.e. exact controllability
of System (1) with a L2 localized control under some geometric conditions.

4.1 Negative results for exact controllability

In this section, we show that exact controllability does not hold in general for Lipschitz
controls or even vector fields inducing a maximal regular flow. We will see that topological
aspects play a crucial role at this level.

a) Non exact controllability with Lipschitz controls
As explained in the introduction, if we impose the classical Carathéodory condition of
1ωu : Rd ˆ R

` Ñ R
d being uniformly bounded, Lipschitz in space and measurable in

time, then the flow Φv`1ωu
t is a homeomorphism (see [10, Th. 2.1.1]). More precisely,

the flow and its inverse are locally Lipschitz. This implies that the support of µ0 and
µpT q are homeomorphic. Thus, if the support of µ0 and µ1 are not homeomorphic, then
exact controllability does not hold with Lipschitz controls. In particular, we cannot steer
a measure which support is connected to a measure which support is composed of two
connected components with Lipschitz controls and conversely.

b) Non exact controllability with vector fields inducing maximal regular flows
To hope to obtain exact controllability of System (1) at least for AC measures, it is
then necessary to search for a control with less regularity. A weaker condition on the
regularity of the vector field for the well-posedness of System (1) has been given in [5],
generalizing previous conditions in [3, 24]. We first briefly recall the main definitions and
results of such theory. We then prove that, in such setting, exact controllability between
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some pairs of AC measures µ0, µ1 does not hold, even when the Geometric Condition 1.1
is satisfied.

We first recall the definition of maximal regular field in [5, Def. 4.4], and the cor-
responding existence result [5, Thm. 5.7]. In our setting, we aim to find a flow that is
defined on the whole space R

d for all times r0, T s. Then, we present a simplified version
of maximal regular flows, with no hitting time or blow-up of trajectories. The notation
is then simplified too.

Definition 6. Let w : Rd ˆ p0, T q Ñ R
d be a Borel vector field. We say that a Borel

map Φw
t is a maximal regular flow relative to w if it satisfies:

1. for almost every x P R
d, the function Φw

t pxq is absolutely continuous with respect to
t and it solves the ordinary differential equation 9x “ wpt, xptqq with initial condition
Φw
t pxq “ x;

2. for any open bounded set A Ă R
d, there exists a compressibility constant CpAq such

that for all t P r0, T s, it holds

Φw
t #L|A ď CpAqL. (33)

Theorem 4.1. Let w : Rd ˆ p0, T q Ñ R
d be a Borel vector field satisfying the following

conditions:

a)
şT
0

ş
A

|wpt, xq| dx dt ă 8 for any open bounded set A Ă R
d;

b) for any non-negative ρ̄ P L8
` pRdq with compact support and any closed interval

ra, bs Ă p0, T q, the continuity equation

Btρt ` ∇ ¨ pwρtq “ 0 in R
d ˆ pa, bq

admits at most one weakly˚ continuous solution for t P ra, bs:

t ÞÑ ρt P L
8pra, bs;L8

` pRdqq X tf s.t. supppfq compact subset of Rd ˆ ra, bsu

with ρa “ ρ̄.

c) for any open bounded set A Ă R
d it holds

divpwpt, .qq ě mptq in A, with LpAq :“

ż T

0

|mptq| dt ă 8. (34)

Then, the maximal regular flow Φw
t relative to w exists and is unique. Moreover, for any

open compact set A, the compressibility constant CpAq in (33) can be chosen as eLpAq.

For simplicity, we will study two examples of non-controllability in the 1-D setting
only. It is then easy to observe that maximal regular flows preserve the order with respect
to the initial data, as Lipschitz flows.

Proposition 4.1. Let w be a Borel vector field satisfying conditions of Theorem 4.1,
and Φw

t be the associated maximal regular flow. It then holds

x ď y ñ Φw
t pxq ď Φw

t pyq for almost every pair x, y P R.
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Proof. Following the proof of [5, Thm. 5.2], build a family of mollified vector fields wε

for w: they are all Lipschitz, then they preserve the order x ď y ñ Φwε

t pxq ď Φwε

t pyq for
all x, y P R, as a classical property of Lipschitz vector fields in R. By letting wε á w

weakly in L1pp0, T q ˆAq for all A open bounded, and observing that other hypotheses of
the Stability Theorem 6.2 in [5] are satisfied, one has the result.

We are now ready to present two examples of pairs of AC measures µ0, µ1 in R for
which exact controllability does not hold with vector fields inducing maximal regular
flows.

Exemple 4.1. For simplicity, we choose v ” 0 and ω “ p´2, 2q from now on. For the first

example, we define µ0 “ 1r0,1sL and µ1pxq “ 1
2
x´ 1

21p0,1qL. It is clear that the Geometric
Condition 1.1 is satisfied. Assume now that a Borel control u satisfying conditions of
Theorem 4.1 steering µ0 to µ1 at a given time T ą 0 exists. Then, the associated
maximal regular flow both satisfies µ1 “ Φu

T#µ
0 and there exists C “ Cpp0, 1qq such

that Φu
T#µ

0 ď CL. Thus, we deduce that µ1 ď CL, which is in contradiction with the
definition of µ1.

Exemple 4.2. It is clear that the previous example is based on the fact that there exists
measures that are absolutely continuous with respect to L and such that their Radon-
Nikodym density are L1 functions that are not L8. One can then be interested in proving
exact controllability between measures of the form ρpxqL with ρpxq P L8pRq. Also in
this case, one has examples of non exact controllability. Indeed, consider again v ” 0
and ω “ p´2, 2q. Define ν0pxq “ 2x1r0,1sL and ν1 “ 1r0,1sL. We prove now that also
in this case, there exists no control inducing maximal regular flows and realizing exact
controllability. By contradiction, assume that such control w exists; thus, the associated
flow Φu

t satisfies Φu
T#ν

0 “ ν1. Then

ż 1

0

1ts : Φu
T

psqďΦu
T

pxqu2s ds “

ż 1

0

1tsďΦu
T

pxqu ds,

Recall now that the flow preserves the ordering, then it necessarily holds

ż x

0

2s ds “

ż Φu
T

pxq

0

1 ds,

i.e. Φu
T pxq “ x2. If such a flow exists, then one can apply it to µ0 in the first example.

It then holds
şx
0
1 ds “

şΦu
T pxq

0
1
2
s´ 1

2 ds, i.e. Φu
T#µ

0 “ µ1. Thus, Φu
T realizes the exact

control from µ0 to µ1. Contradiction. Then, there exist no control inducing maximal
regular flows and exactly steering ν0 to ν1.

Exemple 4.3. One can be interested in finding counterexamples to exact controllability
in R

d with d ą 1. The Example 4.1 for non exact controllability can be adapted to this
setting, by considering µ0 “ LpB1p0qq´1

1B1p0qL and µ1 “ ρ1pxqL with ρ1 being a L1 but
not L8 function. The counterexample in Example 4.2 can be adapted too, even though
computations cannot be carried out easily by applying useful monotony properties.

4.2 Exact controllability with L
2 controls

In this section, we prove Theorem 1.2, i.e. exact controllability of System (1) in the
following sense: there exists a couple p1ωu, µq solution to System (1) satisfying µpT q “ µ1.
Before proving Theorem 1.2, we need three useful results. The first one is the following
proposition, showing that we can store the whole mass of µ0 in ω, under Condition 3.1.
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It is the analogue of Proposition 3.2. In this case, we control the whole mass, but we do
not have necessarily uniqueness of the solution to System (1).

Proposition 4.2. Let µ0 P PcpR
dq satisfying the first item of Condition 3.1. Then

there exists a couple p1ωu, µq composed of a L2 vector field 1ωu : Rd ˆ R
` Ñ R

d and a
time-evolving measure µ being weak solution to System (1) and satisfying

supppµpT ˚
0 qq Ă ω.

Proof. For each x0 P R
d, we denote by

rt0px0q :“ inftt ě 0 : Φv
t px0q P ω0u

and consider the application Ψ¨px
0q defined for all t ě 0 by

Ψtpx
0q “

#
Φv
t px0q if t ď rt0px0q,

Φv
rt0px0q

px0q otherwise.

For all t ě 0, the application Ψt is a Borel map. Consider µ defined for all t ě 0 by

µptq :“ Ψt#µ
0.

We remark that, for all t, s P r0, T ˚
0 s such that t ě s,

µptq “ Ψt´s#µpsq. (35)

Since Φv
¨ px0q is Lipschitz, for all x0 P R

d and t P r0, T ˚
0 s, it holds

|Ψtpx
0q ´ x0| ď Cmintt, t0px0qu ď Ct. (36)

Combining (35) and (36), we deduce for all t, s P r0, T ˚
0 s with s ď t

W 2
2 pµpsq, µptqq ď

ż

Rd

|Ψt´spxq ´ x|2 dµpsq ď sup
xPRd

|Ψt´spxq ´ x|2 ď C|t´ s|2.

We deduce that the metric derivative |µ1| of µ defined for all t P r0, T ˚
0 s by

|µ1|ptq :“ lim
sÑt

W2pµptq, µpsqq

|t´ s|
(37)

is uniformly bounded on r0, T ˚
0 s. Then µ is an absolute continuous curve on PcpR

dq (see
[4, Def. 1.1.1]). Using [4, Th. 8.3.1], there exists a Borel vector w : Rd ˆ p0, T ˚

0 q Ñ R
d

satisfying
}wptq}L2pµptq;Rdq ď |µ1|ptq a.e. t P r0, T ˚

0 s

and the couple pw,µq is a weak solution to

#
Btµ` ∇ ¨ pwµq “ 0 in R

d ˆ r0, T ˚
0 s,

µp0q “ µ0 in R
d.

(38)

By the uniform bound on the metric derivative, it holds that w is a L2 vector field.
Moreover, for all t P r0, T ˚

0 s, it holds

wptq P TanµptqpPcpR
dqq :“ t∇ϕ : ϕ P C8

c pRdqu
L2pµptq;Rdq
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(see [4, Def. 8.4.1]). Consider an open set ω1 of class C8 satisfying ω0 ĂĂ ω1 ĂĂ ω.
We now prove that wptq coincides with vptq in supppµptqqzω1 a.e. t P r0, T ˚

0 s, i.e. we
can choose u “ 0 outside ω. Fix t P r0, T ˚

0 s and consider x P supppµptqq X ωc
1. There

necessarily exists x0 P supppµ0q such that Φv
t px0q “ x, otherwise x P Bω0. Moreover for

a B :“ Brpx0q with r ą 0 Φv
spBq ĂĂ ωc

0 for all s P r0, ts, otherwise there exists s P r0, ts
for which Φv

spx0q P Bω0. Thus
Φv
t “ Ψt in B. (39)

We denote by A :“ Φv
t pBq. We now prove that

Ψ´1
t pAq “ pΦv

t q´1pAq. (40)

Consider x P pΦv
t q´1pAq. Equality (39) implies Φv

t pxq “ Ψtpxq. Then x P Ψ´1
t pAq.

Consider now x P Ψ´1
t pAq, which means Ψtpxq P A. Using the fact that A X ω0 ‰ 0,

t ă rx0pxq. Then Ψtpxq “ Φv
t pxq and x P pΦv

t q´1pAq. Thus (40) holds. By definition of
the push forward,

µ|Aptq “ Ψt#pµ0
|Ψ´1

t pAq
q and pΦv

t#µ
0q|A “ Φv

t#pµ0
|Φ´1

t pAq
q.

Since Ψt “ Φv
t on the set B “ pΦv

t q´1pAq “ Ψ´1
t pAq, this implies

µ|Aptq “ Φv
t#µ

0
|A.

By compactness of supppµptqq X ωc
1, it holds

µptq|ωc
1

“ pΦv
t#µ

0q|ωc
1
.

We deduce that, for all ϕ P C8
c pRdq such that supppϕq ĂĂ ωc

1,

d

dt

ż

Rd

ϕ dµptq “

ż

Rd

x∇ϕ,wy dµptq and
d

dt

ż

Rd

ϕ dµptq “

ż

Rd

x∇ϕ, vy dµptq.

If it holds v P TanµptqpPcpR
dqq, then wptq “ v, µptq a.e. in ω1

c, and we conclude by taking

u :“ w ´ v which is supported in ω and is L2. If now v R TanµptqpPcpR
dqq, we can write

v “ v1 ` v2 with v1 P TanµptqpPcpR
dqq and v2 P TanµptqpPcpR

dqqK, where

TanµptqpPcpR
dqqK “ tν P L2pµptq : Rdq : ∇ ¨ pνµptqq “ 0u

(see for instance [4, Prop. 8.4.3]). In other terms, v2 plays no role in the weak formulation
of the continuity equation. Thus, with the same argument, we can prove that wptq “ v1,
µptq a.e. in ω1

c and we conclude by tacking u :“ w ´ v1.

The second useful result for the proof of Theorem 1.2 allows to exactly steer a measure
contained in ω to a nonempty open convex set S ĂĂ ω. It is the analogue of Proposition
3.3. In this case, as in Proposition 4.2, we control the whole mass, but we do not have
necessarily uniqueness of the solution to System (1).

Proposition 4.3. Let µ0 P PcpR
dq satisfying supppµ0q Ă ω. Define a nonempty open

convex set S strictly included in ωz supppµ0q and choose δ ą 0. Then there exists a couple
p1ωu, µq composed of a L2 vector field 1ωu : Rd ˆR

` Ñ R
d and a time-evolving measure

µ being weak solution to System (1) satisfying

supppµpδqq Ă S.
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Proof. Consider S0 a nonempty open set of Rd of class C8 strictly included in S and ω1

an open set of Rd of class C8 satisfying

supppµ0q Y S ĂĂ ω1 ĂĂ ω.

An example is given in Figure 5. Consider η P C2pω1q defined in the proof of Proposition
3.3 satisfying (26). For all k P N

˚, we consider a Lipschitz vector field vk satisfying

vk :“

"
k∇η in ω1,

v in ωc.

We denote by
rt0kpx0q :“ inftt ě 0 : Φvk

t px0q P S0u.

For all x0 P R
d and all k P N

˚, consider the application Ψk,¨px
0q defined for all t ě 0 by

Ψk,tpx
0q “

#
Φvk
t px0q if t ď rt0kpx0q,

Φvk
rt0
k

px0q
px0q otherwise.

Using the same argument as in the proof of Proposition 3.3, for K large enough, ΨK,δpx
0q

belongs to S for all x0 P supppµ0q. Consider µ defined for all t P p0, δq by µptq :“ ΨK,t#µ
0.

As in the proof of Proposition 4.2, there exists a vector field uK such that puK , µq is a weak
solution to System (38). Moreover uKptq “ vK , µptq a.e. in S

c
and a.e. t P r0, δs. Thus,

we conclude that p1ωpuK ´ vKq, µq is solution to System (1) and supppµpδqq Ă S.

The third useful result for the proof of Theorem 1.2 allows to exactly steer a measure
contained in a nonempty open convex set S ĂĂ ω to a given measure contained in S.
It is the analogue of Proposition 3.1. In this situation, we obtain exact controllability of
System (1), but, again, we do not have necessarily uniqueness of the solution to System
(1).

Proposition 4.4. Let µ0, µ1 P PcpR
dq satisfying supppµ0q Ă S and supppµ1q Ă S for a

nonempty open convex set S strictly included in ω. Choose δ ą 0. Then there exists a
couple p1ωu, µq composed of a L2 vector field 1ωu : Rd ˆ R

` Ñ R
d and a time-evolving

measure µ being weak solution to System (1) and satisfying

supppµq Ă S and µpδq “ µ1.

Remark 7. The proof of Proposition 4.4 can be obtain thanks to the generalized Benamou-
Brenier formula (see [8] for the original work and [39, Th. 5.28] for the generalization).
For the sake of completeness, we give below a proof of Proposition 4.4 closely related to
the proof of [39, Th. 5.28].

Proof of Proposition 4.4. Let π be the optimal plan given in (4) associated to the Wasser-
stein distance between µ0 and µ1. For i P t1, 2u, we denote by pi : R

d ˆ R
d Ñ R

d the
projection operator defined by

pi : px1, x2q ÞÑ xi.

Consider the time-evolving measure µ defined for all t P r0, δs by

µptq :“
1

δ
rpδ ´ tqp1 ` tp2s#π. (41)

Using [4, Th. 7.2.2], µ is a constant speed geodesic connecting µ0 and µ1 in PcpR
dq, i.e.

for all s, t P r0, δs
W2pµptq, µpsqq “

pt´ sq

δ
W2pµ0, µ1q.
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We deduce that the metric derivative |µ1| of µ (see (37)) is uniformly bounded on r0, δs.
Then µ is an absolute continuous curve on PcpR

dq (see [4, Def. 1.1.1]). Thus, using [4,
Th. 8.3.1], there exists a Borel vector field w : Rd ˆ p0, δq Ñ R

d such that

}wptq}L2pµptq;Rdq ď |µ1|ptq a.e. t P r0, δs

and the couple pw,µq is a weak solution to

#
Btµ` ∇ ¨ pwµq “ 0 in R

d ˆ r0, δs,

µp0q “ µ0 in R
d.

By the uniform bound on the metric derivative, it holds that w is an L2 vector field.
Consider θ P C8

c pRdq such that

0 ď θ ď 1, θ “ 1 in S and θ “ 0 in ωc.

We remark that µ is supported in S, then the couple p1ωu, µq with

u :“ θ ˆ pw ´ vq

is solution to #
Btµ` ∇ ¨ ppv ` 1ωuqµq “ 0 in R

d ˆ r0, δs,

µp0q “ µ0 in R
d.

We now have all the tools to prove Theorem 1.2.

Proof of Theorem 1.2. Consider µ0 and µ1 satisfying Condition 1.1. Applying Lemma
3.1, Condition 3.1 holds for some ω0, T

˚
0 and T ˚

1 . Let T :“ T ˚
0 ` T ˚

1 ` δ with δ ą 0 and
T0, T1, T2, T3, T4, T5 be the times given in the proof of Theorem 1.1. Using Proposition
4.2 on rT0, T1s Y rT4, T5s, there exist ρ1 P C0prT0, T1s,PcpR

dqq, ρ5 P C0prT4, T5s,PcpR
dqq

and some space-dependent L2 controls u1, u5 with

supppu1q Y supppu5q Ă ω

such that p1ωu
1, ρ1q is a weak solution forward in time to

#
Btρ1 ` ∇ ¨ ppv ` 1ωu

1qρ1q “ 0 in R
d ˆ rT0, T1s,

ρ1pT0q “ µ0 in R
d

and p1ωu
5, ρ5q is a weak solution backward in time to

#
Btρ5 ` ∇ ¨ ppv ` 1ωu

5qρ5q “ 0 in R
d ˆ rT4, T5s,

ρ5pT5q “ µ1 in R
d.

Moreover supppρ1pT1qq Ă ω and supppρ5pT4qq Ă ω. Consider a nonempty open convex
set S strictly included in ωzω0. Using Proposition 4.3 on rT1, T2s Y rT3, T4s, there exist
ρ2 P C0prT1, T2s,PcpR

dqq, ρ4 P C0prT3, T4s,PcpR
dqq and some space-dependent L2 controls

u2, u4 with
supppu2q Y supppu4q Ă ω

such that p1ωu
2, ρ2q is a weak solution forward in time to

#
Btρ2 ` ∇ ¨ ppv ` 1ωu

2qρ2q “ 0 in R
d ˆ rT1, T2s,

ρ2pT1q “ ρ1pT1q in R
d
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and p1ωu
4, ρ4q is a weak solution backward in time to

#
Btρ4 ` ∇ ¨ ppv ` 1ωu

4qρ4q “ 0 in R
d ˆ rT3, T4s,

ρ4pT4q “ ρ5pT4q in R
d.

Moreover supppρ2pT2qq Ă S and supppρ4pT3qq Ă S. Using Proposition 4.4 on rT2, T3s,
there exist ρ3 P C0prT2, T3s,PcpR

dqq satisfying supppρ3q Ă S and a L2 control u3 with

supppu3q Ă ω

such that p1ωu
3, ρ3q is a weak solution forward in time to

#
Btρ3 ` ∇ ¨ ppv ` 1ωu

3qρ3q “ 0 in R
d ˆ rT2, T3s,

ρ3pT2q “ ρ2pT2q in R
d

and satisfies ρ3pT3q “ ρ4pT3q. Thus the couple p1ωu, µq defined by

p1ωu, µq “ p1ωu
i, ρiq in R

d ˆ rTi´1, Tiq, i P t1, ..., 5u

is a weak solution to System (1) and satisfies µpT q “ µ1.
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