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Introduction

In recent years, the study of systems describing a crowd of interacting autonomous agents has drawn a great interest from the control community (see e.g. the Cucker-Smale model [START_REF] Cucker | Emergent behavior in flocks[END_REF]). A better understanding of such interaction phenomena can have a strong impact in several key applications, such as road traffic and egress problems for pedestrians. For a few reviews about this topic, see e.g. [START_REF] Axelrod | The Evolution of Cooperation: Revised Edition[END_REF][START_REF] Bellomo | Active Particles[END_REF][START_REF] Camazine | Self-organization in Biological Systems[END_REF][START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF][START_REF] Helbing | Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes[END_REF][START_REF] Jackson | Social and Economic Networks[END_REF][START_REF] Motsch | Heterophilious dynamics enhances consensus[END_REF][START_REF] Sepulchre | Consensus on nonlinear spaces[END_REF].

Beside the description of interactions, it is now relevant to study problems of control of crowds, i.e. of controlling such systems by acting on few agents, or on the crowd localized in a small subset of the configuration space. The nature of the control problem relies on the model used to describe the crowd. Two main classes are widely used.

In microscopic models, the position of each agent is clearly identified; the crowd dynamics is described by a large dimensional ordinary differential equation, in which couplings of terms represent interactions. For control of such models, a large literature is available from the control community, under the generic name of networked control (see e.g. [START_REF] Bullo | Distributed Control of Robotic Networks[END_REF][START_REF] Kumar | Cooperative Control: A Post-Workshop[END_REF][START_REF] Lin | Leaderfollower formation via complex laplacian[END_REF]). There are several control applications to pedestrian crowds [START_REF] Ferscha | Lifebelt: Crowd evacuation based on vibro-tactile guidance[END_REF][START_REF] Peter B Luh | Modeling and optimization of building emergency evacuation considering blocking effects on crowd movement[END_REF] and road traffic [START_REF] Canudas-De Wit | Graph constrained-ctm observer design for the grenoble south ring[END_REF][START_REF] Hegyi | Specialist: A dynamic speed limit control algorithm based on shock wave theory[END_REF].

In macroscopic models, instead, the idea is to represent the crowd by the spatial density of agents; in this setting, the evolution of the density solves a partial differential equation of transport type. Nonlocal terms (such as convolution) model the interactions between the agents. In this article, we focus on this second approach, i.e. macroscopic models. To our knowledge, there exist few studies of control of this family of equations. In [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF], the authors provide approximate alignment of a crowd described by the macroscopic Cucker-Smale model [START_REF] Cucker | Emergent behavior in flocks[END_REF]. The control is the acceleration, and it is localized in a control region ω which moves in time. In a similar situation, a stabilization strategy has been established in [START_REF] Caponigro | Mean-field sparse Jurdjevic-Quinn control[END_REF][START_REF] Caponigro | Sparse Jurdjevic-Quinn stabilization of dissipative systems[END_REF], by generalizing the Jurdjevic-Quinn method to partial differential equations. Other forms of control of transport equations with non-local terms have been described in [START_REF] Coron | Exact boundary controllability for 1-d quasilinear hyperbolic systems with a vanishing characteristic speed[END_REF][START_REF] Coron | Output feedback stabilization for a scalar conservation law with a nonlocal velocity[END_REF] with boundary control. In [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF] the authors study optimal control of transport equations with non-local terms in which the control is the non-local term itself.

A different approach is given by mean-field type control, i.e. control of mean-field equations and of mean-field games modeling crowds. See e.g. [START_REF] Achdou | On the system of partial differential equations arising in mean field type control[END_REF][START_REF] Achdou | Mean field type control with congestion[END_REF][START_REF] Carmona | Control of mckean-vlasov dynamics versus mean field games[END_REF][START_REF] Fornasier | Mean-field optimal control[END_REF]. In this case, problems are often of optimization nature, i.e. the goal is to find a control minimizing a given cost. In this article, we are mainly interested in controllability problems, for which mean-field type control approaches seem not adapted.

In this article, we study a macroscopic model, thus the crowd is represented by its density, that is a time-evolving measure µptq defined for positive times t on the space R d (d ě 1). The natural (uncontrolled) velocity field for the measure is denoted by v : R d Ñ R d , being a vector field assumed Lipschitz and uniformly bounded.

The control acts on the velocity field in a fixed portion ω of the space, which will be a nonempty open bounded connected subset of R d . The admissible controls are thus functions of the form 1 ω u : R d ˆR`Ñ R d which support in the space variable is included inside ω. We will discuss later the regularity of such control: nevertheless, in the classical approach such control is a Lipschitz function with respect to the space variable in the whole space R d .

We then consider the following linear transport equation # B t µ `∇ ¨ppv `1ω uqµq " 0 in R d ˆR`,

µp0q " µ 0 in R d , (1) 
where µ 0 is the initial data (initial configuration of the crowd) and the function u is an admissible control. The function v `1ω u represents the velocity field acting on µ. System (1) is a first simple approximation for crowd modelling, since the uncontrolled vector field v is given, and it does not describe interactions between agents. Nevertheless, it is necessary to understand controllability properties for such simple equation as a first step, before dealing with velocity fields depending on the crowd itself. Thus, in a future work, we will study controllability of crowd models with a nonlocal term vrµs, based on the linear results presented here. Even though System (1) is linear, the control acts on the velocity, thus the control problem is nonlinear, which is one of the main difficulties in this study.

The problem presented here has been already studied in very particular cases, when the control acts everywhere. For example, in [START_REF] Moser | On the volume elements on a manifold[END_REF], the author studies the problem of finding a homeomorphism sending a volume form (in our language, a measure that is absolutely continuous with respect to the Lebesgue measure with C 8 density) to another. In [START_REF] Dacorogna | On a partial differential equation involving the jacobian determinant[END_REF], the authors study the same problem on a manifold with boundary, searching for a homeomorphism sending a volume form to another keeping the points on the boundary. Finally, in [START_REF] Blaquière | Controllability of a Fokker-Planck equation, the Schrödinger system, and a related stochastic optimal control (revised version)[END_REF], a parabolic equation is studied: beside the uncontrolled Laplacian term, a transport term is added. The presence of the Laplacian introduces more regularity with respect to our problem, that indeed allows to use solutions of stochastic ODEs instead of classical ones. For this reason, this article is the first characterizing controllability properties of the transport equation with localized controls on the velocity field in presence of an uncontrolled vector field v acting as a drift.

The goal of this work is to study the control properties of System [START_REF] Achdou | On the system of partial differential equations arising in mean field type control[END_REF]. We now recall the notion of approximate controllability and exact controllability for System [START_REF] Achdou | On the system of partial differential equations arising in mean field type control[END_REF]. We say that System (1) is approximately controllable from µ 0 to µ 1 on the time interval r0, T s if we can steer the solution to System (1) at time T as close to µ 1 as we want with an appropriate control 1 ω u. Similarly, we say that System (1) is exactly controllable from µ 0 to µ 1 on the time interval r0, T s if we can steer the solution to System (1) at time T exactly to µ 1 with an appropriate control 1 ω u. In Definition 5 below, we give a formal definition of the notion of approximate controllability in terms of Wasserstein distance.

The main results of this article show that approximate and exact controllability depend on two main aspects: first, from a geometric point of view, the uncontrolled vector field v needs to send the support of µ 0 to ω forward in time and the support of µ 1 to ω backward in time. This idea is formulated in the following condition: Condition 1.1 (Geometric Condition). Let µ 0 , µ 1 be two probability measures on R d satisfying:

(i) For each x 0 P supppµ 0 q, there exists t 0 ą 0 such that Φ v t 0 px 0 q P ω, where Φ v t is the flow associated to v, i.e. the solution to the Cauchy problem # 9

xptq " vpxptqq for a.e. t ą 0, xp0q " x 0 .

(ii) For each x 1 P supppµ 1 q, there exists t 1 ą 0 such that Φ v ´t1 px 1 q P ω.

This geometric aspect is illustrated in Figure 1.

supppµ 0 q ω supppµ 1 q v Figure 1: Geometric Condition 1.1.
Remark 1. Condition 1.1 is the minimal one that we can expect to steer any initial condition to any target. Indeed, if there exists a point x 0 of the interior of supppµ 0 q for which the first item of the Geometrical Condition 1.1 is not satisfied, then there exists a part of the population of the measure µ 0 that never intersects the control region, thus we cannot act on it.

The second aspect that we want to highlight is the following: The measures µ 0 and µ 1 need to be sufficiently regular with respect to the flow generated by v `1ω u. Three cases are particularly relevant: a) Controllability with Lipschitz controls If we impose the classical Carathéodory condition of 1 ω u being Lipschitz in space, measurable in time and uniformly bounded, then the flow Φ v`1ωu t is an homeomorphism (see [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF]Th. 2.1.1]). As a result, one can expect approximate controllability only, since for general measures there exists no homeomorphism sending one to another. For more details, see Section 4.1. We then have the following result: Theorem 1.1 (Main result -Controllability with Lipschitz control). Let µ 0 , µ 1 be two probability measures on R d compactly supported, absolutely continuous with respect to the Lebesgue measure and satisfying Condition 1.1. Then there exists T such that System (1) is approximately controllable on the time interval r0, T s from µ 0 to µ 1 with a control 1 ω u : R d ˆR`Ñ R d uniformly bounded, Lipschitz in space and measurable in time.

We give a proof of Theorem 1.1 in Section 3. This proof is a constructive one and strongly uses the fact that the velocity vector field v is autonomous, i.e. not dependent on time. Moreover, it is clear that the extension of our work to time dependent velocity vector fields should require a non-trivial modification of the Geometric Condition 1.1. For the initial measure µ 0 (forward trajectory) the modification is simply the replacement of the flow of the autonomous vector field with the flow of the non-autonomous one, starting from t " 0. Instead, for the final measure µ 1 (backward trajectories) one needs to consider the non-autonomous vector field starting from the final time T , which is an unknown of the problem.

Remark 2. Due to the finite speed of propagation outside of ω, approximate controllability cannot hold at arbitrary small time. The study of this minimal controllability time is carried on in the forthcoming paper [START_REF] Duprez | Minimal time problem for crowd models with a localized vector field[END_REF].

Remark 3. If one removes the assumption of boundedness of v, replacing it with other conditions ensuring boundedness of the flow for each time (e.g. by imposing sub-linear growth), then the results presented here still hold. Indeed, it is sufficient to observe that we mainly deal with properties of the flow, that are preserved in this case.

If one instead removes the assumption of boundedness of the supports of µ 0 , µ 1 keeping boundedness of v, it is clear that controllability does not hold in general. Indeed, one needs an infinite time to steer the whole mass of µ 0 to the mass of µ 1 .

Finally, if one removes both boundedness of the supports and boundedness of the velocity v, it is possible to find examples of approximate controllability in finite time. For example, in R `with ω " R `, consider the vector field vpxq " x 2 , for which the flow is Φ v t px 0 q " x 0 1´tx 0 , defined only for t ă x ´1 0 . Thus, one can verify that µ 0 " 1 r0,1s is sent to µ 1 " 1 px`1q 2 1 r0,`8q at time T " 1. Nevertheless, the problem under such less restrictive hypotheses seems harder to study in its generality, even though adaptations of the method presented here seem possible. Moreover, our applications to crowd modeling and control always assume finite speed of propagation and measures with bounded support.

b) Controllability with vector fields inducing maximal regular flows

To hope to obtain exact controllability of System (1) at least for absolutely continuous measures, it is then necessary to search among controls 1 ω u with less regularity. A weaker condition on the regularity of the velocity field for the well-posedness of System (1) has been recently introduced by Ambrosio-Colombo-Figalli in [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF], extending previous results by Ambrosio [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF] and DiPerna-Lions [START_REF] Ronald | Ordinary differential equations, transport theory and sobolev spaces[END_REF]. Examples of vector fields satisfying such condition are Sobolev vector fields [START_REF] Ronald | Ordinary differential equations, transport theory and sobolev spaces[END_REF], and BV (bounded variation) vector fields with locally integrable divergence [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]. Thus, if we choose the admissible controls satisfying the setting of [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF], it is not necessary that there exists an homeomorphism between µ 0 and µ 1 .

For all such theories, given a vector field w, a suitable concept of flow Φ w t is introduced, such as the maximal regular flow [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF], generalizing the regular Lagrangian flow of [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]. Even though such flow does not enjoy all the properties of flows of Lipschitz vector fields, a common requirement is that the Lebesgue measure L restricted to an open bounded set A is transported to a measure bounded from above by a multiple of the Lebesgue measure itself. In other terms, there exists of a constant C ą 0 such that for all t P r0, T s it holds

Φ w t #L| A ď CL (2) 
We will show in Section 4.1 that this condition implies the non-existence of controls exactly steering one absolutely continuous measure to another, for specific choices of µ 0 , µ 1 . Thus, even this setting does not allow to yield exact controllability.

It is also interesting to observe that Property (2) is often required as a necessary condition for a reasonable generalization of the standard theory of Ordinary Differential Equations. Indeed, for Lipschitz vector fields w, the constant C is given by e Lippwqt . Then, in DiPerna-Lions such condition is required in [24, Eq. ( 7)] on both sides, while in Ambrosio it is required in [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]Eq (6.1)]. In this sense, the non-exact controllability seems a drawback of a desired condition for an even very general theory of Ordinary Differential Equations, rather than a goal to be reached.

c) Controllability with L 2 controls

We then consider an even larger class of controls, that are general Borel vector fields. In this setting, we have exact controllability under the Geometric Condition 1.1 for any pairs of measures, even not absolutely continuous. Moreover, we prove that one can restrict the set of admissible controls to those that are L 2 with respect to the measure itself, i.e. to controls satisfying

ż 1 0 ż R d |uptq| 2 dµptqdt ă 8. (3) 
The main drawback is that, in this less regular setting, System (1) is not necessarily well-posed. In particular, one has not necessarily uniqueness of the solution. For this reason, one needs to describe solutions to System (1) as pairs p1 ω u, µq, where µ is one among the admissible solutions with control 1 ω u. Theorem 1.2 (Main result -Controllability with L 2 control). Let µ 0 , µ 1 be two probability measures on R d compactly supported and satisfying Condition 1.1. Then, there exists T ą 0 such that System (1) is exactly controllable on the time interval r0, T s from µ 0 to µ 1 in the following sense: there exists a couple p1 ω u, µq composed of a L 2 vector field 1 ω u : R d ˆR`Ñ R d and a time-evolving measure µ being weak solution to System (1) (see Definition 3) and satisfying µpT q " µ 1 .

A proof of Theorem 1.2 is given in Section 4.

We now resume the main results of the article in the following table.

If µ 0 , µ 1 satisfy the Geometric Condition 1.1, then µ 0 , µ 1 absolutely continuous

• approx. controllability with Lipschitz control

• NO exact controllability with control inducing maximal regular flows

µ 0 , µ 1 general measures exact controllability with L 2 control
This paper is organised as follows. In Section 2, we recall basic properties of the Wasserstein distance and the continuity equation. Section 3 is devoted to the proof of Theorem 1.1, i.e. the approximate controllability of System (1) with a Lipschitz localized vector field. Finally, in Section 4, we first show that exact controllability does not hold for Lipschitz controls or even vector fields inducing a maximal regular flow; we also prove Theorem 1.2, i.e. exact controllability of System (1) with a L 2 localized vector field.

The Wasserstein distance and the continuity equation

In this section, we recall the definition and some properties of the Wasserstein distance and the continuity equation, which will be used all along this paper. We denote by P c pR d q the space of probability measures in R d with compact support and for µ, ν P P c pR d q. We also introduce the classical partial ordering of measures: µ ď ν if A being ν-measurable implies A being µ-measurable and µpAq ď νpAq.

We denote by Πpµ, νq the set of transference plans from µ to ν, i.e. the probability measures on R d ˆRd satisfying ż

R d dπpx, ¨q " dµpxq and ż R d dπp¨, yq " dνpyq.
Definition 1. Let p P r1, 8q and µ, ν

P P c pR d q. Define W p pµ, νq " inf πPΠpµ,νq $ ' ' & ' ' % ¨ij R d ˆRd |x ´y| p dπ ‹ ' 1{p , / / . / / - . ( 4 
)
The quantity is called the Wasserstein distance.

This is the idea of optimal transportation, consisting in finding the optimal way to transport mass from a given measure to another. For a thorough introduction, see e.g. [START_REF] Villani | Topics in optimal transportation[END_REF].

We denote by Γ the set of Borel maps γ : R d Ñ R d . We now recall the definition of the push-forward of a measure: Definition 2. For a γ P Γ, we define the push-forward γ#µ of a measure µ of R d as follows:

pγ#µqpEq :" µpγ ´1pEqq, for every subset E such that γ ´1pEq is µ-measurable.

We denote by "AC measures" the measures which are absolutely continuous with respect to the Lebesgue measure and by P ac c pR d q the subset of P c pR d q of AC measures. On P ac c pR d q, the Wasserstein distance can be reformulated as follows:

Property 2.1 (see [START_REF] Villani | Topics in optimal transportation[END_REF]Chap. 7]). Let p P r1, 8q and µ, ν P P ac c pR d q. It holds

W p pµ, νq " inf γPΓ # ˆżR d |γpxq ´x| p dµ ˙1{p : γ#µ " ν + . (5) 
The Wasserstein distance satisfies some useful properties: [START_REF] Villani | Topics in optimal transportation[END_REF]Chap. 7]). Let p P r1, 8q.

Property 2.2 (see
(i) The Wasserstein distance W p is a distance on P c pR d q.

(ii) The topology induced by the Wasserstein distance W p on P c pR d q coincides with the weak topology.

(iii) For all µ, ν P P ac c pR d q, the infimum in [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF] is achieved by at least one minimizer.

The Wasserstein distance can be extended to all pairs of measures µ, ν compactly supported with the same total mass µpR d q " νpR d q ‰ 0, by the formula

W p pµ, νq " µpR d q 1{p W p ˆµ µpR d q , ν νpR d q ˙.
In the rest of the paper, the following properties of the Wasserstein distance will be also helpful: [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF]). Let µ, ρ, ν, η be four positive measures compactly supported satisfying µpR d q " νpR d q and ρpR d q " ηpR d q.

Property 2.3 (see
(i) For each p P r1, 8q, it holds

W p p pµ `ρ, ν `ηq ď W p p pµ, νq `W p p pρ, ηq. (6) 
(ii) For each p 1 , p 2 P r1, 8q with

p 1 ď p 2 , it holds # W p 1 pµ, νq ď W p 2 pµ, νq, W p 2 pµ, νq ď diampXq 1´p 1 {p 2 W p 1 {p 2 p 1 pµ, νq, (7) 
where X contains the supports of µ and ν.

We now recall the definition of the continuity equation and the associated notion of weak solutions: Definition 3. Let T ą 0 and µ 0 be a measure in R d . We said that a pair pµ, wq composed with a measure µ in R d ˆr0, T s and a vector field w :

R d ˆR`Ñ R d satisfying ż T 0 ż R d |wptq| dµptqdt ă 8
is a weak solution to the system, called the continuity equation,

# B t µ `∇ ¨pwµq " 0 in R d ˆr0, T s, µp0q " µ 0 in R d , (8) 
if for every continuous bounded function ξ :

R d Ñ R, the function t Þ Ñ ş R d ξ dµptq is absolutely continuous with respect to t and for all ψ P C 8 c pR d q, it holds d dt ż R d ψ dµptq " ż R d
x∇ψ, wptqy dµptq for a.e. t and µp0q " µ 0 . Note that t Þ Ñ µptq is continuous for the weak convergence, it then make sense to impose the initial condition µp0q " µ 0 pointwisely in time. Before stating a result of existence and uniqueness of solutions for the continuity equation, we first recall the definition of the flow associated to a vector field. Definition 4. Let w : R d ˆR`Ñ R d be a vector field being uniformly bounded, Lipschitz in space and measurable in time. We define the flow associated to the vector field w as the application px 0 , tq Þ Ñ Φ w t px 0 q such that, for all

x 0 P R d , t Þ Ñ Φ w t px 0 q is the solution to the Cauchy problem # 9
xptq " wpxptq, tq for a.e. t ě 0,

xp0q " x 0 .

The following property of the flow will be useful all along the present paper:

Property 2.4 (see [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF]). Let µ, ν P P c pR d q and w : R d ˆR Ñ R d be a vector field uniformly bounded, Lipschitz in space and measurable in time with a Lipschitz constant equal to L. For each t P R and p P r1, 8q, it holds

W p pΦ w t #µ, Φ w t #νq ď e pp`1q p L|t| W p pµ, νq. (9) 
Similarly, let µ P P ac c pR d q and w 1 , w 2 : R d ˆR Ñ R d be two vector fields uniformly bounded, Lipschitz in space with a Lipschitz constant equal to L and measurable in time. Then, for each t P R and p P r1, `8q, it holds

W p pΦ w 1 t #µ, Φ w 2 t #µq ď e L|t|{p e L|t| ´1 L }w 1 ´w2 } C 0 . (10) 
We now recall a standard result for the continuity equation:

Theorem 2.1 (see [START_REF] Villani | Topics in optimal transportation[END_REF]Th. 5.34]). Let T ą 0, µ 0 P P c pR d q and w a vector field uniformly bounded, Lipschitz in space and measurable in time. Then, System (8) admits a unique solution µ in C 0 pr0, T s; P c pR d qq, where P c pR d q is equipped with the weak topology. Moreover:

(i) If µ 0 P P ac c pR d q, then the solution µ to (8) belongs to C 0 pr0, T s; P ac c pR d qq.

(ii) We have µptq " Φ w t #µ 0 for all t P r0, T s.

We now recall the precise notions of approximate controllability and exact controllability for System (1): Definition 5. We say that: 1) is approximately controllable from µ 0 to µ 1 on the time interval r0, T s if for each ε ą 0 there exists a control 1 ω u such that the corresponding solutions µ to System (1) satisfies

' System (
W p pµ 1 , µpT qq ď ε. (11) 
' System (1) is exactly controllable from µ 0 to µ 1 on the time interval r0, T s if there exists a control 1 ω u such that the corresponding solution to System (1) is equal to µ 1 at time T .

It is interesting to remark that, by using properties [START_REF] Bellomo | Active Particles[END_REF] of the Wasserstein distance, estimate [START_REF] Bullo | Distributed Control of Robotic Networks[END_REF] can be replaced by:

W 1 pµ 1 , µpT qq ď ε.
Thus, in this work, we study approximate controllability by considering the distance W 1 only.

Remark 4. One can be interested in proving approximate controllability for a smaller set of controls, for example of class C k in the space variable with some k ě 1. Due to the estimate [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF], the result of Theorem 1.1 still holds in this case, by density of C k functions in the space of Lipschitz function with respect to the C 0 norm. Higher regularity in the time variable can be achieved too with the same techniques.

A careful inspection of our proof shows that controls ensuring approximate controllability are not only measurable in time, but they have a finite number of discontinuities in time, that can be smoothened in a small interval of size τ . The introduced error can be arbitrarily small, by using the fact that lim τ Ñ0 e Lτ {p pe Lτ ´1q " 0.

Approximate controllability with a localized Lipschitz control

In this section, we study approximate controllability of System (1) with localized Lipschitz controls. More precisely, in Sections 3.1, we consider the case where the open connected control subset ω contains the support of both µ 0 and µ 1 . We then prove Theorem 1.1 in Section 3.2.

Approximate controllability with a Lipschitz control

In this section, we prove approximate controllability of System (1) with a Lipschitz control, when the open connected control subset ω contains the support of both µ 0 and µ 1 . Without loss of generality, we can assume that the vector field v is identically zero by replacing u with u ´v in the control set ω.

We then study approximate controllability of system

# B t µ `divpuµq " 0 in R d ˆR`, µp0q " µ 0 in R d . ( 12 
)
Proposition 3.1. Let µ 0 , µ 1 P P ac c pR d q compactly supported in ω. Then, for all T ą 0, System (12) is approximately controllable on the time interval r0, T s from µ 0 to µ 1 with a control u : R d ˆR`Ñ R d uniformly bounded, Lipschitz in space and measurable in time. Moreover, the solution µ to System (12) satisfies supppµptqq Ă ω, for all t P r0, T s.

Proof of Proposition 3.1. We assume that d :" 2, but the reader will see that the proof can be clearly adapted to dimension one or to any other space dimension. In view to simplify the computations, we suppose that T :" 1 and supppµ i q Ă p0, 1q 2 ĂĂ ω for i " 1, 2.

We first partition p0, 1q 2 . Let n P N ˚, consider a 0 :" 0, b 0 :" 0 and define the points a i , b i for all i P t1, ..., nu by induction as follows: suppose that for a given i P t0, ..., n ´1u the points a i and b i are defined, then the points a i`1 and b i`1 are the smallest values such that ż pa i ,a i`1 qˆR dµ 0 " 1 n and

ż pb i ,b i`1 qˆR dµ 1 " 1 n .
Again, for each i P t0, ..., n ´1u, we consider a i,0 :" 0, b i,0 :" 0 and supposing that for a given j P t0, ..., n ´1u the points a i,j and b i,j are already defined, a i,j`1 and b i,j`1 are the smallest values such that ż

A ij dµ 0 " 1 n 2 and ż B ij dµ 1 " 1 n 2 ,
where A ij :" pa i , a i`1 q ˆpa ij , a ipj`1q q and B ij :" pb i , b i`1 q ˆpb ij , b ipj`1q q. Since µ 0 and µ 1 have a mass equal to 1 and are supported in p0, 1q 2 , then a n , b n ď 1 and a i,n , b i,n ď 1 for all i P t0, ..., n ´1u. We give in Figure 2 an example of such partition.

x If one aims to define a vector field sending each A ij to B ij , then some shear stress is naturally introduced, as described in Remark 5. To overcome this problem, we first define sets r A ij ĂĂ A ij and r B ij ĂĂ B ij for all i, j P t0, ..., n ´1u. We then send the mass of µ 0 from each r A ij to r B ij , while we do not control the mass contained in A ij z r A ij . More precisely, for all i, j P t0, ..., n ´1u, we define, as in Figure 3, a í , a ì , a íj , a ìj the smallest values such that ż

pa i ,a í qˆpa ij ,a ipj`1q q dµ 0 " ż pa ì ,a i`1 qˆpa ij ,a ipj`1q q dµ 0 " 1 n 3 and ż pa í ,a ì qˆpa ij ,a íj q dµ 0 " ż pa í ,a ì qˆpa ìj ,a ipj`1q q dµ 0 " 1 n ˆˆ1 n 2 ´2 n 3 ˙.
We similarly define b ì , b í , b ìj , b íj and finally define r A ij :" pa í , a ì q ˆpa íj , a ìj q and r B ij :" pb í , b ì q ˆpb íj , b ìj q.

1 n ˆ`1 n 2 ´2 n 3 1 n 3 a i a í a ì a i`1 a ij a íj a ìj a ipj`1q r A ij
The goal is to build a solution to System [START_REF] Camazine | Self-organization in Biological Systems[END_REF] such that the corresponding flow

Φ u t satisfies Φ u T p r A ij q " r B ij , (13) 
for all i, j P t0, ..., n ´1u. We observe that we do not take into account the displacement of the mass contained in A ij z r A ij . We will show that the mass of the corresponding term tends to zero when n goes to infinity. The rest of the proof is divided into two steps. In a first step, we build a flow satisfying [START_REF] Canudas-De Wit | Graph constrained-ctm observer design for the grenoble south ring[END_REF], then the corresponding vector field. In a second step, we compute the Wasserstein distance between µ 1 and µpT q, showing that it converges to zero when n goes to infinity. Step 1: We first build a flow satisfying [START_REF] Canudas-De Wit | Graph constrained-ctm observer design for the grenoble south ring[END_REF]. We recall that T :" 1. For each i P t0, ..., n ´1u, we denote by c í and c ì the linear functions equal to a í and a ì at time t " 0 and equal to b í and b ì at time t " T " 1, respectively, i.e. the functions defined for all t P r0, T s by: c í ptq " pb í ´aí qt `aí and c ì ptq " pb ì ´aì qt `aì .

Similarly, for all i, j P t0, ..., n ´1u, we denote by c íj and c ìj the linear functions equal to a íj and a ìj at time t " 0 and equal to b íj and b ìj at time t " T " 1, respectively, i.e. the functions defined for all t P r0, T s by: c íj ptq " pb íj ´aí j qt `aí j and c ìj ptq " pb ìj ´aì j qt `aì j . Consider the application being the following linear combination of c í , c ì and c íj , c ìj on r A ij , i.e. xpx 0 , tq :" ˆx1 px 0 , tq x 2 px 0 , tq

˙" ¨aì ´x0 1 a ì ´aí c í ptq `x0 1 ´aí a ì ´aí c ì ptq a ìj ´x0 2 a ìj ´aí j c íj ptq `x0 2 ´aí j a ìj ´aí j c ìj ptq ‹ ‹ ‹ ' , (14) 
where x 0 " px 0 1 , x 0 2 q P r A ij . Let us prove that an extension of the application px 0 , tq Þ Ñ xpx 0 , tq is a flow associated to a vector field u. After some computations, we obtain $ ' & ' % dx 1 dt px 0 , tq " α i ptqx 1 px 0 , tq `βi ptq @t P r0, T s, dx 2 dt px 0 , tq " α ij ptqx 2 px 0 , tq `βij ptq @t P r0, T s,

where for all t P r0, T s, For all t P r0, T s, consider the set r C ij ptq :" pc í ptq, c ì ptqq ˆpc íj ptq, c ìj ptqq.

$ ' ' ' & ' ' ' % α i ptq " b ì ´bí `aí ´aì c ì ptq ´cí ptq , β i ptq " a ì b í ´aí b ì c ì ptq
We remark that r C ij p0q " r A ij and r C ij pT q " r B ij . On r C ij :" tpx, tq : t P r0, T s, x P r C ij ptqu, we then define the vector field u by " u 1 px, tq " α i ptqx 1 `βi ptq, u 2 px, tq " α ij ptqx 2 `βij ptq, for all px, tq P r C ij (x " px 1 , x 2 q). Notice that the sets r C ij do not intersect. Thus, we extend u by a uniform bounded C 8 function outside Y ij r C ij , then u is a C 8 function and it satisfies supppuq Ă ω.

Then, System (1) admits an unique solution and the flow on r C ij is given by ( 14).

Step 2: We now prove that the refinement of the grid provides convergence to the target µ 1 , i.e.

W 1 pµ 1 , µpT qq ÝÑ nÑ8 0.

We remark that ż

r B ij dµpT q " ż r B ij dµ 1 " 1 n 2 ´2 n 3 ´2 n ˆ1 n 2 ´2 n 3 ˙" pn ´2q 2 n 4 .
Hence, by defining

R :" p0, 1q 2 z ď ij r B ij ,
we also have ż

R dµpT q " ż R dµ 1 " 1 ´pn ´2q 2 n 2 .
M. Duprez, M. Morancey, F. Rossi Using [START_REF] Axelrod | The Evolution of Cooperation: Revised Edition[END_REF], it holds

W 1 pµ 1 , µpT qq ď n ř i,j"1 W 1 pµ 1 | r B ij , µpT q | r B ij q `W1 pµ 1 |R , µpT q |R q. ( 15 
)
We now estimate each term in the right-hand side of [START_REF] Caponigro | Sparse Jurdjevic-Quinn stabilization of dissipative systems[END_REF]. Since we deal with AC measures, using Properties 2.2, there exist measurable maps γ ij : R 2 Ñ R 2 , for all i, j P t0, ..., n´1u, and γ :

R 2 Ñ R 2 such that $ ' ' ' ' & ' ' ' ' % γ ij #pµ 1 | r B ij q " µpT q | r B ij , W 1 pµ 1 | r B ij , µpT q | r B ij q " ż r B ij |x ´γij pxq|dµ 1 pxq and $ ' ' ' & ' ' ' % γ#pµ 1 |R q " µpT q |R , W 1 pµ 1 |R , µpT q |R q " ż R |x ´γpxq|dµ 1 pxq.
In the first term in the right hand side of ( 15), observe that γ ij moves masses inside r B ij only. Thus, for all i, j P t0, ..., n ´1u, using the triangle inequality,

W 1 pµ 1 | r B ij , µpT q | r B ij q " ż r B ij |x ´γij pxq|dµ 1 pxq ď rpb ì ´bí q `pb ìj ´bí j qs ż r B ij dµ 1 pxq ď pb ì ´bí `bì j ´bí j q pn ´2q 2 n 4 . (16) 
For the second term in the right-hand side of ( 15), observe that γ moves a small mass in the bounded set p0, 1q. Thus it holds

W 1 pµ 1 |R , µpT q |R q " ż R |x ´γpxq|dµ 1 pxq ď 2 ˆ1 ´pn ´2q 2 n 2 ˙" 8 n ´1 n 2 . ( 17 
)
Combining ( 15), ( 16) and ( 17), we obtain

W 1 pµ 1 , µpT qq ď ˜n ř i,j"1 pb ì ´bí `bì j ´bí j q pn ´2q 2 n 4 ¸`8 n ´1 n 2 ď 2n pn ´2q 2 n 4 `8 n ´1 n 2 ÝÑ nÑ8 0.
Remark 5. It is not possible in general to build a Lipschitz vector field sending directly each A ij to B ij using the strategy developed in the proof of Proposition 3.1. Indeed, we would obtain discontinuous velocities on the lines c i . Figure 4 illustrates this phenomenon in the case n " 2.

Approximate controllability with a localized regular control

This section is devoted to prove Theorem 1.1: we aim to prove approximate controllability of System (1) with a Lipschitz localized control. This means that we remove the constraints supppµ 0 q Ă ω, supppµ 1 q Ă ω and v :" 0, that we used in Section 3.1. On the other side, we impose Condition 1.1. Before the main proof, we need three useful results. First of all, we give a consequence of Condition 1.1: Condition 3.1. There exist two real numbers T 0 , T 1 ą 0 and a nonempty open set ω 0 ĂĂ ω such that (i) For each x 0 P supppµ 0 q, there exists t 0 P r0, T 0 s such that Φ v t 0 px 0 q P ω 0 , where Φ v t is the flow associated to v.

a 0 a 1 a 2 a 00 " a 10
(ii) For each x 1 P supppµ 1 q, there exists t 1 P r0, T 1 s such that Φ v ´t1 px 1 q P ω 0 .

Lemma 3.1. If Condition 1.1 is satisfied for µ 0 , µ 1 P P c pR d q, then Condition 3.1 is satisfied too.

Proof. We use a compactness argument. Let µ 0 P P c pR d q and assume that Condition 1.1 holds. Let x 0 P supppµ 0 q. Using Condition 1.1, there exists t 0 px 0 q ą 0 such that Φ v t 0 px 0 q px 0 q P ω. Choose rpx 0 q ą 0 such that B rpx 0 q pΦ v t 0 px 0 q px 0 qq ĂĂ ω, where B r px 0 q denotes the open ball of radius r ą 0 centered at point x 0 in R d . Such rpx 0 q exists, since ω is open. By continuity of the application x 1 Þ Ñ Φ v t 0 px 0 q px 1 q (see [10, Th. 2.1.1]), there exists rpx 0 q such that x 1 P B rpx 0 q px 0 q ñ Φ v t 0 px 0 q px 1 q P B rpx 0 q pΦ v t 0 px 0 q px 0 qq.

Since µ 0 is compactly supported, we can find a set tx 0 1 , ..., x 0 N 0 u Ă supppµ 0 q such that supppµ 0 q Ă

N 0 ď i"1 B rpx 0 i q px 0 i q.
We similarly build a set tx 1 1 , ..., x 1 N 1 u Ă supppµ 1 q. Thus Condition 3.1 is satisfied for

T k :" maxtt k px k i q : i P t1, ..., N k uu,
with k " 0, 1 and

ω 0 :" ˜N0 ď i"1 B rpx 0 i q pΦ v t 0 px 0 i q px 0 i qq ¸ď ˜N1 ď i"1 B rpx 1 i q pΦ v ´t1 px 1 i q px 1 i qq ¸ĂĂ ω.
The second useful result is the following proposition, showing that we can store a large part of the mass of µ 0 in ω, under Condition 3.1. Proposition 3.2. Let µ 0 P P ac c pR d q satisfying the first item of Condition 3.1. Then, for all ε ą 0, there exists a space-dependent vector field 1 ω u Lipschitz and uniformly bounded and a Borel set A Ă R d such that

µ 0 pAq " ε and supppΦ v`1ω u T 0 #µ 0 |A c q Ă ω. ( 18 
)
Proof. For each k P N ˚, we denote by ω k the closed set defined by ω k :" tx 0 P R d : dpx 0 , ω c 0 q ě 1{ku and a cutoff function

θ k P C 8 pR d q satisfying $ & % 0 ď θ k ď 1, θ k " 1 in ω c 0 , θ k " 0 in ω k .
For all x 0 P supppµ 0 q, we define t 0 px 0 q :" inftt P R `: Φ v t px 0 q P ω 0 u and t k px 0 q :" inftt P R `: Φ v t px 0 q P ω k u.

For all k P N ˚, we consider

u k :" pθ k ´1qv (19) 
and S k :" tx 0 P supppµ 0 qzω 0 : Ds P pt 0 px 0 q, t k px 0 qq, s.t. Φ v s px 0 q P ω c 0 u. The rest of the proof is divided into three steps:

• In Step 1, we prove that the range of the flow associated to x 0 with the control u k is included in the range of the flow associated to x 0 without control, i.e. tΦ v`u k t px 0 q : t ě 0u Ă tΦ v t px 0 q : t ě 0u.

• In Step 2, we show that S k is a Borel set for all k P N ˚.

• In Step 3, we prove that for a K large enough we have

µ 0 pωzω K q `µ0 pS K q ď ε. (20) 
Step 1: Consider the flow yptq :" Φ v t px 0 q associated to x 0 without control, i.e. the solution to # 9 yptq " vpyptqq, t ě 0, yp0q " x 0 and the flow z k ptq :" Φ v`u k t px 0 q associated to x 0 with the control u k given in [START_REF] Coron | Exact boundary controllability for 1-d quasilinear hyperbolic systems with a vanishing characteristic speed[END_REF], i.e. the solution to # 9 z k ptq " pv `uk qpz k ptqq " θ k pz k ptqq ˆvpz k ptqq, t ě 0,

z k p0q " x 0 . (21) 
We use the time change γ k defined as the solution to the following system # 9 γ k ptq " θ k pypγ k ptqqq, t ě 0,

γ k p0q " 0. ( 22 
)
Since θ k and y are Lipschitz, then System (22) admits a solution defined for all times. We remark that ξ k :" y ˝γk is solution to System [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF]. Indeed, for all t ě 0 it holds # 9 ξ k ptq " 9 γ k ptq ˆ9 ypγ k ptqq " θ k pξ k ptqq ˆvpξ k ptqq, t ě 0, ξ k p0q " ypγ k p0qq " yp0q.

By uniqueness of the solution to System (21), we obtain ypγ k ptqq " z k ptq for all t ě 0.

Using the fact that 0 ď θ ď 1 and the definition of γ k , we have $ & % γ k increasing, γ k ptq ď t @t P r0, t k px 0 qs, γ k ptq ď t k px 0 q @t ě t k px 0 q.

We deduce that, for all x 0 P supppµ 0 q, it holds tz k ptq : t ě 0u Ă typsq : s P r0, t k px 0 qsu.

Step 2: We now prove that S k is a Borel set by showing that the set R k :" tx 0 P R d : t 0 px 0 q ă 8 and Ds P pt 0 px 0 q, t k px 0 qq s.t. Φ v s px 0 q P ω c 0 u is open. Let k P N ˚, x 0 be an element of R k and search rpx 0 q ą 0 such that B rpx 0 q px 0 q Ă R k .

There exists s P pt 0 px 0 q, t k px 0 qq such that Φ v s px 0 q P ω c 0 . Since ω c 0 is open, for a β ą 0, we have B β pΦ v s px 0 qq Ă ω c 0 . By continuity of the application x 1 Þ Ñ Φ v s px 1 q, there exists rpx 0 q ą 0 such that x 1 P B rpx 0 q px 0 q ñ Φ v s px 1 q P B β pΦ v s px 0 qq. Thus, for all k P N ˚, R k is open. As S k " R k X supppµ 0 q X ω c 0 , S k is a Borel set.

Step 3: We now prove that (20) holds for a K large enough. Since we deal with we AC measure, there exists K 0 P N ˚such that for all k ě K 0 µ 0 pω 0 zω k q ď ε{2.

Argue now by contradiction to prove that there exists K 1 ě K 0 such that µ 0 pS K 1 q ď ε{2.

Assume that µ 0 pS k q ą ε{2 for all k ě K 0 . Using the inclusion S k`1 Ă S k , we deduce that µ 0 ˜č kPN ˚Sk ¸ě ε{2. Since µ 0 is absolute continuous with respect to λ (the Lebesgue measure), there exists α ą 0 such that λ ˜č kPN ˚Sk ¸ě α. We deduce that the intersection of the set S k is nonempty. Let x 0 P supppµ 0 qzω 0 be an element of this intersection. By definition of S k , for all k ě K 0 , there exists s k satisfying " s k P pt 0 px 0 q, t k px 0 qq, Φ v s k px 0 q P ω c 0 .

(

) 23 
Moreover, the convergence of t k px 0 q to t 0 px 0 q, implies that

s k Ñ t 0 px 0 q. ( 24 
)
Using the continuity of x 1 Þ Ñ Φ v t px 1 q and the definition of t 0 px 0 q, there exists β ą 0 such that Φ v t px 0 q P ω 0 for all t P pt 0 , t 0 `βq.

We deduce that ( 25) contradicts ( 23) and [START_REF] Ronald | Ordinary differential equations, transport theory and sobolev spaces[END_REF]. Thus there exists K P N ˚such that µ 0 pS K q `µ0 pωzω K q ď ε.

Since we deal with AC measures, we add a Borel set to have the equality in [START_REF] Coron | Control and nonlinearity[END_REF], i.e. there exists a Borel set S such that

µ 0 pS K Y ωzω K Y Sq " ε.
We conclude that, for u defined by uptq :" u 1 :" u K for all t P r0, T 0 s, and A :" S K Y ωzω K Y S, Properties ( 18) are satisfied.

The third useful result for the proof of Theorem 1.1 allows to approximately steer a measure contained in ω to a measure contained in an open hypercube S ĂĂ ω. Proposition 3.3. Let µ 0 P P ac c pR d q satisfying supppµ 0 q Ă ω. Define an open hypercube S strictly included in ωz supppµ 0 q and choose δ ą 0. Then, for all ε ą 0, there exists a vector field 1 ω u, Lipschitz and uniformly bounded and a Borel set A such that µ 0 pAq " ε and supppΦ v`1ω u δ #µ 0 |A c q Ă S. An example is given in Figure 5. From [28, Lemma 1.1, Chap. 1] (see also [START_REF] Coron | Control and nonlinearity[END_REF]Lemma 2.68, Chap. 2]), there exists a function η P C 2 pr ωq satisfying

κ 0 ď |∇η| ď κ 1 in r ωzS 0 , η ą 0 in r ω and η " 0 on Br ω, (26) 
with κ 0 , κ 1 ą 0. Let k P N ˚. Consider u k : R d Ñ R d Lipschitz and uniformly bounded satisfying u k :" " k∇η ´v in r ω, 0 in ω c . Let x 0 P supppµ 0 q. Consider the flow z k ptq " Φ v`u k t px 0 q associated to x 0 with the control u k , i.e. the solution to system # 9 z k ptq " vpz k ptqq `uk pz k ptqq, t ě 0,

z k p0q " x 0 . ( 27 
)
The different conditions in [START_REF] Ferscha | Lifebelt: Crowd evacuation based on vibro-tactile guidance[END_REF] imply that where n represents the outward unit normal to Br ω. Since supppµ 0 q Ă r ω, it holds z k ptq P r ω for all t ě 0, otherwise, by taking the scalar product of ( 27) and n on Br ω, we obtain a contradiction with [START_REF] Fursikov | Controllability of evolution equations[END_REF]. We now prove that there exists Kpx 0 q P N ˚such that for all k ě Kpx 0 q there exists t k px 0 q P p0, δq such that z k pt k px 0 qq belongs to S 0 . By contradiction, assume that there exists a sequences tk n u nPN ˚Ă N ˚such that for all t P p0, δq z kn ptq P S c 0 .

n ¨∇η ă C ă 0 on Br ω, (28) 
Consider the function f n defined for all t P r0, δs by

f n ptq :" k n ηpz kn ptqq. ( 30 
)
Its time derivative is given for all t P r0, δs by 9 f n ptq " k n 9 z kn ptq ¨∇ηpz kn ptqq " k 2 n |∇ηpz kn ptqq| 2

Then, using [START_REF] Hegyi | Specialist: A dynamic speed limit control algorithm based on shock wave theory[END_REF], properties [START_REF] Ferscha | Lifebelt: Crowd evacuation based on vibro-tactile guidance[END_REF] of η and definition [START_REF] Helbing | Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes[END_REF] of f n , it holds f n pδq ě k 2 n κ 2 0 δ and f n pδq ď k n }η} 8 . We observe that the two last inequalities are in contradiction for n large enough. Then there exists Kpx 0 q P N ˚such that for all k ě Kpx 0 q there exists t k px 0 q P p0, δq such that z k pt k px 0 qq belongs to S 0 . By continuity, there exists rpx 0 q ą 0 such that Φ v`u Kpx 0 q t Kpx 0 q px 0 q px 1 q belongs to S 0 for all x 1 P B rpx 0 q px 0 q. Since v `uk is linear with respect to k in r ω, then, using the same argument as in Step 1 of the proof of Proposition 3.2, the range of the flow Φ v`u k ¨is independent of k. Thus, for all k ě Kpx 0 q there exists t 0 k px 0 q P p0, δq such that Φ v`u k t 0 k px 0 q px 1 q P S 0 for all x 1 P B rpx 0 q px 0 q. By compactness, there exists tx 0 1 , ..., x 0

N 0 u such that supppµ 0 q Ă N 0 ď i"1 B rpx 0 i q px 0 i q.
We deduce that for K :" max i tKpx 0 i qu, for all x 0 P supppµ 0 q there exists t 0 px 0 q for which Φ v`u K t 0 px 0 q px 0 q belongs to S 0 . We remark that the first item of Condition 3.1 holds replacing ω, ω 0 and T 0 by S, S 0 and δ, respectively. We conclude applying Proposition 3.2 replacing ω, ω 0 , T 0 and v by S, S 0 , δ and v `uK , respectively. Remark 6. An alternative method to prove Proposition 3.3 involves building an explicit flow composed with straight lines as in the proof of Proposition 3.1. However, for such method we need to assume that ω is convex, contrarily to the more general approach developed in the proof of Proposition 3.3.

We now have all the tools to prove Theorem 1.1.

Proof of Theorem 1.1. Consider µ 0 , µ 1 satisfying Condition 1.1. By Lemma 3.1, there exist T 0 , T 1 , ω 0 for which µ 0 , µ 1 satisfy Condition 3.1. Let δ, ε ą 0 and T :" T 0 `T 1 `δ. We now prove that we can construct a Lipschitz uniformly bounded and control 1 ω u such that the corresponding solution µ to System (1) satisfies W 1 pµpT q, µ 1 q ď ε. Denote by T 0 :" 0, T 1 :" T 0 , T 2 :" T 0 `δ{3, T 3 :" T 0 `2δ{3, T 4 :" T 0 `δ and T 5 :" T 0 `T 1 `δ. Also fix an open hypercube S ĂĂ ωzω 0 . There exists R ą 0 such that the supports of µ 0 and µ 1 are strictly included in a hypercube with edges of length R. Define R :" R `T ˆsup

R d |v|.
Applying Proposition 3.2 on rT 0 , T 1 s Y rT 4 , T 5 s and Proposition 3.3 on rT 1 , T 2 s Y rT 3 , T 4 s, we can construct some space-dependent controls u 1 , u 2 , u 4 , u 5 Lipschitz and uniformly bounded, with supppu i q Ă ω, and two Borel sets A 0 and A 1 such that

µ 0 pA 0 q " µ 1 pA 1 q " ε 2dR , the solution forward in time to $ ' & ' % B t ρ 0 `∇ ¨ppv `1ω u 1 qρ 0 q " 0 in R d ˆrT 0 , T 1 s, B t ρ 0 `∇ ¨ppv `1ω u 2 qρ 0 q " 0 in R d ˆrT 1 , T 2 s, ρ 0 pT 0 q " µ 0 |A c 0 in R d
and the solution backward in time to

$ ' & ' % B t ρ 1 `∇ ¨ppv `1ω u 5 qρ 1 q " 0 in R d ˆrT 4 , T 5 s, B t ρ 1 `∇ ¨ppv `1ω u 4 qρ 1 q " 0 in R d ˆrT 3 , T 4 s, ρ 1 pT 5 q " µ 1 |A c 1 in R d
satisfy supppρ 0 pT 2 qq Ă S and supppρ 1 pT 3 qq Ă S. By conservation of the mass, we remark that |ρ 0 pT 2 q| " |ρ 1 pT 3 q| " 1 ´ε{2dR. We now apply Proposition 3.1 to approximately steer ρ 0 pT 2 q to ρ 1 pT 3 q inside S as follows: we find a control u 3 on the time interval rT 2 , T 3 s satisfying supppu 3 q Ă S such that the solution ρ to

# B t ρ `∇ ¨ppv `1ω u 3 qρq " 0 in R d ˆrT 2 , T 3 s, ρpT 2 q " ρ 0 pT 2 q in R d satisfies W 1 pρpT 3 q, ρ 1 pT 3 qq ď ε 2e 2LpT 5 ´T3 q ,
where L is the uniform Lipschitz constant for u 4 and u 5 . Thus, denoting by u the concatenation of u 1 , u 2 , u 3 , u 4 , u 5 on the time interval r0, T s, we approximately steer µ 0

|A c 0 to µ 1 |A c 1 , since by (9) the solution µ to # B t µ `∇ ¨ppv `1ω u i qµq " 0 in R d ˆrT i´1 , T i s, i P t1, ..., 5u, µp0q " µ 0 |A c 0 in R d satisfies W 1 pΦ v`u T #µ 0 |A c 0 , µ 1 |A c 0 q " W 1 pµpT 5 q, µ 1 |A c 1 q ď e 2LpT 5 ´T3 q ε 2e 2LpT 5 ´T3 q " ε 2 . (31) 
Since we deal with AC measures, using Properties 2.2, there exists a measurable map γ :

R d Ñ R d such that $ & % γ#µ 1 |A 1 " Φ v`u T #µ 0 |A 0 , W 1 pΦ v`u T #µ 0 |A 0 , µ 1 |A 1 q " ż R d |x ´γpxq|dµ 1 |A 1 pxq.
We deduce that

W 1 pΦ v`u T #µ 0 |A 0 , µ 1 |A 1 q " ż R d |x ´γpxq|dµ 1 |A 1 pxq ď dR ˆε 2dR " ε 2 . (32) 
Inequalities ( 6), ( 31) and ( 32) leads to the conclusion:

W 1 pΦ v`u T #µ 0 , µ 1 q ď W 1 pΦ v`u T #µ 0 |A c 0 , µ 1 |A c 1 q `W1 pΦ v`u T #µ 0 |A 0 , µ 1 |A 1 q ď ε.

Exact controllability

In this section, we study exact controllability for System (1). In Section 4.1, we show that exact controllability of System (1) does not hold for Lipschitz or controls inducing maximal regular flows. In Section 4.2, we prove Theorem 1.2, i.e. exact controllability of System (1) with a L 2 localized control under some geometric conditions.

Negative results for exact controllability

In this section, we show that exact controllability does not hold in general for Lipschitz controls or even vector fields inducing a maximal regular flow. We will see that topological aspects play a crucial role at this level.

a) Non exact controllability with Lipschitz controls

As explained in the introduction, if we impose the classical Carathéodory condition of 1 ω u : R d ˆR`Ñ R d being uniformly bounded, Lipschitz in space and measurable in time, then the flow Φ v`1ωu t is a homeomorphism (see [10, Th. 2.1.1]). More precisely, the flow and its inverse are locally Lipschitz. This implies that the support of µ 0 and µpT q are homeomorphic. Thus, if the support of µ 0 and µ 1 are not homeomorphic, then exact controllability does not hold with Lipschitz controls. In particular, we cannot steer a measure which support is connected to a measure which support is composed of two connected components with Lipschitz controls and conversely.

b) Non exact controllability with vector fields inducing maximal regular flows

To hope to obtain exact controllability of System (1) at least for AC measures, it is then necessary to search for a control with less regularity. A weaker condition on the regularity of the vector field for the well-posedness of System (1) has been given in [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF], generalizing previous conditions in [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF][START_REF] Ronald | Ordinary differential equations, transport theory and sobolev spaces[END_REF]. We first briefly recall the main definitions and results of such theory. We then prove that, in such setting, exact controllability between some pairs of AC measures µ 0 , µ 1 does not hold, even when the Geometric Condition 1.1 is satisfied.

We first recall the definition of maximal regular field in [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF]Def. 4.4], and the corresponding existence result [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF]Thm. 5.7]. In our setting, we aim to find a flow that is defined on the whole space R d for all times r0, T s. Then, we present a simplified version of maximal regular flows, with no hitting time or blow-up of trajectories. The notation is then simplified too. Definition 6. Let w : R d ˆp0, T q Ñ R d be a Borel vector field. We say that a Borel map Φ w t is a maximal regular flow relative to w if it satisfies:

1. for almost every x P R d , the function Φ w t pxq is absolutely continuous with respect to t and it solves the ordinary differential equation 9

x " wpt, xptqq with initial condition Φ w t pxq " x;

2. for any open bounded set A Ă R d , there exists a compressibility constant CpAq such that for all t P r0, T s, it holds b) for any non-negative ρ P L 8 `pR d q with compact support and any closed interval ra, bs Ă p0, T q, the continuity equation B t ρ t `∇ ¨pwρ t q " 0 in R d ˆpa, bq admits at most one weakly ˚continuous solution for t P ra, bs: t Þ Ñ ρ t P L 8 pra, bs; L 8 `pR d qq X tf s.t. supppf q compact subset of R d ˆra, bsu with ρ a " ρ.

Φ w t #L| A ď CpAqL. (33) 

c) for any open bounded set

A Ă R d it holds divpwpt, .qq ě mptq in A, with LpAq :" ż T 0 |mptq| dt ă 8. ( 34 
)
Then, the maximal regular flow Φ w t relative to w exists and is unique. Moreover, for any open compact set A, the compressibility constant CpAq in [START_REF] Lin | Leaderfollower formation via complex laplacian[END_REF] can be chosen as e LpAq .

For simplicity, we will study two examples of non-controllability in the 1-D setting only. It is then easy to observe that maximal regular flows preserve the order with respect to the initial data, as Lipschitz flows. Proof. Following the proof of [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF]Thm. 5.2], build a family of mollified vector fields w ε for w: they are all Lipschitz, then they preserve the order x ď y ñ Φ wε t pxq ď Φ wε t pyq for all x, y P R, as a classical property of Lipschitz vector fields in R. By letting w ε á w weakly in L 1 pp0, T q ˆAq for all A open bounded, and observing that other hypotheses of the Stability Theorem 6.2 in [START_REF] Ambrosio | Existence and uniqueness of maximal regular flows for non-smooth vector fields[END_REF] are satisfied, one has the result.

We are now ready to present two examples of pairs of AC measures µ 0 , µ 1 in R for which exact controllability does not hold with vector fields inducing maximal regular flows.

Exemple 4.1. For simplicity, we choose v " 0 and ω " p´2, 2q from now on. For the first example, we define µ 0 " 1 r0,1s L and µ 1 pxq " 1 2 x ´1 2 1 p0,1q L. It is clear that the Geometric Condition 1.1 is satisfied. Assume now that a Borel control u satisfying conditions of Theorem 4.1 steering µ 0 to µ 1 at a given time T ą 0 exists. Then, the associated maximal regular flow both satisfies µ 1 " Φ u T #µ 0 and there exists C " Cpp0, 1qq such that Φ u T #µ 0 ď CL. Thus, we deduce that µ 1 ď CL, which is in contradiction with the definition of µ 1 . Exemple 4.2. It is clear that the previous example is based on the fact that there exists measures that are absolutely continuous with respect to L and such that their Radon-Nikodym density are L 1 functions that are not L 8 . One can then be interested in proving exact controllability between measures of the form ρpxqL with ρpxq P L 8 pRq. Also in this case, one has examples of non exact controllability. Indeed, consider again v " 0 and ω " p´2, 2q. Define ν 0 pxq " 2x1 r0,1s L and ν 1 " 1 r0,1s L. We prove now that also in this case, there exists no control inducing maximal regular flows and realizing exact controllability. By contradiction, assume that such control w exists; thus, the associated flow Φ u t satisfies Φ u T #ν 0 " ν 1 . Then 

ş Φ u T pxq 0 1 2 s ´1 2 ds, i.e. Φ u
T #µ 0 " µ 1 . Thus, Φ u T realizes the exact control from µ 0 to µ 1 . Contradiction. Then, there exist no control inducing maximal regular flows and exactly steering ν 0 to ν 1 .

Exemple 4.3. One can be interested in finding counterexamples to exact controllability in R d with d ą 1. The Example 4.1 for non exact controllability can be adapted to this setting, by considering µ 0 " LpB 1 p0qq ´11 B 1 p0q L and µ 1 " ρ 1 pxqL with ρ 1 being a L 1 but not L 8 function. The counterexample in Example 4.2 can be adapted too, even though computations cannot be carried out easily by applying useful monotony properties.

Exact controllability with L 2 controls

In this section, we prove Theorem 1.2, i.e. exact controllability of System (1) in the following sense: there exists a couple p1 ω u, µq solution to System (1) satisfying µpT q " µ 1 . Before proving Theorem 1.2, we need three useful results. The first one is the following proposition, showing that we can store the whole mass of µ 0 in ω, under Condition 3.1.

It is the analogue of Proposition 3.2. In this case, we control the whole mass, but we do not have necessarily uniqueness of the solution to System (1). Proposition 4.2. Let µ 0 P P c pR d q satisfying the first item of Condition 3.1. Then there exists a couple p1 ω u, µq composed of a L 2 vector field 1 ω u : R d ˆR`Ñ R d and a time-evolving measure µ being weak solution to System (1) and satisfying supppµpT 0 qq Ă ω.

Proof. For each x 0 P R d , we denote by r t 0 px 0 q :" inftt ě 0 : Φ v t px 0 q P ω 0 u and consider the application Ψ ¨px 0 q defined for all t ě 0 by

Ψ t px 0 q " # Φ v t px 0 q if t ď r t 0 px 0 q, Φ v r t 0 px 0 q px 0 q otherwise.
For all t ě 0, the application Ψ t is a Borel map. Consider µ defined for all t ě 0 by µptq :" Ψ t #µ 0 .

We remark that, for all t, s P r0, T 0 s such that t ě s, µptq " Ψ t´s #µpsq.

Since Φ v ¨px 0 q is Lipschitz, for all x 0 P R d and t P r0, T 0 s, it holds

|Ψ t px 0 q ´x0 | ď C mintt, t 0 px 0 qu ď Ct. (36) 
Combining [START_REF] Moser | On the volume elements on a manifold[END_REF] and [START_REF] Motsch | Heterophilious dynamics enhances consensus[END_REF], we deduce for all t, s P r0, T 0 s with s ď t W 

B t µ `∇ ¨pwµq " 0 in R d ˆr0, T 0 s, µp0q " µ 0 in R d . (38) 
By the uniform bound on the metric derivative, it holds that w is a L We now prove that wptq coincides with vptq in supppµptqqzω 1 a.e. t P r0, T 0 s, i.e. we can choose u " 0 outside ω. Fix t P r0, T 0 s and consider x P supppµptqq X ω c 1 . There necessarily exists x 0 P supppµ 0 q such that Φ v t px 0 q " x, otherwise x P Bω 0 . Moreover for a B :" B r px 0 q with r ą 0 Φ v s pBq ĂĂ ω c 0 for all s P r0, ts, otherwise there exists s P r0, ts for which Φ v s px 0 q P Bω 0 . Thus Φ

v t " Ψ t in B. (39) 
We denote by A :" Φ v t pBq. We now prove that

Ψ ´1 t pAq " pΦ v t q ´1pAq. (40) 
Consider x P pΦ v t q ´1pAq. Equality (39) implies Φ v t pxq " Ψ t pxq. Then x P Ψ ´1 t pAq. Consider now x P Ψ ´1 t pAq, which means Ψ t pxq P A. Using the fact that A X ω 0 ‰ 0, t ă r x 0 pxq. Then Ψ t pxq " Φ v t pxq and x P pΦ v t q ´1pAq. Thus (40) holds. By definition of the push forward,

µ |A ptq " Ψ t #pµ 0 |Ψ ´1 t pAq q and pΦ v t #µ 0 q |A " Φ v t #pµ 0 |Φ ´1 t pAq q.
Since Ψ t " Φ v t on the set B " pΦ v t q ´1pAq " Ψ ´1 t pAq, this implies

µ |A ptq " Φ v t #µ 0 |A .
By compactness of supppµptqq X ω c 1 , it holds

µptq |ω c 1 " pΦ v t #µ 0 q |ω c 1 .
We deduce that, for all ϕ P C 8 c pR d q such that supppϕq ĂĂ ω c 1 , The second useful result for the proof of Theorem 1.2 allows to exactly steer a measure contained in ω to a nonempty open convex set S ĂĂ ω. It is the analogue of Proposition 3.3. In this case, as in Proposition 4.2, we control the whole mass, but we do not have necessarily uniqueness of the solution to System (1). Proposition 4.3. Let µ 0 P P c pR d q satisfying supppµ 0 q Ă ω. Define a nonempty open convex set S strictly included in ωz supppµ 0 q and choose δ ą 0. Then there exists a couple p1 ω u, µq composed of a L 2 vector field 1 ω u : R d ˆR`Ñ R d and a time-evolving measure µ being weak solution to System (1) satisfying supppµpδqq Ă S. An example is given in Figure 5. Consider η P C 2 pω 1 q defined in the proof of Proposition 3.3 satisfying [START_REF] Ferscha | Lifebelt: Crowd evacuation based on vibro-tactile guidance[END_REF]. For all k P N ˚, we consider a Lipschitz vector field v k satisfying v k :"

d dt ż R d ϕ dµptq " ż R d x∇ϕ,
" k∇η in ω 1 , v in ω c .
We denote by r t 0 k px 0 q :" inftt ě 0 : Φ v k t px 0 q P S 0 u. For all x 0 P R d and all k P N ˚, consider the application Ψ k,¨p x 0 q defined for all t ě 0 by Ψ k,t px 0 q " # Φ v k t px 0 q if t ď r t 0 k px 0 q, Φ v k r t 0 k px 0 q px 0 q otherwise. Using the same argument as in the proof of Proposition 3.3, for K large enough, Ψ K,δ px 0 q belongs to S for all x 0 P supppµ 0 q. Consider µ defined for all t P p0, δq by µptq :" Ψ K,t #µ 0 . As in the proof of Proposition 4.2, there exists a vector field u K such that pu K , µq is a weak solution to System [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF]. Moreover u K ptq " v K , µptq a.e. in S c and a.e. t P r0, δs. Thus, we conclude that p1 ω pu K ´vK q, µq is solution to System (1) and supppµpδqq Ă S.

The third useful result for the proof of Theorem 1.2 allows to exactly steer a measure contained in a nonempty open convex set S ĂĂ ω to a given measure contained in S. It is the analogue of Proposition 3.1. In this situation, we obtain exact controllability of System (1), but, again, we do not have necessarily uniqueness of the solution to System (1). Proposition 4.4. Let µ 0 , µ 1 P P c pR d q satisfying supppµ 0 q Ă S and supppµ 1 q Ă S for a nonempty open convex set S strictly included in ω. Choose δ ą 0. Then there exists a couple p1 ω u, µq composed of a L 2 vector field 1 ω u : R d ˆR`Ñ R d and a time-evolving measure µ being weak solution to System (1) and satisfying supppµq Ă S and µpδq " µ 1 .

Remark 7. The proof of Proposition 4.4 can be obtain thanks to the generalized Benamou-Brenier formula (see [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] for the original work and [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Th. 5.28] for the generalization). For the sake of completeness, we give below a proof of Proposition 4.4 closely related to the proof of [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Th. 5.28].

Proof of Proposition 4.4. Let π be the optimal plan given in (4) associated to the Wasserstein distance between µ 0 and µ 1 . For i P t1, 2u, we denote by p i : R d ˆRd Ñ R d the projection operator defined by p i : px 1 , x 2 q Þ Ñ x i .

Consider the time-evolving measure µ defined for all t P r0, δs by µptq :" 1 δ rpδ ´tqp 1 `tp 2 s #π. [START_REF] Villani | Topics in optimal transportation[END_REF] Using [4, Th. 7.2.2], µ is a constant speed geodesic connecting µ 0 and µ 1 in P c pR d q, i.e. for all s, t P r0, δs W 2 pµptq, µpsqq " pt ´sq δ W 2 pµ 0 , µ 1 q.

We deduce that the metric derivative |µ 1 | of µ (see [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF]) is uniformly bounded on r0, δs.

Then µ is an absolute continuous curve on P c pR d q (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Def. 1.1.1]). Thus, using [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Th. 8.3.1], there exists a Borel vector field w : R d ˆp0, δq Ñ R d such that }wptq} L 2 pµptq;R d q ď |µ 1 |ptq a.e. t P r0, δs and the couple pw, µq is a weak solution to # B t µ `∇ ¨pwµq " 0 in R d ˆr0, δs, µp0q " µ 0 in R d .

By the uniform bound on the metric derivative, it holds that w is an L 2 vector field. Consider θ P C 8 c pR d q such that 0 ď θ ď 1, θ " 1 in S and θ " 0 in ω c .

We remark that µ is supported in S, then the couple p1 ω u, µq with u :" θ ˆpw ´vq is solution to # B t µ `∇ ¨ppv `1ω uqµq " 0 in R d ˆr0, δs, µp0q " µ 0 in R d .

We now have all the tools to prove Theorem 1.2.

Proof of Theorem 1.2. Consider µ 0 and µ 1 satisfying Condition 1.1. Applying Lemma 3.1, Condition 3.1 holds for some ω 0 , T 0 and T 1 . Let T :" T 0 `T 1 `δ with δ ą 0 and T 0 , T 1 , T 2 , T 3 , T 4 , T 5 be the times given in the proof of Theorem 1.1. Using Proposition 4.2 on rT 0 , T 1 s Y rT 4 , T 5 s, there exist ρ 1 P C 0 prT 0 , T 1 s, P c pR d qq, ρ 5 P C 0 prT 4 , T 5 s, P c pR d qq and some space-dependent L 2 controls u 1 , u 5 with supppu 1 q Y supppu 5 q Ă ω such that p1 ω u 1 , ρ 1 q is a weak solution forward in time to # B t ρ 1 `∇ ¨ppv `1ω u 1 qρ 1 q " 0 in R d ˆrT 0 , T 1 s, ρ 1 pT 0 q " µ 0 in R d and p1 ω u 5 , ρ 5 q is a weak solution backward in time to # B t ρ 5 `∇ ¨ppv `1ω u 5 qρ 5 q " 0 in R d ˆrT 4 , T 5 s,

ρ 5 pT 5 q " µ 1 in R d .
Moreover supppρ 1 pT 1 qq Ă ω and supppρ 5 pT 4 qq Ă ω. Consider a nonempty open convex set S strictly included in ωzω 0 . Using Proposition 4.3 on rT 1 , T 2 s Y rT 3 , T 4 s, there exist ρ 2 P C 0 prT 1 , T 2 s, P c pR d qq, ρ 4 P C 0 prT 3 , T 4 s, P c pR d qq and some space-dependent L 2 controls u 2 , u 4 with supppu 2 q Y supppu 4 q Ă ω such that p1 ω u 2 , ρ 2 q is a weak solution forward in time to # B t ρ 2 `∇ ¨ppv `1ω u 2 qρ 2 q " 0 in R d ˆrT 1 , T 2 s, ρ 2 pT 1 q " ρ 1 pT 1 q in R d and p1 ω u 4 , ρ 4 q is a weak solution backward in time to # B t ρ 4 `∇ ¨ppv `1ω u 4 qρ 4 q " 0 in R d ˆrT 3 , T 4 s, ρ 4 pT 4 q " ρ 5 pT 4 q in R d .

Moreover supppρ 2 pT 2 qq Ă S and supppρ 4 pT 3 qq Ă S. Using Proposition 4.4 on rT 2 , T 3 s, there exist ρ 3 P C 0 prT 2 , T 3 s, P c pR d qq satisfying supppρ 3 q Ă S and a L 2 control u 3 with supppu 3 q Ă ω such that p1 ω u 3 , ρ 3 q is a weak solution forward in time to # B t ρ 3 `∇ ¨ppv `1ω u 3 qρ 3 q " 0 in R d ˆrT 2 , T 3 s, ρ 3 pT 2 q " ρ 2 pT 2 q in R d and satisfies ρ 3 pT 3 q " ρ 4 pT 3 q. Thus the couple p1 ω u, µq defined by p1 ω u, µq " p1 ω u i , ρ i q in R d ˆrT i´1 , T i q, i P t1, ..., 5u is a weak solution to System (1) and satisfies µpT q " µ 1 .
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 41 Let w : R d ˆp0, T q Ñ R d be a Borel vector field satisfying the following conditions: xq| dx dt ă 8 for any open bounded set A Ă R d ;
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 41 Let w be a Borel vector field satisfying conditions of Theorem 4.1, and Φ w t be the associated maximal regular flow. It then holdsx ď y ñ Φ w t pxq ď Φ w t pyq for almost every pair x, y P R.

T pxqu 2s ds " ż 1 0 1

 11 tsďΦ u T pxqu ds, Recall now that the flow preserves the ordering, then it necessarily holds ż i.e. Φ u T pxq " x 2 . If such a flow exists, then one can apply it to µ 0 in the first example. It then holds ş x 0 1 ds "

  Proof. Consider S 0 a nonempty open set of R d of class C 8 strictly included in S and ω 1 an open set of R d of class C 8 satisfying supppµ 0 q Y S ĂĂ ω 1 ĂĂ ω.

  T 0 s. Then µ is an absolute continuous curve on P c pR d q (see [4, Def. 1.1.1]). Using [4, Th. 8.3.1], there exists a Borel vector w : R d ˆp0, T 0 q Ñ R d satisfying }wptq} L 2 pµptq;R d q ď |µ 1 |ptq a.e. t P r0, T 0 s and the couple pw, µq is a weak solution to #

	ż		
	2 2 pµpsq, µptqq ď		
	R sÑt	W 2 pµptq, µpsqq |t ´s|	(37)
	is uniformly bounded on r0,		

d |Ψ t´s pxq ´x| 2 dµpsq ď sup xPR d |Ψ t´s pxq ´x| 2 ď C|t ´s| 2 .

We deduce that the metric derivative |µ 1 | of µ defined for all t P r0, T 0 s by |µ 1 |ptq :" lim

  (see[START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] Def. 8.4.1]). Consider an open set ω 1 of class C 8 satisfying ω 0 ĂĂ ω 1 ĂĂ ω.

2 

vector field. Moreover, for all t P r0, T 0 s, it holds wptq P Tan µptq pP c pR d qq :" t∇ϕ : ϕ P C 8 c pR d qu L 2 pµptq;R d q

  Tan µptq pP c pR d qq, we can write v " v 1 `v2 with v 1 P Tan µptq pP c pR d qq and v 2 P Tan µptq pP c pR d qq K , where Tan µptq pP c pR d qq K " tν P L 2 pµptq : R d q : ∇ ¨pνµptqq " 0u (see for instance[START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] Prop. 8.4.3]). In other terms, v 2 plays no role in the weak formulation of the continuity equation. Thus, with the same argument, we can prove that wptq " v 1 , µptq a.e. in ω 1 c and we conclude by tacking u :" w ´v1 .

	wy dµptq and	d dt	ż R d	ϕ dµptq "	ż	R d	x∇ϕ, vy dµptq.

If it holds v P Tan µptq pP c pR d qq, then wptq " v, µptq a.e. in ω 1 c , and we conclude by taking u :" w ´v which is supported in ω and is L 2 . If now v R
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