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Abstract

We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas
mixtures. The Knudsen number is taken proportional to the square root of the mass ratio
between electrons and heavy-species, and thermal non-equilibrium between electrons and
heavy species is allowed. The kinetic non-equilibrium framework also requires a weak cou-
pling between electrons and internal energy modes of heavy species. The zeroth-order and
first-order fluid equations are derived by using a generalized Chapman-Enskog method.
Expressions for transport fluxes are obtained in terms of macroscopic variable gradients
and the corresponding transport coefficients are expressed as bracket products of species
perturbed distribution functions. The theory derived in this paper provides a consistent
fluid model for non-thermal multicomponent plasmas.

Keywords: kinetic theory; non-thermal plasmas; polyatomic gas mixtures; Chapman-
Enskog method; transport coefficients.

1 Introduction

The kinetic theory of plasmas has been an important subject of research over the past
decades. The sound derivation of a multicomponent fluid plasma model is indeed of crucial
interest for a wide range of practical applications, ranging from laboratory plasmas, space
plasmas, to re-entry vehicles and atmospheric phenomena.
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Application of the Chapman-Enskog theory to ionized gas mixtures was first discussed
by Chapman and Cowling for monoatomic binary mixtures [8], and by Ferziger and Kaper
for multicomponent mixtures of monoatomic gases [17], in a regime where all species have
the same temperature, assuming that the electric field is not intense. More recently,
Giovangigli and Graille extended the work of Ferziger and Kaper to the case of reactive
polyatomic gas mixtures [20] [21]. Interactions between particles at distances greater
than the Debye length are considered to be mediated by the electric and magnetic fields
while those at shorter distance are considered to be true collisions. Thus, the collision
operator generally used is the Boltzmann collision operator with shielded potentials. The
Fokker-Planck operator can also be used, but the latter yields identical results within a
few percent accuracy [17]. Besides, the number of particles in a Debye sphere must be
large, the cyclotron radius and the wavelength of any electromagnetic wave must be larger
than the Debye length.

Higher order evaluations of transport coefficients have been performed by Kaneko and
coworkers for binary neutral mixtures in uniform magnetic fields in a simplified steady
kinetic framework [31, 32]. Convergence properties of the Chapman-Enskog expansion
for transport coefficients of magnetized argon plasmas have been investigated by Bruno
and coworkers [5, 7, 6]. The degree of anisotropy of various transport coefficients induced
by the magnetic field has been studied in terms of the electron Hall parameter. Bruno
and coworkers have established in particular the important influence of the Ramsauer
minimum in the electron-argon cross sections on the transport coefficients of magnetized
argon plasmas [7, 6].

The first kinetic model for a binary gas mixture composed of light and heavy species
was derived by Lorentz [36] [8]. This model, also referred to as the “Lorentzian gas”,
assumed that the heavy molecules were not altered by their collisions with light particles,
and that mutual encounters between light particles were of negligible influence compared
to encounters with heavy molecules. However, when considering a multiscale analysis of
the Boltzmann equations for ionized gases in the fluid regime, both the Knudsen num-
ber kn and the ratio of the electron mass over the heavy-species characteristic mass
ε =

√
m0

e/m
0
h tend to zero. Mixtures of monoatomic gases that are not at thermodynamic

equilibrium with multitemperature transport arising from small electron-to-ion mass ratio
asymptotics have been investigated by Chmieleski and Ferziger [9], and in the fully ion-
ized case by Braginskii using the Landau equation [3, 4]. Multitemperature models also
naturally arise with the presence of strong electric fields, in particular in swarm physics
[39]. As shown by Petit and Darrozes [11], the Boltzmann equations exhibit a singularity
in the limit ε → 0,kn → 0, which might be solved upon assuming that the Knudsen
number is proportional to the small parameter ε

kn ∝ ε. (1.1)

Such a scaling is associated with the thermal non-equilibrium between light and heavy
species. This scaling was first applied by Degond and Lucquin [13] [12] to the derivation
of a two-temperature macroscopic fluid model for a binary mixture made of electrons and
positive ions. In the meantime, Magin and Degrez [38] developed a model for multicom-
ponent non-thermal plasmas, where they introduced the scaling of Petit and Darrozes [11]
in order to account for thermal non-equilibrium. Their model was improved by Graille,
Magin and Massot, who further investigated the strongly magnetized case for a multicom-
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ponent mixture of monoatomic gases [25]. The macroscopic equations in the zeroth-order
and first-order regimes, together with expressions for the transport fluxes and the trans-
port coefficients, have been obtained. New bracket expressions have been established for
the perpendicular and transverse diffusion, thermal diffusion and partial thermal conduc-
tivity coefficients as well as for the shear viscosity coefficients. Positivity properties of
multicomponent diffusion matrices have been investigated and the mathematical structure
of transport linear systems has also been addressed.

However, in many applications gas mixtures are made of polyatomic molecules, whose
internal energy structure may have a significant influence on the transport coefficients of
the mixture [15] [44]. Additionally, the presence of excited atoms or molecules is common
in a so-called “low-temperature” plasma.

In this paper, we generalize the results of Graille, Magin and Massot to multicom-
ponent mixtures of polyatomic gases. We assume that there is only one velocity in the
mixture and discard multifluid models where each species has its own velocity [4]. It
is worth mentioning that macroscopic multifluid conservation equations lead to very se-
rious mathematical pathologies [10]. The mixture of polyatomic species is described in
a semi-classical framework by using Wang Chang-Uhlenbeck-de Boer equations. These
equations preaverage the collision cross sections over degeneracies [42, 14]. The chemical
source terms appearing in the Boltzmann equations are taken essentially from Ludwig
and Heil [37], Alexeev et al. [1], Ern and Giovangigli [16] and Grünfeld [26]. These chem-
ical source terms are valid for arbitrary chemical mechanisms. We also assume that the
distribution functions do not depend on any of the angular momenta [39].

We study the Enskog expansion and obtain macroscopic equations in the zeroth- and
first-order regimes, together with transport fluxes and transport coefficients. We further
investigate the positivity properties of the resulting heavy-species multicomponent diffu-
sion matrices. These properties, established here for the exact matrices arising from the
kinetic theory of gases, are a key point in numerical approximations of multicomponent
diffusion, where these properties must be enforced by the computational algorithms used
to evaluate the transport coefficients.

Our paper is organized as follows. In section 2, we introduce the kinetic framework.
In section 3, we set the scaling hypotheses and derive an asymptotic expansion of the
Boltzmann equations. In section 4, the Chapman-Enskog procedure is applied on the
basis of the proposed scaling. The transport fluxes are expressed in terms of macroscopic
variable gradients and transport coefficients in section 5. Finally, section 6 synthesizes
the macroscopic equations obtained.

2 Kinetic Framework

In this section, we describe a theoretical framework for the kinetic theory of polyatomic
non-thermal plasmas. We first introduce a generalized Boltzmann equation, which is then
reformulated in the heavy-species reference frame. We next present collisional invariants
of the collision operators.
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2.1 Generalized Boltzmann equation

The starting point is the Boltzmann equation for reactive polyatomic ionized gas mixtures
derived from Ref. [20] in a semiclassical framework. It preaverages the collision cross
sections over the degeneracies and can be derived from the Waldmann-Snider quantum
mechanical Boltzmann equation [47].

The plasma is described as a multicomponent gas mixture of electrons, neutrals, and
ions. The electron has only one internal degree of freedom, namely its ground state, and
its distribution function reads fe (t,x, ce), where t is the time, x is the three-dimensional
spatial coordinate, and ce the velocity of the electron. We denote by H the indexing set
of heavy species, which can be ionized or not. For each i ∈ H, we denote by Qi the
set of internal degrees of freedom associated with the ith heavy species. The distribution
function for the ith heavy species then reads fi (t,x, ci, i), where ci denotes the velocity
of the molecule, and i ∈ Qi its quantum state. Finally, we denote by S = H ∪ {e} the
indexing set of the plasma species. The species distribution functions are then governed
by a generalized Boltzmann equation that takes into account the reactive aspect of the
mixture. We denote by fh = (fi)i∈H the family of heavy-species distribution functions,
and by f = (fk)k∈S = (fe, fh) the complete family of species distribution functions. The
subscript “h” refers to the set of heavy species. Finally, we denote by qk the charge carried
by the kth species, while E and B refer to the electric and magnetic fields, respectively.

The Boltzmann equation governing the species distribution functions reads in an in-
ertial reference frame [8] [17] [19] [25]

Dk(fk) = Sk(f) + Ck(f), k ∈ S, (2.1)

where Dk denotes the usual streaming differential operator

Dk(fk) = ∂tfk + ck · ∂xfk +
qk
mk

[E + ck ∧B] · ∂ck
fk, k ∈ S, (2.2)

while Sk (f) and Ck (f) are the scattering or nonreactive source term, and the chemically
reactive source term, respectively.

Under the assumption that the system is dilute, the scattering source term can be
written in the form

Sk (f) =
∑

l∈S

Skl (fk, fl) , (2.3)

where Skl denotes the scattering source term for the kth species due to collisions with
molecules of the lth species

Skl (f) =
∑

k
′∈Qk

l,l′∈Ql

∫ (
f ′
kf

′
l

akkall
akk′all′

− fkfl
)
|ck − cl|σ

klk
′
l
′

kl dω′
kldcl. (2.4)

We have denoted by akk the degeneracy of the k
th quantum energy shell of the kth species,

ωkl = (ck−cl)/|ck−cl| and ω′
kl = (c′k−c′l)/|c

′
k−c′l| the directions of the relative velocities,

respectively before and after collision, and σklk
′
l
′

kl the differential cross-section associated
with a binary collision between a molecule of the kth species in internal energy state k

and a molecule of the lth species in internal energy state l.
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The differential cross-section is taken in the classical form [47] [8] [17] [25]

σklk
′
l
′

kl = σklk
′
l
′

kl

(
µklg

2
kl

kbT 0
,ωkl · ω

′
kl

)
, (2.5)

where µkl = mkml/(mk + ml) is the reduced mass of the pair of particles, gkl = |ck − cl|
is their relative velocity, T 0 is a reference temperature which is common to all species,
and kb is the Boltzmann constant. One could also work with transition probabilities
Wklk

′
l
′

kl rather than with classical collision cross-sections σklk
′
l
′

kl . Transition probabilities
are notably interesting with reactive collisions, since the term Ck(f) is then much easier
to write. For binary collisions, transition probabilities and differential cross-sections are
related through the following identity [37] [1] [27]

|ck − cl|σ
klk

′
l
′

kl dω′
kl = Wklk

′
l
′

kl dc′kdc
′
l. (2.6)

Classically, the forward and reverse collision cross-sections exhibit reciprocity relations in
the form [47] [48] [8] [17]

akkall gkl σ
klk

′
l
′

kl dCkdC ldω
′
kl = akk′all′ g

′
kl σ

k
′
l
′
kl

kl dC ′
kdC

′
ldωkl. (2.7)

For the reactive, or chemistry, source term Ck(f), we consider a chemical reaction
mechanism composed of an arbitrary number of elementary reactions. Unlike for the
scattering process, we take into account multiple reactive collisions, including triple reac-
tive collisions since recombination reactions cannot often proceed otherwise [35] [1] [27].
If we denote by R the set of reactions, each chemical reaction r ∈ R can be written in
the form ∑

k∈Fr

Mk ⇋
∑

k∈Br

Mk, r ∈ R, (2.8)

where Mk denotes the chemical symbol of the kth species, and where Fr and Br are,
respectively, the indices for the reactant and product species in the rth elementary reaction,
counted with their order of multiplicity. The letters Fr and Br are mnemonic for the
forward and backward directions, respectively. We denote by νfkr and νbkr the stoichiometric
coefficients of the kth species among reactants and products, respectively, and we also
denote by f

r and b
r the indices of internal energy states for reactants and products,

respectively. In other words, the forward and backward coefficients νfkr and νbkr are the
order of multiplicity of the kth species in Fr and Br, respectively. For a given k ∈ S, Fr

k

denotes the set of reactant indices where the index for the kth species has been removed
only once and we introduce a similar notation for Br

k, f
r
k

and b
r
k
.

The reactive source term, Ck(f), then reads [16]

Ck(f) =
∑

r∈R

Cr
k(f), (2.9)

where Cr
k(f) is the source term for the kth species due to the rth elementary reaction

Cr
k(f) = νrfk

∑

f
r
k
,br

∫ ( ∏

j∈Br

fj

∏
j∈Br

βjj

∏
i∈Fr

βii
−
∏

i∈Fr

fi

)
Wf

r
b
r

FrBr

∏

i∈Fr
k

dci
∏

j∈Br

dcj (2.10)

+ νrbk
∑

f
r ,br

k

∫ (∏

i∈Fr

fi −

∏
j∈Br

βjj

∏
i∈Fr

βii

∏

j∈Br

fj

)
Wf

r
b
r

FrBr

∏

i∈Fr

dci
∏

j∈Br
k

dcj,
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where βkk = h3
p
/(akkm

3
k), and hp is the Planck constant. The quantity Wf

r
b
r

FrBr is the
transition probability for a reactive collision in which the reactants Fr with internal energy
states f

r are transformed into products Br with internal energy states b
r. The sums over

f
r, respectively f

r
k
, represent the sums over i ∈ Qi for all i ∈ Fr, respectively i ∈ Fr

k.
Similarly, the sums over b

r, respectively b
r
k
, represent the sums over j ∈ Qj for all j ∈ Br,

respectively j ∈ Br
k. Several examples for different types of reactions are given in [19].

Finally, the reactive transition probabilities exhibit the following symmetry properties
[37] [27] [1] [19]

Wf
r
b
r

FrBr

∏

j∈Br

βjj = Wb
r
f
r

BrFr

∏

i∈Fr

βii. (2.11)

2.2 Heavy-species reference frame

Given the strong disparity of masses between electrons and heavy species, it is natural to
choose a reference frame associated with the motion of the heavy species [25]. We thus
introduce the mean electron and mean heavy-species velocities, given by

ρeve =

∫
mecefe dce, (2.12)

ρhvh =
∑

j∈H

∑

j∈Qj

∫
mjcjfj dcj , (2.13)

where the subscript “h” refers to the set of heavy species, and ρh =
∑

j∈H ρj is the heavy-
species mass density, so that ρ = ρe + ρh. The hydrodynamic velocity of the fluid is then
given by

ρv = ρeve + ρhvh. (2.14)

We now introduce the peculiar velocity of the kth species with respect to the heavy-species
reference frame

Ck = ck − vh, k ∈ S, (2.15)

and denote by fk(t,x,Ck,k) the distribution function of the kth species in the new refer-
ence frame.

In the heavy-species reference frame, the streaming operator Dk reads [25]

Dk(fk) = ∂tfk + (Ck + vh) · ∂xfk +
qk
mk

[E + (Ck + vh) ∧B] · ∂Ck
fk (2.16)

−
Dvh

Dt
· ∂Ck

fk − (∂Ck
fk ⊗Ck) : ∂xvh,

where D
Dt

is the time derivative following the heavy-species velocity reference frame

D

Dt
= ∂t + vh · ∂x. (2.17)

The scattering source term (2.4) may be rewritten using the new velocities Ck, k ∈ S, in
the form

Skl (fk, fl) =
∑

l∈S

∑

k
′∈Qk

l,l′∈Ql

∫ (
f ′
kf

′
l

akkall
akk′all′

− fkfl
)
|Ck −C l|σ

klk
′
l
′

kl dω′
kldC l, (2.18)
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and as well the reactive source term (2.10) now reads in the new reference frame

Cr
k(f) = νrfk

∑

f
r
k
,br

∫ ( ∏

j∈Br

fj

∏
j∈Br

βjj

∏
i∈Fr

βii
−
∏

i∈Fr

fi
)
Wf

r
b
r

FrBr

∏

i∈Fr
k

dC i

∏

j∈Br

dCj (2.19)

+ νrbk
∑

f
r ,br

k

∫ (∏

i∈Fr

fi −

∏
j∈Br

βjj

∏
i∈Fr

βii

∏

j∈Br

fj
)
Wf

r
b
r

FrBr

∏

i∈Fr

dCi

∏

j∈Br
k

dCj .

2.3 Collisional invariants

Collisional invariants are associated with macroscopic conservation equations and are
therefore of fundamental importance. Collisional invariants of the scattering operator S
are functionals ψ = (ψl)l∈S, where ψl = ψl(t,x,C l, l) is a scalar or tensor function of t,
x, C l, and l, whose values summed over the particles involved in a nonreactive collision
do not change during the collision

ψk + ψl = ψ′
k + ψ′

l, k, l ∈ S, (2.20)

where ψ′
k = ψk(t,x,C

′
k,k

′) and ψ′
l = ψl(t,x,C

′
l, l

′).
There are ns +4 linearly independent scalar collisional invariants, which can be taken

in the form [48]





ψk = (δkl)l∈S , k ∈ S,

ψns+ν = (mlClν)l∈S , ν ∈ {1, 2, 3} ,

ψns+4 =
(1
2
mlC l ·C l + Ell

)
l∈S

,

(2.21)

where ns is the number of species in S, Clν is the component of C l in the νth spatial coor-
dinate, and Ell is the internal energy of the lth species in the l

th quantum state. The three
kinds of collisional invariants thus defined correspond respectively to the conservation of
chemical species, the conservation of momentum, and the conservation of energy during
nonreactive collisions. For micropolar fluids there is an additional linearly independent
summational invariant, accounting for the conservation of angular momentum [23] [29],
but we consider in this study isotropic mixtures only, so that there are no micropolar ef-
fects. We name I the space of collisional invariants with respect to the scattering operator
S, i.e., the space spanned by the family (ψp)1≤p≤ns+4.

We further introduce a tensorial product defined for scalar functions ξ = (ξl)l∈S and
ζ = (ζl)l∈S as

⟪ξ, ζ⟫ =
∑

k∈S

∑

k∈Qk

∫
ξkζk dCk, (2.22)

and more generally for tensors ξ = (ξl)l∈S and ζ = (ζ l)l∈S as

⟪ξ, ζ⟫ =
∑

k∈S

∑

k∈Qk

∫
ξk ⊙ ζk dCk, (2.23)
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where ⊙ stands for the fully contracted product in space [14] [23].
The scattering operator S and the corresponding collisional invariants then satisfy the

classical relations
⟪ψp,S(f)⟫ = 0, p ∈ {1, . . . , ns + 4} . (2.24)

Indeed, using reciprocity relation (2.7) and symmetrizing between k and l, one can estab-
lish that for any ψ = (ψl)l∈S

4⟪ψ,S(f)⟫ =
∑

k,l∈S

∑

k,k′∈Qk

∑

l,l′∈Ql

∫ (
ψk + ψl − ψ′

k − ψ′
l

)
(2.25)

×
(
f ′
kf

′
l

akkall
akk′all′

− fkfl
)
gkl σ

klk
′
l
′

kl dω′
kl dCkdC l,

which is zero as soon as ψ is a collisional invariant.
For our case of interest, it turns out that we have additional orthogonality relations,

by considering pairwise interaction terms separately. Indeed, we can decompose the scalar
product ⟪·⟫ as

⟪ξ, ζ⟫ = ⟪ξe, ζe⟫e + ⟪ξh, ζh⟫h, (2.26)

where

⟪ξe, ζe⟫e =

∫
ξe ⊙ ζe dCe, (2.27)

⟪ξh, ζh⟫h =
∑

j∈H

∑

j∈Qj

∫
ξj ⊙ ζj dCj , (2.28)

and obtain, as in [25], the following orthogonality property for pairwise interactions:

⟪ψp
e ,See⟫e = 0, (2.29)

⟪ψp
h,She⟫h +

∑

j∈H

⟪ψp
e ,Sej⟫e = 0, (2.30)

∑

j∈H

⟪ψp
h,Shj⟫h = 0, (2.31)

for any p ∈ {1, . . . , ns + 4}.
Unlike for the nonreactive source term, the species are not conserved during reactive

collisions, and only chemical elements are conserved [19]

∑

k∈S

νrfk akl =
∑

k∈S

νrbk akl, r ∈ R, l ∈ A, (2.32)

where akl is the number of lth atom in the kth species, and A denotes the indexing set
for the atoms present in the mixture. The conservation of total mass during reactive
collisions then follows from equation (2.32)

∑

k∈S

νrfk mk =
∑

k∈S

νrbk mk. (2.33)
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3 Asymptotic Expansion of the Boltzmann Equations

Dimensional analysis is a necessary preliminary to the Chapman-Enskog procedure. In
this regard, we follow the scaling first introduced by Petit and Darrozes [11]. We take
as small parameter ε the square root of the ratio between the characteristic masses. As
shown by Petit and Darrozes, when both the Knudsen number kn and the mass ratio ε
tend to zero, kn must be chosen proportional to ε. The scaling introduced here will serve
as a basis for the derivation of a scaled Boltzmann equation, in which the different terms
will depend on the small parameter ε [8] [17] [19] [25].

3.1 Choice of scaling

The reference quantities used in the scaling are denoted by the superscript "0". Most of
the reference quantities are common to all species, though it is necessary to distinguish
between electron and heavy-species respective characteristic masses, velocities, and kinetic
time scales. Also, the characteristic cross-section for inelastic scattering of electrons by
heavy species is denoted by σin,0

eh = σin,0
he , while the characteristic cross-section for other

scattering processes is denoted by σ0.

Mass ratio The ratio of the electron mass m0
e = me to the characteristic heavy-species

mass m0
h is such that √

m0
e

m0
h

= ε≪ 1. (3.1)

The non-dimensional number ε will be the key parameter driving the asymptotic analysis
of the plasma.

Temperatures The reference temperature is the same for electrons and heavy species
[25]:

T 0
e = T 0

h = T 0. (3.2)

This means that the electron temperature Te and the heavy-species temperature Th will
remain of the same order of magnitude in the model.

Velocities As a consequence of assumptions (3.1)-(3.2), electrons exhibit a larger ther-
mal speed than heavy species

C0
h =

√
kbT 0

m0
h

, (3.3)

C0
e =

√
kbT 0

m0
e

=
1

ε
C0

h. (3.4)

Besides, the pseudo-Mach number, defined as the reference hydrodynamic velocity v0

divided by the heavy-species thermal speed C0
h, is of order one [25]

Mh =
v0

C0
h

∝ 1. (3.5)

In other words, there is only one reference velocity for the heavy species.
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Table 1 – Reference quantities [25].

Physical entity Common to all species

Temperature T 0

Number density n0

Charge q0

Scattering cross-section σ0

Mean free path l0 = 1
n0σ0

Macroscopic time scale t0

Hydrodynamic velocity v0

Macroscopic length L0 = v0t0

Electric field E0

Magnetic field B0

Reactive source term C0
k , k ∈ S

Electrons Heavy species

Mass m0
e = me m0

h

Thermal speed C0
e C0

h

Kinetic timescale t0e =
l0

C0
e

t0h = l0

C0

h

Hybrid

Inelastic scattering cross-sections σin,0
he

Densities As stated in [11], the “weakly ionized” limit is not singular with respect to
the limits kn → 0 and

√
m0

e/m
0
h → 0. Therefore, we adopt the same scaling for both

electron and heavy-species densities:

n0
e = n0

h = n0. (3.6)

The results for a weakly ionized plasma will then follow by taking the limit n0
e/n

0
h → 0.

Mean free path The characteristic mean free path [25]

l0 =
1

n0σ0
. (3.7)

is imposed by the carrier gas density n0 and the reference elastic scattering cross-section
σ0 [8] [17], and is thus common to all species [25].
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Time scales From (3.3) and (3.4), the kinetic timescales, or the relaxation times of the
distribution functions towards their respective quasi-equilibrium states, are given by

t0e =
l0

C0
e

, (3.8)

t0h =
l0

C0
h

, (3.9)

and therefore [25] t0e = εt0h. The macroscopic timescale t0 is one order of magnitude larger
than the heavy-species kinetic timescale t0h, so that there are three distinct relevant time
scales t0e, t

0
h, and t0 [25]:

t0e = εt0h = ε2t0. (3.10)

Inelastic scattering cross-sections As can be seen from (3.10), electron thermal-
ization is the fastest process corresponding to the kinetic scale t0e. This thermalization
is ensured by scattering collisions between electrons, and elastic collisions between elec-
trons and heavy species, which given the strong mass disparity do not involve any energy
exchange at the lowest order, but allow for isotropization of the electron distribution func-
tion in the heavy-species reference frame [25]. Since the heavy species’ internal degrees
of freedom thermalize at Th, further allowing for energy exchange between these internal
degrees of freedom and electrons at the lowest order would actually require Te = Th. Thus
the reference differential cross-section associated with inelastic scattering between heavy
species and electrons σin,0

he must be negligible compared to the reference cross-section σ0

for other scattering collisions.
The second fastest kinetic process is the thermalization of heavy species [25], cor-

responding to the time scale t0h = ε−1t0e as described in (3.10). This thermalization
arises from elastic and inelastic collisions between heavy species, while elastic collisions
with electrons are of negligible influence at this order due to the strong mass disparity.
Again, since the heavy species’ internal degrees of freedom thermalize at Th, inelastic
collisions between electrons and heavy species must be neglibible at the lowest order of
the Chapman-Enskog expansion for heavy species, otherwise one would have Th = Te. In
other words, σin,0

he must be negligible compared to εσ0.
Therefore, the inelastic scattering collisions between electrons and heavy species are

assumed to be two orders of magnitude slower than the corresponding elastic collisions

σin,0
he = ε2σ0. (3.11)

The latter requirement will be discussed in more details in subsection 4.5, and other
regimes will be addressed in the conclusion.

Knudsen number The macroscopic length scale is based on a reference convective
length

L0 = v0t0. (3.12)

As a consequence of the proposed scaling, the Knudsen number

kn =
l0

L0
=

ε

Mh
(3.13)

is small compared to 1, justifying the choice of a continuum description of the gas.
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Electric field The reference electrical and thermal energies are of the same order of
magnitude, namely

q0E0L0 = kbT
0. (3.14)

Magnetic field The intensity of the magnetic field is related to the Hall numbers
of electron and heavy species, defined as the Larmor frequencies, respectively q0B0/me

and q0B0/m0
h, multiplied by the corresponding kinetic timescales. The magnetic field is

assumed to be proportional to a power of ε by means of an integer 0 ≤ b ≤ 1:

βe =
q0B0

m0
e

t0e = ε1−b, (3.15)

βh =
q0B0

m0
h

t0h = εβe. (3.16)

The case b = 1 corresponds to strongly magnetized plasmas, the case b = 0 to weakly
magnetized plasmas.

Table 2 – Relative scales for the main plasma physical properties.

Reference quantity Scaling relationships

Characteristic masses m0
e = ε2m0

h

Time scales t0e = ε t0h = ε2 t0

Length scales l0 = ε
Mh

L0

Velocities v0 =Mh C
0
h = εMh C

0
e

Energies m0
e

(
C0

e

)2
= m0

h

(
C0

h

)2
= q0E0L0 = kbT

0

Larmor frequencies q0B0

m0

h

t0h = ε q0B0

m0
e
t0e = ε2−b

Differential cross-sections σin,0
he = σin,0

eh = ε2σ0

Reactive source term C0
k = ε n0

t0(C0

k
)3

, k ∈ S

Chemistry The chemical reactions are slow compared to other plasma phenomena, and
the reactive source term for the kth species Ck(f) is of order 1 in ε, irrespective of the
detailed scaling properties of each chemical reaction r:

C0
k = ε

n0

t0(C0
k)

3
, k ∈ S, (3.17)

where C0
k is the order of magnitude of the kth species peculiar velocity. The reference

quantities and the scaling adopted are summarized in Table 1 and Table 2, respectively.
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Remark The range of applicability of the fluid model derived here is subject to the
assumption of Maxwellian equilibrium distributions that will be obtained in the following
section. Apart from the thermal non-equilibrium between electrons and heavy species,
two kinds of deviation from the local thermal equilibrium might occur. First, when the
ratio of the electric field over pressure E

p
is “too high”, namely when the assumption

q0E0l0 = εkbT
0
e = εkbT

0 is not valid, or when E/p & (σ0/q)(T 0
e /T

0) [43], the electron
distribution function can depart strongly from a Maxwellian distribution. Second, in
the case of high frequency oscillations, namely when the collision frequencies 1/t0e and
1/t0h = ε/t0e are comparable with the electric field frequency νRF , the species distribution
function may also depart strongly from the Maxwellian equilibrium [43]. In both cases,
one would need a kinetic model rather than a fluid model.

3.2 Scaled Boltzmann equations

The scaling is applied to the Boltzmann equation (2.1) written in the heavy-species ref-
erence frame. For each variable φ, we denote by

φ̂ =
φ

φ0
(3.18)

the corresponding adimensionalized quantity. The adimensionalized Boltzmann equations
then read

∂t̂f̂e +
1

ε

(
Ĉe + ε v̂h

)
· ∂x̂f̂e + ε−(1+b) q̂e

m̂e

[(
Ĉe + ε v̂h

)
∧ B̂

]
· ∂

Ĉe
f̂e

+
(1
ε

q̂e
m̂e

Ê − ε
Dv̂h

Dt̂

)
· ∂

Ĉe
f̂e −

(
∂

Ĉe
f̂e ⊗ Ĉe

)
: ∂x̂v̂h (3.19)

=
1

ε2
Ŝee(f̂e, f̂e) +

1

ε2

∑

j∈H

Ŝej(f̂e, f̂j) + ε Ĉe(f̂),

∂t̂f̂i +
(
Ĉi + v̂h

)
· ∂x̂f̂i + ε1−b q̂i

m̂i

[(
Ĉ i + v̂h

)
∧ B̂

]
· ∂

Ĉi
f̂i

+
( q̂i
m̂i

Ê −
Dv̂h

Dt̂

)
· ∂

Ĉi
f̂i −

(
∂

Ĉi
f̂i ⊗ Ĉi

)
: ∂x̂v̂h (3.20)

=
1

ε2
Ŝie(f̂i, f̂e) +

1

ε

∑

j∈H

Ŝij(f̂i, f̂j) + ε Ĉi(f̂), i ∈ H.

The Chapman-Enskog method is then applied to the adimensionalized equations (3.19)-
(3.20) [25]. For the sake of simplicity the Mach number, which is of order 1 from (3.5),
can be taken equal to 1, and the “hat” symbol can be dropped, without affecting the
fluid equations and transport fluxes derived. Alternatively, equations (3.19)-(3.20) can be
redimensionalized before applying the Chapman-Enskog method, keeping ε as a formal
parameter driving the asymptotic expansion. In this case, ε is equal to 1, eventually [34].
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Either way, the scaled Boltzmann equations may be written as

∂tfe +
1

ε
(Ce + ε vh) · ∂xfe + ε−(1+b) qe

me

[(Ce + ε vh) ∧B] · ∂Ce
fe

+
(1
ε

qe
me

E − ε
Dvh

Dt

)
· ∂Ce

fe − (∂Ce
fe ⊗Ce) : ∂xvh (3.21)

=
1

ε2
See (fe, fe) +

1

ε2

∑

j∈H

Sej (fe, fj) + ε Ce (f) ,

∂tfi + (Ci + vh) · ∂xfi + ε1−b qi
mi

[(C i + vh) ∧B] · ∂Ci
fi

+
( qi
mi

E −
Dvh

Dt

)
· ∂Ci

fi − (∂Ci
fi ⊗C i) : ∂xvh (3.22)

=
1

ε2
Sie (fi, fe) +

1

ε

∑

j∈H

Sij (fi, fj) + ε Ci (f) , i ∈ H,

where the partial scattering operators Skl, k, l ∈ S, depend on ε, and are analyzed as
follows.

For electron electron collisions the scaled scattering source term reads

See(fe, f̃e) (Ce) =

∫
σeẽgeẽ

(
f ′
ef̃

′
e − fef̃e

)
dω′

eẽdC̃e, (3.23)

where C̃e and C̃
′

e represent the velocity of the electron collision partner, respectively
before and after collision.

The formula for electron heavy-species scattering source term is similar, although we
have to distinguish between elastic and inelastic collisions:

Sei (fe, fi) (Ce) =
∑

i∈Qi

∫
σii

eigei
(
f ′
ef

′
i − fefi

)
dω′

eidC i (3.24)

+ ε2
∑

i,i′∈Qi

i
′ 6=i

∫
σii

′

ei gei
(
f ′
ef

′
i

aii
aii′

− fefi
)
dω′

eidCi,

where ωei = (Ce − εCi)/|Ce − εCi|, ω′
ei = (C ′

e − εC ′
i)/|C

′
e − εC ′

i|, gei = |Ce − εCi|,
g′ei = |C ′

e − εC ′
i|, and µie = µei = memi/(mi + ε2me).

We obtain as well the source term corresponding to collisions of heavy species against
electrons

Sie (fi, fe) (C i, i) =

∫
σii

iegie
(
f ′
if

′
e − fife

)
dω′

iedCe (3.25)

+ ε2
∑

i
′∈Qi

i
′ 6=i

∫
σii

′

ie gie
(
f ′
if

′
e

aii
aii′

− fife
)
dω′

iedCe,

where ωie = (εCi−Ce)/|εCi−Ce|, ω′
ie = (εC ′

i−C ′
e)/|εC

′
i−C ′

e|, gie = |εCi −Ce|, and
g′ie = |εC ′

i −C ′
e|.
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Finally, we obtain for collisions between two heavy species

Sij (fi, fj) (Ci, i) =
∑

i
′∈Qi

∑

j,j′∈Qj

∫
σiji

′
j
′

ij gij
(
f ′
if

′
j

aiiajj
aii′ajj′

− fifj
)
dω′

ijdCj. (3.26)

Unlike for the nonreactive source terms just stated, we do not consider the different
orders of magnitude in ε associated with the motion of heavy species and electrons when
computing the chemistry source terms. We only consider as a first approximation that
chemical reactions occur “slowly”, namely at order ε, and thus retain expression (2.19) for
Ce(f) and Ci(f), i ∈ H.

3.3 Scaled collisional invariants

We also apply the latter scaling to the space I of collisional invariants of the scattering
operator. The space of collisional invariants after scaling, denoted by Iε, is spanned by
the family ψl = (ψl

e, ψ
l
h), l ∈ {1, . . . , ns + 4}, defined as





ψk
e = δke, ψk

h = (δkj)j∈H , k ∈ S,

ψns+ν
e = ε meCeν , ψns+ν

h = (mjCjν)j∈H , ν ∈ {1, 2, 3} ,

ψns+4
e =

1

2
meCe ·Ce, ψns+4

h =
(1
2
mjCj ·Cj + Ejj

)
j∈H

.

(3.27)

From now on, ψl, l ∈ {1, . . . , ns + 4} will refer to the collisional invariants after scaling.
We have seen in the previous section that the nonreactive collision operator can be written
as

S =

(
1

ε2
Se,

1

ε
Sh

)
, (3.28)

where Se = See +
∑

j∈H Sej and Si =
1
ε
Sie +

∑
j∈H Sij , i ∈ H, are the scattering source

terms for electron and ith heavy-species, respectively.
The orthogonality relations (2.29), (2.30), (2.31) remain valid after scaling. In partic-

ular, the cross-collision identities (2.30) now read

∑

j∈H

⟪ψe
e ,Sej⟫e = 0, ⟪ψi

h,She⟫h = 0, i ∈ H, (3.29)

⟪mhChν ,She⟫h + ε
∑

j∈H

⟪meCeν,Sej⟫e = 0, ν ∈ {1, 2, 3} , (3.30)

⟪ψns+4
h ,She⟫h +

∑

j∈H

⟪ψns+4
e ,Sej⟫e = 0. (3.31)

We also introduce two vector spaces obtained from projection of the space of collisional
invariants Iε. For all ε, Iε

e is the space spanned by




ψe
e = 1,

ψns+ν
e = ε meCeν , ν ∈ {1, 2, 3} ,

ψns+4
e =

1

2
meCe ·Ce,

(3.32)
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and Ih is the space spanned by




ψi
h = (δij)j∈H ,

ψns+ν
h = (mjCjν)j∈H , ν ∈ {1, 2, 3} ,

ψns+4
h =

(1
2
mjCj ·Cj + Ejj

)
j∈H

.

(3.33)

The macrosopic properties of the fluid mixture can then be expressed as partial scalar
products of the partial distribution functions fe and fh with the electron and heavy-species
collisional invariants, respectively. When taking into account the scaling, one obtains





⟪fe, ψ
e
e⟫e = ne

1

ε
⟪fe,meCeν⟫e = ρe (veν − vhν) , ν ∈ {1, 2, 3}

⟪fe, ψ
ns+4
e ⟫e = Ee + ε2

1

2
ρe (ve − vh) · (ve − vh)

(3.34)

for electrons, and 



⟪fh, ψ
j
h⟫h = nj , j ∈ H

⟪fh, ψ
ns+ν
h ⟫h = 0, ν ∈ {1, 2, 3}

⟪fh, ψ
ns+4
h ⟫h = Eh

(3.35)

for the heavy species, where Ee and Eh denote the respective internal energies per unit
volume.

Note in particular that, in the limit ε → 0, the space of electron collisional invariants
Iε
e , is reduced to the space of isotropic invariants, denoted by I0

e , which is spanned by




ψe
e = 1,

ψns+4
e =

1

2
meCe ·Ce.

(3.36)

In other words, the electron momentum collisional invariant vanishes in the limit ε → 0.
This is because electron momentum is negligible before heavy-species momentum, and is
related to the isotropization of the zeroth-order electron distribution function, as shall be
seen later. The relevant sets of collisional invariants for our purpose are thus I0

e and Ih.

3.4 Asymptotic expansion of collision operators

We now derive asymptotic expansions in powers of ε for the scattering operators Sei and
Sie, i ∈ H. Conservation of momentum and energy during a binary collision between an
electron and a molecule of the ith heavy species read, when taking into account the scaling
with respect to ε





miC i + ε meCe = miC
′
i + ε meC

′
e,

1

2
me

1(
1 + ε2me

mi

)g2 + Eii =
1

2
me

1(
1 + ε2me

mi

)g′2 + Eii′,
(3.37)
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where we have denoted by g = gie = gei = |εCi −Ce| and by g′ = g′ie = g′ei = |εC ′
i −C ′

e|
the relative velocities of colliding species respectively before and after collision. Setting
∆Eii

′ = Eii′ − Eii, we rewrite the latter expression in the form





miCi + ε meCe = miC
′
i + ε meC

′
e,

∆Eii
′ +

1

2
me

1(
1 + ε2me

mi

)(g′2 − g2
)
= 0.

(3.38)

3.4.1 Scattering of heavy species by electrons

The scattering operator for ith-heavy-species electron collisions Sie was stated in equation
(3.25). The change of variable C(0)

e = Ce−εCi
(
1+ε2 me

mi

) 1
2

, with

dCe =
(
1 + ε2

me

mi

) 3

2

dC(0)
e ,

allows us to eliminate the dependance in ε of the differential cross-section [25], and yields

Sie (fi, fe) (Ci, i) =

∫
σii

ie|C
(0)
e |
(
1 + ε2

me

mi

)2(
f ′
if

′
e − fife

)
dω′

iedC
(0)
e (3.39)

+ ε2
∑

i
′∈Qi

i
′ 6=i

∫
σii

′

ie |C
(0)
e |
(
1 + ε2

me

mi

)2(
f ′
if

′
e

aii
aii′

− fife

)
dω′

iedC
(0)
e ,

where

σii
′

ie = σii
′

ie

(
me|C

(0)
e |2,

C(0)
e

|C(0)
e |

· ω′
ie

)
. (3.40)

The variable C(0)
e is the zeroth-order electron velocity before collision.

Expansion of the species velocities Conservation equations (3.38) associated with
collisions between molecules of the ith heavy species and electrons read after change of
variable





C ′
i = C i + ε

me

mi

1
(
1 + ε2me

mi

) 1

2

(
C(0)

e + |C(0)
e |
(
1−

∆Eii
′

1
2
me|C

(0)
e |2

) 1

2

ω′
ie

)
,

C ′
e = εCi −

1
(
1 + ε2me

mi

) 1

2

(
|C(0)

e |
(
1−

∆Eii
′

1
2
me|C

(0)
e |2

) 1

2

ω′
ie − ε2

me

mi
C(0)

e

)
,

(3.41)

yielding the following asymptotic expansion:




C ′
i = C i − ε

me

mi

(C ′(0)
e −C(0)

e ) +O(ε3),

C ′
e = C ′(0)

e + εCi −
ε2

2

me

mi
(C ′(0)

e − 2C(0)
e ) +O(ε4),

Ce = C(0)
e + εCi +

ε2

2

me

mi
C(0)

e +O(ε4),

(3.42)
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where C ′(0)
e is the zeroth-order electron velocity after collision

C ′(0)
e = −|C ′(0)

e |ω′
ie = −|C(0)

e |
(
1−

∆Eii
′

1
2
me|C

(0)
e |2

) 1

2

ω′
ie. (3.43)

We thus obtain an expansion of the distribution functions

fi (C
′
i, i

′) = fi (Ci, i
′)− ε

me

mi

∂Ci
fi (Ci, i

′) · (C ′(0)
e −C(0)

e ) (3.44)

+
ε2

2

m2
e

m2
i

∂CiCi
fi (Ci, i

′) : (C ′(0)
e −C(0)

e )⊗ (C ′(0)
e −C(0)

e ) +O(ε3),

fe (C
′
e) = fe(C

′(0)
e ) + ε∂Ce

fe(C
′(0)
e ) ·C i +

ε2

2
∂CeCe

fe(C
′(0)
e ) : C i ⊗Ci (3.45)

−
ε2

2

me

mi

∂Ce
fe(C

′(0)
e ) · (C ′(0)

e − 2C(0)
e ) +O(ε3),

fe (Ce) = fe(C
(0)
e ) + ε∂Ce

fe(C
(0)
e ) ·C i +

ε2

2
∂CeCe

fe(C
(0)
e ) : Ci ⊗C i (3.46)

+
ε2

2

me

mi

∂Ce
fe(C

(0)
e ) ·C(0)

e +O(ε3).

Expansion of Sie Upon introducing the asymptotic development (3.44)-(3.46) in ex-
pression (3.39), the collision operator Sie, i ∈ H, can be expanded in the form

Sie = ε S1
ie + ε2 S2

ie + O(ε3). (3.47)

The zeroth-order collision operator S0
ie cancels. Indeed, from (3.39)

S0
ie (fi, fe) (Ci, i) =

∫
σii

ie|C
(0)
e |
(
fi(Ci, i)fe(C

′(0)
e )− fi(Ci, i)fe(C

(0)
e )
)
dω′

iedC
(0)
e

= fi(C i, i)

∫
σii

ie|C
(0)
e |
(
fe(−|C(0)

e |ω′
ie)− fe(C

(0)
e )
)
dω′

iedC
(0)
e ,

where σii

ie was given in (3.40). The successive changes of variable C(0)
e = −|C(0)

e |ωie, with
dC(0)

e = |C(0)
e |2 d|C(0)

e |dωie, and (ωie
′,ωie) ↔ (ωie,ωie

′), then yield

S0
ie (fi, fe) (Ci, i)

= fi(C i, i)

∫
σii

ie|C
(0)
e |3

(
fe(−|C(0)

e |ω′
ie)− fe(−|C(0)

e |ωie)
)
d|C(0)

e |dωiedω
′
ie

= fi(C i, i)

∫
σii

ie|C
(0)
e |3

(
fe(−|C(0)

e |ωie)− fe(−|C(0)
e |ω′

ie)
)
d|C(0)

e |dωiedω
′
ie

= −S0
ie (fi, fe) (Ci, i) ,

where σii

ie = σii

ie(me|C
(0)
e |2,ωie · ω′

ie), so that finally

S0
ie (fi, fe) (C i, i) = 0, i ∈ H, i ∈ Qi. (3.48)
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From similar calculations, the first-order term S1
ie (fi, fe) (C i, i) reads, for i ∈ H, i ∈ Qi

S1
ie (fi, fe) (Ci, i) = −

me

mi
∂Ci

fi(Ci, i) ·

∫
Σ(1)

ii
(|Ce|

2) |Ce| fe(Ce)Ce dCe, (3.49)

where we have dropped the upperscript (0) on the integration variable Ce for the sake of
simplicity. The generalized momentum cross-section in thermal non-equilibrium context
Σ

(l)
ii
′ is defined, for given i ∈ H, i ∈ Qi and i

′ ∈ Qi, by

Σ
(l)
ii
′ (|Ce|

2) = 2π

(
me

mi

)l ∫ π

0

σii
′

ie

(
me|Ce|

2, cos θ
) (

1− cosl θ
)
sin θ dθ, l ∈ N

∗, (3.50)

where the symbol θ represents the angle between the vectors ω′
ie = εC ′

i −C ′
e and ωie = εCi −Ce.

For l = 1, this cross-section represents the average momentum transferred in encounters
between electrons and molecules of the ith heavy species with initial quantum state i and
final quantum state i

′, for a given initial value of the electron kinetic energy me|Ce|2. We
also define

Σ
(0)
ii
′ (|Ce|

2) = 2π

∫ π

0

σii
′

ie

(
me|Ce|

2, cos θ
)
sin θ dθ, i ∈ H, i, i′ ∈ Qi. (3.51)

Finally, the second-order term can be decomposed into an elastic and an inelastic
contributions:

S2
ie = S2,el

ie + S2,in
ie . (3.52)

The elastic contribution S2,el
ie (fi, fe) (Ci, i) reads, for i ∈ H, i ∈ Qi

S2,el
ie (fi, fe) (Ci, i) = (3.53)

−
me

mi
∂Ci

(fi(Ci, i)C i) :

∫
Σ(1)

ii
(|Ce|

2) |Ce|
(
Ce ⊗ ∂Ce

fe(Ce)
)
dCe

+
1

4

m2
e

m2
i

∂CiCi
fi(C i, i) :

∫
Σ(2)

ii
(|Ce|

2) |Ce| fe(Ce)
(
|Ce|

2
I− 3Ce ⊗Ce

)
dCe

+
m2

e

m2
i

∂CiCi
fi(Ci, i) :

∫
Σ(1)

ii
(|Ce|

2) |Ce| fe(Ce)
(
Ce ⊗Ce

)
dCe,

while the inelastic term can be written as

S2,in
ie (fi, fe) (Ci, i) (3.54)

=
∑

i
′∈Qi

i
′ 6=i

∫
σii

′

ie |Ce|
(
fi(C i, i

′)fe(C
′(0)
e )

aii
aii′

− fi (C i, i) fe(Ce)
)
dω′

iedCe

=
∑

i
′∈Qi

i
′ 6=i

∫ (
Σ

(0)
i
′
i
(|Ce|

2)fi(Ci, i
′)− Σ

(0)
ii
′ (|Ce|

2)fi(Ci, i)
)
|Ce|fe(Ce) dCe.
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3.4.2 Scattering of electrons by heavy species

The electron ith-heavy-species scattering term Sei was stated in (3.24). Unlike for the
heavy-species electron case, there is no change of variable allowing to eliminate the
dependance in ε of the scattering cross-section σii

′

ei , and we retain the set of variables
(Ce,Ci,ω

′
ei).

Expansion of the species velocities Conservation equations (3.38) for collisions be-
tween electrons and molecules of the ith heavy species yield the following asymptotic
expansion:

g′ei = g
′(0)
ei + ε g

′(1)
ei + ε2 g

′(2)
ei +O(ε3), (3.55)

C ′
e = C ′(0)

e + ε C ′(1)
e + ε2 C ′(2)

e +O(ε3), (3.56)

C ′
i = C

′(0)
i + ε C

′(1)
i + ε2 C

′(2)
i +O(ε3), (3.57)

where the coefficients for the amplitude of the relative velocity after collision g′ei read in
terms of the variables (Ce,Ci,ω

′
ei)





g
′(0)
ei = |Ce|

(
1−

∆Eii
′

1
2
me|Ce|2

) 1

2

,

g
′(1)
ei = −

Ce ·Ci

g
′(0)
ei

,

g
′(2)
ei =

1

2

|Ci|2

g
′(0)
ei

(
1−

∆Eii
′

1
2
mi|Ci|2

)
−

1

2

(Ce ·C i)
2

(
g
′(0)
ei

)3 ,

(3.58)

and the coefficients for the velocities after collisions C ′
e, C

′
i are given by





C ′(0)
e = g

′(0)
ei ω′

ei, C ′(1)
e = Ci + g

′(1)
ei ω′

ei, C ′(2)
e = C

′(1)
i + g

′(2)
ei ω′

ei,

C
′(0)
i = Ci, C

′(1)
i =

me

mi

(
Ce −C ′(0)

e

)
, C

′(2)
i = −

me

mi
C ′(1)

e .
(3.59)

Expansion of Sei Relations (3.55)-(3.57) allow one to determine, after a few calcula-
tions, the asymptotic expansion of the electron ith-heavy-species scattering operator

Sei = S0
ei + ε S1

ei + ε2 S2
ei + O(ε3).

The zeroth-order collision operator reads

S0
ei (fe, fi) (Ce) = (3.60)
∑

i∈Qi

(∫
fi(Ci, i) dCi

)∫
σii

ei |Ce|
(
fe(|Ce|ω

′
ei)− fe(Ce)

)
dω′

ei,

where

σii

ei = σii

ei

(
me|Ce|

2,
Ce

|Ce|
·ω′

ei

)
.
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The first-order term S1
ei (fe, fi) (Ce) reads

S1
ei (fe, fi) (Ce) = (3.61)

+
∑

i∈Qi

∫
fi(Ci, i)C i dC i ·

∫
σii

ei |Ce|
(
∂Ce

fe(|Ce|ω
′
ei)− ∂Ce

fe(Ce)
)
dω′

ei

−
∑

i∈Qi

∫
fi(C i, i)Ci dCi · ∂Ce

[∫
σii

ei |Ce|
(
fe(|Ce|ω

′
ei)− fe(Ce)

)
dω′

ei

]
.

Finally, the second-order term can be decomposed into an elastic and an inelastic contri-
butions

S2
ei = S2,el

ei + S2,in
ei . (3.62)

The elastic term reads

S2,el
ei (fe, fi) (Ce) =

me

mi

∑

i∈Qi

(∫
fi(Ci, i) dCi

)
K i,1

ei (Ce) (3.63)

+
1

2

∑

i∈Qi

∫
fi(Ci, i)Ci ⊗C i dC i : K i,2

ei (Ce),

where

K i,1
ei (Ce) = ∂Ce

·

[∫
σii

ei |Ce| (Ce − |Ce|ω
′
ei) fe(|Ce|ω

′
ei) dω

′
ei

]
(3.64)

−
1

2
|Ce|Ce ·

∫
∂Ce

σii

ei

(
fe(|Ce|ω

′
ei)− fe(Ce)

)
dω′

ei,

and

K i,2
ei (Ce) = ∂CeCe

[∫
σii

ei |Ce|
(
fe(|Ce|ω

′
ei)− fe(Ce)

)
dω′

ei

]
(3.65)

+ 2

∫
∂Ce

[|Ce|σ
ii

ei]⊗
(
∂Ce

fe(Ce)− ∂Ce
fe(|Ce|ω

′
ei)
)
dω′

ei

+ |Ce|

∫
σii

ei

(
∂CeCe

fe(Ce) + ∂CeCe
fe(|Ce|ω

′
ei)
)
dω′

ei

− 2|Ce|

∫
σii

ei ∂CeCe
fe(|Ce|ω

′
ei) · ω

′
ei ⊗

Ce

|Ce|
dω′

ei.

The inelastic term reads

S2,in
ei (fe, fi) (Ce) = (3.66)

∑

i,i′∈Qi

i
′ 6=i

∫
σii

′

ei |Ce|
(
fe(C

′(0)
e )fi(Ci, i

′)
aii
aii′

− fe(Ce)fi(Ci, i)
)
dω′

eidC i,
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where

σii
′

ei = σii
′

ei

(
me|Ce|

2,
Ce

|Ce|
· ω′

ei

)
,

C ′(0)
e = |Ce|

(
1−

∆Eii
′

1
2
me|Ce|2

) 1

2

ω′
ei.

4 Chapman-Enskog Expansion of the Species Distribu-

tion Functions

In this section, we extend the classical procedure proposed by Enskog [8] [17] [19] to non-
thermal polyatomic plasmas [13] [25]. The species distribution functions are expanded in
powers of the Knudsen number ε and injected in the Boltzmann equations (3.21)-(3.22).
Projection of the electron Boltzmann equation at order ε−2 yields electron thermalization
and isotropization in the heavy-species reference frame. As well, projection of the heavy-
species Boltzmann equations at order ε−1 yields thermalization of the heavy species.
Euler type equations arise from the expansion of macroscopic equations at order ε0, while
expansion at order ε1 yields Navier-Stokes type equations. As is classical, the closure of
the equations is ensured by assuming that the perturbation of the distribution function
from its Maxwellian equilibrium is orthogonal to the collisional invariants of the scattering
operator [8] [17] [19].

4.1 Chapman-Enskog method

We derive an approximate solution to the Boltzmann equations by expanding the species
distribution functions as

fe = f 0
e

(
1 + εφe + ε2φ2

e

)
+O(ε3), (4.1)

fi = f 0
i (1 + εφi) +O(ε2), i ∈ H. (4.2)

Traditionally, in the Chapman-Enskog’s method [8] [17] [19], the zeroth-order distribution
function f 0

e is assumed to yield the same local macroscopic properties as fe in the limit
ε→ 0 [25], namely {

⟪f 0
e , ψ

e
e⟫e = ne

⟪f 0
e , ψ

ns+4
e ⟫e = Ee

(4.3)

for electrons, and as well



⟪f 0

h , ψ
j
h⟫h = nj , j ∈ H

⟪f 0
h , ψ

ns+ν
h ⟫h = 0, ν ∈ {1, 2, 3}

⟪f 0
h , ψ

ns+4
h ⟫h = Eh

(4.4)

for heavy species, where Ee and Eh denote the respective internal energies per unit volume.
The Boltzmann equations (3.21),(3.22) can be written in the compact form

De(fe) =
1

ε2
See (fe, fe) +

1

ε2

∑

j∈H

Sej (fe, fj) + ε Ce (f) , (4.5)

Di(fi) =
1

ε2
Sie (fi, fe) +

1

ε

∑

j∈H

Sij (fi, fj) + ε Ci (f) , i ∈ H. (4.6)

22



We have derived in the previous paragraph asymptotic expansions for the scattering op-
erators See,Sej,Sje,Sij, i, j ∈ H. We also expand the streaming operators D as

De =
1

ε2
D−2

e +
1

ε
D−1

e +D0
e + ε D1

e +O(ε2), (4.7)

Di = D0
i + ε D1

i +O(ε2), i ∈ H, (4.8)

where

D−2
e (fe) = δb1

qe
me

[Ce ∧B] · ∂Ce
fe, (4.9)

D−1
e (fe) = Ce · ∂xfe + δb0

qe
me

[Ce ∧B] · ∂Ce
fe + δb1

qe
me

[vh ∧B] · ∂Ce
fe (4.10)

+
qe
me

E · ∂Ce
fe,

D0
e(fe) = ∂tfe + vh · ∂xfe + δb(−1)

qe
me

[Ce ∧B] · ∂Ce
fe + δb0

qe
me

[vh ∧B] · ∂Ce
fe (4.11)

− (∂Ce
fe ⊗Ce) : ∂xvh,

D1
e(fe) = δb(−2)

qe
me

[Ce ∧B] · ∂Ce
fe + δb(−1)

qe
me

[vh ∧B] · ∂Ce
fe −

Dvh

Dt
· ∂Ce

fe, (4.12)

and

D0
i (fi) = ∂tfi + (Ci + vh) · ∂xfi + δb1

qi
mi

[(Ci + vh) ∧B] · ∂Ci
fi (4.13)

+
( qi
mi

E −
Dvh

Dt

)
· ∂Ci

fi − (∂Ci
fi ⊗Ci) : ∂xvh,

D1
i (fi) = δb0

qi
mi

[(Ci + vh) ∧B] · ∂Ci
fi. (4.14)

Equations (4.5), (4.6) are then projected against collisional invariants in Iε
e , Ih. Mak-

ing use of orthogonality properties (2.29), (2.31), one obtains

⟪ψe
e,De(fe)⟫e = ε⟪ψe

e, Ce(f)⟫e, (4.15)

⟪εmeCeν,De(fe)⟫e =
1

ε2

∑

j∈H

⟪εmeCeν,Sej⟫e + ε⟪εmeCeν , Ce(f)⟫e, ν ∈ {1, 2, 3} , (4.16)

⟪ψns+4
e ,De(fe)⟫e =

1

ε2

∑

j∈H

⟪ψns+4
e ,Sej⟫e + ε⟪ψns+4

e , Ce(f)⟫e, (4.17)

for electrons, and

⟪ψi
h,Dh(fh)⟫h = ε⟪ψi

h, Ch(f)⟫h, i ∈ H, (4.18)

⟪ψns+ν
h ,Dh(fh)⟫h =

1

ε2
⟪ψns+ν

h ,She⟫h + ε⟪ψns+ν
h , Ch(f)⟫h, ν ∈ {1, 2, 3} , (4.19)

⟪ψns+4
h ,Dh(fh)⟫h =

1

ε2
⟪ψns+4

h ,She⟫h + ε⟪ψns+4
h , Ch(f)⟫h, (4.20)
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for heavy species. Equations (4.15) and (4.18) account for conservation of matter, equa-
tions (4.16) and (4.19) for conservation of momentum, and equations (4.17) and (4.20)
for conservation of energy. These equations are completed with the cross-collision orthog-
onality relations (3.29), (3.30), (3.31), together with the macroscopic constraints (4.3),
(4.4).

4.2 Electron thermalization

We solve the electron Boltzmann equation (4.5) at order ε−2, corresponding to the kinetic
timescale t0e. We obtain the following equation for f 0

e :

δb1
qe
me

(Ce ∧B) · ∂Ce
f 0
e = See

(
f 0
e , f

0
e

)
+
∑

j∈H

S0
ej

(
f 0
e , f

0
j

)
. (4.21)

Multiplying this equation by ln f 0
e and integrating over Ce, we get

Γ0
ee +

∑

j∈H

Γ0
ej + δb1 kb

qe
me

∫
(Ce ∧B) · ∂Ce

f 0
e ln f 0

e dCe = 0,

where Γ0
ee and Γ0

ej are the zeroth-order entropy production rates for electron electron and
electron jth-heavy-species collisions, respectively

Γ0
ee = −kb

∫
See

(
f 0
e , f

0
e

)
(Ce) ln

(
f 0
e (Ce)

)
dCe, (4.22)

Γ0
ej = −kb

∫
S0
ej

(
f 0
e , f

0
j

)
(Ce) ln

(
f 0
e (Ce)

)
dCe, j ∈ H. (4.23)

Noting that
∂Ce

f 0
e ln f 0

e = ∂Ce

[
f 0
e ln f 0

e − f 0
e

]
,

and integrating by parts we obtain
∫

(Ce ∧B) · ∂Ce
f 0
e ln f 0

e dCe =

∫
(Ce ∧B) · ∂Ce

[
f 0
e ln f 0

e − f 0
e

]
dCe

=

∫
∂Ce

·
[
(f 0

e ln f 0
e − f 0

e )(Ce ∧B)
]
dCe,

since ∂Ce
· [Ce ∧B] = 0. Now, for a given R > 0, if B(0, R) is the ball of center 0

and radius R in the electron velocity space (Ce ∈ R
3), and S (0, R) is the corresponding

sphere, then
∫

B(0,R)

∂Ce
·
[
(f 0

e ln f 0
e − f 0

e )(Ce ∧B)
]
dCe =

∫

S (0,R)

(f 0
e ln f 0

e − f 0
e )(Ce ∧B) ·

Ce

|Ce|
dCe

= 0,

and this holds for all R > 0, so that
∫

∂Ce
·
[
(f 0

e ln f 0
e − f 0

e )(Ce ∧B)
]
dCe = 0.

24



More generally, the latter statement can also be proven for any kind of force instead of
the Lorentz force qeCe ∧ B, upon assuming that the electron distribution function fe
decreases sufficiently rapidly when |Ce| → +∞ [23]. Thus, one gets finally

Γ0
ee +

∑

j∈H

Γ0
ej = 0. (4.24)

Using the reciprocity relation (2.7) and symmetrizing, a classical derivation [25] yields

Γ0
ee =

kb

4

∫
σeẽgeẽΩ(fef̃e, f

′
ef̃

′
e) dω

′
eẽdCedC̃e, (4.25)

where f̃e = fe(t,x, C̃e) and f̃ ′
e = fe(t,x, C̃

′

e), and where

Ω(x, y) = ln
(x
y

)
(x− y) (4.26)

is a nonnegative function. Similarly, the electron jth-heavy-species entropy production
term is expressed by means of (3.60) as

Γ0
ej = −kb

∫
S0
ej

(
f 0
e , f

0
j

)
(Ce) ln

(
f 0
e (Ce)

)
dCe

= −kb

∑

j∈Qj

(∫
f 0
j (Cj, j) dCj

)

×

∫
σjj

ej |Ce|
(
f 0
e (|Ce|ω

′
ej)− f 0

e (Ce)
)
ln
(
f 0
e (Ce)

)
dω′

ejdCe,

which again by reciprocity relations and symmetrization is equal to

Γ0
ej =

kb

2

∑

j∈Qj

(∫
f 0
j (Cj, j) dCj

)∫
σjj

ej|Ce| Ω
(
f 0
e (|Ce|ω

′
ej), f

0
e (Ce)

)
dω′

ejdCe ≥ 0.

(4.27)
A sum of positive terms is equal to zero if and only if each term of the sum is zero itself,
thus the entropy production rates vanish: Γ0

ee = 0, and Γ0
ej = 0 for all j ∈ H.

Since Γ0
ee = 0, one can see from expression (4.25) and the definition of Ω that ln(f 0

e )
must be a collisional invariant associated with the electron electron scattering operator,
i.e., must lie in the space Iε

e , spanned by ψe
e = 1, ψns+ν

e = εmeCeν, ν ∈ {1, 2, 3}, and
ψns+4
e = 1

2
meCe ·Ce. Similarly, one can see from expression (4.27) that f 0

e has to be an
isotropic function of Ce, so that ln(f 0

e ) is an isotropic electron collisional invariant:

ln(f 0
e ) ∈ I0

e = Span

(
1,

1

2
meCe ·Ce

)
.

Using the macroscopic constraints (4.3) for conservation of matter and energy, we
obtain finally the expression for the zeroth-order electron distribution function

f 0
e (Ce) = ne

(
me

2πkbTe

) 3

2

exp

(
−

me

2kbTe
Ce ·Ce

)
. (4.28)
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The electron population thus thermalizes to a quasi-equilibrium state described by a
Maxwell-Boltzmann distribution at some temperature Te, defined as

Ee =
3

2
nekbTe. (4.29)

The Maxwellian distribution (4.28) is such that See(f
0
e , f

0
e ) = 0 and S0

ej(f
0
e , f

0
j ) = 0, for

all j ∈ H.
Finally, if one defines the electron partial pressure pe as

pe I =

∫
me Ce ⊗Ce f

0
e dCe =

(
1

3

∫
me Ce ·Ce f

0
e dCe

)
I, (4.30)

where the latter equality comes from the isotropy of f 0
e , one retrieves the perfect gas law

for the electrons
ρe =

peme

RTe
, (4.31)

where me = Name is the molar mass of the electron, and R is the universal gas constant.

4.3 Heavy-species thermalization

Now we solve the ith-heavy-species equation (4.6) at order ε−1. Since S0
ie = 0 from (3.48),

this yields, for all i ∈ H

S1
ie(f

0
i , f

0
e ) +

∑

j∈H

Sij

(
f 0
i , f

0
j

)
= 0.

Since f 0
e is isotropic, the term S1

ie(f
0
i , f

0
e ) given in (3.49) vanishes, and hence

∑

j∈H

Sij

(
f 0
i , f

0
j

)
= 0. (4.32)

Multiplying this equation by ln(βiif
0
i ), integrating over C i, summing over i ∈ Qi and then

over i ∈ H, we get
Γ0
hh = 0, (4.33)

where Γ0
hh is the zeroth-order entropy production rate associated with heavy-species col-

lisions

Γ0
hh = −kb

∑

i,j∈H

∑

i∈Qi

∫
Sij

(
f 0
i , f

0
j

)
(Ci) ln

(
βiif

0
i (Ci)

)
dCi. (4.34)

From expression (3.26) for Sij , and using the reciprocity relation (2.7) and symmetrization,
the latter term can be written in the form

Γ0
hh =

kb

4

∑

i,j∈H

∑

i,i′∈Qi

∑

j,j′∈Qj

∫
σiji

′
j
′

ij gij Ω
( aiiajj
aii′ajj′

f 0′

i f
0′

j , f
0
i f

0
j

)
dω′

ijdCidCj . (4.35)

Since Ω is nonnegative, each term in the sum has to be zero, i.e.,

aiiajjf
0′

i f
0′

j = aii′ajj′f
0
i f

0
j , i, j ∈ H, i, i′,∈ Qi, j, j

′ ∈ Qj .
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In other words,
(
ln(βiif

0
i )
)
i∈H

is a collisional invariant of the heavy-species scattering
operator: (

ln(βiif
0
i )
)
i∈H

∈ Ih,

i.e., there exists constants αi, i ∈ H, w, and γ such that

ln(βiif
0
i ) = αi −w ·miC i − γ

(1
2
miC i ·Ci + Eii

)
, i ∈ H, i ∈ Qi.

The constants αi, i ∈ H, w, and γ are obtained from the macroscopic constraints (4.4)
for conservation of matter, momentum and energy, yielding the following expression for
the zeroth-order heavy-species distribution function

f 0
i (C i, i) = ni

(
mi

2πkbTh

) 3

2 aii
Qint

i

exp

(
−

mi

2kbTh
C i ·Ci −

Eii

kbTh

)
, i ∈ H, i ∈ Qi, (4.36)

where Th is the heavy-species temperature, given by

3

2
nhkbTh =

∑

i∈H

∑

i∈Qi

∫
1

2
miCi ·Ci f

0
i dCi, (4.37)

and where we have introduced the partition function for internal energy of the ith species

Qint

i =
∑

i∈Qi

aii exp

(
−
Eii

kbTh

)
. (4.38)

Alternatively, one can write

f 0
i (Ci, i) = ni

1

βiiQi
exp

(
−

mi

2kbTh
Ci ·Ci −

Eii

kbTh

)
, i ∈ H, i ∈ Qi, (4.39)

where the statistical weights βii are given by

βii =
h3

p

aiim3
i

, i ∈ H, i ∈ Qi, (4.40)

and where the translational and full partition functions per unit volume read

Qtr

i =

(
2πmikbTh

h2
p

) 3

2

, Qi = Qtr

i Q
int

i , i ∈ H. (4.41)

The Maxwellian distribution (4.36) is such that Sij(f
0
i , f

0
j ) = 0, for i, j ∈ H.

As a consequence of expression (4.36), the heavy-species internal energy per unit
volume reads

Eh =
∑

i∈H

ni(
3

2
kbTh + Ei), (4.42)

where

Ei =
∑

i∈Qi

aiiEii

Qint

i

exp

(
−
Eii

kbTh

)
(4.43)
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is the mean excitation energy of the ith species.
Finally, defining the heavy-species partial pressure as

ph I =
∑

i∈H

∑

i∈Q

∫
mi Ci ⊗Ci f

0
i dCi =

(
1

3

∑

i∈H

∑

i∈Q

∫
mi C i ·Ci f

0
i dCi

)
I, (4.44)

we retrieve the perfect gas law for heavy species

ρh =
phmh

RTh
, (4.45)

where mh is the mean heavy-species molar mass, given by

ρh
mh

=
∑

i∈H

ρi
mi

, (4.46)

mi = Nami being the molar mass of the ith heavy species.

4.4 First-order perturbation function for electrons

We introduce the electron linearized collision operator Fe, defined as

Fe(φe) = −
1

f 0
e

[
See(φef

0
e , f

0
e ) + See(f

0
e , φef

0
e ) +

∑

j∈H

S0
ej(φef

0
e , f

0
j )

]
. (4.47)

The sum of the first two terms on the right hand side can be computed from (3.23) as
follows:

−
1

f 0
e

[
See(φef

0
e , f

0
e ) + See(f

0
e , φef

0
e )
]
=

−
1

f 0
e

∫
geẽσeẽ

(
φ′
ef

0′

e f̃
0′

e − φef
0
e f̃

0
e + f 0′

e φ̃
′
ef̃

0′

e − f 0
e φ̃ef̃

0
e

)
dω′

eẽdC̃e,

where ψ̃e = ψe(t,x, C̃e) and ψ̃′
e = ψe(t,x, C̃

′

e) for any function ψe of t, x and Ce. The
conservation of energy for electron-electron collisions reads

1

2
me|Ce|

2 +
1

2
me|C̃e|

2 =
1

2
me|C

′
e|
2 +

1

2
me|C̃

′

e|
2,

so that from (4.28)
f 0′

e f̃
0′

e = f 0
e f̃

0
e , (4.48)

and thus

−
1

f 0
e

[
See(φef

0
e , f

0
e ) + See(f

0
e , φef

0
e )
]
= −

1

f 0
e

∫
geẽσeẽf

0
e f̃

0
e

(
φ′
e − φe + φ̃′

e − φ̃e

)
dω′

eẽdC̃e.
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Similarly, from expression (3.60) of S0
ej, the last term on the right hand side reads

−
1

f 0
e

∑

j∈H

S0
ej(φef

0
e , f

0
j )

= −
1

f 0
e

∑

j∈H

∑

j∈Qj

(∫
f 0
j (Cj , j) dCj

)∫
σjj

ej |Ce|
(
φef

0
e (|Ce|ω

′
ej)− φef

0
e (Ce)

)
dω′

ej

= −
1

f 0
e

∑

j∈H

∑

j∈Qj

nj
ajje

−ǫjj

Qint

j

∫
σjj

ej |Ce|
(
φef

0
e (|Ce|ω

′
ej)− φef

0
e (Ce)

)
dω′

ej ,

where expression (4.36) for the zeroth-order jth-heavy-species distribution function f 0
j has

been integrated over Cj , and where we have introduced the reduced internal energy

ǫjj =
Ejj

kbTh
, j ∈ H, j ∈ Qj. (4.49)

Since f 0
e is isotropic, f 0

e (|Ce|ω′
ej) = f 0

e (Ce), and the electron linearized collision operator
finally reads

Fe(φe) =−

∫
geẽσeẽf̃

0
e

(
φ′
e + φ̃′

e − φe − φ̃e

)
dω′

eẽdC̃e (4.50)

−
∑

j∈H

∑

j∈Qj

nj
ajje

−ǫjj

Qint

j

∫
σjj

ej |Ce|
(
φe(|Ce|ω

′
ej)− φe(Ce)

)
dω′

ej.

The kernel of Fe coincides with the set of electron collisional invariants I0
e . Indeed, if

Fe(φe) = 0, then multiplying expression (4.50) by φef
0
e , integrating over Ce, and using

the reciprocity relation (2.7) and symmetrization one obtains

φe(|Ce|ω′
ej) = φe(Ce)

φe(C
′
e) + φe(C̃

′

e) = φe(Ce) + φe(C̃e),

for all Ce, C̃e, ω
′
eẽ, ω

′
ej , i.e., φe ∈ I0

e .
Furthermore, Fe is isotropic, i.e., it transforms a tensor constructed from Ce into

another tensor of the same type [47] [23] [21]. This will be of great importance for the
calculation of transport coefficients. We also introduce the associated integral bracket
operator:

Jξe, ζeKe = ⟪f
0
e ξe,Fe(ζe)⟫e, (4.51)

which can be expressed in the form

Jξe, ζeKe =
1

4

∫
geẽσeẽf

0
e f̃

0
e

(
ξ′e + ξ̃′e − ξe − ξ̃e

)(
ζ ′e + ζ̃ ′e − ζe − ζ̃e

)
dω′

eẽdCedC̃e (4.52)

+
1

2

∑

j∈H

∑

j∈Qj

nj
ajje

−ǫjj

Qint

j

×

∫
σjj

ej |Ce|f
0
e (Ce)

(
ξe(|Ce|ω

′
ej)− ξe(Ce)

) (
ζe(|Ce|ω

′
ej)− ζe(Ce)

)
dω′

ejdCe.
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From expression (4.52), the bracket operator J·Ke is readily seen to be symmetric, i.e.,

Jξe, ζeKe = Jζe, ξeKe, (4.53)

positive semi-definite:
Jξe, ξeKe ≥ 0, (4.54)

and its kernel is seen to coincide with the kernel of Fe:

Jξe, ξeKe = 0 ⇔ Fe(ξe) = 0 ⇔ ξe ∈ I0
e . (4.55)

The electron Boltzmann equation (4.5) is now projected at order ε−1. As long as f 0
e

is an isotropic function of Ce, respectively f 0
j is an isotropic function of Cj , from (3.60)

the term S0
ej(f

0
e , φjf

0
j ) is shown to vanish:

S0
ej(f

0
e , φjf

0
j ) = 0, (4.56)

respectively from (3.61)
S1
ej(f

0
e , f

0
j ) = 0. (4.57)

Thus, the first-order electron perturbation function φe is solution to the following linear
equation:

Fe(φe) + δb1
qe
me

(Ce ∧B) · ∂Ce
φe = Ψe, (4.58)

where
Ψe = −D−1

e (ln f 0
e ). (4.59)

Equation (4.58) must be completed with constraints (4.3) in order to be well posed

⟪φef
0
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (4.60)

Indeed, the streaming operator Ψe = −D−1
e (ln f 0

e ) on the right hand side of (4.58) is
orthogonal to the electron collisional invariants [25], and the second term on the left hand
side of (4.58) is orthogonal to the electron isotropic collisional invariants [20] [23] [25],
since if f 0

e decreases sufficiently rapidly as |Ce| → +∞, then
∫
f 0
e ψ

l
e (Ce ∧B) · ∂Ce

φe dCe = −

∫
f 0
e φe ∂Ce

· (ψl
eCe ∧B) dCe,

= −

∫
f 0
e φe (Ce ∧B) · ∂Ce

ψl
e dCe,

= 0,

for l ∈ {e, ns + 4}. Besides, the relation

⟪f 0
e φe, (Ce ∧B) · ∂Ce

φe⟫e =

∫
f 0
e φe (Ce ∧B) · ∂Ce

φe dCe,

=

∫
f 0
e (Ce ∧B) · ∂Ce

(1
2
φ2
e

)
dCe,

= 0,

ensures that the set of solutions of the homogeneous linear equation associated with the
linear equation (4.58) coincides with the kernel of Fe, I0

e .
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4.5 Inelastic collision cross-sections

We can now discuss in more details the choice of scaling adopted for σjj
′

je , j ∈ H, j, j′ ∈ Qj ,

j 6= j
′. We consider the two possible alternative scaling σin,0

he = σ0 and σin,0
he = εσ0, instead

of σin,0
he = ε2σ0. Other things being equal, in the former case the electron thermalization

requires that the electron temperature be equal to the heavy-species temperature Te = Th,
while in the latter case the heavy-species thermalization induces Th = Te.

4.5.1 Electron thermalization

First, if the inelastic reference collision scaled as

σin,0
he = σ0, (4.61)

that is to say if there was only one relevant characteristic cross-section, then the right
hand side of the electron Boltzmann equation at order ε−2 (4.21) would contain the
additional term

∑
j∈H S

2,in
ej

(
f 0
e , f

0
j

)
. Thus, equation (4.24) for electron thermalization

would be replaced by

Γ0
ee +

∑

j∈H

Γ0
ej +

∑

j∈H

Γ2,in
ej = 0, (4.62)

where the entropy production rate due to inelastic scattering of electron by the jth heavy
species reads

Γ2,in
ej = −kb

∫
S2,in
ej

(
f 0
e (Ce), f

0
j (Cj)

)
ln
(
f 0
e (Ce)

)
dCe, (4.63)

that is

Γ2,in
ej = −kb

∑

j,j′∈Qj

j
′ 6=j

∫
σjj

′

ej |Ce|
(
f 0
e (C

′(0)
e )f 0

j (Cj, j
′)
βjj′

βjj
− f 0

e (Ce)f
0
j (Cj , j)

)
(4.64)

× ln
(
f 0
e (Ce)

)
dω′

ejdCedCj,

where C ′(0)
e = |Ce|

(
1 −∆Ejj

′/1
2
me|Ce|2

)1/2
ω′

ej is the zeroth-order electron velocity after
collision. Using the reciprocity relation (2.7) in the form

βjj′|Ce|σ
jj

′

ej dω′
ejdCedCj = βjj|C

′(0)
e |σj

′
j

ej dωejdC
′(0)
e dCj , (4.65)

and symmetrizing, Γ2,in
ej may be expressed as

Γ2,in
ej = kb

∑

j,j′∈Qj

j
′ 6=j

∫
σjj

′

ej |Ce|
[
ln
(
f 0
e (Ce)

)
− ln

(
f 0
e (C

′(0)
e )
)]
f 0
e (Ce)f

0
j (Cj , j) dω

′
ejdCedCj.

(4.66)
Now, for the alternative scaling σin,0

he = σ0, the projection of the heavy species Boltzmann
equation (3.22) at order ε−2 would be non trivial, and would yield

0 = S2,in
je (f 0

j , f
0
e ) =

∑

j
′∈Qj

j
′ 6=j

∫
σjj

′

je |Ce|
(
f 0
e (C

′(0)
e )f 0

j (Cj, j
′)
βjj′

βjj
− f 0

e (Ce)f
0
j (Cj , j)

)
(4.67)

× dω′
jedCedCj .

31



Multiplying the latter equation by ln (βjjf
0
j (Cj, j)), integrating over Cj summing over

j ∈ Qj , and noting that ωje = −ωej, ω
′
je = −ω′

ej , and that σjj
′

je = σjj
′

ej , one would obtain

0 =
∑

j,j′∈Qj

j
′ 6=j

1

βjj

∫
σjj

′

ej |Ce| ln
(
βjjf

0
j (Cj , j)

)
(4.68)

×
(
βjj′f

0
e (C

′(0)
e )f 0

j (Cj , j
′)− βjjf

0
e (Ce)f

0
j (Cj , j)

)
dω′

ejdCedCj ,

which by reciprocity and symmetry would yield

0 =
∑

j,j′∈Qj

j
′ 6=j

1

βjj

∫
σjj

′

ej |Ce|
[
ln
(
βjj′f

0
j (Cj , j

′)
)
− ln

(
βjjf

0
j (Cj , j)

)]
(4.69)

×
(
βjj′f

0
e (C

′(0)
e )f 0

j (Cj , j
′)− βjjf

0
e (Ce)f

0
j (Cj , j)

)
dω′

ejdCedCj ,

so that the entropy production rate due to inelastic scattering of electron by the jth heavy
species would read

Γ2,in
ej =

kb

2

∑

j,j′∈Qj

j
′ 6=j

1

βjj

∫
σjj

′

ej |Ce|Ω
(
βjj′f

0
e (C

′(0)
e )f 0

j (Cj , j
′), βjjf

0
e (Ce)f

0
j (Cj , j)

)
(4.70)

dω′
ejdCedCj,

where Ω is the function defined in (4.26). Since Ω is nonnegative, the ε−2 electron Boltz-
mann equation (4.62) would yield the thermalization of electrons (4.28) as in subsection
4.2. Besides, the electron jth-heavy-species inelastic entropy production rate would vanish

Γ2,in
ej = 0, j ∈ H, (4.71)

which would require

ajjf
0
e (C

′(0)
e )f 0

j (Cj, j
′) = ajj′f

0
e (Ce)f

0
j (Cj, j), j ∈ H, j, j′ ∈ Qj , j

′ 6= j, (4.72)

for Ω is nonnegative. From expression (4.28) for the electron Maxwellian distribution
function, the latter equation is rewritten

ajjf
0
j (Cj , j

′) = exp
(
−

∆Ejj
′

kbTe

)
ajj′f

0
j (Cj , j), j ∈ H, j, j′ ∈ Qj , j

′ 6= j. (4.73)

Assuming that the zeroth-order heavy-species distribution functions f 0
j , j ∈ H, would still

be Maxwellian of the form (4.36), equation (4.73) would be equivalent to

∆Ejj
′

kbTh
=

∆Ejj
′

kbTe
, j ∈ H, j, j′ ∈ Qj , j

′ 6= j,

which would imply Te = Th.
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4.5.2 Heavy-species thermalization

In the preceding paragraph it was shown that, other things being equal, the inelastic
collisions between electrons and heavy species must be at least one order of magnitude
slower than the corresponding elastic collisions. We now consider the alternative scaling

σin,0
he = εσ0. (4.74)

For such a scaling electron thermalization would proceed as in 4.2, since equation (4.24)
would remain unchanged, and hence the zeroth-order electron distribution function f 0

e

would be a Maxwellian of the form (4.28).
The heavy-species Boltzmann equation at order ε−1 (4.32) would contain the addi-

tional term S2,in
ie (f 0

i , f
0
e ), so that equation (4.33) for heavy-species thermalization would

be replaced by
Γ0
hh + Γ2,in

he = 0, (4.75)

where we have introduced the entropy production rate due to inelastic scattering of heavy
species by electrons

Γ2,in
he = −kb

∑

i∈H

∑

i∈Qi

∫
ln
(
βiif

0
i (Ci, i)

)
S2,in
ie

(
f 0
i , f

0
e

)
dCi. (4.76)

From expression (3.54) for S2,in
ie , this inelastic entropy production rate is expanded as

Γ2,in
he = −kb

∑

i∈H

∑

i∈Qi

∫
σii

′

ie |Ce| ln
(
βiif

0
i (Ci, i)

)

×
(
f 0
i (Ci, i

′)f 0
e (C

′(0)
e )

βii′

βii
− f 0

i (Ci, i)f
0
e (Ce)

)
dω′

iedC idCe,

=
kb

2

∑

i∈H

∑

i∈Qi

∫
σii

′

ie |Ce|
[
ln
(
βii′f

0
i (Ci, i

′)
)
− ln

(
βiif

0
i (Ci, i)

)]
(4.77)

×
(
f 0
i (Ci, i

′)f 0
e (C

′(0)
e )

βii′

βii
− f 0

i (Ci, i)f
0
e (Ce)

)
dω′

iedC idCe,

where we have used the reciprocity relation (4.65) and symmetrization.
Now, for the scaling σin,0

he = εσ0 proposed, equation (4.58) obtained from the projection
of the Boltzmann equation at order ε−1 would remain valid, but the source term Ψe would
read

f 0
eΨe = −D−1

e (f 0
e ) +

∑

j∈H

S1
ej(f

0
e , f

0
j ) +

∑

j∈H

S2,in
ej (f 0

e , f
0
j ), (4.78)

where f 0
j would remain unknown at this point. Since the streaming operator, the electron

linearized collision operator Fe, and the term (Ce ∧ B) · ∂Ce
φe are orthogonal to the

electron isotropic collisional invariants I0
e

⟪D−1
e (fe), ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (4.79)

⟪f 0
eFe(φe), ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (4.80)

⟪f 0
e (Ce ∧B) · ∂Ce

φe, ψ
l
e⟫e = 0, l ∈ {e, ns + 4} , (4.81)
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and since ln f 0
e belongs to I0

e , multiplying (4.78) by ln f 0
e and integrating over Ce one

would obtain
∑

j∈H

⟪S1
ej(f

0
e , f

0
j ), ln f

0
e ⟫e +

∑

j∈H

⟪S2,in
ej (f 0

e , f
0
j ), ln f

0
e ⟫e = 0. (4.82)

The first term on the left hand side would be shown to vanish since from expression (3.61)
S1
ej(f

0
e , f

0
j ) = 0 as long as f 0

e is given by a Maxwellian of the form (4.28). Thus, the second
term on the left hand side would be zero:

0 =
∑

j∈H

⟪S2,in
ej (f 0

e , f
0
j ), ln f

0
e ⟫e

=
∑

j∈H

∑

j∈Qj

∫
σjj

′

je |Ce| ln
(
f 0
e (Ce)

)

×
(
f 0
j (Cj, j

′)f 0
e (C

′(0)
e )

βjj′

βjj
− f 0

j (Cj, j)f
0
e (Ce)

)
dω′

ejdCjdCe,

= −
1

2

∑

j∈H

∑

j∈Qj

∫
σjj

′

je |Ce|
[
ln
(
f 0
e (C

′(0)
e )
)
− ln

(
f 0
e (Ce)

)]

×
(
f 0
j (Cj, j

′)f 0
e (C

′(0)
e )

βjj′

βjj
− f 0

j (Cj, j)f
0
e (Ce)

)
dω′

jedCjdCe.

Combining the latter equation with equation (4.77), the heavy-species electron inelastic
entropy production rate would finally read

Γ2,in
he =

kb

2

∑

i∈H

∑

i∈Qi

∫
σii

′

ie |Ce|Ω
(βii′
βii
f 0
i (Ci, i

′)f 0
e (C

′(0)
e ), f 0

i (Ci, i)f
0
e (Ce)

)
dω′

iedC idCe.

(4.83)

Since Ω is nonnegative, equation (4.75) would induce the thermalization of the heavy
species as in subsection 4.3. Additionnally, one would retrieve (4.73), and thus Th would
equal Te as in the preceding paragraph.

A possible extension of the present theory where some of the heavy species internal
modes thermalize at Te is discussed in the conclusion.

4.6 Zeroth-order macroscopic equations for electrons

Equations (4.15), (4.16), (4.17) are now expanded at order ε0. Conservation of matter
and energy yield a system of Navier-Stokes type drift-diffusion equations for electrons,
from which the equation for conservation of momentum uncouples.

Equation (4.15) for conservation of matter yields at order ε0 the following mass con-
servation equation for electrons:

∂tρe + ∂x ·
(
ρevh + ρeV

0
e

)
= 0, (4.84)

where we have introduced the electron zeroth-order diffusion velocity

neV
0
e =

∫
Ceφef

0
e dCe. (4.85)
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On the other hand, the energy conservation equation (4.17) yields at order ε0

∂tEe + ∂x · (Eevh) = −pe∂x · vh − ∂x ·Q0
e + J0

e ·E
′ +∆E0

eh, (4.86)

where pe = nekbTe is the electron partial pressure, J0
e = neqeV

0
e is the zeroth-order

electron conduction current density in the heavy-species reference frame, and E′ is the
electric field expressed in the heavy-species reference frame

E ′ = E + δb1vh ∧B. (4.87)

We have denoted by Q
0
e the zeroth-order electron heat flux

Q
0
e =

∫
φef

0
e

(1
2
meCe ·Ce

)
Ce dCe, (4.88)

while ∆E0
eh is an energy exchange term due to scattering collisions between electrons and

heavy species

∆E0
eh =

∑

j∈H

⟪ψns+4
e ,S2

ej(f
0
e , f

0
j )⟫e, (4.89)

where S2
ej is the second-order electron jth-heavy-species scattering source term (3.62).

The zeroth-order electron mean velocity in the inertial reference frame is defined as

v0
e = vh + V

0
e. (4.90)

Finally, momentum conservation equation (4.16) yields the momentum relation

∂xpe = neqeE + δb1j
0
e ∧B + F 0

eh, (4.91)

where j0e = neqev
0
e is the zeroth-order electron current density in the inertial reference

frame, and

F 0
eh =

∑

j∈H

⟪S0
ej(φef

0
e , f

0
j ),meCe⟫e (4.92)

is the average force exerted by the heavy species on electrons due to scattering collisions,
which can be expressed as

F 0
eh =

∑

j∈H

njF
0
ej, (4.93)

where F 0
ej is the average force exerted by the jth heavy species on electrons. We can

further decompose

F 0
ej =

∑

j∈Qj

ajje
−ǫjj

Qint

j

F
j,0
ej , (4.94)

where F
j,0
ej is the average force exerted on electrons by molecules of the jth heavy species

in the j
th internal state:

F
j,0
ej = −me

∫
Σ(1)

jj
(|Ce|

2)|Ce|φe(Ce)f
0
e (Ce)Ce dCe. (4.95)

Equation (4.91) thus provides an expression for the average force F 0
eh in terms of the

macroscopic variable gradients and external fields, which will be useful in the derivation
of the heavy-species momentum equation.
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4.7 Zeroth-order macroscopic equations for the heavy species

We now expand equations (4.18), (4.19), (4.20) at order ε0. First, equation (4.18) yields
the mass conservation equation

∂tρi + ∂x · (ρivh) = 0, i ∈ H. (4.96)

Then, expansion of equation (4.19) at order ε0 reads

∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + ph I) = nhqhE + δb1 j0h ∧B + F 0
he, (4.97)

where ph = nhkbTh is the heavy-species partial pressure, nh =
∑

j∈H nj the heavy-species

density, nhqh =
∑

j∈H njqj the heavy-species charge density, j0h = nhqhvh the zeroth-order
heavy-species current density in the inertial reference frame, and

F 0
he = ⟪S

1
he(f

0
h , φef

0
e ) + S2

he(f
0
h , f

0
e ),mhCh⟫h (4.98)

is the average force exerted by electrons on the heavy species due to scattering collisions.
Indeed, we recall that from (3.48) S0

ie = 0, and from (3.49) it is readily seen that

S1
ie(φif

0
i , f

0
e ) = 0, (4.99)

as long as f 0
e is isotropic. Due to orthogonality relation (3.30), the following reciprocity

relation holds:
F 0

he = −F 0
eh. (4.100)

As a consequence, making use of the electron momentum relation (4.91), the momentum
conservation equation (4.97) for the heavy species can be rewritten

∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + p I) = nqE + δb1 j0 ∧B, (4.101)

where p = ph+pe is the total pressure, n = nh+ne the total density, nq = nhqh+neqe the
total charge density, and j0 = j0h + j0e is the zeroth-order current density in the inertial
reference frame.

Finally, equation (4.20) yields the following energy conservation equation at order
zero:

∂tEh + ∂x · (Ehvh) = −ph ∂x · vh +∆E0
he, (4.102)

where ∆E0
he = ⟪S2

he(f
0
h , f

0
e ), ψ

ns+4
h ⟫h is an energy exchange term due to scattering colli-

sions between heavy species and electrons. Given orthogonality property (3.31), energy
exchange terms are shown to be symmetric as momentum exchange terms in (4.100):

∆E0
he = −∆E0

eh. (4.103)

The energy exchange term splits into an elastic and an inelastic contributions:

∆E0
he = ∆E0,el

he +∆E0,in
he . (4.104)

The elastic term ∆E0,el
he = ⟪S2,el

he (f 0
h , f

0
e ), ψ

ns+4
h ⟫h is computed from expression (3.53) for

the second-order ith-heavy-species electron elastic scattering source term S2,el
ie , and reads

∆E0,el
he =

3

2
nhkb(Te − Th)

1

τ el
, (4.105)
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where τ el is the average collision time at which elastic energy transfer occurs:

1

τ el
=

2

3

∑

i∈H

ni

nh

me

mi

νel

ie, (4.106)

νel

ie =
∑

i∈Qi

aiie
−Eii/kbTh

Qint

i

νii

ie, (4.107)

νii

ie =
me

kbTe

∫
Σ(1)

ii
(|Ce|

2) |Ce|
3 f 0

e (Ce) dCe. (4.108)

The inelastic contribution can be expressed using (3.54) as

∆E0,in
he =

1

2

∑

i∈H

∑

i,i′∈Qi

i
′ 6=i

∆Eii
′

niaii
Qint

i

νii
′

ie

(
e−Eii/kbTh − exp

(∆Eii
′

kbTe

)
e−Eii′/kbTh

)
, (4.109)

where νii
′

ie is the collision frequency between a molecule of the ith heavy species with initial
quantum state i and final quantum state i

′ and an electron:

νii
′

ie =

∫
Σ

(0)
ii
′ (|Ce|

2) |Ce| f
0
e (Ce) dCe, i

′ 6= i. (4.110)

Expression (4.109) can be rewritten in terms of the temperature difference Te − Th

∆E0,in
he =

3

2
nhkb(Te − Th)

1

τ in
, (4.111)

where τ in is the average collision time at which inelastic energy transfer occurs:

1

τ in
=

2

3

Th
Te

∑

i∈H

ni

nh

νin

ie , (4.112)

ν in

ie =
∑

i,i′∈Qi

i
′ 6=i

(∆ǫii′)
2

2

aiie
−ǫii

Qint

i

g
(
∆ǫii′

(
1−

Th
Te

))
νii

′

ie , (4.113)

where ∆ǫii′ = ǫii′ − ǫii =
∆E

ii
′

kbTh
, and where we have introduced the function g defined by





g(u) =
1− e−u

u
, u 6= 0,

g(0) = 1.
(4.114)

We can also formulate ∆E0
he as

∆E0
he =

3

2
nhkb(Te − Th)

1

τ
, (4.115)

where
1

τ
=

1

τ el
+

1

τ in
. (4.116)
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4.8 First-order perturbation for the heavy species

As for electrons, we introduce the heavy-species linearized collision operator Fh = (Fi)i∈H,
defined as

Fi(φh) = −
1

f 0
i

∑

j∈H

[
Sij(φif

0
i , f

0
j ) + Sij(f

0
i , φjf

0
j )
]
, i ∈ H. (4.117)

Again, using the reciprocity relation (2.7) and symmetrization [8] [17] [25], the linearized
collision operator is expressed as

f 0
i Fi(φh) =

∑

j∈H

∑

i
′∈Qi

∑

j,j′∈Qj

∫
gijσ

iji
′
j
′

ij f 0
i f

0
j

(
φi + φj − φ′

i − φ′
j

)
dω′

ijdCj. (4.118)

The kernel of Fh coincides with the set of heavy-species collisional invariants Ih. We also
introduce the associated integral bracket operator

Jξh, ζhKh = ⟪f 0
hξh,Fh(ζh)⟫h =

∑

i∈H

∑

i∈Qi

∫
f 0
i ξiFi(ζh) dCi, (4.119)

which can be expressed in the form

Jξh, ζhKh =
1

4

∑

i,j∈H

∑

i,i′∈Qi

∑

j,j′∈Qj

(4.120)

×

∫
gijσ

iji
′
j
′

ij f 0
i f

0
j

(
ξ′i + ξ′j − ξi − ξj

) (
ζ ′i + ζ ′j − ζi − ζj

)
dω′

ijdCjdCi.

From expression (4.120), the bracket operator J·Kh is shown to be symmetric, i.e.,

Jξh, ζhKh = Jζh, ξhKh, (4.121)

positive semi-definite:
Jξh, ξhKh ≥ 0, (4.122)

and its kernel is seen to coincide with the kernel of Fh:

Jξh, ξhKh = 0 ⇔ Fh(ξh) = 0 ⇔ ξh ∈ Ih. (4.123)

Projecting the heavy-species Boltzmann equations (4.6) at order ε0, the first-order
heavy-species perturbation function φh is shown to be solution to the linear equation

Fi(φh) = Ψi, i ∈ H, (4.124)

where

Ψi = −D0
i (ln f

0
i ) +

1

f 0
i

S1
ie(f

0
i , φef

0
e ) +

1

f 0
i

S2
ie(f

0
i , f

0
e ). (4.125)

Indeed, S0
ie = 0, and S1

ie(φif
0
i , f

0
e ) = 0 since f 0

e is isotropic. Equation (4.124) must be
completed with the constraints (4.4) in order to be well posed [8] [17] [19]

⟪φhf
0
h , ψ

l
h⟫h = 0, l ∈ H ∪ {ns + 1, . . . , ns + 4} . (4.126)
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4.9 Second-order perturbation for electrons

We project the electron Boltzmann equation (4.5) at order ε0 and after a few calculations,
the second-order electron perturbation function φ2

e is found to be solution to the following
linear integral equation [25]:

f 0
eFe(φ

2
e) + δb1

qe
me

(Ce ∧B) · ∂Ce
(φ2

ef
0
e ) = Ψ2

e, (4.127)

where

Ψ2
e =−D0

e(f
0
e )−D−1

e (φef
0
e ) + See(φef

0
e , φef

0
e ) (4.128)

+
∑

j∈H

[
S0
ej(φef

0
e , φjf

0
j ) + S1

ej(f
0
e , φjf

0
j ) + S2

ej(f
0
e , f

0
j )
]
.

Indeed, by (3.60) S0
ej(f

0
e , φ

2
jf

0
j ) = 0 since f 0

e is isotropic, and by (3.61) S1
ej(φef

0
e , f

0
j ) = 0

since f 0
j is isotropic. Equation (4.127) is completed with the constraints (4.3) in order to

be well posed
⟪φ2

ef
0
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (4.129)

4.10 First-order macroscopic equations for electrons

Equations (4.15), (4.16), (4.17) are now expanded at order ε1. The following first-order
drift-diffusion equations for electrons follow

∂tρe + ∂x ·
(
ρevh + ρeV

0
e + ε ρeV

1
e

)
= εmewe, (4.130)

∂tEe + ∂x · (Eevh) = −pe∂x · vh − ε∂xvh : Πe − ∂x ·Q0
e − ε∂x ·Q1

e (4.131)

+J0
e ·E

′ + εJ1
e ·E

′ + ε δb0 J
0
e · (vh ∧B) + ∆E0

eh + ε∆E1
eh,

where we have introduced the electron first-order diffusion velocity, heat flux, viscous ten-
sor, and the electron first-order conduction current density in the heavy-species reference
frame, respectively

neV
1
e =

∫
φ2
ef

0
e Ce dCe, (4.132)

Q
1
e =

∫
φ2
ef

0
e

(1
2
meCe ·Ce

)
Ce dCe, (4.133)

Πe =

∫
φef

0
e me Ce ⊗Ce dCe, (4.134)

J1
e = neqeV

1
e. (4.135)

We have denoted by we the zeroth-order molecular production rate of electrons due
to chemically reactive collisions:

we = ⟪ψ
e
e , Ce(f

0)⟫e =

∫
Ce(f

0) dCe, (4.136)
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and ∆E1
eh is the first-order energy exchange term arising from chemically reactive collisions

on the one hand, and scattering collisions on the other hand:

∆E1
eh = ∆E1,chem

eh +∆E1,scatt
eh . (4.137)

The reactive term reads

∆E1,chem

eh =

∫ (1
2
meCe ·Ce

)
Ce(f

0) dCe, (4.138)

and the scattering term is in turn decomposed into an elastic and an inelastic contribution

∆E1,scatt
eh = ∆E1,el

eh +∆E1,in
eh , (4.139)

where

∆E1,el
eh = −⟪ψns+4

h ,S1
he(φhf

0
h , φef

0
e ) + S2,el

he (φhf
0
h , f

0
e ) + S2,el

he (f 0
h , φef

0
e )⟫h, (4.140)

∆E1,in
eh = −⟪ψns+4

h ,S2,in
he (φhf

0
h , f

0
e ) + S2,in

he (f 0
h , φef

0
e )⟫h. (4.141)

Finally, the momentum electron conservation equation (4.16) yields the following first-
order momentum relation for electrons:

∂xpe + ε∂x ·Πe = neqeE + ε δb0 j
0
e ∧B + δb1 (j

0
e + εJ1

e) ∧B + F 0
eh + εF 1

eh, (4.142)

where F 1
eh is the first-order average force exerted by the heavy species on electrons:

F 1
eh =

∑

j∈H

⟪meCe,S
0
ej(φ

2
ef

0
e , f

0
j ) +S0

ej(φef
0
e , φjf

0
j ) +S1

ej(f
0
e , φjf

0
j )+S2

ej(f
0
e , f

0
j )⟫e. (4.143)

4.11 First-order macroscopic equations for the heavy species

Proceeding as for the zeroth-order macroscopic equations, we obtain the following set of
Navier-Stokes type equations for the heavy species:

∂tρi + ∂x · (ρivh + ε ρiV i) = εmiwi, i ∈ H, (4.144)

∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + p I) = −ε∂x · (Πe +Πh) + nqE (4.145)

+ε δb0 j
0 ∧B + δb1 j

1 ∧B,

∂tEh + ∂x · (Ehvh) = −ph ∂x · vh − ε∂xvh : Πh − ε∂x ·Qh (4.146)

+εJh ·E
′ +∆E0

he + ε∆E1
he,

where we have introduced the diffusion velocity of the ith heavy species V i, the heavy-
species viscous tensor Πh, and the heavy-species heat flux Qh:

niV i =
∑

i∈Qi

∫
φif

0
i Ci dC i, i ∈ H, (4.147)

Πh =
∑

j∈H

∑

j∈Qj

∫
φjf

0
j mj Cj ⊗Cj dCj , (4.148)

Qh =
∑

j∈H

∑

j∈Qj

∫
φjf

0
j

(1
2
mjCj ·Cj + Ejj

)
Cj dCj . (4.149)
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We denote by Jh the heavy-species conduction current density in the heavy-species refer-
ence frame, j1h the first-order heavy-species current density in the inertial reference frame,
and j1e the first-order electron current density in the inertial reference frame:

Jh =
∑

j∈H

njqjV j , (4.150)

j1h =
∑

j∈H

njqj(vh + εV j) = nhqhvh + εJh, (4.151)

j1e = neqe(vh + V
0
e + εV1

e) = neqeve + εJ1
e, (4.152)

where J1
e = neqeV

1
e is the first-order electron conduction current density in the heavy-

species reference frame. The zeroth-order and first-order current density in the inertial
reference frame, j0 and j1, respectively, are given by

j0 = j0h + j0
e, (4.153)

j1 = j1h + j1
e. (4.154)

Finally, wi, i ∈ H is the zeroth-order molecular production rate of the ith species due
to chemically reactive collisions:

wi = ⟪ψ
i
h, Ch(f

0)⟫h =
∑

i∈Qi

∫
Ci(f

0) dCi, (4.155)

and ∆E1
he is the first-order energy exchange term, involving both scattering and reactive

energy transfer. Again, due to relation (3.31), energy exchange terms are symmetric:

∆E1
he = −∆E1

eh. (4.156)

4.12 Chemistry source terms

For k ∈ S, the chemically reactive source term reads

wk =
∑

k∈Qk

∫
Ck(f

0) dCk. (4.157)

This term can be expressed as follows. We first recall the decomposition (2.9)

Ck(f) =
∑

r∈R

Cr
k(f), (4.158)

where Cr
k(f) was expressed in (2.19). This yields the following decomposition:

wk =
∑

r∈R

(
νrbk − νrfk

)
τr, (4.159)

where τr is the rate of progress of the rth reaction, which can be written

τr = Kf
r

∏

l∈S

n
νrf
l

l −Kb
r

∏

k∈S

n
νrb
k

k , (4.160)
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where the forward and backward constant rates associated with the rth reaction read

Kf
r =

1
∏

l∈SQ
νrf
l

l

∑

f
r,br

∫
1∏

l∈Fr

βll
exp

(
−
∑

l∈Fr

1
2
mlC l ·C l + Ell

kbTl

)
(4.161)

×Wf
r
b
r

FrBr

∏

l∈Fr

dC l

∏

k∈Br

dCk,

Kb
r =

1
∏

k∈SQ
νrb
k

k

∑

f
r,br

∫
1∏

l∈Fr

βll
exp

(
−
∑

k∈Br

1
2
mkCk ·Ck + Ekk

kbTk

)
(4.162)

×Wf
r
b
r

FrBr

∏

l∈Fr

dC l

∏

k∈Br

dCk.

From equation (2.33), the production rates wk, k ∈ S satisfy the mass conservation
constraint ∑

k∈S

mkwk = 0. (4.163)

We now distinguish between two cases. First, if the reaction does not involve any
electron, one retrieves the law of mass action. Indeed, in that case, all the species tem-
peratures equal Th, and the following relation for conservation of energy holds:

∑

l∈Fr

(1
2
mlC l ·C l + Ell

)
=
∑

k∈Br

(1
2
mkCk ·Ck + Ekk

)
, (4.164)

so that Kf
r and Kb

r read

Kf
r =

Kr

∏
j∈HQ

νrfj
j

(4.165)

Kb
r =

Kr

∏
j∈HQ

νrbj
j

, (4.166)

where

Kr =
1∏

l∈Fr

βll

∑

f
r ,br

∫
exp

(
−
∑

l∈Fr

1
2
mlC l ·C l + Ell

kbTh

)
(4.167)

×Wf
r
b
r

FrBr

∏

l∈Fr

dC l

∏

k∈Br

dCk,

=
1∏

l∈Fr

βll

∑

f
r ,br

∫
exp

(
−
∑

k∈Br

1
2
mkCk ·Ck + Ekk

kbTh

)

×Wf
r
b
r

FrBr

∏

l∈Fr

dC l

∏

k∈Br

dCk.

If we introduce the equilibrium constant of the rth reaction

Ke
r =

∏

j∈H

Q
νrbj −νrfj
j , (4.168)
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we then have finally

Ke
r =

Kf
r

Kb
r

. (4.169)

On the other hand, when the reaction r involves one or more electrons, the equilibrium
constant Ke

r is undefined, since in general Te 6= Th. However, in specific cases, depending
on the form of the reaction considered, e.g., electron impact ionization or ion impact
ionization, a generalized law of mass action can be derived where the equilibrium constant
might depend on either of the temperatures Te or Th. For example, for an electron impact
ionization in the form

Me +Mn ⇋ Mi +Me +Me, (4.170)

where the subscripts e, n, and i refer to the electron, the neutral species and the corre-
sponding positive ion, respectively, the law of mass action obtained for the monoatomic
case in [24] is a generalization of the well-known “Saha” equation, and reads

Ke
r =

Kf
r

Kb
r

=

(
mi

mn

) 3

2

(
2πmekbTe

h2
p

) 3

2

exp

(
−
∆Eioniz

kbTe

)
, (4.171)

where ∆Eioniz is the ionization energy associated with reaction (4.170). The first two
factors of equation (4.171) correspond to the translational partition functions of the re-
spective species at their respective temperatures, and the term in the exponential factor
corresponds to the ionization energy divided by the electron temperature. Indeed, the col-
liding electron is providing the energy required for the ionization to occur [24]. Equation
(4.171) can also be derived from non-equilibrium thermodynamics [46] [18].

Finally, the energy exchange term ∆E1,chem

eh = −∆E1,chem

he associated with chemically
reactive collisions can be decomposed in the form

∆E1,chem

eh =
∑

r∈R

∆Er =
∑

r∈Re

∆Er, (4.172)

where the sum has been reduced to the set of reactions involving one or more electrons
Re. Upon introducing the net average energy ∆Eer gained by electrons during reaction
r, defined as

∆Eer =
1

τr

∑

f
r ,br

∫ (
νrbe

1

2
meC

b
e ·C

b
e − νrfe

1

2
meC

f
e ·C

f
e

)
(4.173)

×
( ∏

j∈Fr

fj −
∏

k∈Br

fk

∏
k∈Br

βkk
∏
j∈Fr

βjj

)
Wf

r
b
r

FrBr

∏

j∈Fr

dCj

∏

k∈Br

dCk,

where τr is the rate of progress of the rth reaction, and where C f
e, C

b
e denote the electron

velocities, taken as a reactant or a product respectively. The chemistry energy exchange
term then reads

∆E1,chem

eh =
∑

r∈Re

∆Eerτr. (4.174)

As a first approximation, due to the strong mass disparity between electrons and heavy
species, the net energy νrfe

1
2
meC

f
e · C

f
e − νrbe

1
2
meC

b
e · C

b
e lost by electrons during the rth
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electron collision reaction can be taken constant, independent of the velocities C f
e, C

b
e ,

and equal to the threshold energy of the collision process considered [24], so that the net
average energy lost −∆Eer can be identified with the threshold energy of the rth reaction.
This assumption is customary in practical applications [41] [30] [28].

5 Transport Fluxes

In this section, we derive an expression for the transport fluxes, namely the diffusion ve-
locities V i, i ∈ H, V0

e, V
1
e, the viscous tensors Πh, Πe, and the heat fluxes Qh, Q

0
e, Q

1
e, in

terms of macroscopic variable gradients. These expressions involve transport coefficients,
which are also stated in terms of bracket products of the perturbed distribution functions.
For the sake of simplicity, we assume that the plasma is weakly magnetized, i.e., b = 0.

5.1 Electron transport coefficients

In the case when b = 0, equation (4.58) for the first-order electron perturbation φe becomes

Fe(φe) = Ψe, (5.1)

where
Ψe = −D−1

e (ln f 0
e ), (5.2)

under the constraints
⟪φef

0
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (5.3)

Given expression (4.28) for f 0
e , Ψe can be decomposed into

Ψe = −Ψ
De

e · (∂xpe − neqeE)−Ψ
λ̂e

e · ∂x

(
1

kbTe

)
, (5.4)

where

Ψ
De

e =
1

pe
Ce, (5.5)

Ψ
λ̂e

e =

(
5

2
kbTe −

1

2
meCe ·Ce

)
Ce. (5.6)

Making use of the linearity of the electron linearized collision operator Fe [21] [25], we
can expand the first-order perturbation function φe as follows:

φe = −Φ
De

e · (∂xpe − neqeE)−Φ
λ̂e

e · ∂x

(
1

kbTe

)
. (5.7)

For each µ = De, λ̂e, the function Φ
µ
e is solution to the system of equations

Fe(Φ
µ
e ) = Ψ

µ
e , (5.8)

⟪f 0
eΦ

µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (5.9)
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which is well posed since for both values of µ

⟪f 0
eΨ

µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (5.10)

Additionally, because of the linearity and the space isotropy of Fe, Φ
De
e and Φ

λ̂e
e can be

taken in the form

Φ
De

e = φDe

e Ce, (5.11)

Φ
λ̂e

e = φλ̂e

e Ce, (5.12)

where φDe
e , φλ̂e

e are scalar isotropic functions of Ce ·Ce.
Thanks to this decomposition of φe, the electron viscous tensor Πe can be shown to

vanish:
Πe = 0. (5.13)

Defining the zeroth-order electron self-diffusion coefficient D0
ee and the zeroth-order

electron electron-temperature thermal diffusion coefficient θ0ee by

D0
ee =

pkbTe
3

JΦDe

e ,ΦDe

e Ke, (5.14)

θ0ee = −
1

3
JΦλ̂e

e ,Φ
De

e Ke, (5.15)

respectively, the zeroth-order electron diffusion velocity is expressed in the form

V
0
e = −D0

eed̂e − θ0ee∂x lnTe, (5.16)

where we have introduced the unconstrained electron diffusion driving force

d̂e =
1

p
(∂xpe − neqeE) . (5.17)

Finally, upon defining the zeroth-order electron self-partial-thermal-conductivity

λ̂0ee =
1

3kbTe
JΦλ̂e

e ,Φ
λ̂e

e Ke, (5.18)

the zeroth-order electron heat flux Q
0
e is found in the form

Q
0
e = −pθ0eed̂e − λ̂0ee∂x lnTe +

(5
2
kbTe

)
neV

0
e. (5.19)

5.2 Heavy-species transport coefficients

We recall that from (4.124) and (4.126) the first-order heavy-species perturbation function
φh is solution to the following constrained linear system of integral equations:

Fi(φh) = Ψi, i ∈ H, (5.20)

⟪f 0
hφh, ψ

j
h⟫h = 0, j ∈ H ∪ {ns + 1, . . . , ns + 4} , (5.21)
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where Ψi, i ∈ H, is given by (4.125). After a lengthy calculation, Ψi can be decomposed
into

Ψi =−Ψ
ηh
i : ∂xvh −

1

3
Ψκh

i (∂x · vh)−
∑

j∈H

Ψ
Dj

i · (∂xpj − njqjE)−Ψ
De

i · (∂xpe − neqeE)

−Ψ
λ̂h

i · ∂x

(
1

kbTh

)
−Ψ

λ̂e

i · ∂x

(
1

kbTe

)
−ΨΘ

i (Te − Th) , i ∈ H. (5.22)

The expansion coefficients are given by

Ψ
ηh
i =

mi

kbTh

[
C i ⊗Ci −

1

3
C i ·Ci I

]
(5.23)

Ψκh

i =
2cint

cvkbTh

[
1

2
miC i ·Ci −

3

2
kbTh

]
+

2ctrv
cvkbTh

(Ei − Eii) (5.24)

Ψ
Dj

i =
1

pi

[
δij − Y h

i

]
Ci (5.25)

Ψ
De

i =
me

3

∑

j∈H

∑

j∈Qj

nj
1

pi

(
δijδij − Y h

i

ajje
−ǫjj

Qint

j

)
Ci (5.26)

×

∫
Σ(1)

jj
(|Ce|

2)|Ce|f
0
e (Ce) Ce ·Φ

De

e dCe

Ψ
λ̂e

i =
me

3

∑

j∈H

∑

j∈Qj

nj
1

pi

(
δijδij − Y h

i

ajje
−ǫjj

Qint

j

)
Ci (5.27)

×

∫
Σ(1)

jj
(|Ce|

2)|Ce|f
0
e (Ce) Ce ·Φ

λ̂e

e dCe

Ψ
λ̂h

i =

(
5

2
kbTh −

1

2
miC i ·Ci + Ei −Eii

)
Ci (5.28)

ΨΘ
i =

3

2

1

τ

1

cvT
2
h

(
1

2
miC i ·Ci + Eii − Ei −

3

2
kbTh

)
(5.29)

+
2

3

me

mi

1

kbT
2
h

(
3

2
kbTh −

1

2
miCi ·C i

)
νii

ie +
1

kbTeTh

∑

i
′∈Qi

i
′ 6=i

∆Eii
′ gii′ν

ii
′

ie ,

where Y h
i is the mass fraction of the ith species with respect to the heavy species, which

is proportional to the mass fraction Yi =
ρi
ρ

of the ith species with respect to the whole
mixture:

Y h
i =

ρi
ρh

=
ρ

ρh
Yi, i ∈ H, (5.30)

and where

gii′ = g
(
∆ǫii′

(
1−

Th
Te

))
. (5.31)

We also denote by Xh
i the mole fraction of the ith species with respect to the heavy species.

If mi is the molar mass of the ith heavy species, and mh is the mean molar mass of the
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heavy species, given by (4.46), then

Xh
i =

ni

nh
=
mh

mi
Y h
i , i ∈ H. (5.32)

In (5.23)-(5.29), the symbol ctrv denotes the translational constant-volume specific heat
per molecule, cint the heavy-species internal specific heat per molecule, cv the heavy-species
constant-volume specific heat per molecule





ctrv =
3

2
kb

cint =
∑

i∈H

Xh
i c

int

i

cv = ctrv + cint,

(5.33)

where cint

i denotes the internal heat capacity of the ith species

cint

i =
dEi

dT
, i ∈ H. (5.34)

As for the first-order electron perturbation, making use of the linearity of the linearized
collision operator, the perturbation functions φi, i ∈ H can be decomposed in the form

φi =−Φ
ηh
i : ∂xvh −

1

3
φκh

i (∂x · vh)−
∑

j∈H

Φ
Dj

i · (∂xpj − njqjE)−Φ
De

i · (∂xpe − neqeE)

−Φ
λ̂h

i · ∂x

(
1

kbTh

)
−Φ

λ̂e

i · ∂x

(
1

kbTe

)
− φΘ

i (Te − Th) , i ∈ H. (5.35)

Note that one can also expand the coefficient ΨΘ
i as

ΨΘ
i = −

1

2Th

1

τ
Ψκh

i +ΨΘel

i +ΨΘin

i , (5.36)

where the elastic and inelastic contributions are given by

ΨΘel

i =
1

kbT
2
h

(
1

τ el
−

2

3

me

mi

νii

ie

)(
1

2
miC i ·Ci −

3

2
kbTh

)
(5.37)

ΨΘin

i =
1

kbT
2
h

1

τ in

(
1

2
miC i ·Ci −

3

2
kbTh

)
+

1

kbTeTh

∑

i
′∈Qi

∆Eii
′gii′ν

ii
′

ie , (5.38)

and the corresponding decomposition for φΘ
i reads

φΘ
i = −

1

2Th

1

τ
φκh

i + φΘel

i + φΘin

i , i ∈ H. (5.39)

For each value of µ = ηh, κh, Dj, j ∈ H, De, λ̂h, λ̂e,Θ,Θ
el,Θin, the functional φµ

h is solution
of the following constrained linear system of integral equations:

Fi(φ
µ
h) = Ψµ

i , i ∈ H (5.40)

⟪f 0
hφ

µ
h, ψ

j
h⟫h = 0, j ∈ H ∪ {ns + 1, . . . , ns + 4} , (5.41)
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which is well posed since

⟪f 0
hΨ

µ
h, ψ

j
h⟫h = 0, j ∈ H ∪ {ns + 1, . . . , ns + 4} . (5.42)

Furthermore, because of the isotropy of the linearized collision operator Fh, each φµ
h is of

the same tensorial type as Ψµ
h [23].

Upon defining the heavy-species diffusion coefficients, the heavy-species electron diffu-
sion coefficients, the heavy-species heavy-temperature thermal diffusion coefficients, and
the heavy-species electron-temperature thermal diffusion coefficients by

Dij =
pkbTh
3

JΦDi

h ,Φ
Dj

h Kh, i ∈ H, j ∈ H, (5.43)

Die = Dei =
pkbTh
3

JΦDi

h ,ΦDe

h Kh, i ∈ H, (5.44)

θih = θhi = −
1

3
JΦDi

h ,Φλ̂h

h Kh, i ∈ H, (5.45)

θie = θei = −
1

3

Th
Te

JΦDi

h ,Φλ̂e

h Kh, i ∈ H, (5.46)

the heavy-species diffusion velocities are expressed in the form

V i = −
∑

j∈H

Dijd̂j −Died̂e − θih∂x lnTh − θie∂x lnTe, i ∈ H, (5.47)

where we have introduced the heavy-species diffusion driving forces

d̂i =
1

p
(∂xpi − niqiE) , i ∈ H. (5.48)

We also define the shear viscosity, the volume viscosity, and the thermal non-equilibrium
viscosity, respectively:

ηh =
kbTh
10

JΦηh
h ,Φ

ηh
h Kh (5.49)

κh =
kbTh
9

Jφκh

h , φ
κh

h Kh (5.50)

ζ =
kbTh
3

JφΘ
h , φ

κh

h Kh, (5.51)

so that the viscous tensor reads

Πh = −ηh
(
∂xvh + (∂xvh)

t −
2

3
(∂x · vh) I

)
− κh(∂x · vh) I− ζ(Te − Th) I. (5.52)

Finally, if we introduce the heavy-species self-partial-thermal-conductivity, the heavy
electron partial thermal conductivity, respectively

λ̂hh =
1

3kbTh
JΦλ̂h

h ,Φ
λ̂h

h Kh, (5.53)

λ̂he = λ̂eh =
1

3kbTe
JΦλ̂h

h ,Φ
λ̂e

h Kh, (5.54)
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and the electron heavy-temperature thermal diffusion coefficient

θhe = θeh = −
1

3
JΦλ̂h

h ,Φ
De

h Kh, (5.55)

the heavy-species heat flux can be expressed as

Qh = −p
∑

j∈H

θhjd̂j − pθhed̂e − λ̂hh∂x lnTh − λ̂he∂x lnTe +
∑

j∈H

(5
2
kbTh +Ej

)
njVj . (5.56)

The second and fourth terms of the respective expressions for the heavy-species dif-
fusion velocities (5.47) and the heavy-species heat flux (5.56) are the “heavy-species
Kolesnikov diffusion fluxes”. They arise from the coupling between heavy species and
electrons as first described by Kolesnikov [25] [33].

We also introduce the new bracket

Jξh, ζeKhe =
∑

j∈H

∑

j∈Qj

1

3

me

kbTe

(∫
ξj ·Cj f

0
j dCj

)∫
f 0
e |Ce|Σ

(1)
jj
(|Ce|

2) ζe ·Ce dCe, (5.57)

which is non trivial when ξh, ζe are vectors but would be trivial for scalars or traceless
symmetric tensors of rank 2. The following relations hold:

Die =
pkbTh
3

JΦDi

h ,ΦDe

h Kh =
pkbTe
3

JΦDi

h ,ΦDe

e Khe, i ∈ H, (5.58)

θie = −
1

3

Th
Te

JΦDi

h ,Φλ̂e

h Kh = −
1

3
JΦDi

h ,Φλ̂e

e Khe, i ∈ H, (5.59)

λ̂he =
1

3kbTe
JΦλ̂h

h ,Φ
λ̂e

h Kh =
1

3kbTh
JΦλ̂h

h ,Φ
λ̂e

e Khe, (5.60)

θhe = −
1

3
JΦλ̂h

h ,Φ
De

h Kh = −
1

3

Te
Th

JΦλ̂h

h ,Φ
De

e Khe. (5.61)

We only prove the first one of those relations. The other ones can be derived by similar
arguments. By definition of J·Kh and by (5.26), Die reads

Die =
pkbTh
3

JΦDi

h ,ΦDe

h Kh

=
pkbTh
3

∑

k∈H

∑

k∈Qk

∫
f 0
kΦ

Di

k ·ΨDe

k dCk

=
pkbTh
3

me

3

∑

k∈H

∑

k∈Qk

∑

j∈H

∑

j∈Qj

nj

(∫
f 0
kΦ

Di

k ·
1

pk

(
δkjδkj − Y h

k

ajje
−ǫjj

Qint

j

)
Ck dCk

)

×

∫
Σ(1)

jj
(|Ce|

2)|Ce|f
0
e (Ce) Ce ·Φ

De

e dCe

=
pkbTh
3

me

3

∑

j∈H

∑

j∈Qj

nj

(
∑

k∈H

∑

k∈Qk

∫
f 0
kΦ

Di

k ·
1

pk

(
δkjδkj − Y h

k

ajje
−ǫjj

Qint

j

)
Ck dCk

)

×

∫
Σ(1)

jj
(|Ce|

2)|Ce|f
0
e (Ce) Ce ·Φ

De

e dCe.
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Since

∑

k∈H

∑

k∈Qk

Yk
pk

ajje
−ǫjj

Qint

j

∫
f 0
kΦ

Di

k ·Ck dCk =
1

ρkbTh

ajje
−ǫjj

Qint

j

∑

k∈H

∑

k∈Qk

∫
f 0
kΦ

Di

k ·mkCk dCk

=
1

ρkbTh

ajje
−ǫjj

Qint

j

⟪ΦDi

h f 0
h ,mhCh⟫h,

and since ⟪ΦDi

h f 0
h ,mhCh⟫h = 0 by (5.41), the ith-heavy-species electron diffusion coeffi-

cient reads finally

Die =
p

3

me

3

∑

j∈H

∑

j∈Qj

∫
f 0
j Φ

Di

j ·Cj dCj

∫
Σ(1)

jj
(|Ce|

2)|Ce|f
0
e (Ce) Ce ·Φ

De

e dCe,

which completes the proof.

5.3 Properties of the heavy-species transport coefficients

The matrix Dh = (Dij)i,j∈H is symmetric, i.e.,

Dij = Dji, i ∈ H, j ∈ H. (5.62)

Indeed, Dij = 1
3
pkbThJΦ

Di

h ,Φ
Dj

h Kh and the bracket J·Kh is symmetric (4.121). Dh is also
positive semi-definite, i.e., for any U = (Ui)i∈H:

UtDhU ≥ 0, (5.63)

and its kernel is the space spanned by the vector Yh = (Yi)i∈H, i.e.,

N(Dh) = RYh. (5.64)

Indeed, since the bracket J·Kh is bilinear by definition and positive semi-definite by (4.122):

UtDhU =
∑

i∈H

∑

j∈H

DijUiUj

=
pkbTh
3

∑

i∈H

∑

j∈H

JΦDi

h ,Φ
Dj

h KhUiUj

=
pkbTh
3

J
∑

i∈H

Φ
Di

h Ui,
∑

j∈H

Φ
Dj

h UjKh

≥ 0,

and the Φ
Di

h , i ∈ H, are orthogonal to Ih with respect to the scalar product ⟪·⟫h.
Furthermore, from the definition (5.25) of ΨDi

h , i ∈ H

∑

i∈H

YiΨ
Di

h = 0, (5.65)
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so that from (5.43)-(5.46)

∑

i∈H

YiDij = 0, j ∈ H, (5.66)

∑

i∈H

YiDie = 0, (5.67)

and as well
∑

i∈H

Yiθih = 0, (5.68)

∑

i∈H

Yiθie = 0. (5.69)

Finally, from expressions (5.49), (5.50) and (5.53), respectively, the shear viscosity
ηh, the volume viscosity κh, and the heavy-species self-partial-thermal-conductivity λ̂hh,

have the same sign as JΦηh
h ,Φ

ηh
h Kh, Jφκh

h , φ
κh

h Kh, and JΦλ̂h

h ,Φ
λ̂h

h Kh, respectively. For µ = ηh,

κh and λ̂h, it is readily seen that Jφµ
h, φ

µ
hKh ≥ 0 since the bracket product is positive

semi-definite. Moreover, if Jφµ
h, φ

µ
hKh = 0, then φµ

h must be in Ih by (4.123). Because
of the constraints (5.41), φµ

h must also be orthogonal to Ih, so that φµ
h = 0. Now,

from expressions (5.23), (5.24) and (5.28), the expansion coefficients Ψηh
h and Ψ

λ̂h

h cannot
vanish, while the expansion coefficient Ψκh

h can vanish if there are no internal energy levels.

By linearity the same is true for the perturbation coefficients Φ
ηh
h , Φλ̂h

h , and φκh

h , so that
finally [19]

ηh > 0, (5.70)

κh ≥ 0, (5.71)

λ̂hh > 0. (5.72)

5.4 Electron Kolesnikov transport coefficients

The resolution of the linearized Boltzmann equation for the second-order electron per-
turbation function φ2

e yields first-order electron transport fluxes and associated trans-
port coefficients. These transport fluxes should not be confused with Burnett transport
coefficients [25] [17], since one retrieves the first-order Chapman-Enskog expansion for
multicomponent mixtures in the limit Te = Th [22].

In the case of a weakly magnetized plasma, i.e., when b = 0, equation (4.127) for the
second-order electron perturbation function φ2

e becomes

Fe(φ
2
e) = Ψ2

e, (5.73)

where

Ψ2
e =−D0

e(ln f
0
e )−

1

f 0
e

D−1
e (φef

0
e ) +

1

f 0
e

See(φef
0
e , φef

0
e ) (5.74)

+
∑

j∈H

1

f 0
e

[
S0
ej(φef

0
e , φjf

0
j ) + S1

ej(f
0
e , φjf

0
j ) + S2

ej(f
0
e , f

0
j )
]
,
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under the constraints
⟪φ2

ef
0
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (5.75)

After some lengthy calculations, the right-member Ψ2
e of equation (5.73) can be expanded

in the form

Ψ2
e =−Ψ

ηe
e : ∂xvh − δb0Ψ

De

e · (−neqevh ∧B) (5.76)

− δb0
qe
me

Φ
De

e · [(∂xpe − neqeE) ∧B]− δb0
qe
me

Φ
λ̂e

e ·

[
∂x

(
1

kbTe

)
∧B

]

−
1

3
Ψ

κhDe

e · (∂x · vh) (∂xpe − neqeE)−
1

3
Ψ

κhλ̂e

e · (∂x · vh) ∂x

(
1

kbTe

)

−Ψ
ΘDe

e · (Te − Th) (∂xpe − neqeE)−Ψ
Θλ̂e

e · (Te − Th) ∂x

(
1

kbTe

)

−
∑

j∈H

Ψ
Dj

e · (∂xpj − njqjE)−Ψ
D2

e
e · (∂xpe − neqeE)

−Ψ
λ̂h
e · ∂x

(
1

kbTh

)
−Ψ

λ̂2
e

e · ∂x

(
1

kbTe

)
− Ψ̃2

e,

where Ψ̃2
e is a scalar function of Ce ·Ce. Other expansion coefficients are given by

Ψ
ηe
e =

me

kbTe

[
Ce ⊗Ce −

1

3
Ce ·Ce I

]
(5.77)

Ψ
Di
e =

∑

j∈H

∑

j∈Qj

1

3

me

kbTe
|Ce|Σ

(1)
jj
(|Ce|

2)

(∫
Φ

Di

j ·Cj f
0
j dCj

)
Ce (5.78)

Ψ
D2

e
e =

∑

j∈H

∑

j∈Qj

1

3

me

kbTe
|Ce|Σ

(1)
jj
(|Ce|

2)

(∫
Φ

De

j ·Cj f
0
j dCj

)
Ce (5.79)

Ψ
λ̂h
e =

∑

j∈H

∑

j∈Qj

1

3

me

kbTe
|Ce|Σ

(1)
jj
(|Ce|

2)

(∫
Φ

λ̂h

j ·Cj f
0
j dCj

)
Ce (5.80)

Ψ
λ̂2
e

e =
∑

j∈H

∑

j∈Qj

1

3

me

kbTe
|Ce|Σ

(1)
jj
(|Ce|

2)

(∫
Φ

λ̂e

j ·Cj f
0
j dCj

)
Ce, (5.81)

and

Ψ
κhDe

e =
∑

j∈H

∑

j∈Qj

(∫
φκh

j f
0
j dCj

)
|Ce|Σ

(1)
jj
(|Ce|

2)ΦDe

e (5.82)

Ψ
κhλ̂e

e =
∑

j∈H

∑

j∈Qj

(∫
φκh

j f
0
j dCj

)
|Ce|Σ

(1)
jj
(|Ce|

2)Φλ̂e

e (5.83)

Ψ
ΘDe

e =
∑

j∈H

∑

j∈Qj

(∫
φΘ
j f

0
j dCj

)
|Ce|Σ

(1)
jj
(|Ce|

2)ΦDe

e (5.84)
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Ψ
Θλ̂e

e =
∑

j∈H

∑

j∈Qj

(∫
φΘ
j f

0
j dCj

)
|Ce|Σ

(1)
jj
(|Ce|

2)Φλ̂e

e . (5.85)

Thanks to the linearity of the linearized collision operator Fe, the following similar ex-
pansion holds for φ2

e:

φ2
e =−Φ

ηe
e : ∂xvh − δb0Φ

De

e · (−neqevh ∧B) (5.86)

− δb0
qe
me

Ξ
De

e · [(∂xpe − neqeE) ∧B]− δb0
qe
me

Ξ
λ̂e

e ·

[
∂x

(
1

kbTe

)
∧B

]

−
1

3
Φ

κhDe

e · (∂x · vh) (∂xpe − neqeE)−
1

3
Φ

κhλ̂e

e · (∂x · vh) ∂x

(
1

kbTe

)

−Φ
ΘDe

e · (Te − Th) (∂xpe − neqeE)−Φ
Θλ̂e

e · (Te − Th) ∂x

(
1

kbTe

)

−
∑

j∈H

Φ
Dj

e · (∂xpj − njqjE)−Φ
D2

e
e · (∂xpe − neqeE)

−Φ
λ̂h
e · ∂x

(
1

kbTh

)
−Φ

λ̂2
e

e · ∂x

(
1

kbTe

)
− φ̃2

e.

where for each value of µ = ηe, De, κhDe, κhλ̂e, ΘDe, Θλ̂e, Dj , j ∈ H, D2
e , λ̂h, λ̂

2
e, the

function φµ
e is solution to

Fe(φ
µ
e ) = Ψµ

e (5.87)

⟪f 0
e φ

µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (5.88)

while for each value of µ = De, λ̂e, the function Ξ
µ
e is solution to

Fe(Ξ
µ
e ) = Φ

µ
e (5.89)

⟪f 0
eΞ

µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (5.90)

Furthermore, because of the isotropy of Fe, φ̃
2
e is a scalar function of Ce · Ce, and each

φµ
e , respectively Ξ

µ
e , is of the same tensorial type [23] as Ψµ

e , respectively Φ
µ
e .

The first-order electron self-diffusion coefficient, the first-order electron electron-temperature
thermal diffusion coefficient, and the first-order electron self-partial-thermal-conductivity
are given by

D1
ee =

pkbTe
3

JΦDe

h ,ΦDe

e Khe, (5.91)

θ1ee = −
1

3
JΦλ̂e

h ,Φ
De

e Khe = −
1

3
JΦDe

h ,Φλ̂e

e Khe, (5.92)

λ̂1ee =
1

3kbTe
JΦλ̂e

h ,Φ
λ̂e

e Khe. (5.93)
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We also introduce the additional transport coefficients

Dκh
ee =

pkbTe
9

Jφκh

h ,Φ
De

e ,ΦDe

e Khee, (5.94)

θκh
ee = −

1

9
Jφκh

h ,Φ
λ̂e

e ,Φ
De

e Khee, (5.95)

λ̂κh
ee =

1

9kbTe
Jφκh

h ,Φ
λ̂e

e ,Φ
λ̂e

e Khee, (5.96)

DΘ
ee =

pkbTe
3

JφΘ
h ,Φ

De

e ,ΦDe

e Khee, (5.97)

θΘee = −
1

3
JφΘ

h ,Φ
λ̂e

e ,Φ
De

e Khee, (5.98)

λ̂Θee =
1

3kbTe
JφΘ

h ,Φ
λ̂e

e ,Φ
λ̂e

e Khee, (5.99)

and the magnetic transport coefficients [21] [25]

D⊙
ee = −

pkbTe
3

((ΦDe

e ,ΦDe

e ))e, (5.100)

θ⊙ee =
1

3
((ΦDe

e ,Φλ̂e

e ))e, (5.101)

λ̂⊙ee = −
1

3kbTe
((Φλ̂e

e ,Φ
λ̂e

e ))e, (5.102)

where we have introduced the brackets

((ξe, ζe))e =
qe|B|

me

∫
f 0
e ξe ⊙ ζe dCe, (5.103)

Jξh, ζe, δeKhee =
∑

j∈H

∑

j∈Qj

(∫
ξjf

0
j dCj

)∫
f 0
e |Ce|Σ

(1)
jj
(|Ce|

2) ζe ⊙ δe dCe. (5.104)

The following expressions are then derived for the first-order electron diffusion velocity

V
1
e =−D1

eed̂e −
∑

i∈H

Deid̂i − θ1ee∂x lnTe − θeh∂x lnTh (5.105)

−
[
Dκh

ee (∂x · vh) +DΘ
ee (Te − Th)

]
d̂e −

[
θκh
ee (∂x · vh) + θΘee (Te − Th)

]
∂x lnTe

− δb0
neqe|B|

p
D0

ee B ∧ vh − δb0D
⊙
ee B ∧ d̂e − δb0θ

⊙
ee B ∧ ∂x lnTe,

and heat flux

Q
1
e =− pθ1eed̂e − p

∑

i∈H

θeid̂i − λ̂1ee∂x lnTe − λ̂eh∂x lnTh + ne

(5
2
kbTe

)
V

1
e (5.106)

− p
[
θκh
ee (∂x · vh) + θΘee (Te − Th)

]
d̂e −

[
λ̂κh
ee (∂x · vh) + λ̂Θee (Te − Th)

]
∂x lnTe

− δb0neqe|B|θ0ee B ∧ vh − δb0pθ
⊙
ee B ∧ d̂e − δb0λ̂

⊙
ee B ∧ ∂x lnTe,
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where B denotes the direction of the magnetic field vector

B =
1

|B|
B. (5.107)

Except for the last three terms associated with the magnetic field effect on the electrons,
all the terms in expressions (5.105) and (5.106) for V

1
e and Q

1
e, respectively, are due to

the coupling between electrons and heavy species. They may thus be referred to as the
“electron Kolesnikov fluxes” [33] [25].

The terms in the first lines of both (5.105) and (5.106) were already present in the
monoatomic case [25], though the corresponding transport coefficients (5.44), (5.46),
(5.54), (5.55), and (5.91)-(5.93) are different. The terms proportional to (∂x · vh) are
new and specific to the polyatomic case, since the volume viscosity κh vanishes in the
monoatomic limit. The terms proportional to (Te − Th) are also new, because the corre-
sponding transport coefficients vanish in the monoatomic limit [25]. This is because the
term ∫

φΘ
j f

0
j dCj (5.108)

appearing in expressions (5.97)-(5.99) for DΘ
ee, θ

Θ
ee and λ̂Θee, respectively, becomes equal

to ⟪φΘ
h f

0
h , ψ

j
h⟫h in the monoatomic limit and thus vanishes, since the number of particles

in the jth species is a collisional invariant of the scattering operator. Conversely, in the
polyatomic case, the term (5.108) does not necessarily vanish. Indeed, the number of
molecules of the jth species in the j

th internal energy state is not conserved in general in
scattering collisions, and the elastic collision cross-section σjj

je may depend on the energy
level j. Physically speaking, the transport fluxes appearing in the second lines of (5.105)
and (5.106) are associated with the nonuniform diffusion of electrons with respect to
the different internal energy states of each heavy species. The last lines of (5.105) and
(5.106), respectively, embed the magnetic field induced electron transport fluxes, and have
the same structure in the polyatomic and monoatomic cases, for the last two terms were
overlooked in the case b = 0 in [25].

Finally, we obtain the following expression for the first-order energy exchange term
due to scattering collisions:

∆E1,scatt
he =

∑

i∈H

∑

i∈Qi

niV ii · F
I,0
ie (5.109)

+
∑

i∈H

∑

i∈Qi

2

3

me

mi

νii

ie

∫
f 0
i φi

(3
2
kbTe −

1

2
miCi ·Ci

)
dCi

+
∑

i∈H

∑

i,i′∈Qi

νii
′

ie∆Eii
′

∫
f 0
i φi dC i.

One may prefer the alternative formulation

∆E1,scatt
he = p

∑

j∈H

Djed̂j · d̂e + p
∑

j∈H

θjed̂j · ∂x lnTe (5.110)

+ pD1
eed̂e · d̂e + pθ1eed̂e · ∂x lnTe

55



+ pθhe∂x lnTh · d̂e + λ̂he∂x lnTh · ∂x lnTe

+ pθ1ee∂x lnTe · d̂e + λ̂1ee∂x lnTe · ∂x lnTe

+ kbT
2
h⟪f

0
hφh,Ψ

Θ
h ⟫h

+ kb(Te − Th)
∑

i∈H

∑

i∈Qi

me

mi

νii

ie

∫
f 0
i φi dCi

+
∑

i∈H

∑

i,i′∈Qi

(
1−

Th
Te
gii′
)
νii

′

ie∆Eii
′

∫
f 0
i φi dC i,

where
∫
f 0
i φi dC i can be further expanded in the form

∫
f 0
i φi dCi =− (∂x · vh)

∫
f 0
i φ

κh

i dC i (5.111)

− (Te − Th)

∫
f 0
i φ

Θ
i dCi.

6 Fluid Equations

In this section, we summarize the macroscopic equations obtained for multicomponent
plasmas in the Navier-Stokes regime. The fluid equations (4.130), (4.131), (4.144), (4.145)
and (4.146) and the transport fluxes derived from the Chapman-Enskog expansion are
redimensionalized. This is equivalent to setting ε = 1 in the full-dimension equations
where ε is taken as a formal parameter.

6.1 Conservation of mass, momentum, and energy

The fluid equations (4.130), (4.131), (4.144), (4.145) and (4.146) are rewritten in the form

∂tρe + ∂x · (ρevh + ρeVe) = mewe, (6.1)

∂tEe + ∂x · (Eevh) = − pe ∂x · vh − ∂x ·Qe +∆Eeh + J e ·E
′ + δb0 J

0
e · (vh ∧B), (6.2)

for electrons, and

∂tρi + ∂x · (ρivh + ρiV i) = miwi, i ∈ H, (6.3)

∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + p I) = −∂x ·Πh + nqE + j ∧B, (6.4)

∂tEh + ∂x · (Ehvh) = − ph ∂x · vh − ∂xvh : Πh − ∂x ·Qh +∆Ehe + Jh ·E
′, (6.5)

for the heavy species.
The electron diffusion velocity in the heavy-species reference frame is given by

Ve = V
0
e + V

1
e, (6.6)

the electron heat flux in the heavy-species reference frame by

Qe = Q
0
e +Q

1
e, (6.7)
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and the electron conduction current density in the heavy-species reference frame by

J e = J0
e + J1

e = neqeVe. (6.8)

We also introduce the heat flux
Q = Qe +Qh, (6.9)

the conduction current of the mixture

J = Je + Jh = neqeVe +
∑

j∈H

njqjV j, (6.10)

and the energy exchange terms

∆Eeh = ∆E0
eh +∆E1

eh, (6.11)

∆Ehe = ∆E0
he +∆E1

he, (6.12)

which satisfy the reciprocity relation

∆Ehe = −∆Eeh. (6.13)

We also restate expressions for the zeroth-order and first-order current densities of the
mixture in the inertial reference frame

j0 = nhqhvh + neqe(vh + V
0
e), (6.14)

j1 = nhqhvh +
∑

j∈H

njqjV j + neqe(vh + V
0
e + V

1
e), (6.15)

and denote by
j = δb0j

0 + δb1j
1 (6.16)

the current density of the mixture in the inertial reference frame.
From equations (5.66)-(5.69), the heavy species diffusion velocities satisfy the mass

conservation constraint ∑

i∈H

ρiV i = 0, (6.17)

so that summing equation (6.3) over i ∈ H, the equation for conservation of the heavy-
species mass is obtained

∂tρh + ∂x · (ρhvh) =
∑

i∈H

miwi. (6.18)

Since the total mass is conserved in reactive collisions, the conservation constraint

mewe +
∑

i∈H

miwi = 0 (6.19)

is satisfied. Thus, the total mass conservation equation is obtained by summing (6.1) and
(6.18), and reads

∂tρ+ ∂x · (ρv) = 0, (6.20)

where
ρ = ρe + ρh (6.21)
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is the mass density of the mixture, and the mixture-averaged velocity v is given by

ρv = ρeve + ρhvh = ρvh + ρeVe, (6.22)

where the mean electron velocity in the inertial reference frame reads

ve = vh + Ve. (6.23)

The electron momentum relation (4.142) is also rewritten in the form

∂xpe = neqeE + j0
e ∧B + δb1 J

1
e ∧B + F eh, (6.24)

where F eh = −F he is the average force exerted on electrons by the heavy species:

F eh = F 0
eh + F 1

eh. (6.25)

Finally, summing equations (6.2) and (6.5), we obtain the following equation for con-
servation of the total internal energy E = Ee + Eh:

∂tE + ∂x · (Evh) = − p∂x · vh − ∂xvh : Πh − ∂x ·Q+ J ·E′ + δb0 J
0
e · (vh ∧B). (6.26)

6.2 Transport fluxes

The electron diffusion velocity is obtained from (5.16) and (5.105) in the form

Ve =−Deed̂e −
∑

i∈H

Deid̂i − θee∂x lnTe − θeh∂x lnTh (6.27)

−
[
Dκh

ee (∂x · vh) +DΘ
ee (Te − Th)

]
d̂e −

[
θκh
ee (∂x · vh) + θΘee (Te − Th)

]
∂x lnTe

− δb0
neqe|B|

p
D0

ee B ∧ vh − δb0D
⊙
ee B ∧ d̂e − δb0θ

⊙
ee B ∧ ∂x lnTe,

where the electron self-diffusion coefficient and the electron electron-temperature thermal
diffusion coefficient read

Dee = D0
ee +D1

ee, (6.28)

θee = θ0ee + θ1ee, (6.29)

and the unconstrained diffusion driving force read

d̂e =
1

p
(∂xpe − neqeE), (6.30)

d̂i =
1

p
(∂xpi − niqiE), i ∈ H. (6.31)

Similarly, the electron self-partial-thermal-conductivity is given by

λ̂ee = λ̂0ee + λ̂1ee, (6.32)
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and from (5.19) and (5.106) the electron heat flux thus reads

Qe =− pθeed̂e − p
∑

i∈H

θeid̂i − λ̂ee∂x lnTe − λ̂eh∂x lnTh + ne

(5
2
kbTe

)
Ve (6.33)

− p
[
θκh
ee (∂x · vh) + θΘee (Te − Th)

]
d̂e −

[
λ̂κh
ee (∂x · vh) + λ̂Θee (Te − Th)

]
∂x lnTe

− δb0neqe|B|θ0ee B ∧ vh − δb0pθ
⊙
ee B ∧ d̂e − δb0λ̂

⊙
ee B ∧ ∂x lnTe.

The heavy-species diffusion velocities, viscous tensor and heat flux where stated in (5.47),
(5.52) and (5.56), respectively. We recall here their expressions

V i = −
∑

j∈H

Dijd̂j −Died̂e − θih∂x lnTh − θie∂x lnTe, i ∈ H, (6.34)

Πh = −ηh
(
∂xvh + (∂xvh)

t −
2

3
(∂x · vh) I

)
− κh(∂x · vh) I− ζ(Te − Th) I, (6.35)

Qh = −p
∑

j∈H

θhjd̂j − pθhed̂e − λ̂hh∂x lnTh − λ̂he∂x lnTe +
∑

j∈H

(5
2
kbTh + Ej

)
njV j.

(6.36)

7 Center-of-Mass Reference Frame

The conservation equations may be rewritten in the center-of-mass reference frame. From
the definition (6.22) of v, the heavy-species velocity reads

vh = v − YeVe, (7.1)

where Ye = ρe/ρ is the electron mass fraction. Equations (6.1) and (6.3) expressing the
mass conservation of the respective species thus read in the center-of-mass reference frame

∂tρe + ∂x ·
(
ρev + ρeV

v

e

)
= mewe, (7.2)

∂tρi + ∂x ·
(
ρiv + ρiV

v

i

)
= miwi, i ∈ H. (7.3)

where Vv

e and V
v

i , i ∈ H, are the species diffusion velocities in the center-of-mass reference
frame:

V
v

e = (1− Ye)Ve (7.4)

V
v

i = V i − YeVe, i ∈ H. (7.5)

The macroscopic equations (6.1)-(6.5) read in the center-of-mass reference frame

∂tρe + ∂x ·
(
ρev + ρe(1− Ye)Ve

)
= mewe, (7.6)

∂tEe + ∂x ·
(
Ee(v − YeVe)

)
= − pe ∂x · (v − YeVe)− ∂x ·Qe +∆Eeh + J e ·E

′ (7.7)

+ δb0 J
0
e ·
(
(v − YeVe) ∧B

)
,
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for electrons, and

∂tρi + ∂x ·
(
ρiv + ρi(V i − YeVe)

)
= miwi, i ∈ H, (7.8)

∂t
(
ρ(1− Ye)(v − YeVe)

)
+ ∂x ·

(
ρ(1− Ye)(v − YeVe)⊗ (v − YeVe) + p I

)
(7.9)

= −∂x ·Πh + nqE + j ∧B,

∂tEh + ∂x ·
(
Eh(v − YeVe)

)
= −ph ∂x · (v − YeVe)− ∂x(v − YeVe) : Πh (7.10)

−∂x ·Qh +∆Ehe + Jh ·E
′,

for the heavy species.
Given that Ye is of order ε2, the latter model is equivalent at first-order in ε to the

following one:

∂tρe + ∂x ·
(
ρev + ρeV

v

e

)
= mewe, (7.11)

∂tEe + ∂x · (Eev) = − pe ∂x · v − ∂x ·Qv

e +∆Eeh + Jv

e ·E
′ + δb0 J

0
e · (v ∧B), (7.12)

∂tρi + ∂x ·
(
ρiv + ρiV

v

i

)
= miwi, i ∈ H, (7.13)

∂t(ρv) + ∂x · (ρv ⊗ v + p I) = −∂x ·Π+ nqE + j ∧B, (7.14)

∂tEh + ∂x · (Ehv) = −ph ∂x · v − ∂xv : Π− ∂x ·Qv

h +∆Ehe + Jh ·E
′, (7.15)

where the species diffusion velocities in the center-of-mass reference frame have been taken
such as to satisfy the mass conservation constraint

∑

k∈S

ρkV
v

k = ρeV
v

e +
∑

i∈H

ρiV
v

i = 0. (7.16)

The viscous tensor may be written in the form

Π = −ηh
(
∂xv + (∂xv)

t −
2

3
(∂x · v) I

)
− κh(∂x · v) I− ζ(Te − Th) I, (7.17)

the electron diffusion velocity and heat flux in the center-of-mass reference frame in the
form

V
v

e =−Dv

eed̂e −
∑

i∈H

Dv

eid̂i − θvee∂x lnTe − θveh∂x lnTh (7.18)

− (1− Ye)
[
Dκh

ee (∂x · v) +DΘ
ee (Te − Th)

]
d̂e

− (1− Ye)
[
θκh
ee (∂x · v) + θΘee (Te − Th)

]
∂x lnTe

− δb0(1− Ye)
neqe|B|

p
D0

ee B ∧ v − δb0(1− Ye)D
⊙
ee B ∧ d̂e

− δb0(1− Ye)θ
⊙
ee B ∧ ∂x lnTe,

Q
v

e =− pθveed̂e − p
∑

i∈H

θveid̂i − λ̂ee∂x lnTe − λ̂eh∂x lnTh + ne

(5
2
kbTe

)
V

v

e (7.19)

− p
[
θκh
ee (∂x · v) + θΘee (Te − Th)

]
d̂e −

[
λ̂κh
ee (∂x · v) + λ̂Θee (Te − Th)

]
∂x lnTe

− δb0neqe|B|θ0ee B ∧ v − δb0pθ
⊙
ee B ∧ d̂e − δb0λ̂

⊙
ee B ∧ ∂x lnTe,
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respectively, and the heavy-species diffusion velocities and heat flux in the form

V
v

i = −
∑

j∈H

Dv

ijd̂j −Dv

ied̂e − θvih∂x lnTh − θvie∂x lnTe, (7.20)

+ Ye
[
Dκh

ee (∂x · v) +DΘ
ee (Te − Th)

]
d̂e + Ye

[
θκh
ee (∂x · v) + θΘee (Te − Th)

]
∂x lnTe

+ δb0Ye
neqe|B|

p
D0

ee B ∧ v + δb0YeD
⊙
ee B ∧ d̂e + δb0Yeθ

⊙
ee B ∧ ∂x lnTe, i ∈ H,

Q
v

h = −p
∑

j∈H

θvhjd̂j − pθvhed̂e − λ̂hh∂x lnTh − λ̂he∂x lnTe +
∑

j∈H

(5
2
kbTh + Ej

)
njV

v

j .

(7.21)

The electron conduction current density in the center-of-mass reference frame may be
written in the form

Jv

e = neqeV
v

e , (7.22)

and the current density in the form

j = δb0j
0 + δb1j

1, (7.23)

where

j0 = nqv + neqeV
0
e, (7.24)

j1 = nqv + neqeV
v

e +
∑

i∈H

niqiV
v

i . (7.25)

The diffusion coefficients Dv

ee, D
v

ei, i ∈ H, Dv

ie, i ∈ H, and Dv

ij , i, j ∈ H, may be expressed
in the form

Dv

ee = (1− Ye)Dee, (7.26)

Dv

ei = (1− Ye)Dei, i ∈ H, (7.27)

Dv

ie = Die − YeDee, i ∈ H, (7.28)

Dv

ij = Dij − YeDej, i, j ∈ H, (7.29)

and the thermal diffusion coefficients θvee, θ
v

eh, θ
v

ie, i ∈ H, θvih, i ∈ H, may be expressed in
the form

θvee = (1− Ye)θee, (7.30)

θveh = θvhe = (1− Ye)θeh, (7.31)

θvie = θvei = θie − Yeθee, i ∈ H, (7.32)

θvih = θvhi = θih − Yeθeh, i ∈ H. (7.33)

However, one can see from expressions (7.26)-(7.29) that the diffusion matrix associated
with the center-of-mass reference frame (Dv

kl)k,l∈S is not symmetric, and neither is the
heavy-species diffusion matrix (Dv

ij)i,j∈H. This confirms that the center-of-mass reference
frame is not adapted to the study of non-thermal multicomponent plasmas [25].
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8 Conclusion

We have derived from the kinetic theory a unified multicomponent fluid model for non-
thermal, partially ionized, polyatomic, chemically reactive plasmas. We have applied
the classical Chapman-Enskog procedure, upon expanding the species distribution func-
tions in powers of ε. The ratio ε of electron to heavy-species characteristic masses was
taken proportional to the Knudsen number. For the scaling adopted here, the equilib-
rium distribution functions are shown to be Maxwellian, with a different temperature for
electrons and heavy species. We retrieve the zeroth-order and first-order drift-diffusion
equations for electrons, while the macroscopic equations for the heavy species are the Eu-
ler equations at order zero, and the Navier-Stokes-Fourier equations at order one. Those
equations involve transport fluxes, which have been expressed in terms of macroscopic
variable gradients and source terms, by means of transport coefficients.

The characteristic cross-section for inelastic scattering between electrons and heavy
species was taken two orders of magnitude lower than other relevant scattering cross-
sections: σin,0

h = ε2σ0. We have shown that, other things being equal, this assumption
is necessary to ensure that the electron and heavy-species respective temperatures, Te
and Th, are distinct. In a future study, an alternative scaling will be investigated where
the assumption over the inelastic scattering cross-section between electrons and heavy
species is relaxed. For such a new scaling, we expect some of the internal energy states, or
internal modes, of the heavy species to thermalize at Te, while the others will thermalize
at Th. The Chapman-Enskog expansion will thus require a splitting between the internal
energy modes of the heavy-species. Typically, we may assume that vibrational modes
are at equilibrium between them at Tvib = Te, while rotational and translational modes
thermalize at Trot = Th [40].

Expressions of transport fluxes for polyatomic plasmas have been derived in the
weakly-magnetized case. The structure of the macroscopic “Navier-Stokes type” equa-
tions and associated transport fluxes are similar to the monoatomic case treated in [25],
although expressions of transport coefficients now involve summations over the inter-
nal energy states of the heavy species. Additional terms in the electron second-order
transport fluxes have been derived, associated with the interaction between the thermal
non-equilibrium and the volume viscosity with the electron diffusion driving force and the
electron temperature gradient. In the weakly-magnetized regime, the electron diffusion
velocity and heat flux involve transverse driving forces. In a future study, the strongly-
magnetized case will be investigated. In this regime, the electron transport fluxes exhibit
an anisotropic behaviour with respect to the direction of the magnetic field [21] [22].

The derivation should also be completed with the investigation of the mathematical
structure of the macroscopic equations and of the transport linear systems obtained. In
particular, the entropy conservation equation must be derived, and the sign of the entropy
production rate must be ascertained. Indeed, a positive entropy structure is desirable for
numerical stability [2] [45]. Besides, the numerical computation of the transport coeffi-
cients derived above, in particular of the electron zeroth-order and first-order diffusion
coefficients, should be carried out and compared to both experimental and numerical val-
ues, when accessible [14] [22]. Such a calculation will require data for the various collision
integrals involved.

However, the set of equations derived in this paper, and associated expressions for
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transport fluxes, are a sound basis for the numerical modeling of non-thermal plasmas.
Indeed, the first-order Chapman-Enskog expansion for multicomponent gas mixtures is
retrieved in the limit where Te = Th [22]. Also, the present model encompasses almost all
existing fluid models for low-temperature plasmas.
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