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A remarkable Example in Three-dimensional Informetrics. The Geometric Law: 
Distribution of Use or Distribution of Structure?  
 
Abdellatif, AGOUZAL; 
Thierry LAFOUGE  
 
 
 
 
 
1. Introduction and Background 
 
To describe an informetric process, we use a general framework that consists in studying a population of sources 
which randomly produces items over time. Many examples have been studied in the past decades. We mention 
two historic examples: the production of articles by researchers (Lotka, 1926), and the contributions of research 
articles in a particular field in scientific journals (Bradford, 1934). A framework, referred to as IPP (Information 
Production Process) was defined (Egghe, 1990) to study such informetric processes in which the population is 
itself a set of sources1 (researchers, articles, web pages…) producing items (articles, citations, links…). These 
historic examples do not explicitly consider time dependence in their mathematical formulation of the processes. 
They are stationary distributions in the form of counts (number of articles, number of citations…) observed over a 
predefined time period. Probabilistic laws are fitted to the empirical distributions. Their properties have been 
known for a long time in the field of scientometrics (Haitun, 1982). Almost all of the distributions are aggregative 
(above-average variance), decreasing, and are generally long-tailed. Certain researchers have implemented a 
stochastic model to take the time dependence explicitly into account and explain such phenomena more clearly. 
We can, for example, cite the works of Burrell on bibliometric processes (Burrell, 1988). It is also important to 
mention the works of Price in which the time unit (Price, 1976) is taken into account. The cumulative advantage 
model (a variant being Success-Breeds-Success (SBS)) describes the evolution of an IPP in time. In (Egghe and 
Rousseau, 1995), a model generalising Price’s model (general SBS) is defined.  
 
To the best of our knowledge, there are no historic laws – such as Lotka’s or Bradford’s – that deal with the use of 
documents. However, the statistical regularities in the distributions of book loans in libraries were observed early 
on. Such studies were undertaken to improve library management. Predictive tools, which originated from 
operational research (Morse, 1968) were set up. In his book, Morse chose the Poisson process when implementing 
Markovian matrices to regulate the circulation of books in libraries. The negative binomial (Bagust, 1983) law was 
chosen to model stationary distributions of library book loans (Leemans et al., 1992). Stochastic models, which 
depend on several parameters and which take explicit consideration of time dependence, were used (Burrell, 1990) 
(Burrell and Fenton, 1993).  
 
In the digital era, borrowing the physical copy of a document is not as crucial as it used to be. Uses are now more 
of interest. However, statistical regularities linked to uses are still relevant, and mathematical models are still 
effective. Recently, studies (Ajiferuke and Famoye, 2016) used very different data sets that represented four broad 
informetric subfields where different counting models were tested.  
 
 
These authors created statistics based on variables that are used in altmetrics (Priem et al., 2012) such as: statistics 
for the number of views, statistics for the number of readers.   
 
Distributions of use related to citations are still largely studied and constitute invaluable indicators – notably 
citations in the evaluations of research. A multitude of types of distributions (Exponential, Weibul, Log-normal, 
Yule distribution…) have been tested to adjust these distributions. A state of the art of these various studies can be 
found in (Bertoli-Barsotti and Tommaso, 2015). This study leads the authors to suggest a new formula to calculate 
the h-index, based on the geometric law, to model the distributions of citations. Burrell (2014) noticed that the 
distribution of citations of three renowned researchers in informetrics followed a geometric law. The body of work 
is admittedly small, but the result is nevertheless surprising.  
 
                                                             
1 It would be more precise to talk about generalized bibliographical sources.  
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The “No Use” sources, which are non-producing sources, are not a priori excluded from the framework of an IPP, 
but they are not studied as a stand-alone element. Taking into account these “non-producers” often modifies the 
type of model used for the adjustment. For example, in the study of loans (Burrel, 1980), this factor was taken into 
account. Egghe and Rousseau (2012) described a Lotka distribution which includes non-producers (the so-called 
shifted Lotka function). We must note that, in practice, the definition of an IPP generally implies that the entire set 
of sources is defined with the help of the produced items. Taking into account the affiliated time factor and “No 
Use” sources is, of course, crucial in the analysis of citations and in many other cases. In longitudinal studies, over 
time, the set of sources varies (some entering, some leaving). To the best of our knowledge, there are few 
theoretical and/or applied studies that take into account the time factor. 
 
For a long time, some studies noticed that two IPPs could be linked in a natural way. These IPPs are called Three-
dimensional Information Production Processes (Egghe, 2005, chapter 3). Rousseau (1992) considered the case in 
which researchers who published articles then also received citations. Burrell (1992) defined a stochastic model to 
study this type of problem: a population of researchers who publish articles over time and who subsequently 
receive citations. Burrell suggested a model in which he counted the number of published papers of a publishing 
author during [0, t], with a time-dependent geometric distribution.  
Looking at data from the journal provider, we studied the demand for scientific articles (Lafouge, 1998) by 
researchers. 
This experimentation led us to define a three-dimensional IPP with the following linear framework: journals 
produce scientific articles by including them in volumes, and the scientific articles are then requested by 
researchers.  
We then conducted several theoretical studies (Lafouge and Lainé Cruzel, 1997) (Lafouge and Guinet, 1999) 
(Lafouge, 2001). The results from these articles are re-explained in the present paper using a more general method. 
To the best of your knowledge, few theoretical or practical studies on three-dimensional informetrics exist.  
 
The aim of this article is to revisit the three results mentioned above. We had shown, under certain conditions, that 
if the distribution of article production in journals was of a certain type (Poisson, geometric…), then the 
distribution of use was of the same type. Here, we are building a generic model that is in line with the three 
dimensional IPP. It uses the properties of the probability generating function. We introduce time dependence in a 
non-explicit way by having the proportion of sources that no longer produce items (No-use) – those that are no 
longer used – tending towards 1. Such a reality illustrates what is known as information obsolescence.  
 
Our article is organized in three parts: 
- Defining the problem: we describe the informational process in which our study operates (see Section 2). 
- Defining the general theory (see Section 3). 
This section is divided in two subsections. In the first part (see Subsection 3.1), we study a stationary problem in 
which the geometric law is highlighted (see Theorem 3.6). In a second section (see Subsection 3.2), we indirectly 
introduce the time dependence (see Theorem 3.7).  
- Discussion and conclusion (see Section 4).  
  
2. Statement of the Problem 
 
Preliminary Thoughts 
 
The statistical regularities of the Information Production Processes are one of the most fascinating aspects of 
informetrics. This article focuses, from a theoretical point of view, on the regularities of distributions of use in a 
body of scientific articles over a predetermined period. This leads us to define what we call a distribution of 
“structure”. To the best of our knowledge, such a concept has not yet been used in informetrics, or, at least, not 
under that name. The distribution of structure quantifies the number of articles published in the journals’ volumes. 
Various hypotheses have been introduced to explain regularities in distributions of use. We do not, strictly 
speaking, seek to create a new explanatory model. The distribution of use and the distribution of structure are 
linked. We therefore make the hypothesis that, under certain conditions, these regularities can be seen as a 
consequence of other regularities. The distribution of use is necessarily geometric because the distribution of 
structure is geometric. The question we ask now is: why is the distribution of structure geometric? 
 
The proportion of articles that are never used increases over time. This obsolescence concept is well-known, and it 
is linked to the exponential growth of the amount of information: an article ceases to be cited after a certain period 
following its publication date. This does not necessarily mean that the oldest articles loose in scientific value, but 
that the more recent articles receive a surplus of citations or orders. An important result showed that exponential 
growth and Lotkaian informetrics are linked (Egghe, 2004). In Section 3, we use the geometric law which is the 
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discrete version of the exponential law. We indirectly introduce time dependence in order to take the concept of 
obsolescence into account. 
 
In this section, we define the process of use of a body of scientific articles by highlighting the link between the 
distribution of use and the distribution of structure. 
 
Implementing the Process 
 
Before defining the informational process in which we operate, we shall first rapidly recall the three dimensional 
IPPs (Egghe, 2005, chapter 3). If the mathematical formulation of our process (see equation [1], Section 3) is 
different than the one used by Egghe, our model is in line with three-dimensional informetrics.  
 
a) Reminder 
 
The most well-known informetrics theory is two-dimensional informetrics. A framework, referred to as IPP 
(Information Production Process) is defined.  An IPP is a triplet (𝑆, 𝑓, 𝐼) in which 𝑆 is all of the sources, and 𝐼 is 
all of the items produced by these sources. The 𝑓 function is the size frequency function2: for every 𝑛	 ∈ 	ℕ, 𝑛 =
1,2, … 𝜌0,  𝑓(𝑛) is the number of sources with 𝑛 items and 𝜌0 is the maximum number of items that a source can 
produce. Our theoretical model (see Theorem 3.6, Subsection 3.1) favours the case in which 𝑓 is geometric. 
 
In three-dimensional informetrics, we focus here on the case in which there are two source sets and one item set. 
Two patterns are possible:  
 
- Linear pattern 
 
Let there be two IPPs (𝑆1	, 𝑓, 𝐼1), and 𝑆2, 𝑔, 𝐼2 . In the linear pattern, the first IPP’s item set 𝐼1 is the second IPP’s 
source set, 𝐼1 = 	 𝑆2  Rousseau (1992) considered the case in which researchers published articles	in which these 
articles  received citations. This linear pattern  is illustrated in Figure 1.  

 
 

Figure 1: Linear three-dimensional informetrics 
 
- Triangular pattern 
 
Let there be, for example, two IPPs (𝑆1	, 𝑓, 𝐼) and (𝑆2	, 𝑔, 𝐼), in which 𝑆1 is a group of researchers producing 
	articles and in which 𝑆2 is a group of journals publishing  articles. In this example we consider the researchers and 
journals as producers of articles, 𝑓  and 𝑔 are independent. This situation is illustrated in Figure 2.  

                                                             
2	Other types of mathematical formulas exist to describe the production of items by the sources.  
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Figure 2: Triangular three-dimensional informetrics 

 
 
We must comment that the choice of a pattern is arbitrary and that an informational process can be represented by 
different patterns.  
 
b)  Link between use and structure 
 
Let there be a body of scientific journals (known as 𝐽). Let there be the articles published in these journals (known 
as  𝐴 ).  During a given period of time, we observe the use (known as 𝐼) of the body of journals. When we say use 
we take into account downloads when consulting electronic journals (Boukacem-Zeghmouri et al., 2016), citations 
of articles, or “viewed” and “read” tags on platforms that use altmetrics.  Two patterns are possible:  
 
 
- Linear pattern  
 
Journals  produce scientific articles  by including them in volumes, and the  scientific articles are then requested by 
researchers. In this case, the first IPP’s (𝐽, 𝑓, 𝐴) number of sources is necessarily inferior to the second IPP’s (A, g, 
I) number of sources.  This situation is illustrated in Figure 3. 
 
 

 
Figure 3:  Linear view of the process 

 
𝑓(𝑛) is the number of journals that produced 𝑛 articles. 𝑓 is the distribution’s size frequency function which we 
shall from now on call a distribution of structure.  
 
- Triangular pattern 
 
-  Each time an article is requested by a researcher, a journal volume is necessarily sought. We write 𝑚 as the 
maximum number of uses of a volume .  
Figure 4 sheds light on the distribution of structure’s role : 
Where 
- 𝐸  designates the state space:  𝐸 = 	 1,2. . 𝑚 	⊃ 	 1,2. . 𝜌:  (𝜌: is the maximum number of uses of an article ). 
- 𝑈 is a function from 𝐴 into 𝐸 quantifying the number of times an article is used over a given period. 
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- 𝑉 is a function from 𝐽 into 𝐸 quantifying the number of times a journal is used over a given period. 
-  𝐹		  is the relation of 𝐽×𝐴 	 which expresses the fact that all article belongs to a volume and that each volume 
contains at least one article.  
The use of a volume is determined by the cumulation of the use of the articles that belong to this volume. 
Therefore, the most natural way to define 𝑉 would be as follows: 
 
 

𝑗 ∈ 𝐽	, 𝑉 𝑗 = 	 𝑈 𝑎 	, 𝑤ℎ𝑒𝑟𝑒	𝑎 = 𝐹 𝑗
E

	 

 
 

Figure 4: Triangular view of the process 
 
This symbolic formula links the distribution of use (𝐽, 𝑉, 𝐸) to the distribution of use 𝐴, 𝑈, 𝐸 . The 𝐹 relation 
allows us to count the number of articles in each volume. Each article belongs to only one scientific journal 
volume, for which, in turn, we know the overall number of articles.  
 
When we talk about the “number of articles in the volume” in this study, several meanings are implied:  
- The most common meaning (Lafouge 1995) is the number of articles published in a volume: traditionally, this 
number does not vary much from one volume to another, when the articles come from the same journal. However, 
mega-journals (such as Plos One) are new types of journals that publish incrementally and that are modifying the 
world of publishing.  
Other meanings are possible:  
- Number of research articles in the volume,  
- Number of articles in a research institution,  
- Number of articles stemming from a research theme,  
- Number of leading articles in the volume. The term “leading articles” can cover different meanings: articles from 
high-ranking authors, articles on sensitive or controversial news topics.    
This last count is different in nature compared to the others.  
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All of these examples lead us to postulate the existence of another distribution, which we shall call “distribution of 
structure”.  
 
 
Objective 
 
In reality, we can observe the IPP’s distribution of use 𝐽 → 𝐸	. The same does not always apply for the distribution 
of use 𝐴 → 𝐸  .  
We have postulated the existence of the IPP’s distribution of structure (J,A). We have seen that this distribution of 
structure can be interpreted in different ways. Our objective is to build a theoretical model that links these three 
distributions. The triangular pattern (see Figure 4, Figure 5) highlights the link between the two sets of sources and 
the set of items. The letters T, S, X will be used in the mathematical formula (See equation [1]) in the following 
section and will designate the random variables that correspond to the distribution of structure and to the 
distributions of use.  
 
 

 
 
 

Figure 5: Link between use and structure 
 
 
3. General   Theory 
 
Notation 
Let X be a non-negative discrete random variable. We define 	𝑋∗ 	 the discrete random variable that takes on values 1, 2, 3… 
𝑋∗ 𝜔 = 𝑋 𝜔 + 1	.   
If we write ℒ as the probability law of	𝑋, ℒ∗ designates the probability law of 𝑋∗.  
We write:  
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𝐺M 𝜆 	    : The probability generating function of X (see Appendix). 
𝐺MO1(𝜆)   : The inverse function of 𝐺M 𝜆 .	 
𝐺MP (𝜆)     : The derivative function of 𝐺M 𝜆 . 
𝑝R           : The proportion of No-use:	0	 ≤ 𝑝R 	≤ 1. 
𝐺𝑒(𝛽)    : The Geometric law of parameter  𝛽 < 1. 
𝒫(𝛼)      : The Poisson law of mean 𝛼. 
𝐵𝑒𝑟 𝑝    : The Bernoulli law of parameter 𝑝 < 1. 
ℬ 𝑛, 𝑝    : The Binomial law of parameters  𝑝 < 1, 𝑛  naturel number. 
ℬ𝑛 𝛽, 𝑟  : The Negative Binomial law of parameters   𝛽 < 1, 𝑟	 real number. 
 
Below, we describe the general   equation for the three-dimensional information product process of Figure 5.  
 
Definition 
Let 𝑋[ be a sequence of non-negative discrete random and independent variables, identically distributed  𝑇 is a non-negative 
discrete random variable: 𝑆 is defined as the following random variable:   

𝑆 𝜔 = 𝑋[

]∗ ^

[_1

𝜔 				[1] 

 
 
Meaning 
 
The 𝜔 random events are the uses of journals. 
𝑇∗ 𝜔 	 is the number of articles in the volume. 𝑇 is the random variable that corresponds to the distribution of structure 
which has been defined above.  
We have previously stated that, in this study, we postulate its existence. In other words, we suppose that it has a statistical 
regularity that can be modelled.  
𝑋[ 𝜔 	is the number of articles used in a journal’s volume comprised of 𝑖 articles, 𝑖 varies  between 1 and 𝑇∗ 𝜔 	.  
𝑆 𝜔 	is the total number of articles used in a journal. S is the distribution of use that is usually observed.  
From a mathematical perspective, Equation [1] is made up of three unknowns. One of our study’s aims is to calculate one 
unknown according to the two others when possible. The bibliometric aim consists in studying the properties of the 
distribution of structure (represented by T) in relation to the distribution of use (represented by S).   
 
Assumption 
 
A tenable hypothesis consists in supposing that the 𝑋[  variables are independent. This seems to work naturally in many 
examples.  
The 𝑋[ variables are supposed to be of the same law. We were not able to find arguments to justify this hypothesis.  We admit 
that this counter is similar in type to the success-breeds-success philosophy (Burrell, 1992, p. 638). 
 
 

3.1 Stationary Mathematical Model  
 
Equation [1] is a random sum of random variables. Before formulating this article’s main result, we shall first study an 
elementary and realistic case in which the sum is finite, namely where T is a constant random variable. To do this, we assume 
that the number of articles per volume is constant.  
 
Theorem 3.1 If  	𝑇 is a constant random variable that verifies 𝑃 𝑇 = 𝑛 = 1, 𝑛 ≥ 1, then the two trivial results are as follows:   
(i)  if 𝑋[  is Bernouilli 		𝐵𝑒𝑟 1 − 𝑝R  then  equation  	 1 	   is Binomial  	ℬ 𝑛, 1 − 𝑝R	 . 
(ii) if 𝑋[		 is Geometric  𝐺𝑒	(𝛽) then  equation [1] is Negative Binomial  	ℬ𝑛 𝛽, 𝑛 . 
 
 
The results are well-known. In the case of (i), 𝑆 is a finite sum of Bernoulli independent variables, i.e a binomial variable. 
The second case is a finite sum of independent geometric variables, i.e a negative binomial variable. Given the usage 
phenomena that interest us, case (ii) is the only realistic one, as we know that the negative binomial law often gives 
satisfactory results in many bibliometric processes (Ajiferuke and Famoye, 2016) - We cite the authors: “It was found that 
due to over-dispersion in most response variables, the negative binomial regression model often seems to be more appropriate 
for informetric datasets”.  
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Remark 1 
The previous theorems are not new, but without them, the following results would not mean anything. We now suppose that 
𝑇 is a non-constant random variable governed by a known probability distribution.  
 
The geometric law, which is the discrete version of the exponential law, is often present in distributions of use, and is of 
particular interest.  
It is used to model the different distributions of formula [1]:  
- the distribution of structure 𝑇 , 
- 𝑋[ the number of articles used in a journal or a volume, comprised of 𝑖 articles (𝑖 varies between 1 and 𝑇∗ 𝜔 	). 
 
More precisely, formula [1] has three unknowns (meaning that the laws are believed to be unknown): we fixed two unknowns 
in order to calculate the third one.  We suppose that both unknown distributions are geometric. Three cases are possible.  
 
All of the theorem demonstrations below use the Uniqueness Theorem, which characterizes a PGF (see Appendix), and 
Theorem 1 given in the Appendix. The demonstration of the latter can be found in the (Burrell, 1992) appendix, and in 
several online courses (see Appendix). 
a. 𝑋[	𝑎𝑛𝑑	𝑇∗ are fixed 
 
Theorem 3.2  
(i) If 		𝑋[∗	is Geometric 𝐺𝑒∗	(𝛼)	 and 𝑇∗ is Geometric 𝐺𝑒∗(𝛽) then 𝑆	: 
 

S(ω) = 𝑋[∗ 𝜔
]∗ ^

[_1

					 

is Geometric 𝐺𝑒∗(𝛼𝛽). 
 (ii)  If   𝑋[	 	is Geometric 𝐺𝑒(𝛼) and  𝑇∗ is Geometric 𝐺𝑒∗(𝛽) then 𝑆		: 

S ω = 𝑋[ 𝜔
]∗ ^

[_1

						 

is 	 Geometric 𝐺𝑒(ℎ) with  ℎ = i.j
1Oi(1Oj)

  .  
 
Proof (i) 
According to Theorem 1 and Proposition 2, (see Appendix), we have: 

𝐺0(𝜆) = 𝐺]∗(𝐺Mk∗ 𝜆 ) =
l.m.n

op(opm).l

1O (opn)lm
op(opm).l

= q.i.j
1O 1Oi.j .q

   

hence 𝑆 is Geometric 		𝐺𝑒∗	(𝛼. 𝛽).     ☐ 
 
Proof (ii) 
According to Theorem 1 and Proposition 2, (see Appendix), we have:  

𝐺0 𝜆 = 𝐺]∗	(	𝐺Mk 𝜆 =
nm

op opm l

1O 1Oj . m
op opm l

= 	 r
1O(1Or)q

   where ℎ = i.j
1Oi(1Oj)

   

hence 𝑆 is Geometric  	𝐺𝑒	 ℎ .      ☐ 
 
Remark 2 
This theorem exists in another form in Egghe (1994) in which he studies the distribution of the production of articles (in the 
line of Lotka) with multiple authors, using two geometric laws.  

φ(i) = 𝜑v 𝑖 . 𝜓(𝑗)
x

v_1

					 

 
 𝜑v 𝑖  = fraction of the authors with i publications with the condition that all papers have exactly j authors, 
𝜓(𝑗) = fraction of the papers that have j authors, 
𝜑(𝑖) = fraction of the authors with i publications. 
   
𝜑v is calculated thanks to discrete convolutions where we suppose that 𝜑1 is geometric. If we also suppose that 𝜓 is equally 
geometric, φ is a geometric distribution.  



	 9	

Putting this in perspective with Egghe’s result is interesting since we are in two very distinct situations: while an article is 
published in a journal’s single volume, an article can have multiple authors. Egghe is more specifically interested in the 
informetric processes in which items can have multiple sources (Egghe, 2005, chapter 7).  
 
Theorem 3.3 
If 𝑋[ is Bernoulli   𝐵𝑒𝑟	(1 − 𝑝R	) and 𝑇∗ is Geometric 𝐺𝑒∗(𝛽), then 𝑆	 is the sum of Geometric  𝐺𝑒∗(𝑞) and Bernoulli 
𝐵𝑒𝑟(1 − 𝑝R)  where 𝑞 = j

1O 1Oj .z{
	. 

 
Proof 
We have 𝐺]∗ 𝜆 = jq

1O(1Oj)q
  , 𝐺Mk 𝜆 = 1 − 𝑝R 𝜆 + 𝑝R

	  hence, according to Theorem 1 (see Appendix): 

𝐺0 𝜆 =
𝛽

1 − (1 − 𝛽)( 1 − 𝑝R 𝜆 +		𝑝|)					
1 − 𝑝R 𝜆 + 𝑝R

	) 

 
We put 𝑞 = j

1O 1Oj .z{
 

We then have:	𝐺0 𝜆 = 𝑓 𝜆 . ( 1 − 𝑝R 𝜆 + 𝑝R) with 𝑓 𝜆 = j
1O(1Oj)( 1Oz{ q}	z{	)					

 

We can write:	𝑓 𝜆 = ~
1O(1O~)q

	 where  𝑞 = 	 j
1O 1Oj .z{

 
According to proposition 1 (see Appendix) we deduce that: 
𝑆 = 𝐺∗ + 𝑌 
where 𝑌  is Bernouilli  	𝐵𝑒𝑟(1 − 𝑝R)  and 𝐺∗   is Geometric 	𝐺𝑒∗(𝑞)   𝑞 = j

1O 1Oj .z{
	. ☐ 

 
Remark 3 
Thus 𝑆	converges in law when 𝑝R → 0 towards a geometric distribution 𝐺𝑒∗(𝛽). 
This theorem means that, if  𝑝R → 0, the distribution of use and the distribution of structure are identical. This theorem sheds 
light on the significance of the notion of structure. When all sources are producing, the distribution of structure is the 
distribution of use. Therefore, it does not seem strange to define the distribution of structure by counting the number of 
leading articles in a volume (see Section 2). In this case the leading articles are those that are requested or cited.  
 
b. 𝑋[	𝑎𝑛𝑑	𝑆 are fixed 
 
 
Theorem 3.4 
If   𝑋[	 is Geometric  𝐺𝑒∗(𝑞)   and  𝑆  is Geometric 𝐺𝑒∗ 𝛼 	 and 𝛼	 < 𝑞 , hence 𝑇∗ is Geometric  𝐺𝑒∗(ℎ)    	  
where ℎ = i

~
 

 
Proof 
According to Theorem 1 (see Appendix) 𝐺0 𝜆 = 𝐺]∗(

~.q
1O 1O~ .q

) we put 𝑧 = ~.q
1O 1O~ .q

	 

hence 𝜆 = �
~}�.(1O~)

  . We know that 𝐺0 𝜆 = i.q
1O 1Oi .q

 , thus 𝐺]∗ 𝑧 = i.�
~}� 1O~ O 1Oi .�

 

𝐺]∗ 𝑧 = i.�
~O ~Oi .�

=
m
�.�

1O 1Om� .�
   hence  𝑇∗	𝑖𝑠	𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐	𝐺𝑒∗ ℎ 		𝑤𝑖ℎ	ℎ = 	 i

~
 .  ☐ 

 
 
Remark 4 
This theorem gives meaning to the distribution of structure: if both distributions of use are geometric, then the distribution of 
structure is necessarily geometric. The condition 𝛼 < 𝑞  is natural, given that: 	𝑃 𝑆 = 1 ≤ 	𝑃 	𝑋[ = 1 	⟹ 𝛼	 ≤ 𝑞 . The 
percentage of articles requested once is necessarily higher than the percentage of volumes requested once. Such a study on 
the uses of several collections of journals has been conducted in (Lafouge, 1998) where the distributions of use were 
observed at several levels of granularity. 
 
c. 𝑇∗	𝑎𝑛𝑑	𝑆 are fixed  
 
 
Theorem 3.5 
If  𝑇∗ is   Geometric 𝐺𝑒∗(𝛽) and 𝑆 is Geometric 𝐺𝑒 𝛼 , then 𝑋[	 is Geometric  	𝐺𝑒	(ℎ) where 
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 ℎ = i
i}jOij

	. 
 
Proof 
𝐺]∗ 𝜆 = j.q

1O 1Oj .q
   thus  𝐺]∗

O1 𝜆 = q
j}q(1Oj)

  , Theorem 1 (see Appendix) allows us to write: 
 
 𝐺Mk 𝜆 = 𝐺]∗

O1(𝐺0 𝜆 ) 
However 𝐺0 𝜆 = i

1O 1Oi .q
  thus 𝐺Mk 𝜆 = i

i 1Oj }jO 1Oi .j.q
= r

1O 1Or .q
  where ℎ = i

i}jOi.j
 

thus  𝑋[		𝑖𝑠	𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐	𝐺𝑒 ℎ .	     ☐  
 
The following theorem summarizes the properties of the geometric law in the IPP defined by Equation [1]:   
 
 
 
 
 
 
Theorem 3.6 
Let 𝑋[ the number of articles used in a journal’s volume comprised of 𝑖 articles		( 𝑋[ are identically distributed, independent 
variables) 𝑇	 the distribution of structure, 𝑆  the total number of articles used in a journal is defined as the following random 
variable:   

S ω = 𝑋[ 𝜔
]∗ ^

[_1

					 1 	 

(i)  If 		𝑋[	 is Geometric 𝐺𝑒(𝛼) and  𝑇∗ is Geometric  𝐺𝑒∗ 𝛽  , then 𝑆		 is also Geometric 		𝐺𝑒	 ℎ 	. 
 
where ℎ = i.j

1Oi(1Oj)
     

 (ii)  If 𝑋[ is Geometric 𝐺𝑒∗ q  and		𝑆	  is Geometric 𝐺𝑒∗ α  with < 𝑞 , then  𝑇    is also Geometric 𝐺𝑒	 ℎ  where ℎ = i
~
	. 

 
 (iii)  If  𝑇∗ is 𝐺𝑒∗(𝛽	) and 𝑆 is Geometric 	(𝛼) , then 𝑋[ is Geometric 𝐺𝑒	(ℎ) where  ℎ = i

i}jOij
	. 

 
If at least two distributions are geometric, then the third one is necessarily geometric. This result is note-worthy.  
 
In reality, it is difficult to observe distribution	𝑋[. Therefore, in the following paragraphs, we do not make 
assumptions on this particular distribution.  
 
 

3.2 Pseudo-stationary Mathematical Model 
 
Our aim in this section is to take into account time dependence without introducing it explicitly in our equations. We do not 
formulate a hypothesis on the nature of  𝑋[  . We suppose that  𝑋[  all have the same law and depend upon at least one 
𝑝R	parameter, 0 ≤ 𝑝R 	< 1 , where 𝑝R is the proportion of No-use. We shall write them as 𝑋[

z{ . We also suppose that the 
moment of order one, written 𝐸(𝑋[

z{), exists.  
Equation [1] is written in this way:  

𝑆z{ 𝜔 = 𝑋[
z{

]∗ ^

[_1

𝜔 				[1𝑎] 

We look for the law of distribution 𝑆z{ (use), supposing that we know the law of distribution 𝑇 (structure). To do this, we 
make the following hypotheses:  
 
 
 We suppose 𝑝R 	→ 1 [a]:   
 [a] expresses a certain type of temporal dependency in the model, which explains the term “pseudo-stationary” in this 
section’s title.  
Let 𝑀 > 0   we suppose that the following three conditions are verified:   
    													 Lim

	z{→1
𝐸(𝑋[

z{) = 0                   [b] 
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Lim
z{→1

𝐸(𝑇) =∞                    [c]           

     lim
z{→1

𝐸 𝑇 . 𝐸(𝑋[
z{) = 𝑀       [d] 

Meaning of the boundary conditions: 
- (b) translates the fact that, throughout the studied period, use (citations, downloads) decreases: this is known as 
the obsolescence of information: obsolescence is usually expressed by the decline in time of the use of a 
document, 
- (c) translates the fact that the number of published articles increases throughout the studied period, 
- (d) translates the fact that a stationary state has been reached: there is a balance between the obsolescence of information on 
one hand, and the increase in the number of published articles on the other. 
 
 
Before demonstrating the theorem, the limit of 𝑆z{ when 𝑝R → 1,   we must first demonstrate intermediate results  [3] and [4]: 
According to Lemma 1 (see Appendix) the PGF of [1a] is: 
𝐺0�{(𝜆) = 𝐺](𝐺Mk

�{ 𝜆 ). (𝐺Mk
�{ 𝜆  , according to Lemma 2 (see Appendix) we have: 

lim
z{→1

𝐺0�{ 𝜆 = lim
z{→1

𝐺](𝐺Mk
�{ 𝜆 )	 [3] 

 
Furthermore, when  𝐺Mk

�{(𝜆)   is the PGF of 𝑋[
z{ ; we know (see Appendix, Proposition 1 ) that 𝐺Mk

�{ 1 = 1  and 𝐺Mk
�{
P =

𝐸(𝑋[
z{). We can therefore write, according to Lemma 3 (see Appendix, we put 𝑓i 𝜆 = 𝐺Mk

�{ 𝜆 ), that when 𝑝R → 1	 
𝐺Mk

�{ 𝜆 	~	𝐺Mk
�{ 1 + 𝐺Mk

�{
P 1 . 𝜆 − 1 	~	1 + 	𝐺Mk

�{
P 1 . 𝜆 − 1  [4] 

 
 
Theorem 3.7 
 𝑆z{	 being the random variable defined by equation [1a], supposing that the  boundary conditions [b], [c] and [d] are verified, 
we have: 

(i) If 𝑇 is  Poisson  𝒫(𝛽), then 𝑆z{ converges in law when 𝑝R → 1   towards a Poisson  𝒫(𝑀) . 
(ii) If 𝑇 is  Geometric  𝐺𝑒 𝛽 , then 𝑆z{ converges in law when 𝑝R → 1 towards a Geometric  𝐺𝑒( 1

1}�
). 

(iii) If 𝑇 is  Negative Binomial  𝐵𝑛	(𝛽, 𝑟), then 𝑆z{ converges in law when 𝑝R → 1 in law towards a Negative 
Binomial   𝐵𝑛( 1

1}�
, 𝑟). 

 
 
Proof (i) 
According to [3], we have:	 lim

z{→1
𝐺0�{ 𝜆 = lim

z{→1
𝐺](𝐺Mk

�{ 𝜆 ). 
 According to our hypothesis and [4], we have: 

𝐺] 𝐺Mk
�{ 𝜆 	~ exp 𝛽. (1 + 𝐺Mk

�{
P 1 𝜆 − 1 − 1) ~exp	(𝛽. 𝐺Mk

�{
P 1 . 𝜆 − 1 ) 

We have 𝐸 𝑇 = 𝛽, according to boundary condition [b], we have: 𝛽 → ∞ thus we have : 
lim
z{→1

𝐸 𝑇 . 𝐸(𝑋[
z{) = lim

z{→1
	𝛽. 𝐺Mk

�{
P 1 = 𝑀. 

We obtain the result 𝐺0�{ 𝜆 ~exp	(𝑀 𝜆 − 1 ), thus, according to proposition 1 (see Appendix) : 
𝑆z{		𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠	𝑖𝑛	𝑙𝑎𝑤	𝑡𝑜𝑤𝑎𝑟𝑑𝑠	𝒫(𝑀)  when 𝑝R → 1      ☐ 
 
Proof (ii) 
We have 𝐸 𝑇 = 1Oj

j
, according to boundary condition [b], we have: 𝛽 → 0 thus we  have : 

lim
z{→R

𝐸 𝑇 . 𝐸(𝑋[
z{) = lim

z{→R
	 1
j
𝐺Mk

�{
P 1 	= 𝑀 

for the same reasons as above, we can write: 

𝐺] 𝐺Mk
�{ 𝜆 ~

𝛽
𝛽 − (1 − 𝛽)(𝐺Mk

�{
P 𝜆 (𝜆 − 1)

~
1

1 − (1𝛽 − 1)𝐺Mk
�{
P 1 (𝜆 − 1)

~
1

1 − 𝑀(𝜆 − 1)
 

Let 𝐺] 𝐺Mk
�{ 𝜆 ~

o
o��

1O(1O o
o��)q

, thus, according to proposition 1 (c) (see Appendix) : 

𝑆z{	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠	𝑖𝑛	𝑙𝑎𝑤	𝑡𝑜𝑤𝑎𝑟𝑑𝑠	𝐺𝑒	(
1

1}�
) when 𝑝R → 1	.    ☐ 

 
Proof (iii)  



	 12	

This demonstration follows the same reasoning as the previous ones.  
 
Remark 5 
 
With this theorem, we wanted to consider a general case. We do not hypothesize on the 𝑋[ distributions except to say that 
these distributions have the same law and have a moment of order 1. This last hypothesis eliminates the very important case 
of power distributions, which are inevitable in informetrics.  
This theorem seems to say:  
If the distribution of structure follows a law (Poisson, geometric…), then the distribution of use follows a law of the same 
nature.  
 
The question that arises then is: does a counter example exist? Theorem 3.8 answers this question: when a 
binomial distribution is chosen, then the distribution of use is not a binomial distribution but a Poisson 
distribution.    
 
Theorem 3.8 
𝑆z{	being the random variable defined by equation [1a], let us suppose that boundary conditions [b], [c] and [d] are verified 
we have : 
If T is  Binomial   ℬ(𝑛, 𝑝), then 𝑆z{ converges in law when 𝑝R → 0 towards a Poisson   𝒫(𝑀). 
 
Proof 
We first recall the following analytical result : 

lim
�→x

1 + E
�

�
= exp	(𝑎) [5] 

According to our hypothesis, we have 𝐺] 𝜆 = 𝑞. 𝜆 + 1 − 𝑞
�
							𝑛	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑞	 < 1. 

According to [3]    we have:	 lim
z{→1

𝐺0�{ 𝜆 = lim
z{→1

𝐺](𝐺Mk
�{ 𝜆 ). 

According to [4] we have: 

𝐺] 𝐺Mk
�{ 𝜆 = ~(	𝑞 		1 + 𝐺Mk

�{
P 1 . 𝜆 − 1 			 + 1 − 𝑞	)�  

However 𝐸 𝑇 = 𝑛𝑞, we then have according to [c] lim
z{→1

𝐸 𝑇 = ∞ ,  thus lim
z{→R			

𝑛 = ∞, as 𝑞 < 1. 

However, according to [d], lim
z{→1

𝐸 𝑇 . 𝐸(𝑋[
z{) = lim

z{→1
𝑛𝑞. 𝐺Mk

�{
P 1 = 𝑀. 

Let 𝐺] 𝐺Mk
�{ 𝜆 ~(1	 + q. 𝐺Mk

�{
P 1 . 𝜆 − 1 	)�~	(1 + �

�
𝜆 − 1 )� 

According to [5],  𝐺] 𝐺Mk
�{ 𝜆 	~exp	(𝑀. 𝜆 − 1 ) . 

Thus 𝑆z{	converges in law when 𝑝R → 1 towards a Poisson distribution  𝒫(𝑀). 
 
 
Remark 6 
The hypothesis of a binomial distribution is realistic if the distribution of structure consists in counting the number of articles 
per volume.  
 
Remark 7 
Theorems 3.7 and 3.8 have been demonstrated in previously cited publications (Lafouge and Lainé Cruzel S. 1997) (Lafouge 
and Guinet, 1999) (lafouge, 2001) using a more traditional method. These demonstrations are in need of a hypothesis for the  
𝑋[  law. However, this is not the case here. We can use Theorem 3.8 with any type of distribution. The proposed method in 
this study is more general than in previous publications.  
We point out a mistake in Lafouge and Lainé Cruzel (1997): Theorem 1 on page 525 is incorrect. The distribution is not 
geometric but is rather the sum of a geometric distribution and a Bernoulli distribution. Theorem 3.3 demonstrates this result.  
 
Remark 8 
 A connection can be made between Theorem 3.8 and a well-known result in probabilities, which is the convergence in law 
of the binomial law ℬ 𝑛	𝑝  towards the Poisson law 𝒫(𝑀) when 𝑛 → ∞, 𝑝 → 0 𝑎𝑛𝑑	𝑛. 𝑝 → 𝑀 .  
In this case, the binomial distribution can model book loans in a library, in which:  
- 𝑛 is the number of publications,  
- 𝑝 is the probability of borrowing a publication,  
- 𝑀 is the average number of loans for a publication.  
The boundary conditions are the same ones as in Theorem 3.8 and the result is identical. The probability law which models 
the book loans or the uses of the articles is a Poisson distribution.  
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4.   Discussion and Conclusion 
 
The three dimensional IPP, shown on Figure 1, can describe many informetric processes. We have not yet 
confronted the theoretical results with real data, at least to calculate the distribution of structure. Therefore the 
reader may remain sceptical, since one might ask what the value of a result is without experimentation. For now, 
our aim is theoretical: to find characteristics in the geometric law – not in the mathematical sense, but in 
distributional terms – in which the size frequency function of a three-dimensional IPP is geometric. In the preface 
to his book on Lotkaian Informetrics, Egghe (2005) said: “The only axiom used in this book is that the size-
frequency function is Lotkaian, ie a power function”. Of course, the author could establish such an axiom given 
the amount of articles he published on the subject and given the many theoretical and practical studies done in the 
field of Lotkaian Informetrics.  
We more modestly postulate the existence of a distribution of structure or a distribution of use that is geometric. 
The results summarized in Theorem 3.6 are unexpected. Along with such a result, a question arises and remains, 
for now, an open problem: is the geometric law alone in verifying Theorem 3.6? If this is indeed the case, it could 
be pertinent to create three-dimensional informetrics, which would be based on this theorem. The results obtained 
in Section 3.2 are interesting, since we do not hypothesize on 𝑋[ .  
Finally, another open problem concerns the Lotkaian Informetrics. The problem is not easy to solve since no 
analytical expression exists for the power law’s PGF. Furthermore, in the pseudo-stationary model, laws must 
have moments, which, as we know, is not always true for power laws.  
 Burrel (2008) extends Informetrics by defining Pareto’s law, known as type II. He suggests that: “It would be 
interesting to see to what extent Egghe’s development of Lotkaian informetrics can be replicated using the Pareto 
type II family, including the right truncated version.” Therefore, the results obtained in the present article with the 
geometric distribution lead us to develop our theory in a similar way as what we had started to explore in Lafouge 
(2007) as in families of exponential distributions that are, in fact, the continuous version of geometric 
distributions.  
 
Appendix 
  
In this appendix, we recall the properties of the probability generating functions (PGF) that are used in this article. Many 
bibliographical references exist online: 
 such as the course “Applied Mathematics § Theoretical Physics” from Queen’s University in Belfast: 
http://www.am.qub.ac.uk/users/g.gribakin/sor/Chap3.pdf 
We chose to demonstrate only Lemma 2 in this appendix.  
 
Definition and Uniqueness Theorem 
Let 𝑋 be a   discrete non-negative random variable: 
we write: 𝑝� = 𝑃 𝑋 = 𝑘 ,			𝑘 = 0,1,2… 
The probability generating function (PGF) of  𝑋, written 𝐺M , is defined as: 

𝐺M 𝜆 = 𝑝�

x

�_R

. 𝜆� 

Let 𝑋 and 𝑌  be two discrete non-negative random variables. 
 If  𝑋 and 𝑌 have PGF 𝐺M and 𝐺� respectively, then (i) and (ii) are equivalent: 
 (i)   𝐺M 𝜆 = 𝐺�(𝜆)  	for all 𝜆	. 
 (ii)  𝑃 𝑋 = 𝑘 = 𝑃 𝑌 = 𝑘 ,					𝑘 = 0, 1, 2… 
 
Theorem 1 
Let 𝑋[ be a sequence of non-negative discrete random and independent variables identically distributed, each with PGF 𝐺M.  
𝑇  is a  non-negative discrete random variable, we define 𝑆 as the random variable: 

𝑆 𝜔 = 𝑋[

]∗ ^

[_1

𝜔 				[1] 

The probability generating function 𝐺0 of 𝑆 is defined as: 
𝐺0 𝜆 = 𝐺]∗(𝐺M 𝜆 ) 

 
If 𝑋[  and 𝑇 have moments 𝐸(𝑋[) and 𝐸(𝑇) respectively we infer the following corollary:  
 
Corollary 1 



	 14	

	𝐸 𝑆 = 𝐸 𝑇∗ . 𝐸(𝑋) 
 
 
 
 
Proposition 1 
(i) 	𝐺M 0 = 1	; 𝐺MP 0 = 𝐸 𝑋 . 
(ii)  Let 𝑋 and 𝑌	be independent and let 𝑍 = 𝑋 + 𝑌 then 𝐺� 𝜆 = 𝐺M 𝜆 . 𝐺� 𝜆 . 
(iii)  If 𝐺Mm 	→ 𝐺Mn when 𝛼 → 𝛽 then 𝑋i converges in law towards 𝑋j.  
 
 
Lemma 1 
Let 𝑋[ be a sequence of non-negative discrete random and independent variables identically distributed, each with PGF 𝐺M. 
We suppose that the moments of order one written  𝐸(𝑋)  exists. 𝑇 is a  non-negative discrete random variable with moment 
𝐸(𝑇). We define 𝑆 as the random variable: 

𝑆 𝜔 = 	 𝑋[

]∗ ^

[_1

𝜔  

 (i) 𝐺0 𝜆 = 𝐺] 𝐺M 𝜆 . 𝐺M 𝜆  
 (ii) 𝐸 𝑆 = 𝐸 𝑇 . 𝐸 𝑋 + 𝐸(𝑋) 
 
 
 
Proposition 2 
Let 𝑋 be a non-negative discrete random variable and 𝑋∗ defined as 𝑋∗ 𝜔 = 𝑋 𝜔 + 1 we have: 

𝐺M∗ 𝜆 = 𝜆. 𝐺M(𝜆) 
For the common distribution, the PGFs are : 

1. If  𝑋    is Constant: 	𝑝� = 1, 𝑝� = 0, 𝑘 ≠ 𝑛  
𝐺M 𝜆 = 	 𝜆� 

 
2. If  𝑋   is Bernoulli 	𝐵𝑒𝑟 1 − 𝑝R :	0 ≤ 𝑝R	 < 1	. 

𝐺M 𝜆 = 1 − 𝑝R 𝜆 + 𝑝R 
 

3. If  𝑋   is Binomial ℬ 𝑛, 1 − 𝑝R	 :		0 ≤ 𝑝R	 < 1, 𝑛	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑖𝑛𝑡𝑒𝑔𝑒𝑟  
𝐺M 𝜆 = ((1 − 𝑝R)𝜆 + 𝑝R)� 
 

4. If  𝑋   is Geometric	𝐺𝑒 𝛽 :	𝑝� = 𝛽. 1 − 𝛽 �, 𝑘 = 0,1… , 0 < 𝛽 < 1	. 

𝐺M 𝜆 =
𝛽

1 − 1 − 𝛽 𝜆
 

5. If 𝑋is Negative Binomial 𝑋 ℬ𝑛 𝛽, 𝑟 	: 
            𝑝R = 𝛽¢, 𝑝� = 𝑟 𝑟 + 1 … 𝑟 + 𝑘 − 1 . j

£

�!
1 − 𝛽 �:	𝑘 = 1,2… , 𝑟 > 0, 0 < 𝛽 < 1	. 

 𝐺M 𝜆 = ( j
1O 1Oj q

)	¢ 

6. If 𝑋is Poisson 	𝒫 𝛼 	: 𝑝� = 𝐸𝑥𝑝 −α . 𝛼�. 1
�!
		 , 𝑘 = 0,1… , 0 < 𝛼	. 

 	 𝐺M 𝜆 = 𝐸𝑥𝑝	(𝛼. 𝜆 − 1 ) 
 
 
Lemma 2 
Let 𝑋z{ be a sequence of random variables such that lim

z{→1
𝐸 𝑋z{ = 0 . Then 𝑋z{ converges in probability towards a certain 

variable 𝑍	𝑤ℎ𝑒𝑟𝑒	𝑃 𝑍 = 0 = 1, 𝑃 𝑍 = 𝑘 = 0, 𝑘 ≠ 0. We also have lim
z{→1

𝐺M�{(𝜆) = 1. 

 
Proof 
 Indeed, using Markov inequality ∀	𝜀 > 0, 𝑃 𝑋z{ > 𝜀 ≤ ¨ M�{

©
 thus lim

z{→1
𝑃 𝑋z{) > 𝜀 = 0  thus 	𝑋z{  converges in 

probability towards a certain probability when 𝑝R 	→ 1 . Therefore, according to proposition 1 (iii), we immediately deduce 
that lim

z{→1
𝐺M�{(𝜆) = 1 . ☐ 
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Lemma 3 
We recall the following analytical result. Let there be the following function:	𝜆 → 𝑓i 𝜆 	 defined on ℝ  , differentiable where 
𝛼 is a parameter and where we suppose that lim

i→i{
𝑓iP 1 = 0 . We have		𝑓i 𝜆 ~𝑓i 1 + 𝑓iP 1 (𝜆 − 1) when → 𝛼R . 
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