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Abstract

The study deals with colocated Godunov type finite volume schemes applied to the two-dimensional linear
wave equation with Coriolis source term. The purpose is to explain the wrong behaviour of the classical scheme
and to modify it in order to avoid accuracy issues around the geostrophic equilibrium and in geostrophic adjustment
processes. To do so, a Hodge-like decomposition is introduced. Then three different well-balanced strategies are
introduced. Some properties of the associated modified equation are proven and then extended to the semi-discrete
case. Stability of fully discrete schemes under a classical CFL condition is established thanks to a Von Neumann
analysis. Some numerical results reinforce the purpose.
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1 Introduction

The primitive equations of the ocean are widely used to model oceanographic flows at global or regional scales,
see [19] and [5, 15] for a mathematical study. The presence of specific source terms, in particular those accounting
for Coriolis force and non trivial bathymetry, plays an important role and is not obvious to deal with in numerical
simulations. A good model to study the impact of the discretisation of these source terms on the quality of numerical
solutions is the shallow water system (1) presented below. It is simpler than the primitive equations, in particular due
to the reduction of dimension from 3D to 2D, but still contains most of the issues raised by the presence of source
terms. In this context, the discretisation of the topographic source term in a collocated finite volume framework has
been dealt with in many works over the last two decades, see the reference book [6] or [2] for a more recent review.
In the present work, we focus on the collocated finite volume discretisation of the Coriolis source term.

At large scales, many oceanographic flows are perturbations of the so-called geostrophic equilibrium (3) that corre-
sponds to a balance between the pressure gradient and the Coriolis force. It follows that the accuracy of numerical
methods is strongly related in many situations to their ability to maintain this balance. In the collocated finite volume
framework, very few works were devoted to this question. In [7], see also [6,24], the authors propose to extend a tech-
nique originally developed for the topographic term in [1]. The resulting scheme is named the Apparent Topography
method. It turns out to yield good results for one dimensional experiments. In [8] the technique is extended to higher
order schemes and assessed on two-dimensional problems. One of the main results in the present work is to prove
that the Apparent Topography method alone is not accurate around the two-dimensional geostrophic equilibrium and
has to be supplemented by other developments. In [18] the authors propose an alternative method, namely the Finite
Volume Evolution Galerkin (FVEG) method, but they also mainly consider the one-dimensional geostrophic equilib-
rium, i.e. when the two-dimensional velocity is function of only one space variable. Very recently [23], an RS-IMEX
scheme (for Reference Solution IMplicit EXplicit scheme) was designed for shallow water equations with Coriolis
force and proven to be asymptotically consistent with the Quasi-Geostrophic Equations. Here we only consider time
discretisations that lead to explicit computations, i.e. with no linear systems to solve. As previously mentioned, the
present work is also restricted to the collocated finite volume framework, we refer to [17, 20] for other approaches.
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The velocity field associated with the geostrophic equilibrium (3) is obviously divergence free. This implies that our
study will share important properties with works devoted to the study of low Mach number (for Euler equations) or
low Froude number (for shallow water equations) regimes. The reader is referred to [9–11,13,14,16,21] where some
accurate numerical schemes are proposed. In particular, we shall often refer to the framework introduced in [9].

In the present work we investigate the preservation of the geostrophic equilibrium in the context of the two-dimensio-
nal wave equation with Coriolis force (2), that is the linearised version of the shallow water equations. It generalises
a study initiated in [3, 4] in the one dimensional context. In Section 2 we recall the main characteristics of the wave
equation with Coriolis force. In Section 3 we show that the classical collocated finite volume Godunov scheme
is not accurate in the vicinity of the geostrophic equilibrium. This inaccuracy is mainly related to the numerical
diffusion terms that make the stationary states of the scheme not consistent with those of the continuous model. In
Section 4, we show that the Apparent Topography (AT) method proposed in [7] and a Divergence Penalisation (DP)
method mentioned in [9] can be used to cure the problem, provided they are combined together or to other Low
Froude strategies inspired from [9–11]. For that, we analyse the modified equations related to the aforementioned
corrections. In Section 5 we turn to the related semi-discrete (in space) analysis. In particular we construct discrete
operators that possess mimetic properties that are proven to be necessary for accuracy, see also [20]. We also propose
two consistent discretisations of the continuous steady states and we design the corresponding numerical schemes.
Finally we exhibit the dispersion relations associated to the different numerical schemes and we prove that one of
the proposed scheme is energy dissipative. In Section 6 we introduce the time discretisation and we prove the main
result of this work which is that some of the proposed schemes are accurate and linearly stable under some CFL
conditions. In Section 7 we illustrate the previous properties through some two dimensional numerical results.

2 Properties of the linear wave equation with Coriolis source term in 2D

In order to study the dimensionless shallow water equation in the rotating frame
St ∂th+∇ · (hū) = 0,

St ∂t(hū) +∇ · (hū⊗ ū) +
1

Fr2
∇
(
h2

2

)
= − 1

Fr2
h∇b− 1

Ro
hū⊥,

(1)

we focus on the linear wave equation with Coriolis source term{
∂tr + a?∇ · u = 0

∂tu + a?∇r = −ωu⊥
⇐⇒ ∂tq + Lwq = 0 (2)

with u = (u, v)T , u⊥ = (−v, u)T , q = (r, u, v) and

Lωq =

(
a?∇ · u

a?∇r + ωu⊥

)
.

In the sequel, we assume that a∗ > 0 is a constant.

System (2) is obtained from the shallow water equation (1) when the Froude number (Fr) and the Rossby number
(Ro) are of orderO(M) and the Strouhal number (St) is of orderO(M−1), i.e. for short times, for a small parameter
M � 1, and b ≡ cte.

To begin with, let us introduce the Hilbert space

(
L2(T2)

)3
=

{
q = (r, u, v)

∣∣∣∣ ∫
T2

r2 dx +

∫
T2

(
u2 + v2

)
dx <∞

}
equipped with the scalar product

〈q1, q2〉 =

∫
T2

r1r2 dx +

∫
T2

(u1u2 + v1v2) dx.
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2.1 Structure of the kernel of the original model

Since the preservation of steady-states of (2) is crucial in the design of accurate numerical schemes, especially in the
limit M → 0, we recall some well-known results about those steady-states. Let us define the kernel of the linear
operator Lω as

Eω 6=0 := kerLω 6=0 =
{

(r,u) ∈ H1(T2)×
(
L2(T2)

)2 ∣∣∣ a?∇r = −ωu⊥
}
. (3)

Since ωu = a?(∇r)⊥ implies that ∇ · u = 0, being a steady-state of (2) is equivalent to belonging to Eω 6=0. Let
us mention that Eω=0 is named the incompressible subspace (see [9] for more details). We shall keep the same
terminology in the present work. As we shall see later on, the orthogonal space of the kernel plays an important role
in the analysis of the behaviour of numerical schemes. Hence the following statement:

Proposition 1. The orthogonal space of Eω 6=0 is given by

E⊥ω 6=0 =
{

(p,v) ∈ L2(T2)×H(curl,T2)
∣∣ ωp = a?∇× v

}
, (4)

where∇× u := ∂xuy − ∂yux and H(curl,T2) :=
{
u ∈

(
L2(T2)

)2 ∣∣∣ ∇× u ∈ L2(T2)
}
.

Moreover, we have Eω 6=0 ⊕ E⊥ω 6=0 =
(
L2(T2)

)3. In other words, any q ∈
(
L2(T2)

)3 can be decomposed into

q = q̂ + q̃

where q̂ ∈ Eω 6=0 and q̃ ∈ E⊥ω 6=0 and this decomposition is unique.

The proof of this proposition can be found in Appendix A.

Remark 1. The periodic boundary condition implies that for all elements q̃ = (p,v) ∈ E⊥ω 6=0, we have

p ∈ L2
0(T2) :=

{
f ∈ L2(T2)

∣∣∣∣ ∫
T2

f dx = 0

}
.

2.2 Energy conservation

Let us define the energy as E = 〈q, q〉.

Proposition 2. Let q be a solution of System (2) on T2. Then, the energy is preserved

E(t > 0) = E(t = 0).

Proof. To compute the energy estimate associated to System (2), we directly obtain

1

2

d

dt
〈q, q〉 = −〈Lωq, q〉 = 0

since Lω is antisymmetric.

Remark 2. Energy conservation and linearity imply uniqueness of the solution of System (2).

2.3 Behaviour of solutions

Proposition 3. Let q be the solution of System (2) with initial condition q0(x). Then:

i. ∀ q0(x) ∈ Eω 6=0, we have q(t > 0,x) = q0(x) ∈ Eω 6=0.

ii. ∀ q0(x) ∈ E⊥ω 6=0, we have q(t > 0,x) ∈ E⊥ω 6=0.
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Proof. Any initial condition q0 = (r0, u0, v0) ∈ Eω 6=0 is obviously a solution of (2); by the uniqueness property
mentioned above, Point i. is proven.

As far as Point ii. is concerned, we consider q0 ∈ E⊥ω 6=0. For all q̂ = (r̂, û) belonging to the kernel Eω 6=0, due to
periodic boundary conditions, we obtain〈

d

dt
q, q̂

〉
= −a?

∫
T2

r̂∇ · u dx− a?
∫
T2

∇r · û dx− ω
∫
T2

u⊥ · û dx

=

∫
T2

u ·
(
a?∇r̂ + ωû⊥

)
dx + a?

∫
T2

r∇ · û dx = 0

which implies that

∀ q̂ ∈ Eω 6=0,
d

dt
〈q, q̂〉 = 0 =⇒ 〈q(t, ·), q̂〉 = 〈q(t = 0, ·), q̂〉 = 0

that is to say
q(t, ·) ∈ E⊥ω 6=0.

This proves Point ii.

Corollary 1. Let q be the solution of System (2) with initial condition q0. Let Pq0 be the orthogonal projection of q0

onto the incompressible subspace Eω 6=0. Then, q can be decomposed into

q(t, ·) = Pq0 + q̃(t, ·) ∈ Eω 6=0 ⊕ E⊥ω 6=0

where q̃ is the solution of System (2) with initial condition (q0 − Pq0).

Moreover, the conservation of the energy for q̃ implies that for all times t > 0, ‖q(t, ·)− Pq0‖ = ‖q0 − Pq0‖ which
allows to say that

‖q0 − Pq0‖ = O(M) =⇒ ∀t > 0, ‖q − Pq0‖(t) = O(M). (5)

In other words, when the initial condition q0 is close to the incompressible subspace Eω 6=0, the solution of the linear
wave equation (2) is still close to the projection of the initial condition onto Eω 6=0.

One of the problems encountered with the Godunov scheme applied to (2) is that it does not reproduce this closeness
to the projection of the initial condition on Eω 6=0 for values of M � 1. This inaccurate behaviour is explained in the
next section. A numerical scheme for which the solution satisfies relation (5) will be said accurate at low Froude
number at any time, as defined in [3].

3 Inaccuracy of the classical Godunov scheme

3.1 Numerical highlighting

We consider a cartesian mesh with mesh sizes ∆x (resp. ∆y) in the x (resp. y) direction. The semi-discrete Godunov
scheme applied to the linear wave equation (2) can be written

d
dtri,j + a?

(
ui+1,j−ui−1,j

2∆x +
vi,j+1−vi,j−1

2∆y

)
− κra?

2

(
ri+1,j−2ri,j+ri−1,j

∆x +
ri,j+1−2ri,j+ri,j−1

∆y

)
= 0,

d
dtui,j + a?

ri+1,j−ri−1,j

2∆x − κua?
2

ui+1,j−2ui,j+ui−1,j

∆x = ωvi,j ,

d
dtvi,j + a?

ri,j+1−ri,j−1

2∆y − κva?
2

vi,j+1−2vi,j+vi,j−1

∆y = −ωui,j ,

(6)

where parameters κr, κu and κv lie in [0, 1] and represent the standard numerical diffusion of the Godunov type
schemes. The classical Godunov scheme corresponds to κr = κu = κv = 1. The following facts are now well-
known:

5



• In the 1D case, the classical Godunov scheme applied to the homogeneous system (i.e. with no Coriolis source
term) is accurate for low M . It is no more the case when the Coriolis force is involved, see [3, 4]. Indeed,
in that case the diffusion on the pressure equation is shown to be responsible for the inaccuracy. A simple
correction consists in setting κr = 0 and is proven to be a stable strategy in [3]. This scheme is referred to in
the sequel as the LF-C strategy, since we adapt the diffusion in the pressure equation to the Low-Froude (LF)
case and we keep the classical (C) diffusion on the velocity equation.

• In the 2D case, the classical Godunov scheme applied to the homogeneous system (i.e. with no Coriolis source
term) is inaccurate for low M on cartesian meshes. This is due to the numerical viscosity on the velocity
equation, see [9, 11] for more details. It is corrected in [9] by setting κu = κv = 0 to obtain a stable and
accurate scheme. This scheme is referred to in the sequel as the C-LF strategy, since we keep the classical (C)
diffusion on the pressure equation and we adapt the diffusion in the velocity equation to the Low-Froude (LF)
case.

The purpose here is to show that none of these corrections (neither the LF-C nor the C-LF strategies) cures the
inaccuracy of the Godunov scheme applied to the 2D wave equation with a Coriolis source term for low values ofM .
To do so, we consider the classical Godunov scheme and the modified versions proposed in [3, 9] when the initial
condition is at the geostrophic equilibrium (see Fig. 1)

r(t = 0, x, y) = 1− exp

[
−
(

3x
0.5

)2 − ( 3y
0.5

)2
]

u(t = 0, x, y) = − 6y
0.5 exp

[
−
(

3x
0.5

)2 − ( 3y
0.5

)2
]

v(t = 0, x, y) = 6x
0.5 exp

[
−
(

3x
0.5

)2 − ( 3y
0.5

)2
]
.

(7)

in the periodic domain T2 = [−0.5, 0.5]× [−0.5, 0.5]. This initial condition is obviously a steady state of System (2).

In Figures 2 and 3, we present the numerical results for a 50× 50 grid at time t = 10. It indicates that the Godunov
type schemes with standard diffusion (Fig. 2(b)), and both corrected LF-C (Fig. 2(c)) and C-LF (Fig. 2(d)) schemes
are unable to capture the steady state. At the same time, it is not possible to use a LF-LF strategy and completely
delete both diffusion terms (i.e. using κr = κu = κv = 0), because the resulting fully discrete explicit scheme
would then obviously be unstable. Note that for this test, the modification on the diffusion in the velocity equation
provides more substantial improvements than the modification on the diffusion in the pressure equation: in the first
case, the 2D structure of the solution is more or less preserved, see Figure 2, and the solution remains not so far from
the exact one, see Figure 3, whereas in the second case, the solution is quite close to the one of the classical scheme.
Nevertheless, this behaviour is related to this particular test case and we need more investigations to obtain numerical
schemes which are able to exactly preserve steady states and then be accurate in any situation.

Before doing that, let us analyze the discrete kernel of the semi-discrete Godunov scheme in order to point out the
main reason of the inaccuracy problem.

3.2 Analysis of the discrete kernel

Let us denote by Lω,κ,h the spatial operator in the semi-discrete scheme (6), so that (6) reads q′i,j + Lω,κ,hqi,j = 0.

Lemma 1. Let us define the discrete energy of System (6) by

Eh(t) = ∆x∆y

∑
i,j

ri,j(t)
2 +

∑
i,j

ui,j(t)
2 +

∑
i,j

vi,j(t)
2

 .
Then for any κr,u,v ∈ [0, 1]

d

dt
Eh(t) ≤ 0,

which means that the energy associated to Godunov type schemes is dissipated.
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Figure 1: Initial condition: stationary vortex.

Proof. Let us multiply the semi-discrete scheme (6) by qi,j∆x∆y and sum over all cells (i, j). Due to periodic
boundary conditions, we obtain by standard calculations〈

dq

dt
, q

〉
= −κra?∆y

2

∑
i,j

(ri+1,j − ri,j)2 − κra?∆x

2

∑
i,j

(ri,j+1 − ri,j)2

− κua?∆y

2

∑
i,j

(ui+1,j − ui,j)2 − κva?∆x

2

∑
i,j

(vi,j+1 − vi,j)2 ≤ 0. (8)

Although the semi-discrete scheme is energy-dissipative, the fact still remains that it is not consistent with the in-
compressible space.

Lemma 2.

• For κr 6= 0, κu 6= 0 and κv 6= 0, i.e. for the classical Godunov scheme, we have

kerLω,κ,h =
{
q = (r, u, v) ∈ R3N

∣∣ ∃ c ∈ R, r = c, u = 0, v = 0
}

(9a)

• For κr 6= 0, κu = κv = 0, i.e. for the C-LF strategy, we have

kerLω,κ,h =
{
q = (r, u, v) ∈ R3N

∣∣ ∃ c ∈ R, r = c, u = 0, v = 0
}

(9b)
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Figure 2: Contours of the pressure r.

• For κr = 0, κu 6= 0 and κv 6= 0, i.e. for the LF-C strategy, we have

kerLω,κ,h =

{
q = (r, u, v) ∈ R3N

∣∣∣∣∣ ∃(uj , vi) ∈ RN × RN , ∀ (i, j), ui,j = uj , vi,j = vi,

a?

(
ri+1,j−ri−1,j

2∆x
ri,j+1−ri,j−1

2∆y

)
= −ω

(
−vi
uj

)}
(9c)

Remark 3. Although all kernels above correspond to discrete versions of the exact relation a∗∇r = −ωu⊥, con-
straints upon the velocity field are too strong, so that those kernels do not match with the exact one Eω 6=0 defined
in (3).
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Initial condition

C−C
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Figure 3: Cross-section (y = 0) of the pressure r.
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Proof. Since any steady state of (6) satisfy dqi,j
dt = 0, Equation (8) implies∑

i,j

[
κr
(
∆y(ri+1,j − ri,j)2 + ∆x(ri,j+1 − ri,j)2

)
+ κu∆y(ui+1,j − ui,j)2 + κv∆x(vi,j+1 − vi,j)2

]
= 0. (10)

• When κr 6= 0, we easily get from (10)

∀ (i, j) ∈ [1, Nx]× [1, Ny], ri+1,j = ri,j and ri,j+1 = ri,j =⇒ r = const. (11)

When κu 6= 0 and κv 6= 0, we also have ui+1,j = ui,j and vi,j+1 = vi,j for all (i, j), which implies that there
exist (uj , vi) ∈ RN × RN such that

ui,j = uj and vi,j = vi ∀(i, j).

Going back to (6), r = const implies that u = 0 and v = 0. Therefore, this leads to (9a).

• Likewise, when κr 6= 0 but κu = κv = 0, (11) still holds. Then we deduce from (6) that ui,j = vi,j = 0 and
consequently (9b).

• Now, we consider the case κr = 0 (and κu 6= 0, κv 6= 0). We deduce from (10) that ui,j = uj and vi,j = vi.
Hence, the steady version of (6) now reads

a?
2∆x

(ri+1,j − ri−1,j) = ωvi and
a?

2∆y
(ri,j+1 − ri,j−1) = −ωuj

which is nothing but (9c).

4 Properties of the first order modified equation with correction terms

In the previous section, we have shown that the classical Godunov scheme is inaccurate near the geostrophic equi-
librium and that simple corrections consisting in deleting diffusion terms (LF-C or C-LF strategies) are not enough
to ensure the accuracy. As it is not possible to delete all diffusion terms at the same time for stability reasons, it is
essential to introduce some correction terms for the standard diffusion.

We aim at deriving a numerical scheme which is able to preserve steady states or to be accurate around steady states.
It is worth pointing out that we not only have to deal with the balance between the pressure gradient and the Coriolis
force but also to take into account the divergence free condition.

4.1 Definition of the schemes

We mention below two strategies to deal with diffusion terms. Each strategy leads to a different numerical scheme
which will be referred to as X-Y scheme where X is related to the diffusion on the pressure equation and Y to the
diffusion on the velocity equation.

i. The Apparent Topography scheme was introduced in [7], see also [8], to deal with the geostrophic equilibrium
in the 1D nonlinear shallow water system. This strategy was proven to be stable in [4] for the 1D linear wave
equation. Here we extend the procedure to the 2D linear wave equation. We notice that the steady state defined
by a?∇r = −ωu⊥ also satisfies

∇ ·
(
∇r +

ω

a?
u⊥
)

= 0.

It suggests that the numerical diffusion on the pressure equation can be modified into∇· (∇r+ ω
a?
u⊥) instead

of the classical operator ∆r – see (6). As for the velocity equations, either we keep the classical diffusion
to obtain the Apparent Topography-Classical scheme (AT-C) or we delete diffusion terms which leads to the
Apparent Topography-Low Froude scheme (AT-LF). In 1D, they are shown to be both stable and accurate [4].
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Schemes κr κu κv ηr ηu ηv

AT-LF O(1) 0 0 κr 0 0
AT-C O(1) O(1) O(1) κr 0 0

LF-DP 0 O(1) O(1) 0 κu κv
C-DP O(1) O(1) O(1) 0 κu κv

AT-DP O(1) O(1) O(1) κr κu κv

Table 1: Parameters of Godunov type schemes with corrections.

ii. The Divergence Penalisation method consists in a modification on the diffusion on the velocity equation that
is based on the operator ∇(∇ · u) instead of the classical diffusion in (6) since the equilibrium states satisfy
∇·u = 0. This idea was mentioned in [9, § 5.6] to be applied to the homogeneous linear wave equation, but not
studied. We propose to extend it to the present case and to analyze its properties. As for the pressure equation,
we can choose the classical diffusion to obtain the Classical-Divergence Penalisation scheme (C-DP) or delete
this diffusion term to get the Low Froude-Divergence Penalisation scheme (LF-DP).

iii. Finally, we can combine both strategies to get the Apparent Topography-Divergence Penalisation method (AT-
DP). It comes down to considering∇ · (∇r + ω

a?
u⊥) for the diffusion on the pressure equation and∇(∇ · u)

for the velocity equation.

We shall prove below that the AT-LF, LF-DP and AT-DP approaches are accurate and stable. The AT-C and C-DP
strategies, like the LF-C and C-LF ones previously mentioned in paragraph3.1, will not be able to cure the problem
since only one issue is taken into account.

To carry out the accuracy analysis, we shall analyze the first order modified equation which is the common tool to
study stability and accuracy of finite difference schemes. We refer to [22] for more details about this method. The
first order modified equation corresponding to the aforementioned strategies is given by

∂tr + a?(∂xu+ ∂yv)− κxra?∆x

2

∂2r

∂x2
− κyra?∆y

2

∂2r

∂y2
+
ηxr a?∆x

2

ω

a?

∂v

∂x
− ηyra?∆y

2

ω

a?

∂u

∂y
= 0,

∂tu+ a?∂xr −
κua?∆x

2

∂2u

∂x2
− ηua?∆x

2

∂2v

∂x∂y
= ωv,

∂tv + a?∂yr −
κva?∆y

2

∂2v

∂y2
− ηva?∆y

2

∂2u

∂y∂x
= −ωu,

(12)

where parameters ηxr ≥ 0, ηyr ≥ 0, ηu ≥ 0 and ηv ≥ 0 stand for the correction terms. We recall that κx,yr,u,v ∈ [0, 1].
The modified equation reads in a compact form{

∂tq + Lq = 0, (13a)

q(t = 0,x) = q0(x). (13b)

The spatial operator is defined by L = Lω − Bκ,η, with Lω as in (2) and

Bκ,ηq =


κxra?∆x

2
∂2r
∂x2

+ κyra?∆y
2

∂2r
∂y2

κua?∆x
2

∂2u
∂x2

κva?∆y
2

∂2v
∂y2

+


−ηxr a?∆x

2
ω
a?

∂v
∂x + ηyra?∆y

2
ω
a?

∂u
∂y

ηua?∆x
2

∂2v
∂x∂y

ηva?∆y
2

∂2u
∂y∂x

 .

The choices of parameters in (12-13) corresponding to the aforementioned strategies are summarised in Table 1.

Remark 4. For the numerical diffusion on the velocity equation to be consistent with ∇(∇ · u), we have to take
κu∆x = κv∆y and ηu = κu, ηv = κv. Likewise, to recover the operator ∇ · (∇r + ω

a?
u⊥), we must consider the

case κxr∆x = κyr∆y, ηxr = κxr and ηyr = κyr .
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From now on, we shall denote and assume that

νr =
κxra?∆x

2
=
κyra?∆y

2
, νu =

κua?∆x

2
=
κva?∆y

2
,

γr =
ηxr a?∆x

2
=
ηyra?∆y

2
, γu =

ηua?∆x

2
=
ηva?∆y

2

(14)

in the correction terms. With such assumptions, the action of the diffusion operator may be rewritten as follows

Bκ,ηq = Bν,γq =


∇ · (νr∇r + γr

ω
a?
u⊥)

∂
∂x(νu

∂u
∂x + γu

∂v
∂y )

∂
∂y (γu

∂u
∂x + νu

∂v
∂y )

 .

Then we can study the behaviour of the schemes for an initial solution in the incompressible space Eω 6=0 or in its
orthogonal E⊥ω 6=0, see Prop. 3.

Proposition 4.

i. A solution in the incompressible space Eω 6=0 is preserved for all time by the LF-DP, AT-LF and AT-DP schemes.

ii. The orthogonal subspace E⊥ω 6=0 is preserved by the LF-DP scheme.

Proof. All schemes such that γr = νr and γu = νu (namely LF-DP, AT-LF and AT-DP) satisfy q ∈ Eω 6=0 =⇒
Bν,γq = 0 (Point i).
The proof for Point ii is very similar to the one in Prop. 3 up to the term

νu

∫
T2

û · ∇(∇ · u) dx = −νu
∫
T2

(∇ · û)(∇ · u) dx = 0

since û is in the incompressible subspace Eω 6=0.

For the LF-DP strategy, we can also study the evolution of the energy, see Prop 2.

Proposition 5. The LF-DP and C-DP schemes are energy-dissipative.

Proof. Due to the fact that 〈Lωq, q〉 = 0 as Lω is antisymmetric, when γr = 0 and νu = γu, we have

1

2

d

dt
‖q‖2 = 〈Bν,γq, q〉 = −νr‖∇r‖2 − νu‖∇ · u‖2 ≤ 0.

This means that the modified equation associated to the LF-DP and C-DP schemes is dissipative.

Hence the LF-DP strategy enables to mimic Corollary 1.

Corollary 2. The solution qν,γ of the modified equation for the LF-DP parameters satisfies the inequality

∀ t ≥ 0, ‖qν,γ − Pq0‖(t) ≤ ‖q0 − Pq0‖,

which means the solution is accurate at low Froude number at any time, as defined at the end of Section 2.

Proof. Let us first notice that Pq0 is the solution of Eq. (13a) for the LF-DP parameters (νr = γr = 0 and νu = γu)
with initial condition Pq0 due to Prop. 4.i. We deduce by linearity that any solution of (13) reads qν,γ(t,x) =
Pq0(x) + q̃(t,x) where q̃ satisfies {

∂tq̃ + Lq̃ = 0,

q̃(t = 0,x) = q0(x)− Pq0(x).

As the energy is decreasing (Prop. 4.ii), we have

‖qν,γ − Pq0‖(t) = ‖q̃‖(t) ≤ ‖q̃0‖ = ‖q0 − Pq0‖.
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4.2 Stability properties

For the AT strategy, we are not able to establish energy estimates as for the LF-DP strategy. So we investigate the
stability of this approach by studying the behaviour of the Fourier modes of the solution.

Lemma 3. Fourier modes associated to the LF-DP, C-DP, AT-LF and AT-DP schemes are damped.

Proof. We now look for plane wave solutions of the modified equation (12) under the form

q(t,x) = exp [ı(τt+ k · x)] q̂ (15)

where k = (kx, ky) is the wave number and τ is the wave frequency. To ensure that these waves are captured by the
scheme, we assume

|k| ≤ π

∆x
. (16)

Such functions are generally solutions of the modified equation under a dispersion relation, i.e. a relation between τ
and k commonly written as τ = τ(k). In the present case, the Fourier modes (15) are some solutions provided

Aq̂ = −ıτ q̂ (17)

and the matrix A is given by

A =


νrk

2
x + νrk

2
y a?ıkx − γr ωa? ıky a?ıky + γr

ω
a?
ıkx

a?ıkx νuk
2
x γukxky − ω

a?ıky γukxky + ω νuk
2
y.


The statement of the lemma is equivalent to saying that the real part of all eigenvalues are positive. Indeed, −ıτ is
an eigenvalue due to (17). The decrease for long times in (15) requires a negative coefficient for t.

The characteristic polynomial P(λ) reads

P(λ) = λ3 − (νr + νu) |k|2λ2 +
[
a2
?|k|2 + ω2 + νrνu|k|4 + (ν2

u − γ2
u)k2

xk
2
y

]
λ

− (νr − γr)ω2|k|2 − (ν2
u − γ2

u)νrk
2
xk

2
y|k|2 − (νu − γu)2a2

?k
2
xk

2
y − γr(νu − γu)kxkyω(k2

x − k2
y).

Let us mention that Prop. 4.i corresponds to the fact that λ = 0 is a root of P for the LF-DP, AT-LF and AT-DP
schemes.

• For the LF-DP scheme (νr = γr = 0 and νu = γu), λ0 = 0 is an eigenvalue while the other two are given by

λc =
νu|k|2

2
± ı
√
ω2 + a2

?|k|2 −
(νu

2

)2
|k|4.

Hypothesis (16) and κu ∈ [0, 1] ensure that the term in the square root is positive. Hence <(λc) > 0.

• For the C-DP scheme (γr = 0 and νu = γu), the linear system Aq = λq reads

νr|k|2 r + ıa?kxu+ ıa?kyv = λ r, (18a)

ıa?kxr + νuk
2
x u+ (νukxky − ω) v = λu, (18b)

ıa?kyr + (νukxky + ω)u+ νuk
2
y v = λ v. (18c)

We now multiply (18a) by r̄, (18b) by ū and (18c) by v̄ in order to obtain

λ
(
|r|2 + |u|2 + |v|2

)
= νr|k|2|r|2 + νu(k2

x|u|2 + k2
y|v|2) + 2νukxky<(uv̄)

+ 2ı [a?< (r(kxū+ kyv̄)) + ω= (uv̄)]

which implies that <(λ) > 0 by using the fact that k2
x|u|2 + k2

y|v|2 ≥ 2|kxky||uv| and <(uv̄) ≥ −|uv|.
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• For the AT-LF scheme (νr = γr and νu = γu = 0), λ0 = 0 is an eigenvalue. The other two are given by

λc =
νr|k|2

2
± ı
√
ω2 + a2

?|k|2 −
(νr

2

)2
|k|4 =⇒ <(λc) ≥ 0.

• Finally, we consider the AT-DP scheme (νr = γr and νu = γu). It is obvious that λ = 0 is a solution. The
other solutions satisfy the following equation

λ2 − (νr + νu)|k|2λ+ νrνu|k|4 +
[
ω2 + a2

?|k|2
]

= 0.

The solution of the above equation is given by

λ =
νr + νu

2
|k|2 ± ı

√
ω2 + a2

?|k|2 −
(
νr − νu

2

)2

|k|4.

which means that the Fourier modes are damped with speed νr+νu
2 |k|2.

Remark 5. The exact Fourier modes of the linear wave equation (2) are such that

λwave = ±ı
√
ω2 + a2

∗|k|2. (19)

Consequently, we notice that the AT-DP scheme is the only one that can recover the exact imaginary part by taking
νr = νu. This choice will be done in the sequel.

Remark 6. For the AT-C scheme (νr = γr and γu = 0), we are not able to prove the Fourier modes are damped.
Nevertheless the Fourier analysis provides some information on the behaviour of the solution when the diffusion on
the velocity equation is small. In that case, the characteristic polynomial becomes

χ(λ, νu) = λ3 − (νr + νu)|k|2λ2 +
[
ω2 + a2

?|k|2 + νrνu|k|4 + ν2
uk

2
xk

2
y

]
λ

− νr|k|2ν2
uk

2
xk

2
y − 2νua

2
?k

2
xk

2
y − νrνuωkxky(k2

x − k2
y).

We note that under (16) and due to κr,u ∈ [0, 1], ∂λχ(λ, νu) does not vanish which means there is a single real
root. Therefore, by the implicit function theorem, we can define for νu small enough a function νu 7−→ λ0(νu)
corresponding to the unique root of the polynomial. We have

λ0(νu) ∼
νu→0

λ′0(νu = 0)νu = −∂νuχ(0, 0)

∂λχ(0, 0)
νu =

2a2
?k

2
xk

2
y + νrωkxky(k

2
x − k2

y)(
k2
x + k2

y

)
a2
? + ω2

νu.

As a result, we deduce that when κu = O(M), then λ0(νu) = O(M). Note that the sign of the eigenvalue remains
undetermined.

5 Analysis of the semi-discrete Godunov type schemes

In this section, we investigate some ways to construct “well-balanced” schemes, i.e. that preserve a discrete version
of the incompressible subspace. The study of the modified equation leads us to focus on the numerical viscosity on
both pressure and velocity equations. As a result, it is essential to consider suitable diffusion terms for the Godunov
scheme. More specifically, we proposed to introduce the diffusion operators ∇ · (∇r + ωu⊥) and ∇(∇ · u) for
pressure and velocity equations respectively.

We now turn to the space discretisation of the aforementioned strategies. We consider a collocated finite volume
framework. To ensure that the resulting schemes satisfy properties similar to those proved at the continuous level,
one first has to construct some discrete differential operators and corresponding discrete kernels consistent with
Eω 6=0. This requires to choose the location where the differential relation defining the kernels holds: either at the cell
centers or at the vertices. One finally has to verify that the resulting schemes still satisfy stability properties.
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5.1 Cell-centered scheme

A first possibility consists in locating the kernels at the same place as the unknowns, namely at the cell centers. Let
us denote rh = (ri,j), uh = (ui,j) and vh = (vi,j) be in RN where N = Nx ×Ny.

5.1.1 Discrete operators

We define the gradient∇c2h, the divergence∇c2h· and the curl∇c2h× as

[∇c2hrh]i,j =

(
ri+1,j−ri−1,j

2∆x
ri,j+1−ri,j−1

2∆y

)
[∇c2h · uh]i,j =

ui+1,j − ui−1,j

2∆x
+
vi,j+1 − vi,j−1

2∆y
,

[∇c2h × uh]i,j = −∇c2h · u⊥h =
vi+1,j − vi−1,j

2∆x
− ui,j+1 − ui,j−1

2∆y
.

Lemma 4. These operators satisfy the following mimetic properties:

i. 〈∇c2hrh,uh〉 = −〈rh,∇c2h · uh〉 which implies that 〈rh,∇c2h × uh〉 = −
〈
(∇c2hrh)⊥,uh

〉
;

ii. ∇c2h ×∇c2hrh = 0.

Such properties turn out to be crucial for stability purposes as claimed in [12, 20].

5.1.2 Discrete kernel

We now define the discrete kernel at the cell centers as the natural equivalent to Eω 6=0 defined in (3)

Ecω 6=0,h =
{
q̂h = (r̂h, ûh, v̂h) ∈ R3N

∣∣∣ a?∇c2hr̂h = −ωû⊥h
}
. (20)

In particular, we prove the following lemma which is the semi-discrete counterpart to Proposition 1.

Lemma 5. The orthogonal space of Ecω 6=0,h is

Ec,⊥ω 6=0,h =
{
q̃h = (r̃h, ũh, ṽh) ∈ R3N

∣∣ a?∇c2h × ũh = ωr̃h
}
. (21)

This implies the following discrete Hodge decomposition

R3N = Ecω 6=0,h ⊕ E
c,⊥
ω 6=0,h.

Proof. By definition, an element q̃h = (r̃h, ũh) of the orthogonal of Ecω 6=0,h verifies, for all q̂h = (r̂h, ûh) in Ecω 6=0,h:

〈r̃h, r̂h〉+ 〈ũh, ûh〉 = 〈r̃h, r̂h〉+ 〈ũ⊥h , û⊥h 〉 = 0.

Using the definition of Ecω 6=0,h and Lemma 4 this implies

〈r̃h, r̂h〉 −
a?
ω
〈ũ⊥h ,∇c2hr̂h〉 = 〈r̃h, r̂h〉+

a?
ω
〈∇c2h · ũ⊥h , r̂h〉 = 〈r̃h −

a?
ω
∇c2h × ũh, r̂h〉 = 0.

Since r̂h can be arbitrary in RN , this is exactly equivalent to ωr̃h − a?∇c2h × ũh.
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Remark 7. For any qh ∈ R3N , the unique decomposition

qh = q̂h + q̃h with q̂h = (r̂h, ûh, v̂h) ∈ Ecω 6=0,h and q̃h = (r̃h, ũh, ṽh) ∈ Ec,⊥ω 6=0,h

may be found by the following process: Let r̂h satisfy the equation

r̂h −
a2
∗
ω2
∇c2h · (∇c2hr̂h) = rh −

a?
ω
∇c2h × uh. (22)

It can be shown that (22) has a unique solution since it amounts to solving a linear system involving an M -matrix.
Then, let us define ûh by

ûh =
a?
ω

(∇c2hr̂h)⊥ (23)

so that q̂h = (r̂h, ûh) ∈ Ecω 6=0,h. Finally, we set q̃h = qh − q̂h and it remains to prove that q̃h ∈ Ec,⊥ω 6=0,h. It suffices to
notice that

a?∇c2h × ũh = a?

(
∇c2h × uh +∇c2h · û⊥h

)
(23)
= a?

(
∇c2h × uh −

a?
ω
∇c2h · (∇c2hr̂h)

)
(22)
= a?∇c2h × uh − ω

(
r̂h − rh +

a?
ω
∇c2h × uh

)
= ωr̃h.

5.1.3 Semi-discrete scheme

The cell-centered semi-discrete scheme reads


d

dt
ri,j(t) + a?[∇c2h · uh]i,j − νr

[
∇c2h ·

(
∇c2hrh +

ω

a?
u⊥h

)]
i,j

= 0, (24a)

d

dt
ui,j(t) + a?[∇c2hrh]i,j − νu [∇c2h(∇c2h · uh)]i,j = −ωu⊥i,j . (24b)

The modified equation associated to the scheme (24) is (12) for coefficients chosen as in Remark 4. The stencil
associated to the scheme (24) is a 13-point stencil: it involves the 8 points around the considered one (i.e. at a
distance ∆x or ∆y) and 4 points to a distance 2∆x (or 2∆y) in the definition of both diffusion terms. Moreover
the definition of the diffusion terms induces no relation between odd and even cells. This may be the reason for
checkerboard type oscillations. The interface scheme (26) we propose in the sequel will not be affected by this
drawback.

Proposition 6.

i. Steady states of the semi-discrete scheme (24) are the discrete geostrophic equilibria from (20).

ii. The pressure gradient and Coriolis forces are energy conservative.

iii. The discrete energy of the LF −DP scheme (νr = 0) is decreasing.

Proof. On the one hand, by construction, discrete geostrophic equilibria (20) are steady states of (24). On the other
hand, let us consider steady states of (24). Applying the operator ∇c2h× to (24b), we obtain ∇c2h · uh = 0 due to
Lemma 4.ii. This proves Point i.

Point ii is a straightforward consequence of Lemma 4 i. Moreover, when νr = 0, the scalar product with qh leads to

1

2

d

dt
Eh(t) = −a? 〈∇c2h · uh, rh〉 − a?〈∇c2hrh,uh〉+ νu〈∇c2h[∇c2h · uh],uh〉 = −νu‖∇c2h · uh‖2 ≤ 0

thanks to Lemma 4.i. This proves Point iii.

15



5.2 Vertex-based scheme

The original Apparent Topography scheme [7] was designed in 1D so that equilibrium states are located at the
interfaces while the unknowns are still at the cell centers. That is why we are interested in this part in investigating
another version of the scheme.

5.2.1 Discrete kernel

Let us define the discrete kernel by imposing the geostrophic equilibrium at the interfaces of each cell

Evω 6=0,h =

q̂h = (r̂h, ûh, v̂h) ∈ R3N

∣∣∣∣∣∣ a?
 r̂i+1,j−r̂i,j

∆x

r̂i,j+1−r̂i,j
∆y

 = −ω

− v̂i+1,j+v̂i,j
2

ûi,j+1+ûi,j
2

 . (25)

5.2.2 Discrete operators

To design the numerical scheme, we first define the discrete operators at the vertices of each cell (i, j) – see Figure 4

[∇v
hrh]i+1/2,j+1/2 =

 (ri+1,j+1+ri+1,j)−(ri,j+1+ri,j)
2∆x

(ri+1,j+1+ri,j+1)−(ri+1,j+ri,j)
2∆y


[∇v

h · uh]i+1/2,j+1/2 =
(ui+1,j+1 + ui+1,j)− (ui,j+1 + ui,j)

2∆x
+

(vi+1,j+1 + vi,j+1)− (vi+1,j + vi,j)

2∆y

[∇v
h × uh]i+1/2,j+1/2 = −∇v

h · u⊥h ,

[fv
h(uh)]i+1/2,j+1/2 =

ui+1,j+1 + ui,j+1 + ui+1,j + ui,j
4

.

We shall also need dual operators that enable to switch from the vertex grid to the center grid. For ϕh = (ϕh, ψh)
defined at the vertices, we define the following operators

[∇c
hϕh]i,j =

1

2

ϕi+1/2,j+1/2−ϕi−1/2,j+1/2

∆x

ϕi+1/2,j+1/2−ϕi+1/2,j−1/2

∆y

+
1

2

ϕi+1/2,j−1/2−ϕi−1/2,j−1/2

∆x

ϕi−1/2,j+1/2−ϕi−1/2,j−1/2

∆y


[∇c

h ·ϕh]i,j =
(ϕi+1/2,j+1/2 + ϕi+1/2,j−1/2)− (ϕi−1/2,j+1/2 + ϕi−1/2,j−1/2)

2∆x

+
(ψi+1/2,j+1/2 + ψi−1/2,j+1/2)− (ψi+1/2,j−1/2 + ψi−1/2,j−1/2)

2∆y

[f c
h(ϕh)]i,j =

ϕi+1/2,j+1/2 + ϕi−1/2,j+1/2 + ϕi+1/2,j−1/2 + ϕi−1/2,j−1/2

4
.

With such operators, we have the following compatibility property:

Lemma 6. Any q̂h ∈ Evω 6=0,h satisfies the geostrophic equilibrium and the divergence free condition at the vertices:
[∇v

hr̂h]i+1/2,j+1/2 = −ω[f v
h(û⊥h )]i+1/2,j+1/2,

[∇v
h · ûh]i+1/2,j+1/2 = 0.

Moreover, they satisfy mimetic properties:

Lemma 7.

i. ∇v
h ×∇c

h

[
f v
h(rh)

]
= ∇v

h × f c
h

[
∇v
hrh
]

= 0;
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Figure 4: Cell centers (i, j) and vertices (i+ 1/2, j + 1/2).

ii.
〈
f c
h

[
∇v
hrh
]
,uh

〉
= −

〈
rh, f

c
h

[
∇v
h · uh

]〉
and

〈
f c
h

[
f v
h(uh)

]
, vh
〉

=
〈
uh, f

c
h

[
f v
h(vh)

]〉
.

Proof. Each property results from direct computations. For instance:

〈f c
h [∇v

hrh] ,uh〉

=
∑
i,j

[
1

4

(
ri+1,j+1 − ri−1,j+1

2∆x

)
+

1

2

(
ri+1,j − ri−1,j

2∆x

)
+

1

4

(
ri+1,j−1 − ri−1,j−1

2∆x

)]
ui,j

+
∑
i,j

[
1

4

(
ri+1,j+1 − ri+1,j−1

2∆y

)
+

1

2

(
ri,j+1 − ri,j−1

2∆y

)
+

1

4

(
ri−1,j+1 − ri−1,j−1

2∆y

)]
vi,j

=
∑
i,j

(
ri+1,j − ri−1,j

2∆x

)(
ui,j+1 + 2ui,j + ui,j−1

4

)
+
∑
i,j

(
ri,j+1 − ri,j−1

2∆y

)(
vi+1,j + 2vi,j + vi−1,j

4

)

= −
∑
i,j

ri,j

[
1

4

(
ui+1,j+1 − ui−1,j+1

2∆x

)
+

1

2

(
ui+1,j − ui−1,j

2∆x

)
+

1

4

(
ui+1,j−1 − ui−1,j−1

2∆x

)]

−
∑
i,j

ri,j

[
1

4

(
vi+1,j+1 − vi+1,j−1

2∆y

)
+

1

2

(
vi,j+1 − vi,j−1

2∆y

)
+

1

4

(
vi−1,j+1 − vi−1,j−1

2∆y

)]
= −〈f c

h [∇v
h · uh] , rh〉 .

5.2.3 Semi-discrete scheme

The semi-discrete scheme with the kernel at the interface is given by
d

dt
ri,j(t) + a?f

c
h [∇v

h · uh]i,j − νr∇
c
h ·
[
∇v
hrh + ωfv

h(u⊥h )
]
i,j

= 0,

d

dt
ui,j(t) + a?f

c
h [∇v

hrh]i,j − νu∇
c
h [∇v

h · uh]i,j = −ωf c
h

[
fv
h(u⊥h )

]
i,j
.

(26)

The modified equation associated to the scheme (26) is still (12) for coefficients chosen as in Remark 4. The stencil
associated to this second scheme (26) is a classical 9-point stencil since it only involves the 8 points around the
considered one. It is then more compact than the one of the cell-centered scheme (24).

Proposition 7.
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Godunov type scheme α β η

Cell-centered sin(kx∆x) sin(ky∆y) 1

Vertex-based 2 sin(kx∆x
2 ) cos(

ky∆y
2 ) 2 sin(

ky∆y
2 ) cos(kx∆x

2 ) cos(kx∆x
2 ) cos(

ky∆y
2 )

Table 2: Parameters α, β an η in the Fourier analysis of the semi-discrete schemes.

i. Steady states of the semi-discrete scheme (26) are the geostrophic equilibria from (25).

ii. The pressure gradient and Coriolis forces are energy conservative.

iii. The energy of the LF-DP scheme (νr = 0) is decreasing.

Proof. Point i. results from Lemma 6 and from Lemma 7.i. Moreover, according to Lemma 7.ii, we have

〈f c
h [∇v

hrh] ,uh〉+ 〈f c
h [∇v

h · uh] , rh〉 = 0 and
〈
f c
h

[
fv
h(u⊥h )

]
,uh

〉
= 0

which proves Point ii.

After some computations, we have

〈∇c
h [∇v

h · uh] ,uh〉 = −
∑
i,j

[
ui+1,j+1 − ui,j+1

2∆x
+
ui+1,j − ui,j

2∆x
+
vi+1,j+1 − vi+1,j

2∆y
+
vi,j+1 − vi,j

2∆y

]2

.

Therefore, when νr = 0, we deduce that

1

2

d

dt
Eh(t) = νu 〈∇c

h [∇v
h · uh] ,uh〉 = −νu‖∇v

h · uh‖2

which means that the semi-discrete LF-DP scheme is dissipative. This proves Point iii.

5.3 Fourier analysis

Let us carry out a Fourier analysis of the semi-discrete schemes by considering the discrete Fourier modes

ri,j(t) = ϕr(t)e
ı(kxxi+kyyj), ui,j(t) = ϕu(t)eı(kxxi+kyyj) and vi,j(t) = ϕv(t)e

ı(kxxi+kyyj).

that are substituted in the cell-centered scheme (24) and in the vertex-based scheme (26) to obtain the differential
system

ϕ′r(t)

ϕ′u(t)

ϕ′v(t)

 =


−νr

(
α2

∆x2
+ β2

∆y2

)
−ıη

(
a?

α
∆x − νr

ω
a?

β
∆y

)
−ıη

(
a?

β
∆y + νr

ω
a?

α
∆x

)
−ıa? α

∆xη −νu α2

∆x2
−νu α

∆x
β

∆y + ωη2

−ıa? β
∆yη −νu α

∆x
β

∆y − ωη
2 −νu β2

∆y2



ϕr(t)

ϕu(t)

ϕv(t)

 (27)

where parameters α, β an η are specified in Table 2 depending on the scheme under study. One eigenvalue of the
amplification matrix in (27) is λ0 = 0 which corresponds to the stationary state. The other eigenvalues are given by

λc =
νr + νu

2

(
α2

∆x2
+

β2

∆y2

)
± ı

√
ω2η4 + a2

?η
2

(
α2

∆x2
+

β2

∆y2

)
−
(
νr − νu

2

)2( α2

∆x2
+

β2

∆y2

)2

.

As mentioned above, it is essential with the AT −DP scheme to take νr = νu in order to be as close as possible to
the exact dispersion relation (19), see Figure 5.

Remark 8. We notice that the damping rate <(λ) of the AT −DP scheme is larger than those of the AT −LF and
LF −DP schemes.
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(a) Exact dispersion law (b) Dispersion law (cell-centered) (c) Dispersion law (vertex-based)

(d) Exact damping (e) Damping error (cell-centered) (f) Damping error (vertex-based)

Figure 5: Dispersion relation and damping for the AT-DP scheme with a∗ = ω∆x.

6 Analysis of the fully discrete Godunov type schemes

We consider an explicit discretisation for the advection term. Nevertheless it is well known that a fully explicit
discretisation of the Coriolis term leads in that case to unstable schemes, see [8]. Then let us set

uθ =

(
θ1u

n + (1− θ1)un+1

θ2v
n + (1− θ2)vn+1

)

for some θ1, θ2 ∈ [0, 1]. In particular, for θ1 = θ2 = θ, then uθ = θun + (1− θ)un+1.

6.1 Stability condition

For the sake of clarity, we shall assume in the sequel that

∆x = ∆y = h.

As a consequence, due to (14), we have

κr := κxr = κyr = ηxr = ηyr , κu = κv = ηu = ηv and ν# =
κ#a∗∆x

2
.

We propose the following time discretisation for the cell-centered scheme
rn+1
i,j − rni,j

∆t
+ a?[∇c2h · unh]i,j − νr

[
∇c2h ·

(
∇c2hrnh +

ω

a∗
un,⊥h

)]
i,j

= 0,

un+1
i,j − uni,j

∆t
+ a?[∇c2hrnh ]i,j − νu [∇c2h(∇c2h · unh)]i,j = −ωuθ,⊥i,j ,

(28)
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and for the vertex-based scheme
rn+1
i,j − rni,j

∆t
+ a?f

c
h

[
∇v
h · unh

]
i,j
− νr∇c

h ·
[
∇v
hr
n
h + ωfv

h(unh)⊥
]
i,j

= 0,

un+1
i,j − uni,j

∆t
+ a?f

c
h

[
∇v
hr
n
h

]
i,j
− νu∇c

h

[
∇v
h · unh

]
i,j

= −ωf c
h

[
fv
h(uθh)

]⊥
i,j
.

(29)

In order to avoid inverting a matrix with a large stencil in the computation of the scheme, the vertex-based scheme is
restricted to the cases (θ1 = 1, θ2 = 0) and (θ1 = 0, θ2 = 1).

Lemma 8. Any choice such that θ1 + θ2 > 1 makes schemes (28) and (29) unstable. In particular, the explicit case
θ1 = θ2 = 1 is unstable, as mentioned before.

The proof of this lemma is embedded in the proof of Theorem 1 below.

Theorem 1. For a uniform mesh ∆x = ∆y = h, the LF-DP schemes (i.e. (28) and (29) with νr = 0) are stable
under the following conditions

∆t ≤ min{∆ta,∆tb} where ∆ta :=
κuh

2a∗
and ∆tb :=

2

ω|θ2 − θ1|
.

Remark 9. The restriction on the time step ∆ta (resp. ∆tb) is the classical CFL condition for advection (resp. rota-
tion) phenomena. Note that the choice θ2 = θ1 makes the CFL condition independent from the Coriolis parameter.

Proof. Let us denote

$ = ω∆t, σ = a?
∆t

h
.

We now perform the Fourier analysis for fully discrete Godunov type schemes by substituting the fully discrete
Fourier mode

rni,j = ϕnr e
ı(kxxi+kyyj), uni,j = ϕnue

ı(kxxi+kyyj) and vni,j = ϕnve
ı(kxxi+kyyj)

into the fully discrete scheme to obtain
Tθϕn+1 =Mθϕ

n

where

Tθ =

1 0 0

0 1 −(1− θ2)$η2

0 (1− θ1)$η2 1


and

Mθ =


1− κrσ

2

(
α2 + β2

)
−ıη

(
σα− κr

2 $β
)
−ıη

(
σβ + κr

2 $α
)

−ıσαη 1− κσ
2 α

2 −κσ
2 αβ + θ2$η

2

−ıσβη −κσ
2 αβ − θ1$η

2 1− κσ
2 β

2

 .

Let us set Λ(θ1, θ2) = 1 + $2η4(1 − θ1)(1 − θ2) = det Tθ. The characteristic polynomial of this amplification
matrix T −1

θ Mθ has one root λ = 1 and the other roots are also roots of the second-order polynomial

P (λ) := Λλ2 + ξλ+ ζ (30)

where

ξ = −2 +$2η4(θ1 + θ2 − 2θ1θ2) +
κuσ

2

[
α2 + β2 −$η2αβ(θ2 − θ1)

]
+
κrσ

2

(
α2 + β2

)
Λ
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and

ζ = 1 +$2η4θ1θ2 +
κrσ

2
$2η4

[
α2θ1(1− θ2) + β2θ2(1− θ1)

]
− κrσ

2

(
α2 + β2

)
+ σ

(
ση2 − κu

2
+ σ

κrκu
4

(α2 + β2)
) [
α2 + β2 −$η2αβ(θ2 − θ1)

]
.

Let us first prove Lemma 8 and consider for that the stationary state, kx = ky = 0, which implies α = β = 0. The
characteristic polynomial then reduces to

P (λ) = Λλ2 +
[
−2 +$2η4(θ2 + θ1 − 2θ2θ1)

]
λ+ 1 +$2η4θ2θ1.

For the scheme to be stable, all eigenvalues must satisfy |λ| ≤ 1. In this simple case, a necessary condition is
|λ1λ2| ≤ 1, which is equivalent to

ζ

Λ
≤ 1 ⇐⇒ $2(1− θ2 − θ1) ≥ 0.

This proves Lemma 8. Let us now turn to the proof of Theorem 1.

We now consider the fully discrete LF-DP cell-centered scheme:

κr = 0, η = 1 and − 1 ≤ α, β ≤ 1.

Then parameters ξ and ζ involved in (30) reduce to

ξ = −2 +$2(θ2 + θ1 − 2θ2θ1) +
κuσ

2

[
α2 + β2 −$αβ(θ2 − θ1)

]
and

ζ = 1 +$2θ2θ1 + σ
(
σ − κu

2

) [
α2 + β2 −$αβ(θ2 − θ1)

]
.

Imposing |λ| ≤ 1 is equivalent to
|ζ| ≤ Λ and |ξ| ≤ Λ + ζ.

• Firstly, the condition ζ ≤ Λ can be written as

f1(α, β) = $2 [1− (θ2 + θ1)] + σ
(κu

2
− σ

) [
α2 + β2 −$αβ(θ2 − θ1)

]
≥ 0

which in particular holds when
σ ≤ κu

2
and $|θ2 − θ1| ≤ 2. (31)

Indeed, the latter constraint implies that α2 + β2 −$αβ(θ2 − θ1) ∈ [0, 4] since α, β ∈ [−1, 1].

• The condition ζ ≥ −Λ is equivalent to

f2(α, β) = 2 +$2 [1− (θ2 + θ1) + 2θ2θ1]− σ
(κu

2
− σ

) [
α2 + β2 −$αβ(θ2 − θ1)

]
≥ 0.

Under (31) and due to the fact that κu ∈ [0, 1], we have

2− σ
(κ

2
− σ

)
4 = 4

(
σ − κu

2

)2
+ 2− κ2

u

4
≥ 0

which ensures that the requirement f2 ≥ 0 is always satisfied.

• The case −ξ ≤ Λ + ζ reads

f3(α, β) = $2 + σ2
[
α2 + β2 −$αβ(θ2 − θ1)

]
≥ 0

which always holds under (31).
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• Finally, the condition ξ ≤ Λ + ζ reads

f4(α, β) = 4 +$2(1− 2θ2)(1− 2θ1) + σ(σ − κu)
[
α2 + β2 −$αβ(θ2 − θ1)

]
≥ 0.

Let us notice that due to (31) and θ2, θ1 ∈ [0, 1], we have

f4(α, β) ≥ p4 := 4

[
σ2 − σκu −

$2

4
+ 1

]
.

Either ω2h2 < (4 − κu)a2
∗ and p4 is a second-order polynomial with respect to ∆t that is always positive:

there is no additional constraint upon the time step. Or ω2h2 ≥ (4 − κu)a2
∗ and ∆t must be small enough to

ensure that p4 ≥ 0, i.e.

∆t ≤ h

a∗κu
× 2

1−
√

1− 4a2∗−ω2h2

a2∗κ
2
u

4a2∗−ω2h2

a2∗κ
2
u

. (32)

The convexity of the function x 7→ 1−
√

1− x shows that when ω2h2 ≤ 4a2
∗, the bound in (32) is greater than

h
a∗κu

≥ h
2a∗

. Hence in that case (32) is less restrictive than (31). The study of the monotonicity of the bound
with respect to κu shows that it is also the case when ω2h2 > 4a2

∗. Consequently, the only constraint upon the
time step is (31) which ends the proof of Theorem 1.

In the vertex-based case, the only difference is that η ∈ [0, 1]. It can be shown that η = 1 is always the most
restrictive constraint and the same stability conditions hold.

Proposition 8. Let us set ϕ(x) =
√

1+x2−1
x2

. The cell-centered/vertex-based AT-LF and AT-DP schemes are stable
provided that the time step is smaller than

Scheme (θ1 = 0, θ2 = 0) (θ1 = 1, θ2 = 0) or (θ1 = 0, θ2 = 1) (θ1 = 1/2, θ2 = 1/2)

AT-LF (κu = 0) κr
2
h
a∗

min
{

2
ω ,

κrh
4a∗

ϕ
(
κrωh
4a∗

)
, 4h
κra∗

ϕ
(

2ωh
κra∗

)}
κrh
a∗
ϕ
(
κrωh
2a∗

)
AT-DP (κr = κu = κ) 2κ

2+κ2
h
a∗

min
{

κ
2+κ2

h
a∗
, 1
ω

}
min

{
κ

2+κ2
h
a∗
, 2
ω

}

Proof. The proof relies on same kind of computations than Theorem 1.

Remark 10. Contrary to the result in Theorem 1, for the choice θ1 = θ2 = 1/2, the CFL conditions in Prop. 8 still
depend on the Coriolis parameter ω. The only choice for which the CFL condition does not depend on the Coriolis
parameter is a fully implicit discretisation of the Coriolis term, i.e. θ1 = θ2 = 0.

We also notice that the stability conditions associated to the AT-LF scheme are more restrictive than the conditions
for the LF-DP scheme.

6.2 Orthogonality-preserving property

We now turn to another major aspect of the linear wave equation which is the preservation of the orthogonal sub-
space, see Prop. 3. It means that when the initial condition is in the orthogonal subspace, the numerical solution
remains in this subspace at any time. If the numerical scheme satisfies such a property, we say that this scheme is an
orthogonality-preserving scheme.

As we shall see below, the original schemes (28) and (29) are not orthogonality-preserving schemes. That is why
we have to modify them. To do so, let us change the time discretisation of the velocity divergence on the pressure

22



equation in the cell-centered scheme as
rn+1
i,j − rni,j

∆t
+ a?[∇c2h · uτh]i,j − νr

[
∇c2h ·

(
∇c2hrnh +

ω

a∗
(unh)⊥

)]
i,j

= 0,

un+1
i,j − uni,j

∆t
+ a?[∇c2hrnh ]i,j − νu [∇c2h(∇c2h · unh)]i,j = −ωuθ,⊥i,j ,

(33)

and in the vertex-based scheme as
rn+1
i,j − rni,j

∆t
+ a?f

c
h

[
∇v
h · uτh

]
i,j
− νr∇c

h ·
[
∇v
hr
n
h + ωfv

h

(
(unh)⊥

)]
i,j

= 0,

un+1
i,j − uni,j

∆t
+ a?f

c
h

[
∇v
hr
n
h

]
i,j
− νu∇c

h

[
∇v
h · unh

]
i,j

= −ωf c
h

[
fv
h(uθh)

]⊥
i,j
,

(34)

for uτh = (τ1u
n + (1− τ1)un+1, τ2v

n + (1− τ2)vn+1)T with τ1, τ2 ∈ [0, 1]. Note that these modified schemes are
still explicit since the updated velocity can be computed first and then introduced in the pressure equation.

It is straightforward to prove that these modified schemes still preserve the corresponding discrete kernels (20)
and (25). They also preserve the orthogonal subspace:

Proposition 9. The fully discrete cell-centered (33) and vertex-based (34) schemes are orthogonality-preserving
schemes provided that

κr = 0 and τ1 = θ1, τ2 = θ2. (35)

Proof. Let us assume that qnh ∈ E
c,⊥
ω 6=0,h and show that qn+1

h ∈ Ec,⊥ω 6=0,h.

Taking the discrete scalar product of (33) with q̂h ∈ Ecω 6=0,h, we obtain

〈qn+1
h , q̂h〉 = 〈qnh , q̂h〉 − a?∆t (〈∇c2h · uτh, r̂h〉+ 〈∇c2hrnh , ûh〉)

+ νu∆t〈∇c2h[∇c2h · unh], ûh〉+ νr∆t

〈
∇c2h ·

[
∇c2hrnh +

ω

a?
un,⊥h

]
, r̂h

〉
− ω∆t〈uθ,⊥h , ûh〉.

Because of∇c2h · ûh = 0 and due to Lemma 4, we have

〈∇c2hrnh , ûh〉 = −〈rnh ,∇c2h · ûh〉 = 0,

〈∇c2h[∇c2h · uh], ûh〉 = −〈∇c2h · uh,∇c2h · ûh〉 = 0.

Moreover 〈qnh , q̂h〉 = 0 and

−a?∆t 〈∇c2h · uτh, r̂h〉 = a?∆t 〈uτh,∇c2hr̂h〉 = −ω∆t〈uτh, û⊥h 〉 = ω∆t〈uτ,⊥h , ûh〉.

As a result, we obtain

〈qn+1
h , q̂h〉 = ω∆t

〈
(uτh − uθh)

⊥
, ûh

〉
+ νr∆t

〈
∇c2h ·

[
∇c2hrnh +

ω

a?
un,⊥h

]
, r̂h

〉
.

Therefore, in order to ensure that ∀ q̂h ∈ Ecω 6=0,h, 〈qn+1
h , q̂h〉 = 0, we need νr = 0 and τ1 = θ1, τ2 = θ2.

Similarly, for the vertex-based scheme (34), we have

〈qn+1
h , q̂h〉 = 〈qnh , q̂h〉 − a?∆t (〈f c

h [∇v
hr
n
h ] , ûh〉+ 〈f c

h [∇v
h · uτh] , r̂h〉) + νu∆t 〈∇c

h [∇v
h · unh] , ûh〉

+ νr∆t
〈
∇c
h ·
[
∇v
hr
n
h + ωfv

h(un,⊥h )
]
, r̂h

〉
− ω∆t

〈
f c
h

[
fv
h(uθ,⊥h )

]
, û
〉

and due to Lemma 7

〈qn+1
h , q̂h〉 = νr∆t

〈
∇c
h ·
[
∇v
hr
n
h + ωfv

h(un,⊥h )
]
, r̂h

〉
+ ω∆t

〈
f c
h

[
fv
h(û⊥h )

]
,uθh − uτh

〉
.

Therefore, under (35), we have 〈qn+1
h , q̂h〉 = 0 for any q̂h ∈ Evω 6=0,h.
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7 Numerical results

7.1 Well-balanced test case with initial condition in the kernel

We first come back to the test case presented in Section 3 to explain the wrong behaviour of the classical scheme and
of the naive corrections referred to as LF-C and C-LF strategies. In practice we define the initial discrete pressure r
by using relation (7) applied at the cell centers and the initial discrete velocity by using the definition of the discrete
kernel (20). The initial state is then a discrete stationary solution when we use the scheme defined by (28) or (33). As
expected, the AT-DP, AT-LF and LF-DP strategies exactly maintain the stationary state, whereas the results obtained
with the AT-C and C-DP strategies are very similar to the ones obtained with the LF-C and C-LF strategies and are
not able to preserve the stationary state, compare Fig. 6 and 3.

In Fig. 6 we present the results for two different grid sizes and two different final times. It is clear that the error
decreases when the mesh is refined and increases with time, that is not surprising. As it has already been noticed, it
clearly appears that, for this test case, the correction on the diffusion for the velocity equation, i.e. C-DP strategy,
has a much larger impact than the correction on the diffusion for the pressure equation, i.e. AT-C strategy, but is not
enough to preserve the stationary state. This behaviour will be investigated in more details in Section 7.3.
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(a) r(t = 10, x, y) with a 50× 50 grid.
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

IC

C−C

AT−C

C−DP

AT−LF

LF−DP

AT−DP

(b) r(t = 20, x, y) with a 50× 50 grid.
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(c) r(t = 10, x, y) with a 100× 100 grid.
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(d) r(t = 20, x, y) with a 100× 100 grid.

Figure 6: Cross-section of pressure.
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7.2 Orthogonality-preserving test case with initial condition in the orthogonal subspace

In this test case, we consider periodic boundary conditions and an initial velocity field given by
u(t = 0, x, y) = 1

2 exp

[
−
(

4x
0.4

)2 − ( 4y
0.8

)2
]

v(t = 0, x, y) = 1
2 exp

[
−
(

4x
0.8

)2 − ( 4y
0.4

)2
]
.

in the domain T2 = [−0.5, 0.5] × [−0.5, 0.5]. Then the initial pressure r(t = 0, x, y) is constructed by using the
definition of the discrete orthogonal subspace (21). Note that for this test case, we only present results for the cell-
centered scheme (28) for which we can compute explicitly the orthogonal of the kernel. Note that for the vertex-based
scheme (29), we can also prove that the LF-DP scheme with the appropriate uτ velocity preserves the orthogonal,
but we cannot provide an explicit expression for this subspace. The time discretisation parameter for Coriolis term
is θ1 = θ2 = 1/2 for all the numerical results. A 50× 50 grid is used.

As expected, Figure 7(a) indicates that, for the choice τ = 1, no scheme is orthogonality-preserving (if ti were the
case, the curves would remain exactly zero). Nevertheless it clearly appears that the projection q̂ onto the kernel
depends on the numerical strategy and is much larger for the C-C and the AT-C schemes than for the other ones.
Figure 7(b) shows that the orthogonal part of the solution is less damped when the LF strategy is used, i.e. for
AT-LF and LF-DP schemes, since the numerical diffusion is canceled for one equation. In Fig. 7(c) and Fig. 7(d),
we present the same results, but focusing on the LF-DP scheme for different values of the parameter τ used for
the time discretisation of the velocity in the pressure equation. It appears on Fig. 7(c) that the case with τ = θ is
the only one for which the projection of the solution in the kernel remains zero for all time, which means that the
orthogonal subspace is stable for the scheme. In Figure 7(d), it appears that the damping increases when the time
discretisation becomes more and more implicit, i.e. the parameter τ becomes smaller and smaller. Note that the
choice τ = θ = 1/2 for which the orthogonal is a stable subspace corresponds to a mean damping: contrary to the
previous test case, the solution evolves but remains in the orthogonal.

7.3 Behaviour of the solution with initial condition close to the kernel

We now consider an initial condition close to the discrete kernel up to a perturbation of size M � 1

q0
h = q̂0

h +M
q̃0
h

‖q̃0
h‖
,

where q̂0
h stands for the projection onto the kernel given in Section 7.1 and q̃0

h is the orthogonal part considered in
Section 7.2. Here the Froude number M is set equal to 10−3 and a 50×50 grid is used. In Figure 8(a) we present the
evolution in time of the deviation from the initial projection q̂0

h. It appears that for the C-C, AT-C and C-DP schemes,
that are not able to maintain steady states, the deviation increases regularly with time. Nevertheless it increases much
faster for C-C and AT-C schemes than for C-DP schemes, which reinforces the conclusions of the first numerical
example, see Section 7.1. For C-C and AT-C schemes, the deviation becomes almost constant when the discrete
solution reaches a stationary state of the scheme, which is very different from the initial one since the kernels of
those scheme are inaccurate approximations of the continuous ones, see Lemma 2. The same phenomenon should
occur for the C-DP scheme but since the deviation increases slowly, one needs to wait for a long time.

In Fig. 8(b) we present the norm of the part of the solution that belongs to the orthogonal subspace. It appears
that for each scheme, it is mostly decreasing in time, despite some oscillations, meaning that, for each scheme, the
solution tends to a stationary state that belongs to the kernel of the considered scheme. Note that the solution of the
AT-C scheme tends quite quickly to a stationary state in its kernel since the orthogonal part vanishes. For C-C and
C-DP schemes, the decreasing of the orthogonal part is slower, which explains that the deviation is still increasing in
Fig. 8(a), even if very slowly for large time for the C-C scheme.

In Fig. 9, we present for different values of M , the maximum value, over the time interval, of the deviation from the
initial projection q̂0

h. It clearly exhibits that, for the well-balanced LF-DP, AT-LF and AT-DP strategies, the deviation
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Figure 7: Evolution of the kernel and orthogonal part for θ1 = θ2 = 1
2 .

is proportional to M whereas it remains constant for the other strategies, even if the constant is smaller for the C-DP
scheme than for the C-C and AT-C schemes. It emphasizes the importance of the well-balanced strategy to ensure
the accuracy near the geostrophic equilibrium.

7.4 Water column test case and geostrophic adjustment

In this test case, we consider a discontinuous initial condition which is given by
r(t = 0, x, y) =

{
2, if x2 + y2 ≤ 1

1, if x2 + y2 > 1,

u(t = 0, x, y) = 0,

v(t = 0, x, y) = 0.

with periodic boundary conditions on the domain [−5, 5] × [−5, 5]. This initial condition corresponds to a circular
dam break and is very far from the geostrophic equilibrium (3). Hence the solution of the wave equation with
Coriolis term (2) will contain a travelling wave that should go out of the domain (here due to periodic boundary
conditions, the waves remain in the domain but will vanish for long time because of numerical diffusion) and the
remaining stationary state will be the geostrophic equilibrium (3) corresponding to the initial data. Discrete solutions
will exhibit the same behaviour but the remaining state will belong to the discrete kernel of each scheme.

In Fig. 10, we present the evolution in time of the pressure r for different schemes. In Fig. 10(f), i.e. for long
time, three groups can be exhibited: the one corresponding to the well-balanced schemes, i.e. the LF-DP, AT-LF and
AT-DP schemes, the one corresponding to the schemes for which the kernel is given by (9a), i.e. the C-C and the
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Figure 8: Evolution in time of the deviation for an initial condition close to the discrete kernel.
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C-DP schemes, and the AT-C scheme for which the kernel is given by (9c). In Fig. 12 we present at the final time
the results for the quantities r, u and v for three schemes, corresponding to the three groups previously mentioned.
Results appear to be very different (note the scale is not the same for the three figures).

On the left column, solutions of the C-C and C-DP schemes are close to a constant state (see the scale on the z-axis)
that corresponds to the discrete kernel (9a). Note that the discrete kernels (9a) and (9b) are the same and correspond
respectively to the C-C and C-DP schemes. On the center column, u-velocity (resp. v-velocity) corresponding to
the solution of the AT-C scheme is almost constant in the x-direction (resp. in the y-direction). It is in agreement
with the definition of the kernel (9c), that is neither a constant state, nor a good approximation of the continuous
geostrophic equilibrium (3).

In the right column, solution for the AT-DP scheme is very similar to the geostrophic equilibrium plotted in Fig. 1,
which may indicate that the solution is close to the discrete kernel (20), that has been proven to be a good ap-
proximation of the continuous geostrophic equilibrium (3). It is clearly exhibited in Fig. 11 where we show that,
for long time, the gradient of the pressure along the x-axis balances exactly the x-component of the Coriolis force,
which characterizes the geostrophic equilibrium (the result would be the same for any cross-section in any direction).
Among the C-C, AT-C and C-DP schemes, that are not well-balanced, note that, whereas the C-DP scheme appeared
to be preferable in the previous test cases since the deviation from the discrete geostrophic equilibrium remained
relatively small, here, the solution of the C-DP scheme is very similar to the one of the classical C-C scheme and is
totally inaccurate. It allows to conclude that the well-balanced property is absolutely necessary to obtain accurate
solutions for a large range of test cases.

In Fig. 10(a) to 10(e) we present the transient part of this geostrophic adjustment. It appears that the time evolution
of the solutions of the three well-balanced schemes, even if they converge to the same state, is not completely similar.
In particular the solution for the AT-DP scheme is different from a group composed by the solutions corresponding
to the AT-LF and LF-DP schemes. Note also that for short time, the solution of the LF-DP scheme presents some
oscillations, that are due to the discontinuity of the initial solution. This difference is highlighted in Fig. 13 where
we present the time evolution of the energy. Indeed, even if the final state is the same for the three well-balanced
schemes, the time evolution is different for, on the one hand, the AT-DP scheme, and, on the other hand, the AT-LF
and the LF-DP schemes, for which the energy decreases more slowly. Nevertheless note that, as expected from Th. 1,
the energy is globally decreasing for all schemes, even if we consider a discontinuous initial condition.
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Figure 10: Cross section of the pressure r at y = 0 at different times.
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Figure 11: Cross section of the pressure gradient and Coriolis force at y = 0 for AT-DP scheme.

8 Conclusion

In this work we propose new collocated finite volume Godunov type schemes to compute accurate approximate
solutions of the wave equation with Coriolis term. The main ingredient of the method is to modify the numerical
diffusion of the scheme to make the discrete kernel compatible with the so-called geostrophic equilibrium. It extends
techniques proposed in [7] and [9]. We propose three different well-balanced schemes, namely the AT-LF (Apparent
Topography & Low Froude) scheme, the LF-DP (Low Froude & Divergence Penalisation) scheme and the AT-DP
(Apparent Topography & Divergence Penalization) scheme, and two different ways to discretise the geostrophic
equilibrium, namely at the centers of the cell or at the interfaces.

The main result of the paper is the proof of stability, under classical CFL conditions, of all these modified schemes,
see Th. 1. Moreover some numerical test cases allow us to investigate the behaviour of the schemes for different
kinds of initial solutions, including discontinuous ones, and conclude that the well-balanced property is essential to
ensure an accurate geostrophic adjustment. Future works will be dedicated to the extension of these results to the
fully nonlinear two-dimensional shallow water equations with Coriolis term (1).

A Proof of the Hodge decomposition in the continuous case (Prop. 1)

Proof. In order to prove (4), let us denote by A the space

A :=

{
(p,v) ∈

(
L2(T2)

)3 ∣∣∣∣ ∀ϕ ∈ C∞c (T2),

∫
T2

a?v
⊥ · ∇ϕ dx =

∫
T2

ωpϕ dx

}
.

We first show that A is a subset of E⊥ω 6=0. Let us take q̃ = (p,v) ∈ A. Then for all q = (r,u) ∈ Eω 6=0, we have

〈q̃, q〉 =

∫
T2

rp dx +

∫
T2

u · v dx =

∫
T2

rp dx +
a?
ω

∫
T2

v · ∇⊥r dx

=

∫
T2

ω

a?
pr dx−

∫
T2

v⊥ · ∇r dx = 0.

By density of C∞c (T2) in H1(T2), it follows that q̃ = (p,v) ∈ E⊥ω 6=0. Therefore, we conclude that A ⊂ E⊥ω 6=0.

On the other hand, let us take q̃ = (p,v) ∈ E⊥ω 6=0. For any φ ∈ H1(T2) we have q̂ := ( ωa?φ,∇
⊥φ) ∈ Eω 6=0 . This

provides

〈q̃, q〉 = 0 =⇒
∫
T2

ω

a?
φp dx−

∫
T2

v⊥ · ∇φ dx = 0.

As a result, we have

∀ φ ∈ H1(T2),

∫
T2

ω

a?
φp dx =

∫
T2

v⊥ · ∇φ dx,

29



(a) r (b) r (c) r

(d) u (e) u (f) u

(g) v (h) v (i) v

Figure 12: Comparison between C-C (left), AT-C ( middle) and AT-DP (right) schemes at time t = 100.

which leads to
∀ φ ∈ C∞c (T2),

∫
T2

ω

a?
φp dx =

∫
T2

v⊥ · ∇φ dx.

It implies that q̃ ∈ A, that is to say E⊥ω 6=0 is a subset of A. In conclusion, we have

E⊥ω 6=0 = A =

{
(p,v) ∈

(
L2(T2)

)3 ∣∣∣∣ ∀ϕ ∈ C∞c (T2),

∫
T2

a?v
⊥ · ∇ϕ dx =

∫
T2

ωpϕ dx

}
.

We eventually have to prove that
Eω 6=0 ⊕ E⊥ω 6=0 =

(
L2(T2)

)3
.

By the fact that Eω 6=0⊕E⊥ω 6=0 ⊂
(
L2(T2)

)3 is trivial, we only have to check
(
L2(T2)

)3 ⊂ Eω 6=0⊕E⊥ω 6=0 . We suppose

q ∈ (L2(T2))3, we shall find q̂ ∈ Eω 6=0 and q̃ ∈ E⊥ω 6=0 such that q = q̂ + q̃. For q = (r, u, v) ∈
(
L2(T2)

)3, let us
denote µ(r) = 1

|T2|
∫
T2 r dx and consider the following variational form :

Find h ∈ H1(T2) such that: ∀ ϕ ∈ H1(T2), a(h, ϕ) = F (ϕ), where

a(h, ϕ) :=

∫
T2

∇h·∇ϕ dx+

(
ω

a?

)2 ∫
T2

hϕ dx, F (ϕ) :=
ω

a?

∫
T2

u⊥ ·∇ϕ dx−
(
ω

a?

)2 ∫
T2

(r−µ(r))ϕ dx. (36)
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Figure 13: Evolution in time of the energy

The existence and uniqueness of h ∈ H1(T2) results from the Lax-Milgram theorem for ω 6= 0. We consider the
decomposition for r given by

r = r̂ + r̃ with r̂ = µ(r)− h and r̃ = r − µ(r) + h.

For the decomposition of u, we simply construct û by setting

û =
a?
ω
∇⊥r̂ and ũ = u− û,

which implies (r̂, û) ∈ Eω 6=0 and
û⊥ = −a?

ω
∇r̂ =

a?
ω
∇ĥ.

Therefore, (36) implies that for all ϕ ∈ H1(T2) we have

ω

a?

∫
T2

(û− u)⊥ · ∇ϕ dx +

(
ω

a?

)2 ∫
T2

r̃ϕ dx = 0

which implies that

∀ϕ ∈ C∞c (T2),

∫
T2

a?ũ
⊥ · ∇ϕ dx =

∫
T2

ωr̃ϕ dx.
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