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Abstract

This paper introduces new methods to study the shape of tubular organs. Determining precise cross-sections
is of major importance to perform geometrical measurements, such as diameter, wall-thickness estimation
or area measurement. Our first contribution is a robust method to estimate orthogonal planes based on
the Voronoi Covariance Measure. Our method is not relying on a curve-skeleton computation beforehand.
This means our orthogonal plane estimator can be used either on the skeleton or on the volume. Another
important step towards tubular organ characterization is achieved through curve-skeletonization, as skeletons
allow to compare two tubular organs, and to perform virtual endoscopy. Our second contribution is dedicated
to correcting common defects of the skeleton by new pruning and recentering methods. Finally, we propose
a new method for curve-skeleton extraction.

Keywords: Tubular organ analysis, Orthogonal planes, Centerlines, Voronoï covariance measure.

1. Introduction

Tubular organ analysis is essential for the physio-
logical understanding of this kind of organs and for
the characterization of related diseases. Many ma-
jor diseases involve tubular organs. For instance,
in the case of airway-trees, chronic obstructive pul-
monary disease (COPD) has been reported to be
one of the major causes of death (Murray and
Lopez, 1996). Another example is coronary heart
disease, which is linked to obstructed vessels, and is
the first cause of death in the US (Members et al.,
2008). On another note, images of neurons acquired
from laser-scanning microscopy help building the
relationship between their morphology and their
function (Dima, 2002). All the above-mentioned or-
gans can be considered tubular, that is to say they
are 3D objects with a circular or elliptical cross-
section and elongation in one direction.

A lot of work and recent improvements have been
made to segmentation techniques regarding airway-
trees (Lo et al., 2010) and to neuron reconstruc-
tion (Janoos et al., 2009). However, various charac-
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terization approaches still have defects with respect
to tubular organs, as explained in Section 2.

The study of tubular organs relies on measure-
ments such as lumen area, wall thickness, and di-
ameter estimation, and has applications such as vir-
tual endoscopy and shape matching. Measurements
on tubular organs are precise only if they are taken
from a cross-section orthogonal to the tube. The
usual approach to obtain orthogonal planes con-
sists in computing the curve-skeleton (or center-
line). The cross-sectional plane is defined by the
tangent at a given skeletal point on the skeleton.
Precise measurements can then be performed in the
computed cross-section. Thus, orthogonal plane es-
timation is central but is usually heavily reliant on
the properties of the curve-skeleton.

Curve-skeletons, or centerlines, are simplifica-
tions of shapes consisting in a set of curves. They
allow to make geometrical measurements such as
tangent estimation (Postolski et al., 2012) or tortu-
osity (Lang et al., 2012), and to perform virtual
endoscopy (Bauer and Bischof, 2008). However,
orthogonal plane estimation and skeleton compu-
tation are impeded due to the organ’s variabil-
ity in diameter, to the presence of junctions (one
tube divides in two or more) and to segmentation
issues. Curve-skeletons can contain irregularities
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Figure 1: Neurite volume from the SNEMI3D dataset (Kasthuri et al., 2015) (in gray) and skeleton computed by the method
in Lee et al. (1994) (in red). Orthogonal planes are estimated using the λ-MST method of Postolski et al. (2012) (in blue). The
skeleton contains irregularities and spurious branches (see green points in the close-ups) which results in a deviated estimated
tangent. As a result, orthogonal plane estimation is impacted.

(i.e. they are not smooth) which impact orthogo-
nal plane computation (see Fig. 1). Moreover, spu-
rious branches appear as a result of small irregular-
ities on the object’s surface which are kept through
the skeletonization process. The orthogonal planes
computed on faulty branches are not orthogonal to
the tube. Thus, filtering the skeleton is often a
necessary post-processing step. Pruning consists
in the removal of irrelevant parts of the skeleton,
yielding a skeleton representing the original shape
more aptly. Once all the extra branches have been
removed, there is a one-to-one correspondence be-
tween the parts of the skeleton and those of the
volume, which allows to analyze the organ further.
One of the main challenges of pruning approaches
is having a complete and sensitive method, mean-
ing a method which removes all spurious branches
while keeping meaningful ones. This problem arises
specifically for varying-diameter tubes, where the
geometry of spurious branches may vary depending
on the tube radius.

Once the spurious branches have been removed,
it is possible to analyze the organ more easily.
Shape decomposition is part of this process. It con-
sists in breaking a complex shape into smaller and
meaningful parts. In the case of the airway-tree,
each bronchus is separated from another. Neverthe-
less, obtaining clear delineations in lower diameter

tubes is not easily achievable.
Recentering is also key to filtering the skeleton.

Indeed, not all skeletons are centered or smooth
inside the shape, negatively impacting geometrical
analyses and virtual endoscopy. Thus, for instance,
a tangent vector computed at a non-centered skele-
ton point is potentially not aligned with the tube’s
axis.

The contribution of this paper is manifold. First,
we introduce a robust orthogonal plane estimator.
Our method is based on the Voronoi Covariance
Measure (VCM), Mérigot et al. (2011). This mea-
sure describes the shape of the Voronoi cells gener-
ated by the skeleton points or directly by the vol-
ume points. In the following section, we show how
Voronoi cells have a simple and intuitive connection
to orthogonal plane normals. The main advantage
of our approach is its robustness to small irregulari-
ties in the curve. Moreover, unlike most orthogonal
plane estimators, it does not necessarily rely on a
curve, but it can be computed directly from a tubu-
lar volume.

Second, we propose original algorithms to im-
prove existing curve-skeletons. We use the orthogo-
nal planes to filter existing skeletons, which involves
pruning and recentering steps.

Finally, we propose our own curve-
skeletonization approach. Our algorithm consists
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in a tracking procedure, which direction is given by
the orthogonal planes. It consists in two steps: the
first one is dedicated to tubular parts, the second
one to junctions. We show our skeleton is complete
and possesses few to no faulty branches.

The paper is organized as follows. In Section 2,
we describe the state-of-the-art methods for curve-
skeleton extraction, and orthogonal plane estima-
tion. Section 3 presents our method for robust or-
thogonal plane estimation. In Sections 4 and 5,
existing skeletons are filtered and improved using
orthogonal planes. In Section 6, we introduce our
own centerline tracking algorithm.

2. Related work

The most common workflow to obtain robust
measurements on tubular organs consists in: seg-
menting the organ; extracting the curve-skeleton
from the volume; computing cross-sections from the
curve-skeleton; and making measurements from the
cross-sections. A workflow for airway-tree analysis
following these four steps is described in Tschirren
et al. (2005). This section presents previous works
aiming at extracting and filtering curve-skeletons
and at estimating orthogonal planes.

There are various existing algorithms for curve-
skeleton extraction. Tagliasacchi et al. (2016) de-
scribed a list of desirable properties for a curve-
skeleton to possess. In the context of tubular or-
gans, not all properties are necessary. The curve-
skeleton must be complete, centered, thin and not
impacted by noise.The curve-skeleton can be ex-
tracted directly from a gray-level image, but an
implicit segmentation step is usually involved to
capture the geometry of the organ (Flasque et al.,
2001).

Thus, in the context of varying-diameter tubes
with junctions, we focus on curve-skeleton methods
based on segmented sets of voxels. According to
the survey by Cornea et al. (2007) we can classify
the curve-skeleton algorithms for discrete objects in
the following classes: (a) thinning algorithms and
(b) distance field or general field based algorithms.
Thinning methods consist in the removal of voxels

from the boundary until a thin version of the shape
is obtained. They are comprised, among many oth-
ers, of the work of Lee et al. (1994), Palágyi et al.
(2006) and Couprie et al. (2007) (see Fig. 2). The
first two compute the skeleton on any given 3D ob-
ject whereas the latter is applied to tubular shapes.
The authors in Couprie et al. (2007) propose to

compute the skeleton by filtering the medial axis
(the centers of all the local maximal balls that can
fit inside a shape) with an angle criterion. The re-
sulting filtered medial axis is used as a constraint
set for the computation of the skeleton by homo-
topic thinning. More importantly, and this is true
for all thinning methods, it can create small faulty
branches (see close-up in Fig. 2a), often removed
automatically by a pruning step, which are, in our
case, difficult to distinguish from small branches
that are representative of the volume. The authors
define two parameters in order to get rid of spurious
branches. However, in practice, some small spuri-
ous branches remain, regardless of the parameter
values.
Potential field methods generally produce very

smooth skeletons. For instance, we can cite Cornea
et al. (2005), Hassouna and Farag (2009) where the
skeleton is extracted from a potential field com-
puted on the volume. In Cornea et al. (2005), the
authors compute a hierarchical skeleton based on
a Newtonian potential field. Each boundary point
is considered as an electric charge, repelling inte-
rior points of the volume. From the potential vec-
tor field, critical points (points where the magni-
tude of the force vector vanishes) are extracted and
connected thanks to paths, yielding a first hierar-
chy in the skeleton. Then, two levels of hierarchy
are added through high divergence value and high-
curvature points. The main drawback of this kind
of algorithm is that the resulting skeleton is not
necessarily connected, can be incomplete (see Fig.
2b) and can contain spurious branches (see Fig. 2c).

In summary, the various classes of curve-skeleton
algorithms have defects, including introducing ir-
regularities, being incomplete, or having faulty
branches. Pruning consists in removing faulty
branches while keeping meaningful ones with re-
spect to the object. The general idea is to define a
significance measure for each point: this value cor-
responds to the relevance of a point in the skeleton,
and is preferably low for spurious branches. Var-
ious significance measures have been defined and
reviewed in Shaked and Bruckstein (1998). These
measures aim at determining if a branch stems from
a small irregularity on the surface. For instance,
maximal thickness of implied erosion (Arcelli and
Sanniti di Baja, 1993) estimates the part of a vol-
ume which is encoded by the branch. Another mea-
sure is dedicated to the ratio between the length
of the branch and the number of closest bound-
ary points to a branch point. A recent work intro-
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(a) (b) (c)

Figure 2: (a) Skeleton (in red) computed on a airway-tree segmentation using the thinning method described in Couprie et al.
(2007): parameter values were chosen to obtain the most complete skeleton with the least amount of faulty branches, but
there are some regardless, see close-up view. (b) (c) Skeleton computed using potential field (Cornea et al., 2005): two levels
of hierarchy on a skeleton obtained with two different parameter values. Obtaining a complete skeleton containing all the
branches in the volume as well as no faulty branches is not possible.

(a) (b)

Figure 3: Pruned branches (in yellow) of a skeleton com-
puted using Cornea et al. (2005) on tubular volumes (in
gray). The pruning method is described in Serino and San-
niti di Baja (2014). Their centeredness criterion leads to
errors (see circled areas): (a) some relevant branches are
pruned and (b) some spurious branches are kept.

duced in Serino and Sanniti di Baja (2014) involves
pruning 3D-curve skeletons. It considers the curve-
skeleton as a graph, where each branch is an edge.
Pruning is done in a hierarchical manner. As a
first step, all peripheral edges are examined. Then,
a neighboring internal edge can be pruned only if
all of its neighboring peripheral edges have been
deleted. The authors use the combination of four
significance measures to achieve pruning: a length
criterion, a criterion estimating whether the branch
is centered, and two criteria involving the amount of

information the branch encodes in the shape. The
thresholds for each criterion are set automatically
by averaging measures over branches. This method
has two main drawbacks with respect to our tube-
shaped volumes. First, one criterion is relying on
centeredness of the branch. However, certain algo-
rithms cannot guarantee this property (see Fig. 3).
Second, using the average of the significance mea-
sure might not be relevant in the context of varying-
diameter shapes.

Another post-processing step consists in recen-
tering the skeleton. Points are not necessarily
centered in the branch (see Fig. 3a), or branching
points differ from one method to another (see So-
biecki et al. (2014) for example). Zigzags in the
skeleton impact geometrical measurements leading,
for example, to an overestimation of the length.
Bradley and Withers (2016) smooth and recenter
skeletons as a post-processing step. First, they
compute the set of maximal balls centered at each
point of the input skeleton. Then, they compute
the set of minimally overlapping balls. The result-
ing centered and smooth skeleton consists in the
centers of the balls linked by splines. Although the
presented approach is interesting to make measure-
ments in the context of noisy data, it can discard
interesting small geometrical features as well. Bar-
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Figure 4: Tangent estimation (in red) at two curve points
(in yellow) using the 3D λ-MST method (Postolski et al.,
2012). The tangent is given as a weighted average of the
digital straight segments (in green). Due to irregularities on
the curve, the tangent estimated at the point on the right
does not correspond to the shape of the curve.

bieri et al. (2015) describe an approach to recenter
a skeleton inside a shape. The new recentered point
correspond to a centroid in the cross-section. The
main drawback of this method is the orthogonal
plane estimation is very sensitive to irregularities
in the skeleton, and junctions are not properly pro-
cessed.

Orthogonal plane estimation is usually based
on the skeleton. The tangent at a point on the
curve-skeleton is the normal of the orthogonal
plane. Tangent estimation at a point p on a 3D
discrete curve can be achieved in a naive way, by
computing the vector defined by the difference be-
tween two points in the skeleton. The λ-MST esti-
mator described in Postolski et al. (2012) allows
to estimate 3D tangent more robustly. It relies
on maximal segments (longest digital straight seg-
ments) which capture the shape of the curve. The
tangent at p corresponds to a weighted average of
the direction vectors of all maximal segments pass-
ing through p (see Fig. 4). Both the naive and the
λ-MST methods are insufficient as they are sensi-
tive to irregularities in the discrete curve. Other
methods such as Kang et al. (2006) use non-rigid
registration of a deformable cylinder on the acqui-
sition image, and compute orthogonal planes from
the axis of this cylinder. However, the fitted cylin-
der has a constant diameter. Thus, this method is
not suited for varying-diameter tubes.

This paper addresses the shortcomings of the
afore-mentioned methods, and proposes a new or-
thogonal plane estimator which is more accurate
than existing methods and does not necessarily rely
on a curve-skeleton computation for certain types
of tubular volumes. Moreover, we introduce au-
tomatic post-processing approaches for the curve-
skeleton, including pruning and recentering which
tackle the issues mentioned above. Finally, we
present a new algorithm for curve-skeleton extrac-

tion on tubular volumes which yields complete and
centered skeletons.

3. Orthogonal plane estimation

3.1. Voronoi Covariance Measure

All of our contributions are based on the Voronoi
Covariance Measure (VCM). It is a measure, first
introduced in Mérigot et al. (2011) on point clouds
which was used to estimate normals. The VCM was
also defined on sets of voxels in Cuel et al. (2014)
and was proven to be a reliable tool to estimate
the surface normal. This measure was shown to
be resilient to Hausdorff noise and to outliers (Cuel
et al., 2015).

Let y be a point in a digital set. The VCM con-
siders the covariance matrix of Voronoi cells in the
neighborhood of y. The eigenvector with the largest
eigenvalue in this matrix corresponds to the surface
normal. Since the Voronoi diagram is global by na-
ture and sensitive to noise and digitization effects,
VCM computation is restricted to a small compu-
tation window taking into account a local neighbor-
hood. This ensures robustness of the estimator and
its multigrid convergence properties (Cuel et al.,
2014).

We recall here the formal definition of the VCM.
In the following, we refer to digital points, i.e. cen-
ters of pixels in 2D or voxels in 3D, as points.
Let us denote by n the dimension, O ⊆ Zn the
object, B(o, ρ) the points in the ball of radius ρ
and centered at o. The R-offset of O is defined
as OR = ∪o∈OB(o,R). The R-offset bounds the
Voronoi cells Vor(.), allowing to extract local infor-
mation from the Voronoi diagram. Voronoi cells in
a neighborhood around a point are taken into ac-
count: at a given point y, the computation window
is defined as W = B(y, r) ∩ O, where r is called
integration radius. The domain of integration for
the VCM at y is given as:

DIO(y, r,R) = ∪w∈W (Vor(w) ∩OR)

The VCM is the covariance matrix of all vectors
between the points in the domain of integration and
their respective Voronoi sites (see Fig. 5a). The
site for a point x is denoted by pO(x). Finally, the
covariance matrix is expressed as:

VO(y, r,R) =
∑

x∈DIO(y,r,R)

(x− pO(x))(x− pO(x))T
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(a) (b)

Figure 5: Digital VCM computation at point y on (a) a discrete 2D curve O and (b) a 2D object O. Solid lines (in gray and
orange) show the link between points and their associated Voronoi sites. All the lines with the same Voronoi site define a
Voronoi cell. (a) The VCM is the covariance measure of the Voronoi cells in the domain of integration DIO(y) (associated lines
in orange). (b) Voronoi cells are null for points inside the object O, such that only border points have a Voronoi cell. Orange
lines are integrated for the VCM at y.

(a) (b)

Figure 6: Correspondence between Voronoi cells and orthog-
onal planes. (a) Voronoi cells (in gray) computed at curve
points are aligned with orthogonal planes (in blue). (b) VCM
computation on a volume (a cylinder) at a point y. Similarly
as in the 2D case (see Fig. 5b), only surface points x have a
non-null Voronoi cell Vor(x). The Voronoi cells Vor(x) are
aligned with the orthogonal plane at y.

The VCM is defined on any compact set. Figure
5a shows its computation at a point on a 2D digital
curve, and Fig. 5b shows its computation on a 2D
digital object. Since the Voronoi cell of a point in-
side the object is reduced to the point itself, these
points do not bear influence in the VCM computa-
tion. Only points on the border contribute to the
VCM.

From this definition, it is clear the choice for the
integration radius r, and R is of major importance.
An empirical study for the VCM parameters r and
R has been led and its results are summarized in
Section 3.3.

3.2. Orthogonal plane

We propose to use the VCM to estimate orthog-
onal planes (as described in our work in Grélard
et al. (2015)). The orthogonal plane at a given
curve point is defined by its tangent to the curve.
The two main elongation directions of a 3D Voronoi
cell define the orientation of the orthogonal plane
(see Fig. 6a). As explained in Section 3.1, the VCM
estimates the shape of the expected Voronoi cell at
a point by integrating several digital Voronoi cells.
In 2D, the normal at a curve point is given as the
largest eigenvector in the VCM. Estimating a pre-
cise orthogonal plane on a 3D discrete curve is the
same problem as detecting a normal on a 2D curve
point, only with a supplementary dimension. The
two eigenvectors with the superior eigenvalues in
the VCM give the basis for the orthogonal plane.
The eigenvector with the lowest eigenvalue corre-
sponds to the tangent to the curve.

Since the definition of the VCM holds for any
compact set, the orthogonal plane estimation does
not necessarily rely on a curve, and can be used
directly from a set of voxels. As an example, the
shape of the Voronoi cells on the surface of a cylin-
der are pictured in Fig. 6b. Let us denote by y
the point where an orthogonal plane must be es-
timated. There is a correspondence between the
shape of the Voronoi cells at surface points close
to y and the expected orthogonal plane. Indeed,
the union of all such Voronoi cells is aligned with
the orthogonal plane. As a result, the conclusions
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drawn from a 3D discrete curve apply for a volume,
and the basis of the orthogonal plane is given by
the two eigenvectors with the superior eigenvalues.
The main challenge in order to estimate orthogonal
planes directly from the volume is to define which
local points on the surface must be taken into ac-
count in the domain of integration.

3.3. Automatic setting of the integration radius

Let P(p) be an orthogonal plane at a point p
and r the integration radius of the VCM used for
the orthogonal plane computation, as described in
Section 3.

The integration radius r must be “well-adjusted”
to capture the shape of the object locally, while
being robust to shape irregularities. A parameter
study correlating r to the radius of the tube ρ can
be found in an online appendix (F. Grélard et al.,
2017). The results show the integration radius r
should be chosen as ρ+2. The parameter study also
highlights that r should be adjusted such that the
domain of integration contains (a) surface points for
which Voronoi cells are aligned with the expected
orthogonal plane and (b) the least amount of irrele-
vant surface points. In the following paragraph, we
use a ball as domain of integration in order to inte-
grate all the relevant surface points, and we describe
how to automatically obtain the minimal value for
its radius r.

The size of the domain of integration is initial-
ized with the error-free Euclidean distance trans-
form value (DT ). Obviously, this value does not
correspond to the expected value for r in the case
of a tube with elliptic cross-sections, or when the
orthogonal plane is computed at a point p near the
boundary of the object. The process is the follow-
ing: an initial orthogonal plane P0(p) is computed
with r = DT (p). Let C be the cross-section, i.e.
the connected component in O ∩ P(p) which con-
tains p. If there is at least one point x in C, such
that d(p, x) > r, then r is incremented. This pro-
cess is repeated until no points in C are found at
d > r. It allows to converge towards both the ex-
pected orthogonal plane and the minimal value for
r to include all the necessary surface points in C.

3.4. Results

In this section, the VCM efficiency in comput-
ing orthogonal planes is compared to the λ-MST
method. These methods have been implemented
using the DGtal library (D. Coeurjolly et al., 2016)

(a) (b)

Figure 7: (a) Noisy tubular volume (in gray) generated fit-
ting balls of constant radius at each point of the digitized
initial centerline (in red). (b) Computed skeleton using the
method in Lee et al. (1994) containing irregularities.

and are available along with the data online 1. We
compare the methods both on synthetic and real
data.

3.4.1. Noisy synthetic data
The goal of this section is to compare our method

to the λ-MST estimator on known volumes with al-
tered surfaces. We have generated a slightly curved
cylinder with constant diameter (see Fig. 7), and
a straight elliptic cylinder with varying minor and
major axis values (see Fig. 10a).

Irregularities on the surface of tubular organs are
the source of skeleton distortions. In order to gen-
erate similar irregularities on the synthetic data we
have added some noise on the surfaces of the syn-
thetic object. Noisy versions of the volumes are
produced using a simplified version of Kanungo’s al-
gorithm (Kanungo et al., 2000). This method adds
noise on binary images by switching the value of
each voxel, according to its distance d to the ob-
ject boundary, with a probability αd. Cavities and
unconnected noisy voxels are then removed using
morphological operators.

The first test to assess our method’s robustness
consists in extracting geometrical characteristics on
the computed 2D orthogonal planes, and in compar-
ing them to known values.

The intersection between each orthogonal plane
and the unaltered digital curved cylinder should be
a disk. In order to quantify how close to a disk
the results are, two features are computed on the
2D shape resulting from the intersection: the area
in number of pixels, and the roundness, given as

1https://github.com/fgrelard/
OrthogonalPlaneBasedTools
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π ∗ a2
where a is the length of the major axis, and

A the area. This value ranges from 0 (line) to 1
(perfect circle).

The corresponding expected values can be com-
puted with the known radius of the curved cylinder
(20 pixels).

(a) (b)

Figure 8: (a) Area in pixels and (b) roundness mean val-
ues for all the orthogonal planes found for the noisy tube
volume of Fig. 7. The λ-MST on the computed skeleton
(white) yields results with high-variability, whereas the λ-
MST method applied on the initial centerline (L-MST on
IC) and the two VCM methods applied on the computed
skeleton and the volume respectively are consistent with the
theoretical values.

The results are obtained on 93 cross-sections. A
sample of a few orthogonal planes are shown on
the curved cylinder in Fig. 9. The mean values ob-
tained with the two variants of the VCM method
(see Figs. 8a and 8b), are closer to the theoretical
value than those obtained with λ-MST method on
the computed skeleton. Furthermore the difference
in standard-deviation between the two methods is
significant. The coefficient of variation, defined as
the ratio of the standard deviation to the mean,
is 29% and 12% for the λ-MST, against 1.5% and
1.1% for the VCM, for the area and roundness re-
spectively. This reflects the high-variability of the
λ-MST method, as it finds a substantial number of
incorrect orthogonal planes, whereas the results of
the proposed method are consistent.

Another evaluation process consists in evaluating
the difference between the normal direction of the
estimated plane, and the known direction. This test
has been performed on a straight elliptic cylinder
for which the normal direction at each point of its
initial centerline is constant (see Fig. 10a). For each
point of the skeleton computed using the method
in Lee et al. (1994), the angle defect between the
computed normal and the expected normal is deter-
mined for all methods. Figure 10b shows the results

Figure 9: Examples of orthogonal planes (in blue) ob-
tained on a noisy tube-like volume with the volumetric VCM
method.

obtained on 50 slices.

(a) (b)

Figure 10: (a) Noisy elliptic cynlinder with varying minor
and major axes, generated along a centerline with constant
normal direction. The computed skeleton (Lee et al., 1994)
is shown in red. (b) The angle defect (in degrees) between
the computed normal and the expected normal shows our
method outperforms the λ-MST tangent estimator.

Using VCM computed from both the centerline
and the volume yields an angle defect close to zero,
with a low standard deviation. The mean value
of the angle defect are greater for the λ-MST, and
again suffers from high-variability (standard devia-
tion of 22 degrees against 1.1 and 0.46 degrees for
the VCM on the curve and on the volume respec-
tively). The λ-MST estimator does not perform
well because DSS recognition is sensitive to slight
pixel deviation in a curve: in some cases, short DSS
are found which means the computed orientation is
not representative of the actual tangent.

3.4.2. Real data
Estimation from the curve. We aim at evaluating
our orthogonal plane estimator on real data, namely
an airway-tree dataset from which a curve-skeleton
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(a) (b)

(c) (d)

Figure 11: Orthogonal planes computed on the skeleton of
an airway-tree with (a)-(c) λ-MST and (b)-(d) VCM. The
orthogonal planes computed by the λ-MST method are im-
pacted by irregularities in the curve, those computed by our
method are not.

is extracted. The bronchi have been segmented
manually, and the skeleton was computed on the re-
sulting volume with the method of Lee et al. (1994).
Parts of the skeleton are impacted by irregularities
of the surface. This leads to some incorrect orthog-
onal planes estimation with the λ-MST method (see
Fig. 11a) for these points. On the contrary, simi-
larly as what was observed on synthetic data, the
VCM method gives consistent results which are not
affected by slight distortions in the skeleton (see
Fig. 11b).

In junctions, there are various skeletal branches
and this impacts the local computation. Thus,
the orthogonal plane estimation is done branch by
branch. Furthermore, the first planes estimated af-
ter a branching part are not of interest since not
only do they contain a section from a tubular part,
but they also contain a large part of the second be-
ginning branch (see Fig. 11d).

Both results on synthetic and real data show our
method is more precise than state-of-the-art algo-
rithms to estimate orthogonal planes on a curve.

Estimation from the volume. Computation of or-
thogonal planes from the volume is of major inter-
est since it does not rely on a curve-skeleton and
its potential defects. Typical state-of-the-art meth-
ods are based on tangent estimation on a curve in
order to estimate the orthogonal plane. Thus, only
the results of our method are displayed here. The

radius for the domain of integration was computed
automatically according to the method described in
Section 3.3.

Estimating orthogonal planes directly from the
volume requires that the input volume is tubular.
The orthogonal planes may indeed not be properly
estimated in parts where the volume is not locally
tubular, in the sense of the domain of integration of
the VCM. This is the case of the colon segmenta-
tion, in areas where the colon folds (see Fig. 12a).
In such areas, the orthogonal planes may not be
properly positioned. However, on tubular volumes,
such as neurite volumes, the orthogonal planes are
properly positioned and very close to the planes
estimated from the skeleton (see Fig. 12b). Our
method is robust to surface irregularities or noise
located on the surface of the volume (see close-up on
Fig. 12b). Regarding the airway-tree (see Fig. 12c),
the planes are properly oriented in tubular parts as
well.

The orthogonal plane estimation from the vol-
ume is similar to the one from the skeleton for
tubular shapes. This makes the volume estimator
very interesting since it is not necessary to compute
the curve-skeleton as a pre-processing step. To our
knowledge, it is the first orthogonal plane estimator
which works directly on the volume and takes into
account its geometry.

4. Pruning

As explained in Section 2, a lot of curve-
skeletonization approaches on tubular objects pro-
duce irrelevant branches originating from surface
irregularities. Skeletal branches are maximal sets
of connected points in the skeleton which are not
branching points (i.e. points having at least three
neighbors). Pruning methods aim at keeping rel-
evant branches while removing spurious branches.
Spurious branches are not aligned with the tube’s
axis. In this section, we propose a new significance
measure based on orthogonal plane computation to
estimate the deviation of a skeleton branch from
the tubular object direction. This measure can be
used to perform automatic pruning of an existing
curve-skeleton.

4.1. Method

The curve-skeleton is decomposed into a set of
branches, in order to decide, for each branch,
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(a) (b) (c)

Figure 12: Orthogonal planes (in blue) computed on various tubular volumes with our method. (a) On a colon, data courtesy
of Cornea et al. (2005), (b) on a neurite, data from the SNEMI3D challenge (Kasthuri et al., 2015), with a close-up showing
surface irregularities: our method is not sensitive to them; and (c) on an airway-tree.

whether to keep it or prune it. Since the curve-
skeleton is decomposed into branches, it must sat-
isfy the two following properties : (a) it must be
thin, in order to detect branching points based on
their neighborhood and (b) it must be connected.
These two properties are ensured by a lot of thin-
ning approaches, and general-field algorithms which
makes it applicable on a wide variety of skeletoniza-
tion methods.

Figure 13: Difference between orthogonal planes computed
from the curve (green plane) and the volume (pale red plane).
On the left, the two orthogonal planes overlap, because the
skeleton is aligned with the tube axis. On the right, the plane
computed on a spurious branch is highly deviated compared
to the one computed on the volume.

The significance measure consists in measuring
the angle α formed by the two orthogonal planes
defined, on one hand by the branch (a curve) and,
on the other hand by the volume. The orthogonal
plane normal of an undesired branch is directed at
the object’s surface, whereas its volumetric counter-
part is along the shape. The angle formed by the
two planes for spurious branches is large, whereas
it is low for meaningful branches (see Fig. 13).

Orthogonal planes on the curve and the volume
are computed with the VCM at each point in the
branch (see Section 3). In order to obtain a robust
estimation of the orthogonal plane on the volume,
the integration radius r is automatically set using
the method described in Section 3.3. Regarding
the computation of the orthogonal plane from the
curve, r depends on the branch length. Indeed, a
low-resolution version of a given curve should have
a lower r, in order to get into account only rele-
vant local information. Experimentally, we choose
r as half the branch length since it gives a good
representation of the tangent to the curve.

The angle difference α is computed for each point
in the branch. The average angle difference for a
branch allows to discard it or keep it according to a
threshold. Unlike methods presented in Section 2,
setting a global threshold is not a problem in this
case since the significance measure is independent
of the local diameter of the shape. The choice for
the threshold is discussed in Section 4.2.

All branches in the skeleton are analyzed during
the pruning procedure. Only those having a signifi-
cance measure above a given threshold and preserv-
ing the same number of connected components as in
the initial skeleton when removed are deleted. The
skeleton is modified and updated when a branch is
deleted. Computation of the significance measure is
done on each branch of the updated skeleton until
no branch can be removed. This ensures that the
pruned skeleton is not disconnected, and that all
spurious branches across the skeleton are deleted.
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Table 1: Comparison of our pruning method to the state-of-the art method in Serino and Sanniti di Baja (2014). Four measures
are used to assess the completeness and sensitivity of our method compared to the state-of-the-art. The number of spurious
branches deleted by the existing method and not deleted by ours (denoted by ErrVCM1); the number of spurious branches
deleted by our method but not deleted by the existing one (ErrST1); the number of relevant branches deleted by our method
but preserved by the other (ErrVCM2); and the number of relevant branches deleted by the existing one, but preserved by ours
(ErrST2). These measures are computed on the two volumes of Fig. 14 and six supplementary volumes (results not shown):
AW1, AW2 and AW3 (other airway-tree segmentations), PA (pelvic arteries segmentation) and N1 and N2 (neurite volumes
from the SNEMI3D challenge (Kasthuri et al., 2015)).

Volumes Fig. 14a 14c PA AW1 AW2 AW3 N1 N2

ErrVCM1 1 0 0 0 0 0 0 0
ErrST1 6 3 8 2 6 4 4 4

ErrVCM2 4 1 1 3 4 1 1 0
ErrST2 15 14 0 9 3 3 0 0

4.2. Results

Skeletons have been generated using the al-
gorithm described by Cornea et al. (2005) with
parameters chosen specifically to yield spurious
branches. Then, we apply our pruning scheme on
the skeletons. In the following, interesting exper-
imental values for the angle threshold have been
found to be in the range of 20 degrees to 35 degrees.
The optimal threshold depends on the minimum
angle spurious branches make with the tube’s axis.
In practice, since the significance measure is com-
puted for all the points in the volume, users may
adjust the threshold on-the-fly and estimate which
branches are removed in interactive time. Results
on two varying-diameter tubular objects are pre-
sented in Fig. 14.

The quality of a pruning approach is deter-
mined by the number of spurious branches it deletes
while preserving the maximum number of relevant
branches. Out of the eight volumes in Table 1, only
one spurious branch is not deleted. This particu-
lar spurious branch is aligned with the tube’s axis,
thus it cannot be discarded using our method. In
addition, spurious branches intersecting with one
another and forming a cycle can also be deleted.

Our pruning approach also preserves relevant
branches. Only incomplete peripheral branches
might get removed, because there is not enough in-
formation to estimate the significance measure ro-
bustly (see close-up in Fig. 14b). These branches
are located in a junction and thus are not suitable
to study tubular organs, so their removal does not
impede further analysis.

Furthermore, our method is compared to the
pruning approach introduced in Serino and San-
niti di Baja (2014). Results in Table 1 show our

method is more complete as it deletes more spurious
branches than the existing method (see ErrST1 and
low values for ErrVCM1). Moreover, our method is
more sensitive, because it preserves more relevant
branches (see ErrVCM2 and ErrST2).

5. Recentering

Recentering is another post-processing step to
improve curve-skeletons. Our recentering approach
is also based on orthogonal plane estimation. We
handle tubular parts and non-tubular parts, such
as junctions, separately.

5.1. Method
In a tubular part, new recentered points are de-

fined as the centers of mass of the cross-sections
computed at each point of the input non-centered
skeleton. Each skeletal branch is processed inde-
pendently. The recentered skeleton points might be
disconnected due to the fact that points are shifted
from the input skeleton during the recentering pro-
cedure. However, the initial skeleton is connected,
which implies that computed orthogonal planes are
close from one another. As a result, recentered
points remain close (generally at most one point
apart from each other). For this reason, each pair
of disconnected points is linked by a small digital
segment, without altering the centeredness of the
skeleton.

5.2. Junctions
Junctions are not tubular, thus they must be pro-

cessed independently. The goal is to decompose a
junction into tubular sub-volumes (see Fig. 15b).
The junction can be regarded as the division of a
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Figure 14: (a) and (c) Initial skeletons generated using Cornea et al. (2005) on various varying-diameter tubular objects. (b)
and (d) Resulting pruned skeletons containing little to no faulty branches. Close-up in Fig. 14b shows examples of deleted
relevant branches (in cyan), however, these branches are not complete and not suitable to study the tubular organ.

parent tube into children tubes. Each child should
be associated with its parent: the union of a child
branch with its parent branch can be seen as a
tubular object. Shape decomposition is required to
achieve this. In the following, only junctions con-
sisting of three tubes are described for the sake of
simplicity.

(a) (b)

Figure 15: Methods to create sub-volumes. (a) Shape de-
composition obtained using Palágyi et al. (2006). The com-
pleteness of the decomposition is dependent on the skeleton.
The close-up (black circle) highlights that the decomposition
does not always provide tubular parts (see dark green part).
(b) Computation of a sub-volume. The cutting plane (in
green) isolates the sub-volume, consisting in a parent and a
child branch (dark grey), from another child (light grey).

From a given skeleton, we aim at finding the cor-
responding shape decomposition in order to create
sub-volumes. Various state-of-the-art methods ex-

ist for this purpose, such as the work presented
in Palágyi et al. (2006), which consists in assign-
ing a different label for each branch of the skeleton.
Then, the voxels in the volume are given the label
of the closest skeletal point. In the context of re-
centering, the produced cuts do not yield tubular
parts (see Fig. 15a). As a result, orthogonal planes
cannot be accurately computed with the VCM on
the sub-volumes from this decomposition.

Thus, we propose a new shape decomposition
scheme. The idea is to find orthogonal planes near
a junction which delineate a part from another (see
Fig. 15b). These planes are referred to as cutting
planes in the following paragraphs.

The input skeleton must possess the same prop-
erties as those presented in Section 4.1 (i.e. thin
and connected), and have a correspondence with
the shape, which means it must be pruned. Shape
decomposition is determined by junctions, because
they correspond to zones where different parts
meet. In a pruned skeleton, branching points are in
correspondence with junction areas in the volume,
and interesting cutting planes are in the neighbor-
hood of branching points in the skeleton.

Orthogonal planes are used as cutting planes to
decompose the shape. Only a few orthogonal planes
are interesting for shape decomposition.

For each edge around a branching point b, the
cutting plane should be positioned at a point where
it delineates the tubular branch from the junction
area. Orthogonal planes computed near branching
points in a child branch intersect the other child
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(a)

(b)

(c)

Figure 16: (a) Computation of orthogonal planes at two
points on the same edge. The number of volume points
(i.e. the area) in the cross-section varies a lot in junctions.
(b) Typical area variation (y-axis) observed along an edge.
Points are traversed in an ordered manner from a branching
point to the end-point in the skeleton daughter branch. (c)
Corresponding σ values for the area values of Fig. 16b. The
cutting point is the point where the σ value is the highest
(shown by an arrow).

branch (see Fig. 16a). In other words, the area
of the cross-section is much larger in the junction
than in the child branch (see Fig. 16b). The cutting
point corresponds to the point where the area vari-
ation is the largest (see Fig. 16c). The area A(p)
is computed as the number of points in the inter-
section between the orthogonal plane at p and the
volume. To study the area variation, we study the
factor σ(x) along the edge E.

σ(x) = max
y∈NE(x)

A(y)

A(x)

where NE(x) corresponds to the direct backward
and forward neighbors of x in the curve E.

Then the cutting point c in the edge E is defined
as c = maxx∈E σ(x). In a junction, only the cutting
points of the child branches and their corresponding
cutting planes are considered.

The cutting planes provided by the decomposi-
tion allow to separate each part but are not proper
delineations to create tubular sub-volumes. Indeed,
the union of two parts is not tubular in the junction
area (see Fig. 17a, in green). The idea is to align
the plane with the axis of the other child tube, so
as to “extend” the child tube in the parent tube.
The direction of the axis is given by the orthogo-

(a) (b)

Figure 17: (a) Sub-volume (in green) computed using or-
thogonal planes on an input skeleton. Using the decomposi-
tion scheme does not allow to recenter skeleton points. (b)
Sub-volume (in green) obtained after rotating the plane P1

around the center (in orange) so that the new cutting plane
P ′1 is orthogonal to the plane P2 located in the other child
branch.

nal plane normal (i.e. the tangent to the curve)
computed in the other child tube. Thus, the first
cutting plane P1, defined by the normal n̂1, is ro-
tated so that it is orthogonal to the other cutting
plane P2, defined by the normal n̂2. The direction
of the rotation axis is given as the cross-product of
the two normals. Then, the cutting plane normal is
n̂′1 = (n̂1∧n̂2)∧n̂2. The rotation axis is placed on a
point in the cross-section defined by P1 and which
minimizes the distance to the cross-section defined
by P2.

After rotation of the planes, two tubular sub-
volumes S1 and S2 can be isolated for each branch-
ing point b (see Fig. 17b). The skeleton is recen-
tered by computing the centers of mass in each sub-
volume.

5.3. Results

This evaluation aims at verifying whether our re-
centering scheme produces a recentered skeleton.
Tubular volumes with junctions have been gen-
erated using a parametric curve. This paramet-
ric curve is the theoretical skeleton. Initial non-
centered skeletons were generated using the algo-
rithm described in Palágyi and Kuba (1999). Then,
we use the Hausdorff distance dH(C,C ′) defined
as the maximal distance between a point in C ′

and its nearest point in C. It allows to measure
the dissimilarity between two curves. Here, two
Hausdorff distances are of interest: dH(T, I) which
is the Hausdorff distance between the theoretical
skeleton T and the initial non-centered skeleton

13



(a) (b) (c) (d)

Figure 18: (a) and (c) Initial non-centered skeletons generated using Palágyi and Kuba (1999) on airway-tree segmentations.
(b) and (d) Corresponding resulting recentered skeletons.

Table 2: Hausdorff distances between (middle row) a theoret-
ical centered skeleton T and an initial non-centered skeleton
I and (bottom row) between T and a skeleton IR computed
by our recentering procedure on various “Y”-shaped volumes.

0.45π 0.40π 0.35π 0.30π 0.25π

dH(T, I) 3.74 2.82 3.74 4.47 5.91
dH(T, IR) 1 1 1

√
2

√
2

I; and dH(T, IR) which is the Hausdorff distance
between the theoretical skeleton and the skeleton
IR produced by our recentering method. Volumes
are comprised of simple “Y”-junctions consisting in
three tubes glued together with varying division an-
gles (0.45π; 0.40π; 0.35π; 0.30π; 0.25π). The re-
sults are presented in Table 2 and show that the
recentering procedure produces recentered skeleton
from initial non-centered skeleton. Indeed, com-
puted skeletons are at most at

√
2 from theoretical

skeletons, which means the theoretical and recen-
tered skeletons points all share a voxel edge. More-
over, our technique is independent on the junction
angle.

The recentering procedure was tested on non-
centered skeletons generated using the thinning al-
gorithm described in Palágyi and Kuba (1999). Re-
sults on real data (airway-tree segmentation) show
the skeleton is centered in junctions, and zigzags
are properly smoothed (see Fig. 18).

6. Curve-skeleton computation

In this section, we show how to use orthogonal
planes to compute a curve-skeleton on certain tubu-
lar volumes. Tubular parts and junctions are han-
dled in two separate passes in our algorithm.

6.1. Tracking algorithm

Figure 19: Tracking performed by our algorithm. From a de-
termined center of mass g0, we propagate to the next tracked
point p1 thanks to the plane normal ~nP(p0).

The main idea of our algorithm is that the curve-
skeleton of the object O is the set of centers of
mass of the cross-sections defined by the orthogonal
planes. The curve-skeleton is obtained by tracking
the centers of mass iteratively, as described in our
work in Grélard et al. (2016).

Tracking. It is computationally expensive and re-
dundant to go through all points in the volume. A
cross-section contains a unique curve-skeleton point
so once this point is added to the skeleton, all the
remaining points in the cross-section do not need
to be processed further. These points are stored in
a set M (marked points), and are not used in the
remainder of the tracking procedure.

The starting point p0 of the algorithm is the point
in the volume which has the highest DT value. Af-
ter the orthogonal plane computation at a point pi
we obtain a center of mass gi in the connected com-
ponent defined by the orthogonal plane and which
contains pi (i.e. the cross-section). Then, we prop-
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agate to the next point pi+1 in the 26-neighborhood
of gi with the normalized plane normal ~nP(pi):

pi+1 = gi + ~nP(pi)

until gi + ~nP(pi) ∈M .
Since gi + ~nP(pi) ≈ gi+1 in regular tubular por-

tions of the object, propagation is done either on
the next center of mass or on its neighborhood (see
Fig. 19). This ensures the algorithm prioritizes
points which are well-centered and for which the
orthogonal plane normal at pi is close to the plane
normal at pi+1. This process is done for the two
normal directions (gi+~nP(pi) and gi−~nP(pi)). Once
points have been tracked in both directions and the
next tracked point is in M , then a new point pi+1

is chosen as the one with the highest DT value.
In junctions, orthogonal planes are not properly

defined. The following paragraphs describe how to
specifically detect and handle junctions.

6.2. Junction detection

An approach towards junction detection is based
on analyzing the local topology of the object, and
has been described in Xiong et al. (2012). The au-
thors define the spherical shell intersection (SSI) as
the difference between two concentric balls inter-
sected with the volume. The number of connected
components of the SSI is equal to two in a regular
tube and to the number of involved tubes in a junc-
tion (see Fig. 20a). Balls are defined using geodesic
distance so as to consider the object locally. The
authors show the choice for both the ball radii is
crucial to find junctions accurately. Indeed, if the
inner ball radius is too small, it might consider a
junction area as a regular tube, and if it is too large,
it might discard small but relevant protrusions in
the volume. The ball radii depend on the local scale
of the tube. In Xiong et al. (2012), the authors set
the radii empirically based on the distance trans-
form value at the ball center. It makes sense to rely
on the distance transform values at centered points
for tubes with circular cross-sections because they
are equal or close to the tube radius. However, this
does not hold for tubes with deformations or ellip-
tical cross-sections. Thus, we propose a way to set
both the radii in a manner which makes sense re-
gardless of the shape of the tube. The ball radius is
set as the distance between the two farthest points
in the cross-section.

All points p satisfying SSI(p) ≥ 3 are called 3-
shell points and are not added to the skeleton.

6.3. Junction processing
At this point, the skeleton is complete in tubes:

for each tubular part in the volume, there is an as-
sociated part in the skeleton. Each skeletal part
(i.e. connected component in the skeleton) must be
connected to another in the corresponding junction
area. This problem is very close to the one consist-
ing in recentering an existing skeleton in junctions
(see Section 5.2). However, skeletal part endpoints
might not correspond to cutting points (they are lo-
cated deeper inside the tube). As a result, if we use
the recentering approach, the cutting plane would
not be properly positioned, which means the re-
sulting sub-volume would not be tubular and the
resulting computed skeleton would not be centered.

Thus, skeleton points in the junction are com-
puted by linking skeletal part endpoints with Bezier
curves. First, endpoints must be grouped together
if they belong to the same junction area. A junc-
tion area J is defined as a maximal connected set
of points closer to a 3-shell point than to a skele-
ton point (see Fig. 20b). We have to connect the
endpoints which belong to the same junction area
and which are not terminal points, i.e. for which
SSI > 1.

We define the reference branch as the skele-
tal branch to which other branches in the
same junction must be linked (see Fig. 20c).
The reference endpoint eref is the point which
normal direction is contrary to the most of
the other endpoint normals, i.e. for end-
points belonging to the same group G, eref =
argmaxe1∈G(card({e2 ∈ G | ~ne1 · ~ne2 < 0})).

Finally, we link each point e belonging to a same
group G to eref using Bezier curves. The two con-
trol points in the Bezier curve are defined by the
orthogonal plane normals at both endpoints. It is
also possible to use our recentering procedure af-
ter having linked endpoints with Bezier curves to
improve the skeleton in junctions if necessary.

All the Bezier curves meet at the reference end-
point, so they are post-processed so as to avoid cre-
ating thick parts. For a junction, all voxels of the
different Bezier curves are added in parallel, from
the endpoint e 6= eref. Once the Bezier curves in-
tersect, a new common Bezier curve is computed,
starting from the intersection point and ending at
eref. This ensures thinness in junctions.

6.4. Results
Our method’s efficiency is evaluated by compari-

son to ground-truth curve-skeletons and to state-of-
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(a) (b) (c)

Figure 20: Junction detection and junction processing. (a) Spherical shell intersection (SSI, in dark green) allow to detect
junctions. The number of connected components of the shells is equal to two in a tubular part (pT ) and to three in a junction
(pJ ). (b) Method to group endpoints from skeletal parts (in red) in junctions in order to link them. Junction areas J1, J2
are groups of points which are closer to a 3-shell point (squares) than to a skeletal point (red lines). We group skeletal part
endpoints together based on their distance to a junction area. (c) Determining the reference endpoint eref to which other
endpoints must be linked is done by comparison of the direction of the normal with the other endpoints’ orthogonal plane
normals. The normals also allow to determine the position of the control points (not shown) and trace the Bezier curve (in
green). Here, only one endpoint is linked to the reference endpoint for sake of clarity.

(a) (b)

(c) (d)

Figure 21: Skeletons (in red) on neurite volumes (in gray) from the dataset of the SNEMI3D challenge (Kasthuri et al., 2015).
On the left, (Figs. (a) and (c)) the skeleton is computed by the thinning method of Couprie et al. (2007). On the right,
(Figs. (b) and (d)) the skeleton is computed by our method. Our method is not sensitive to irregularities and major diameter
variation. Our skeletons contain no faulty branches.

the-art methods namely euclidean skeleton thinning
approach (Couprie et al., 2007) and the potential
field method (Cornea et al., 2005) presented in Sec-
tion 2. Although the limits of both these methods
have been discussed, they satisfy interesting prop-
erties and are commonly used in our field of appli-
cation. Our method is tested on both synthetic and
real data.

6.4.1. Synthetic data
Various simple tubular volumes have been gener-

ated using a parametric curve: a cylinder, a cylin-
der with varying-diameter, referred to as deformed
cylinder, a junction, and a curved tube (see Ta-
ble 3). Four noisy versions of these tubes were
generated as well using a simplified version of Ka-
nungo’s method (see Section 3.4). For each volume,

the expected curve-skeleton T is the parametric
curve used to generate the volume. The expected
skeleton is compared to the computed skeletons C
using the Hausdorff distance dH . The skeleton is
centered if dH(T,C) ≤

√
3, that is to say if the

points in the computed skeleton are neighbors of
the points in the expected skeleton. Otherwise, the
skeleton is thick or contains faulty branches. Re-
sults are shown in Table 3.

Various parameters for the state-of-the art meth-
ods are tested in order to obtain the lowest number
of faulty branches and the most complete skeleton.
Only results with the best parameters are shown
here.

For all non-noisy volumes, all methods produce
centered skeletons (dH(T,C) ≤

√
3, results not
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Table 3: Hausdorff distance for each method (Thin (Couprie
et al., 2007), PF (Cornea et al., 2005) and ours) on different
noisy volumes.

Data Thin PF Ours

Cylinder
9.43

√
2 1

Deformed cylinder
11

√
2 1

Curved tube
9.06

√
3

√
2

Junction
6.40

√
3 1

shown).
Regarding noisy volumes, our method produces

a skeleton which is the closest to the initial skele-
ton. The thinning method of Couprie et al. (2007)
produces faulty branches which cannot be deleted
regardless of the parameter values. As a result,
the Hausdorff distance for these skeletons is large.
Our method produces results which are close to
those of the potential field method of Cornea et al.
(2005). Indeed, skeletons produced by both meth-
ods are centered. A visual inspection on the junc-
tion volume shows our skeleton contains less irreg-
ularities than the potential field skeleton and that
it is more complete (i.e. there are skeletal points
at the extremities of the volume). Moreover, it
is not sensitive to irregularities and to major di-
ameter variation. Results for the various methods
on synthetic data are available in the online ap-
pendix (F. Grélard et al., 2017).

6.4.2. Real data
Our method was designed to work on tubular or-

gans. We applied it applied on neurites, airway-
trees and arteries.

Figure 21 shows the results on various vol-
umes of neurites. Compared to the state-of-the-
art method, our skeleton is thin and produces no
faulty branches. Figures 22a, and 22b show the re-
sulting skeletons on two different airway-trees. Fig-
ure 22c shows resulting skeletons on pelvic arter-
ies, which also contain junctions. A general visual
inspection shows the skeleton does not have the
defects of the state-of-the-art methods illustrated
in Section 2. Close-ups show the resulting skele-
ton can capture local information in junctions, as

well as in small branches and be exempt of faulty
branches throughout the majority of the volume.
Moreover, our skeleton is well centered and does
not suffer from major irregularities on the surface
(see Fig. 22b). In addition to the fact the skeleton is
obtained automatically, these properties are inter-
esting in light of the various applications mentioned
in Section 1. More results are available online show-
ing our method performs better than state-of-the-
art methods (F. Grélard et al., 2017). One limit
of our approach is that it does not work for organs
such as the colon which can be locally non-tubular,
as already explained in Section 3.4.2.

7. Conclusion and prospects

In this article, we have presented several new and
original approaches for tubular organ analysis. We
presented a method to estimate orthogonal planes
is more accurate than state-of-the-art methods and
is not sensitive to irregularities on the surface. Or-
thogonal planes can not only be estimated from a
curve, but also directly from a set of voxels. This
has helped defining new tools for the study of tubu-
lar organs. All these tools, along with the source
code, are available online1. We presented an auto-
matic pruning method removes close to all the spu-
rious branches, and the associated significance mea-
sure is not dependent on the local scale of the shape,
which makes it suitable for varying-diameter tubu-
lar organs. Pruned skeletons are recentered, which
makes virtual endoscopy and geometrical measure-
ments more accurate. Finally, we use the centers
of mass of the cross-sections to compute our own
curve-skeleton. The resulting skeleton is centered,
thin and complete, which is critical to capture the
shape of varying-diameter tubes aptly. These meth-
ods could be used in an automated workflow in or-
der to make geometrical measurements on a large
tubular organ database. The results could even-
tually help establish the relationship between the
structure of the organ and pathologies, and better
understand its physiology.
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(a) (b) (c)

Figure 22: (a) (b) Centerline (in red) extraction on two different airway tree volumes (in gray) and (c) pelvic arteries acquired in
MRA. The volume for the pelvis arteries is cropped due to the large image size. Fig. 22a corresponds to the Fig. 2 in Section 2
for comparison with state-of-the-art methods. The skeleton is complete, that is to say there is a branch in the skeleton for each
bronchus in the volume. This is true even in cases where bronchi have low diameter (cases where only the skeleton in red is
visible). Moreover, junctions are properly processed through the second pass of our algorithm. Our skeleton is not sensitive to
irregularities on the surface of the volume (see close-up on the volume in Fig. 22b).
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