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Equilibrated stress tensor reconstruction and a posteriori error estimation for nonlinear elasticity

We consider hyperelastic problems and their numerical solution using a conforming nite element discretization and iterative linearization algorithms. For these problems, we present equilibrated, weakly symmetric, Hpdivq-conforming stress tensor reconstructions, obtained from local problems on patches around vertices using the ArnoldFalkWinther nite element spaces. We distinguish two stress reconstructions, one for the discrete stress and one representing the linearization error. The reconstructions are independent of the mechanical behavior law. Based on these stress tensor reconstructions, we derive an a posteriori error estimate distinguishing the discretization, linearization, and quadrature error estimates, and propose an adaptive algorithm balancing these dierent error sources. We prove the eciency of the estimate, and conrm it on a numerical test with analytical solution for the linear elasticity problem. We then apply the adaptive algorithm to a more application-oriented test, considering the HenckyMises and an isotropic damage models.

Introduction

In this work we develop equilibrated Hpdivq-conforming stress tensor reconstructions for a class of (linear and) nonlinear elasticity problems in the small deformation regime. Based on these reconstructions, we can derive an a posteriori error estimate distinguishing the discretization and linearization errors for conforming discretizations of the problem.

Let Ω P R d , d P t2, 3u, be a bounded, simply connected polyhedron, which is occupied by a body subjected to a volumetric force eld f P rL 2 pΩqs d . For the sake of simplicity, we assume that the body is xed on its boundary BΩ. The nonlinear elasticity problem consists in nding a vector-valued displacement eld u : Ω Ñ R d solving

´∇¨σp∇ s uq " f in Ω, (1.1a) u " 0 on BΩ, (1.1b) 
where ∇ s u " 1 2 pp∇uq T `∇uq denotes the symmetric gradient and expresses the strain tensor associated to u. The stress-strain law σ : Ω ˆRdˆd sym Ñ R dˆd sym is assumed to satisfy regularity requirements inspired by [6,32,33]. Problem (1.1) describes the mechanical behavior of soft materials [40] and metal alloys [34]. Examples of stress-strain relations of common use in the engineering practice are given in Section 2. In these applications, the solution is often approximated using H 1 -conforming nite elements. For nonlinear mechanical behavior laws, the resulting discrete nonlinear equation can then be solved using an iterative linearization algorithm yielding at each ˚miheleFottiHIduniversitdipviFit : ritFriedlekdumontpellierFfr 1 iteration a linear algebraic system to be solved, until the residual of the nonlinear equation lies under a predened threshold.

In this paper we develop an a posteriori error estimate allowing to distinguish between the error stemming from the linearization of the problem and the one due to its discretization, as proposed in [17] for nonlinear diusion problems. Thanks to this distinction we can, at each iteration, compare these two error contributions and stop the linearization algorithm once its contribution is negligible compared to the discretization error.

The a posteriori error estimate is based on equilibrated stress reconstructions. It is well known that, in contrast to the analytical solution, the discrete stress tensor resulting from the conforming nite element method does not have continuous normal components across mesh interfaces, and that its divergence is not locally in equilibrium with the source term f on mesh elements. In this paper we consider the stress tensor reconstruction proposed in [37] for linear elasticity to restore these two properties. This reconstruction uses the ArnoldFalkWinther mixed nite element spaces [4], leading to weakly symmetric tensors . In [37] this reconstruction is compared to a similar reconstruction introduced in [38] using the ArnoldWinther nite element spaces [5], yielding a symmetric tensor, and very good agreement was observed while saving substantial computational eort. In Section 3 we apply this reconstruction to the nonlinear case by constructing two stress tensors: one playing the role of the discrete stress and one expressing the linearization error. They are obtained by summing up the solutions of constrained minimization problems on cell patches around each mesh vertex, so that they are Hpdivq-conforming and the sum of the two reconstructions veries locally the mechanical equilibrium (1.1a). The patch-wise equilibration technique was introduced in [8,13] for the Poisson problem using the RaviartThomas nite element spaces. In [14] it is extended to linear elasticity without any symmetry constraint by using linewise RaviartThomas reconstructions. Elementwise reconstructions from local Neumann problems requiring some pre-computations to determine the normal uxes to obtain an equilibrated stress tensor can be found in [2,12,26,31], whereas in [30] the direct prescription of the degrees of freedom in the ArnoldWinther nite element space is considered.

Based on the equilibrated stress reconstructions, we develop the a posteriori error estimate in Section 4 and prove that this error estimate is ecient, meaning that, up to a generic constant, it is also a local lower bound for the error. The idea goes back to [35] and was advanced amongst others by [1,24,25,36] for the upper bound. Local lower error bounds are derived in [8,13,16,18,28]. Using equilibrated uxes for a posteriori error estimation oers several advantages. The rst one is, as mentioned above, the possible distinction and comparison of error components by expressing them in terms of uxes. Secondly, the error upper bound is obtained with fully computable constants. In our case these constants depend only on the parameters of the stress-strain relation. Thirdly, since the estimate is based on the discrete stress (and not the displacement), it does not depend on the mechanical behavior law (except for the constant in the upper bound). Therefore, its implementation is independent and directly applicable to these laws, which makes the method convenient for FEM softwares in solid mechanics, which often provide a large choice of behavior laws. In addition, equilibrated error estimates were proven to be polynomial-degree robust for several linear problems in 2D, as the Poisson problem in [7,18], linear elasticity in [14] and the related Stokes problem in [10] and recently in 3D in [19]. This paper is organized as follows. In Section 2 we rst formulate the assumptions on the stressstrain function σ and provide three examples of models used in the engineering practice. We then introduce the weak and the discrete formulations of problem (1.1) and its linearization, along with some useful notation. In Section 3 we present the equilibrated stress tensor reconstructions, rst assuming that we solve the nonlinear discrete problem exactly, and then, based on this rst reconstruction, distinguish its discrete and its linearization error part at each iteration of a linearization solver. In Section 4 we derive the a posteriori error estimate, again rst assuming the exact solution of the discrete problem and then distinguishing the dierent error components. We then propose an algorithm equilibrating the error sources using adaptive stopping criteria for the linearization and adaptive remeshing. We nally show the eciency of the error estimate.

In Section 5 we evaluate the performance of the estimates for the three behavior laws given as examples on numerical test cases.

Setting

In this section we will give three examples of hyperelastic behavior laws, before writing the weak and the considered discrete formulation of problem (1.1).

Continuous setting

Assumption 2.1 (Stress-strain relation). We assume that the symmetric stress tensor σ : R dˆd sym Ñ R dˆd sym is continuous on R dˆd sym and that σp0q " 0. Moreover, we assume that there exist real numbers C gro , C mon P p0, `8q such that, for all where τ : η :" trpτ T ηq with trpτq :" ř d i"1 τ ii , and |τ| 2 dˆd " τ : τ. We next discuss a number of meaningful stress-strain relations for hyperelastic materials that satisfy the above assumptions. Hyperelasticity is a type of constitutive model for ideally elastic materials in which the stress is determined by the current state of deformation by deriving a stored energy density function Ψ : R dˆd sym Ñ R, namely σpτq :" BΨpτq Bτ .

Example 2.2 (Linear elasticity). The stored energy density function leading to the linear elasticity model is

Ψ lin pτq :" λ 2 trpτq 2 `µ trpτ 2 q, (2.2)
where µ ą 0 and λ ě 0 are the Lamé parameters. Deriving (2.2) yields the usual Cauchy stress tensor σpτq " λ trpτqI d `2µτ.

(2.3)

Being linear, the previous stress-strain relation clearly satises Assumption 2.1.

Example 2.3 (HenckyMises model). The nonlinear HenckyMises model of [21,29] corresponds to the stored energy density function

Ψ hm pτq :" α 2 trpτq 2 `Φpdevpτqq, (2.4)
where dev : R dˆd sym Ñ R dened by devpτq " trpτ 2 q ´1 d trpτq 2 is the deviatoric operator. Here, α P p0, `8q and Φ : r0, `8q Ñ R is a function of class C 2 satisfying, for some positive constants C 1 , C 2 , and C 3 , C 1 ď Φ 1 pρq ă α, |ρΦ 2 pρq| ď C 2 and Φ 1 pρq `2ρΦ 2 pρq ě C 3 @ρ P r0, `8q.

(2.5)

We observe that taking with nonlinear Lamé functions μpρq :" Φ 1 pρq and λpρq :" α ´Φ1 pρq. Under conditions (2.5) it can be proven that the previous stress-strain relation satises Assumption 2.1.

In the previous example the nonlinearity of the model only depends on the deviatoric part of the strain. In the following model it depends on the term τ : C " " τ.

Example 2.4 (An isotropic reversible damage model). The isotropic reversible damage model of [11] can also be interpreted in the framework of hyperelasticity by setting up the energy density function as

Ψ dam pτq :" p1 ´Dpτqq 2 τ : C " " τ `ΦpDpτqq, (2.7)
where D : R dˆd sym Ñ r0, 1s is the scalar damage function and C " " is a fourth-order symmetric and uniformly elliptic tensor, namely, for some positive constants C ˚and C ˚, it holds

C ˚|τ| 2 dˆd ď C " " τ : τ ď C ˚|τ| 2 dˆd , @τ P R dˆd .
(2.8)

The function Φ : r0, 1s Ñ R denes the relation between τ and D by Bφ BD " 1 2 τ : C " " τ. The resulting stress-strain relation reads σpτq " p1 ´DpτqqC " " τ.

(2.9)

If there exists a continuous function f : r0, `8q Ñ ra, bs for some 0 ă a ď b ď 1, such that s P r0, `8q Ñ sf psq is strictly increasing and, for all τ P R dˆd sym , Dpτq " 1 ´f pτ : C " " τq, the damage model constitutive relation satises Assumption 2.1.

Before presenting the variational formulation of problem (1.1), some useful notations are introduced. For X Ă Ω, we respectively denote by p¨, ¨qX and ¨ X the standard inner product and norm in L 2 pXq, with the convention that the subscript is omitted whenever X " Ω. The same notation is used in the vector-and tensor-valued cases. rH 1 pΩqs d and Hpdiv, Ωq stand for the Sobolev spaces composed of vector-valued rL 2 pΩqs d functions with weak gradient in rL 2 pΩqs dˆd , and tensor-valued rL 2 pΩqs dˆd functions with weak divergence in rL 2 pΩqs d , respectively. Multiplying equation (1.1a) by a test function v P rH 1 0 pΩqs d and integrating by parts one has pσp∇ s uq, ∇ s vq " pf , vq.

(2.10)

Owing to the growth assumption (2.1a), for all v, w P rH 1 pΩqs d , the form apv, wq :" pσp∇ s vq, ∇ s wq (2.11a) is well dened and, from equation (2.10), we can derive the following weak formulation of (1.1):

Given f P rL 2 pΩqs d , nd u P rH 1 0 pΩqs d s.t., @v P rH 1 0 pΩqs d , apu, vq " pf , vq.

(2.12)

From (2.12) it is clear that the analytical stress tensor σp∇ s uq lies in the space H s pdiv, Ωq :" tτ P rL 2 pΩqs dˆd | ∇¨τ P rL 2 pΩqs d and τ is symmetricu.

Discrete setting

The discretization (2.12) is based on a conforming triangulation T h of Ω, i.e. a set of closed triangles or tetrahedra with union Ω and such that, for any distinct T 1 , T 2 P T h , the set T 1 X T 2 is either a common edge, a vertex, the empty set or, if d " 3, a common face. We assume that T h veries the minimum angle condition, i.e., there exists α min ą 0 uniform with respect to all considered meshes such that the minimum angle α T of each T P T h satises α T ě α min . The set of vertices of the mesh is denoted by V h ; it is decomposed into interior vertices V int h and boundary vertices V ext h . For all a P V h , T a is the patch of elements sharing the vertex a, ω a the corresponding open subdomain in Ω and V a the set of vertices in ω a . For all T P T h , V T denotes the set of vertices of T , h T its diameter and n T its unit outward normal vector.

For all p P N and all T P T h , we denote by P p pT q the space of d-variate polynomials in T of total degree at most p and by P p pT h q " tϕ P L 2 pΩq | ϕ |T P P p pT q @T P T h u the corresponding broken space over T h . In the same way we denote by rP p pT qs d and rP p pT qs dˆd , respectively, the space of vector-valued and tensor-valued polynomials of total degree p over T , and by rP p pT h qs d and rP p pT h qs dˆd the corresponding broken spaces over T h .

In this work we will focus on conforming discretizations of problem (2.10) of polynomial degree p ě 2 to avoid numerical locking, cf [43]. The discrete formulation reads: nd u h P rH 1 0 pΩqs d XrP p pT h qs d such that @v h P rH 1 0 pΩqs d X rP p pT h qs d , apu h , v h q " pf , v h q.

(2.13)

This problem is usually solved using some iterative linearization algorithm dening at each iteration k ě 1 a linear approximation σ k´1 of σ. Then the linearized formulation reads: nd u k h P rH 1 0 pΩqs d X rP p pT h qs d such that @v h P rH 1 0 pΩqs d X rP p pT h qs d , pσ k´1 p∇ s u k h q, ∇ s v h q " pf , v h q.

(2.14)

For the Newton algorithm the linearized stress tensor is dened as

σ k´1 p∇ s u k h q :" Bσpτq Bτ | τ"∇ s u k´1 h ∇ s pu k h ´uk´1 h q `σp∇ s u k´1 h q.
(2.15)

3 Equilibrated stress reconstruction

In general, the discrete stress tensor σp∇ s u h q resulting from (2.13) does not lie in Hpdiv, Ωq and thus cannot verify the equilibrium equation (1.1a). In this section we will reconstruct from σp∇ s u h q a discrete stress tensor σ h satisfying these properties. Based on this reconstruction, we then devise two equilibrated stress tensors representing the discrete stress and the linearization error respectively, which will be useful for the distinction of error components in the a posteriori error estimate of Section 4.2.

Patchwise construction in the ArnoldFalkWinther mixed nite element spaces

Let us for now suppose that u h solves (2.13) exactly, before considering iterative linearization methods such as (2.14) in Section 3.2. For the stress reconstruction we will use mixed nite element formulations on patches around mesh vertices in the spirit of [37,38]. The mixed nite elements based on the dual formulation of (1.1a) will provide a stress tensor lying in Hpdiv, Ωq.

A global computation is too expensive for this post-processing reconstruction, so we solve local problems on patches of elements around mesh vertices. The goal is to obtain a stress tensor σ h in a suitable (i.e. Hpdivq-conforming) nite element space by summing up these local solutions. The local problems are posed such that this global stress tensor is close to the discrete stress tensor σp∇ s u h q obtained from (2.13), and that it satises the mechanical equilibrium on each element.

In [38] the stress tensor is reconstructed in the ArnoldWinther nite element space [5], directly providing symmetric tensors, but requiring high computational eort. In this work, as in [37], we weaken the symmetry constraint and impose it weakly, as proposed in [4]: for each element T P T h , the local ArnoldFalkWinther mixed nite element spaces of degree q ě 1 hinge on the BrezziDouglasMarini mixed nite element spaces [9] for each line of the stress tensor and are dened by Σ T :" rP q pT qs dˆd , V T :" rP q´1 pT qs d , Λ T :" tµ P rP q´1 pT qs dˆd | µ " ´µT u.

pigure IX ilement digrms for pΣ T , V T , Λ T q in the se d " q " 2 For q " 2, the degrees of freedom are displayed in Figure 1. On a patch ω a the global space Σ h pω a q is the subspace of Hpdiv, ω a q composed of functions belonging piecewise to Σ T . The spaces V h pω a q and Λ h pω a q consist of functions lying piecewise in V T and Λ T respectively, with no continuity conditions between two elements.

Let now q :" p. On each patch we need to consider subspaces where a zero normal component is enforced on the stress tensor on the boundary of the patch, so that the sum of the local solutions will have continous normal component across any mesh face inside Ω. Since the boundary condition in the exact problem prescribes the displacement and not the normal stress, we distinguish the case whether a is an interior vertex or a boundary vertex. If a P V int h we set

Σ a h :" tτ h P Σ h pω a q | τ h n ωa " 0 on Bω a u, (3.2a) V a h :" tv h P V h pω a q | pv h , zq ωa " 0 @z P RM d u, (3.2b) Λ a h :" Λ h pω a q, (3.2c) 
where RM 2 :" tb `cpx 2 , ´x1 q T | b P R 2 , c P Ru and RM 3 :" tb `a ˆx | b P R 3 , a P R 3 u are the spaces of rigid-body motions respectively for d " 2 and d " 3.

If a P V ext h we set Σ a h :" tτ h P Σ h pω a q | τ h n ωa " 0 on Bω a zBΩu, (3.2d) V a h :" V h pω a q, (3.2e) Λ a h :" Λ h pω a q. (3.2f)
For each vertex a P V h we dene its hat function ψ a P P 1 pT h q as the piecewise linear function taking value one at the vertex a and zero on all other mesh vertices.

Construction 3.1 (Stress tensor reconstruction). Let u h solve (2.13). For each a P V h nd

pσ a h , r a h , λ a h q P Σ a h ˆV a h ˆΛa h such that for all pτ h , v h , µ h q P Σ a h ˆV a h ˆΛa h , pσ a h , τ h q ωa `pr a h , ∇¨τ h q ωa `pλ a h , τ h q ωa " pψ a σp∇ s u h q, τ h q ωa , (3.3a) p∇¨σ a h , v h q ωa " p´ψ a f `σp∇ s u h q∇ψ a , v h q ωa , (3.3b) pσ a h , µ h q ωa " 0. (3.3c)
Then, extending σ a h by zero outside ω a , set σ h :" ř aPV h σ a h . For interior vertices, the source term in (3.3b) has to verify the Neumann compatibility condition p´ψ a f `σp∇ s u h q∇ψ a , zq ωa " 0 @z P RM d .

(3.4)

Taking ψ a z as a test function in (2.13), we see that (3.4) holds and we obtain the following result.

Lemma 3.2 (Properties of σ h ). Let σ h be prescribed by Construction 3.1. Then σ h P Hpdiv, Ωq,

and for all T P T h , the following holds:

pf `∇¨σ h , vq T " 0 @v P V T @T P T h .

(3.5)

Proof. All the elds σ a h are in Hpdiv, ω a q and satisfy appropriate zero normal conditions so that their zero-extension to Ω is in Hpdiv, Ωq. Hence, σ h P Hpdiv, Ωq. Let us prove (3.5). Since (3.4) holds for all a P V int h , we infer that (3.3b) is actually true for all v h P V h pω a q. The same holds if a P V ext h by denition of V a h . Since V h pω a q is composed of piecewise polynomials that can be chosen independently in each cell T P T a , and using σ h | T " ř aPV T σ a h | T and the partition of unity ř aPV T ψ a " 1, we infer that pf `∇¨σ h , vq T " 0 for all v P V T and all T P T h .

Discretization and linearization error stress reconstructions

Let now, for k ě 1, u k h solve (2.14). We will construct two dierent equilibrated Hpdivq-conforming stress tensors. The rst one, σ k h,disc , represents as above the discrete stress tensor σp∇ s u k h q, for which we will have to modify Construction 3.1, because the Neumann compatibility condition (3.4) is not satised anymore. The second stress tensor σ k h,lin will be a measure for the linearization error and approximate σ k´1 p∇ s u k h q ´σp∇ s u k h q. The matrix resulting from the left side of (3.3) will stay unchanged and we will only modify the source terms.

We denote by σp∇ s u k h q the L 2 -orthogonal projection of σp∇ s u k h q onto rP p´1 pT h qs dˆd such that pσp∇ s u k h q ´σp∇ s u k h q, τ h q " 0 for any τ h P rP p´1 pT h qs dˆd .

Construction 3.3 (Discrete stress reconstruction). For each a P V h solve (3.3) with u k h instead of u h , σp∇ s u k h q instead of σp∇ s u k h q and the source term in (3.3b) replaced by

´ψa f `σp∇ s u k h q∇ψ a ´yk disc ,
where y k disc P RM d is the unique solution of

py k disc , zq ωa " ´pf , ψ a zq ωa `pσp∇ s u k h q, ∇ s pψ a zqq ωa @z P RM d . (3.6)
The so obtained problem reads:

nd pσ a h , r a h , λ a h q P Σ a h ˆV a h ˆΛa h such that for all pτ h , v h , µ h q P Σ a h ˆV a h ˆΛa h ,
pσ a h , τ h q ωa `pr a h , ∇¨τ h q ωa `pλ a h , τ h q ωa " pψ a σp∇ s u k h q, τ h q ωa , p∇¨σ a h , v h q ωa " p´ψ a f `σp∇ s u k h q∇ψ a ´yk disc , v h q ωa , pσ a h , µ h q ωa " 0.

Then set σ k h,disc :"

ř aPV h σ a h .
Construction 3.4 (Linearization error stress reconstruction). For each a P V h solve (3.3) with u k h instead of u h , the source term in (3.3a) replaced by

ψ a pσ k´1 p∇ s u k h q ´σp∇ s u k h qq,
and the source term in (3.3b) replaced by

pσ k´1 p∇ s u k h q ´σp∇ s u k h qq∇ψ a `yk disc ,
where

y k disc P RM d is dened by (3.6). The corresponing local problem is to nd pσ a h , r a h , λ a h q P Σ a h ˆV a h ˆΛa h such that for all pτ h , v h , µ h q P Σ a h ˆV a h ˆΛa h , pσ a h , τ h q ωa `pr a h , ∇¨τ h q ωa `pλ a h , τ h q ωa " pψ a pσ k´1 p∇ s u k h q ´σp∇ s u k h qq, τ h q ωa , p∇¨σ a h , v h q ωa " ppσ k´1 p∇ s u k h q ´σp∇ s u k h qq∇ψ a `yk disc , v h q ωa , pσ a h , µ h q ωa " 0.
Then set σ k h,lin :"

ř aPV h σ a h .
Notice that the role of y k disc is to guarantee that, for interior vertices, the source terms in Constructions 3.3 and 3.4 satisfy the Neumann compatibility conditions

p´ψ a f `σp∇ s u k h q∇ψ a ´yk disc , zq ωa " 0 @z P RM d , ppσ k´1 p∇ s u k h q ´σp∇ s u k h qq∇ψ a `yk disc , zq ωa " 0 @z P RM d .
Lemma 3.5 (Properties of the discretization and linearization error stress reconstructions). Let σ k h,disc and σ k h,lin be prescribed by Constructions 3.3 and 3.4. Then it holds 1.

σ k h,disc , σ k h,lin P Hpdiv, Ωq, 2. pf `∇¨pσ k h,disc
`σk h,lin q, vq T " 0 @v P V T @T P T h , 3. As the Newton solver converges, σ k h,lin Ñ 0.

Proof. The proof is similar to the proof of Lemma 3.2. The rst property is again satised due to the denition of Σ a h . In order to show that the second property holds, we add the two equations (3.3b) obtained for each of the constructions. The right hand side of this sum then reads p´ψ a f `σk´1 p∇ s u k h q∇ψ a , v h q ωa . Once again we can, for any z P RM d , take ψ a z as a test function in (2.14) to show that this term is zero if v h P RM d , and so the equation holds for all v h P V h pω a q. Then we proceed as in the proof of Lemma 3.2.

A posteriori error estimate and adaptive algorithm

In this section we rst derive an upper bound on the error between the analytical solution of (2.12) and the solution u h of (2.13), in which we then identify and distinguish the discretization and linearization error components at each Newton iteration for the solution u k h of (2.14). Based on this distinction, we present an adaptive algorithm stopping the Newton iterations once the linearization error estimate is dominated by the estimate of the discretization error. Finally, in a more theoretical part, we show the eectivity of the error estimate.

Guaranteed upper bound

We measure the error in the energy norm v 2 en :" apv, vq " pσp∇ s vq, ∇ s vq, (4.1)

for which we obtain the properties

C 2 mon C ´2 K ∇v 2 ď v 2 en ď C gro ∇ s v 2 , (4.2)
by applying (2.1b) and the Korn inequality for the left inequality, and the CauchySchwarz inequality and (2.1a) for the right one. In our case it holds C K " ? 2, owing to (1.1b).

Theorem 4.1 (Basic a posteriori error estimate). Let u be the analytical solution of (2.12) and u h the discrete solution of (2.13). Let σ h be the stress tensor dened in Construction 3.1. Then, Proof of Theorem 4.1. We start by bounding the energy norm of the error by the dual norm of the residual of the weak formulation (2.12). Using (4.2), (2.1b), the linearity of a in its second argument, and (2.12) we obtain

u ´uh en ď ? 2C gro C ´3 mon ˜ÿ T PT h `hT π f `∇¨σ h T ` σ h ´σp∇ s u h q T ˘2¸1 {2 . ( 4 
u ´uh 2 en ď C gro ∇ s pu ´uh q 2 ď C gro C ´2 mon |apu, u ´uh q ´apu h , u ´uh q| " C gro C ´2 mon ∇pu ´uh q ˇˇˇa ˆu, u ´uh ∇pu ´uh q ˙´a ˆuh , u ´uh ∇pu ´uh q ˙ˇˇď C gro C ´3 mon C K u ´uh en sup v PrH 1 0 pΩqs d , ∇v "1 tapu, vq ´apu h , vqu " C gro C ´3 mon C K u ´uh en sup v PrH 1 0 pΩqs d , ∇v "1
tpf , vq ´pσp∇ s u h q, ∇ s vqu.

and thus

u ´uh en ď C gro C ´3 mon C K sup v PrH 1 0 pΩqs d , ∇v "1 tpf , vq ´pσp∇ s u h q, ∇ s vqu. (4.4)
Note that, due to the symmetry of σ we can replace ∇ s v by ∇v in the second term inside the supremum. Now x v P rH 1 0 pΩqs d , such that ∇v " 1. Since σ h P Hpdiv, Ωq, we can insert p∇¨σ h , vq `pσ h , ∇vq " 0 into the term inside the supremum and obtain pf , vq ´pσp∇ s u h q, ∇vq " pf `∇¨σ h , vq `pσ h ´σp∇ s u h q, ∇vq.

(4.5)

For the rst term of the right hand side of (4.5) we obtain, using (3.5) on each T P T h to insert Π 0 T v, which denotes the L 2 -projection of v onto rP 0 pT qs d , the CauchySchwarz inequality and the Poincaré inequality on simplices, ˇˇpf `∇¨σ h , vq ˇˇď ˇˇÿ

T PT h pf `∇¨σ h , v ´Π0 T vq T ˇˇď ÿ T PT h h T π f `∇¨σ h T ∇v T , (4.6) 
whereas the CauchySchwarz inequality applied to the second term directly yields ˇˇpσ h ´σp∇ s u h q, ∇vq ˇˇď ÿ

T PT h σ h ´σp∇ s u h q T ∇v T .
Inserting these results in (4.4) and again applying the CauchySchwarz inequality yields the result.

Distinguishing the dierent error components

The goal of this section is to elaborate the error estimate (4.3) so as to distinguish dierent error components using the equilibrated stress tensors of Constructions 3.3 and 3.4. This distinction is essential for the development of Algorithm 4.5, where the mesh and the stopping criteria for the iterative solver are chosen adaptively.

Notice that in Theorem 4.1 we don't necessarily need σ h to be the stress tensor obtained in Construction 3.1. We only need it to satisfy two properties: First, equation (4.5) requires σ h to lie in Hpdiv, Ωq. Second, in order to be able to apply the Poincaré inequality in (4.6), σ h has to satisfy the local equilibrium relation pf ´∇¨σ h , vq T " 0 @v P rP 0 pT qs d @T P T h . (4.7)

Thus, the theorem also holds for σ h :" σ k h,disc `σk h,lin , where σ k h,disc and σ k h,lin are dened in Constructions 3.3 and 3.4 and we obtain the following result. where the local discretization, linearization, quadrature and oscillation error estimators on each T P T h are dened as

η k disc,T :" σ k h,disc ´σp∇ s u k h q T , (4.9a) η k lin,T :" σ k h,lin T , (4.9b) η k quad,T :" σp∇ s u k h q ´σp∇ s u k h q T , (4.9c) η k osc,T :" h T π f ´Πp´1 T f T , (4.9d) 
with Π p´1 T denoting the L 2 -projection onto rP p´1 pT qs d , and for each error source the global estimator is given by

η k ¨:" ´4 ÿ T PT h pη k ¨,T q 2 ¯1{2 . (4.10) Proof. Using σ h :" σ k h,disc
`σk h,lin in Theorem 4.1, we obtain

u´u k h en ď ? 2C gro C ´3 mon ˜ÿ T PT h `hT π f `∇¨pσ k h,disc `σk h,lin q T ` σ k h,lin `σk h,disc ´σp∇ s u k h q T ˘2¸1 {2 .
Applying the second property of Lemma 3.5 in the rst term yields the oscillation error estimator.

In the second term we add and substract σp∇ s u k h q and apply the triangle inequality to obtain

u ´uk h en ď ? 2C gro C ´3 mon ˜ÿ T PT h `ηk disc,T `ηk lin,T `ηk quad,T `ηk osc,T ˘2¸1 {2 .
Owing to (4.10), the previous bound yields the conclusion.

Remark 4.4 (Quadrature error). In practice, the projection σp∇ s u k h q of σp∇ s u k h q onto rP p´1 pT h qs dˆd for a general nonlinear stress-strain relation cannot be computed exactly. The quadrature error estimator η k quad,T measures the quality of this projection.

Adaptive algorithm

Based on the error estimate of Theorem 4.3, we propose an adaptive algorithm where the mesh size is locally adapted, and a dynamic stopping criterion is used for the linearization iterations.

The idea is to compare the estimators for the dierent error sources with each other in order to concentrate the computational eort on reducing the dominant one. For this purpose, let γ lin , γ quad P p0, 1q, be user-given weights and Γ ą 0 a chosen threshold that the error should not exceed.

Algorithm 4.5 (Adaptive algorithm).

Mesh adaptation loop 1. Choose an initial function u 0 h P rH 1 0 pΩqs d X rP p pT h qs d and set k :" 1 2. Set the initial quadrature precision ν :" 2p (exactness for polynomials up to degree ν) `ηk osc,T q @T P T h , (4.13a)

3. Linearization iterations (a) Calculate σ k´1 p∇ s u k h q, u k h , σp∇ s u k h q and σp∇ s u k h q (b)
η k lin,T ď γ lin pη k disc,T `ηk osc,T q @T P T h , (4.13b) 
where it is also possible to dene local weights γ lin,T and γ quad,T for each element. These local stopping criteria are necessary to establish the local eciency of the error estimators in the following section, whereas the global criteria are only sucient to prove global eciency.

Local and global eciency

To prove eciency, we will use a posteriori error estimators of residual type. Following [41,42] we dene for X Ď Ω the functional R X : rH 1 pXqs d Ñ H ´1pX q such that, for all v P rH 1 pXqs d , w P rH 1 0 pXqs d , xR X pvq, wy X :" pσp∇ s vq, ∇ s wq X ´pf , wq X .

In what follows we let a À b stand for a ď Cb with a generic constant C, which is independent of the mesh size, the domain Ω and the stress-strain relation, but that can depend on the shape regularity of the mesh family tT h u h and on the polynomial degree p.

Dene, for each T P T h ,

pη k 7,T q 2 :" h 2 T ∇¨σp∇ s u k h q `Πp T f 2 T `ÿ F PF i T h F σp∇ s u k h qn F 2 F , pη k 5,T q 2 :" h 2 T ∇¨pσp∇ s u k h q ´σp∇ s u k h qq 2 T `ÿ F PF i T h F pσp∇ s u k h q ´σp∇ s u k h qqn F 2 F .
(4.14)

The quantity η k 5,T obviously measures the quality of the approximation of σp∇ s u k h q by σp∇ s u k h q and can be estimated explicitly. The following result is shown in [41, Section 3.3]. Denoting for any T P T h by T T the set of elements sharing an edge (if d " 2) or a face (d " 3) with T , it holds

η k 7,T À R T T pu k h q H ´1pT T q `´ÿ T 1 PT T pη k 5,T 1 `ηk osc,T 1 q 2 ¯1{2 . (4.15)
In order to bound the dual norm of the residual, we need an additional assumption on the stressstrain relation which, in particular, implies the growth assumption (2.1a).

Assumption 4.6 (Stress-strain relation II

). There exists a real number C Lip P p0, `8q such that, for all τ , η P R dˆd sym , |σpτ q ´σpηq| dˆd ď C Lip |τ ´η| dˆd . (Lipschitz continuity) (4.16)

Notice that the three stress-strain relations presented in Examples 2.2, 2.3, and 2.4 satisfy the previous Lipschitz continuity assumptions. Owing to the denition of the functional R T T and to the fact that ´∇¨σp∇ s uq " f P L 2 pT T q, using the CauchySchwarz inequality and the Lipschitz continuity (4.16) of σ, it is inferred that R T T pu k h q H ´1pT T q :" sup

wPH ´1pT T q, w H 1 0 pT T q ď1 pσp∇ s u k h q, ∇ s wq T T ´pf , wq T T " sup wPH ´1 pT T q, w H 1 0 pT T q ď1
pσp∇ s u k h q ´σp∇ s uq, ∇ s wq T T ď sup

wPH ´1pT T q, w H 1 0 pT T q ď1 σp∇ s u k h q ´σp∇ s uq T T ∇ s w T T ď C Lip ∇ s pu ´uk h q T T .
Thus, by (4.15), the previous bound, and the strong monotonicity (2.1b) it holds

η k 7,T À C Lip C ´1 mon u ´uk h en,TT `ηk 5,T T `ηk osc,TT , (4.17) 
where η k ¨,T T :" 2

ř T 1 PT T pη k ¨,T 1 q 2 (1 {2 .
Theorem 4.7 (Local eciency). Let u P rH 1 0 pΩqs d be the solution of (2.12), u k h P rH 1 0 pΩqs d X rP p pT h qs d be arbitrary and σ k h,disc and σ k h,lin dened by Constructions 3.3 and 3.4. Let the local stopping criteria (4.13) be veried. Then it holds for all T P T h , It is well known that there exist nonconforming nite element methods which are equivalent to mixed nite element methods using the BrezziDouglasMarini spaces (see e.g. [3]). Following the ideas of [15,17,22] and references therein, we use these spaces to prove Theorem 4.7. We will denote by M h pω a q the extension to vector valued functions of the nonconforming space introduced in [3] on a patch ω a . Recall that Σ h pω a q is the subspace of Hpdiv, Ωq containing tensor-valued piecewise polynomials of degree at most p.

For d " 2, the space M T on a triangle T P T h is given by M T :"

# tv P rP p`2 pT qs d | v |F P rrP p`1 pF qs d @F P F T u if p is even, tv P rP p`2 pT qs d | v |F P rP p pF qs d ' Pp`2 pF q @F P F T u if p is odd, (4.19)
where Pp`2 pF q is the L 2 pF qorthogonal complement of rP p`2 pF qs d in rP p`1 pF qs d . The degrees of freedom are given by the moments up to degree pp ´1q inside each T P T h and up to degree p on each edge F P F h . On a patch ω a this means that M h pω a q contains vector-valued functions lying piecewise in M T such that (4.20) where F a contains the faces in F h to which a belongs, and F ext h the faces lying on BΩ. We will denote by M a h the subspace of M h pω a q with functions m h verifying pm h , zq ωa " 0 @z P RM d , (4.21) if a P V int h , and pm h , v h q F " 0 @F P F a X F ext h @v h P rP p pF qs d , (4.22) if a P V ext h . We will use the space M a h together with Proposition 4.8 to prove Theorem 4.7. For Proposition 4.8 we introduce two equivalent formulations of Construction 3.3 based on the following spaces ΣT :" tτ P Σ T | pτ, µq T " 0 @µ P Λ T u, (4.23) Σh pω a q :" tτ h P rL 2 pΩqs dˆd | τ h P ΣT @T P T a u, (4.24)

p m h , v h q F " 0 @F P F a zF ext h @v h P rP p pF qs d ,
Σa h :" Σ a h X Σh pω a q " tτ h P Σ a h | pτ h , µ h q ωa " 0 @µ h P Λ a h u, (4.25) L a h :" tl h P rP p pF ωa qs d | l h " 0 on Bω a if a P V int h , l h " 0 on Bω a zBΩ if a P V ext h u, (4.26)
where F ωa collects the faces of the patch. The rst equivalent formulation of Construction 3.3 consists in nding σ a h P Σa h and r a h P V a h such that for all pτ h , v h q P Σa h ˆV a h pσ a h , τ h q ωa `pr a h , ∇¨τ h q ωa " pψ a σp∇ s u k h q, τ h q ωa , (4.27a)

p∇¨σ a h , v h q ωa " p´ψ a f `σp∇ s u k h q∇ψ a ´yk disc , v h q ωa . (4.27b)
The second formulation is the rst step when hybridizing the mixed problem (4.27). Following [3] it consists in using the broken space Σh pω a q instead of Σa h and imposing the continuity of the normal stress components by Lagrange multipliers. Its solution is pσ a h , r a h , l a h q P Σh pω a q ˆV a h ˆLa h such that for all pτ h , v h , l h q P Σh pω a q ˆV a h ˆLa

h pσ a h , τ h q ωa `ÿ T PTa pr a h , ∇¨τ h q T ´ÿ F PFω a pl a h , τ h n F F q F " pψ a σp∇ s u k h q, τ h q ωa , (4.28a) ÿ T PTa p∇¨σ a h , v h q T " p´ψ a f `σp∇ s u k h q∇ψ a ´yk disc , v h q ωa , (4.28b) ´ÿ F PFω a p σ a h n F F , l h q F " 0, (4.28c)
where we denote by n T F the outward normal vector of T on F and by n F the normal vector of F with an arbitrary, but xed direction. In particular, (4.28a) can be reformulated as

pσ a h ´ψa σp∇ s u k h q, τ T q T `pr a h , ∇¨τ T q T " ÿ F PF T pl a h , τ T n T F q F @τ T P ΣT @T P T a . (4.29)
Proposition 4.8. Let a P V h and let pσ a h , r a h , l a h q P Σh pω a q ˆV a h ˆLa h be dened by (4.28). Let ra h be a vector-valued function verifying for all T P T a and for all F P F T , ra h|T P M T , (4.30a)

Π L F ra h|F " l a h|F , (4.30b) Π V T ra h|T " r a h|T , (4.30c)
where Π L F and Π V T denote, respectively, the L 2 -projections on L F " rP p pF qs d and V T " rP p´1 pT qs d . Then ra h P M a h .

Proof. From dimpV T q `3dimpL F q " p 2 `p `3p2p `2q " p 2 `7p `6 " dimpM T q we infer that problem (4.30) is well-posed. Plugging (4.30b) and (4.30c) into (4.29) yields

Π ΣT p∇r a h q |T " pσ a h ´ψa σp∇ s u k h qq |T . (4.31)
Since the formulations (4.27) and (4.28) are equivalent, we can insert (4.31) and (4.30c) into (4.27a) and obtain p∇r a h , τ h q ωa `pr a h , ∇¨τ h q ωa " 0 @τ h P Σa h .

Choosing a basis function of

Σa h having zero normal trace across all edges except one edge F and applying the Green theorem, we see that ra h satises (4.20) for faces F P F a zF ext h , since the normal components across F of a basis of ΣT span rP p pF qs d . If a P V ext h we can proceed in the same way for F P F a X F ext h to obtain (4.22). Finally, for a P V int h it holds pr a h , zq ωa " 0 for any z P RM d by the denition (3.2b) of V a h , and by (4.30c) it follows that ra h satises (4.21). We conclude that ra h lies in M a h .

Proof of Theorem 4.7. We start by proving the local approximation property of the discrete stress reconstruction for any

T P T h η k disc,T " σ k h,disc ´σp∇ s u k h q T À η k 7,T T `ηk osc,T T . (4.32)
We dene ra h by (4.30). Then using the fact that ra h P M a h by Proposition 4.8 and [45, Lemma 5.4], stating that the dual norm on M h is an upper bound for the H 1 -seminorm, we obtain

σ a h ´ψa σp∇ s u k h q ωa ď ∇r a h ωa À sup m h PM a h , ∇m h "1
pσ a h ´ψa σp∇ s u k h q, ∇m h q ωa . (4.33)

Now x m h P M a h such that ∇m h ωa " 1. Then, by (4.20), it follows

pσ a h ´ψa σp∇ s u k h q, ∇m h q ωa " ÿ T PTa pσ a h ´ψa σp∇ s u k h q, ∇m h q T " ´ÿ T PTa p∇¨σ a h ´∇¨pψ a σp∇ s u k h q, m h q T looooooooooooooooooooooooomooooooooooooooooooooooooon ":T1 `ÿ F PFa p ψ a σp∇ s u k h qn F , m h q F loooooooooooooooooomoooooooooooooooooon ":T2
.

Using (4.27b) (which, as in the proof of Lemma 3.5, is valid for all v h P V h pω a q) and the fact that for all T P T a and τ P Σ T it holds p∇¨τ, m h q T " p∇¨τ, Π V T m h q T , due to the property ∇¨Σ T " V T , we can write for the rst term

T 1 " ´ÿ T PTa p´ψ a f `σp∇ s u k h q∇ψ a ´∇¨pψ a σp∇ s u k h qq, Π V T m h q T " ´ÿ T PTa pψ a pf `∇¨σp∇ s u k h qq, Π V T m h q T " ´ÿ T PTa pΠ p T f `∇¨σp∇ s u k h q, ψ a Π V T m h q T ď ˜ÿ T PTa h 2 T ψ a pΠ p T f `∇¨pσp∇ s u k h qqq 2 T ¸1{2 ˜ÿ T PTa h ´2 T m h 2 T ¸1{2 À ˜ÿ T PTa h 2 T Π p T f `∇¨σp∇ s u k h q 2 T ψ a 2 L 8 pT q ¸1{2 ∇m h ωa ,
where we used the Cauchy-Schwarz, the discrete Poincaré inequality of [44, Theorem 8.1] together with (4.21) if a P V int h and the discrete Friedrichs inequality of [44, Theorem 5.4] together with (4.22) if a P V ext h , and ψ a L 8 pT q " 1. For the second term we proceed in a similar way, using the discrete trace inequality m h F À h ´1{2 F m h T , and obtain

T 2 " ÿ F PF int a pψ a σp∇ s u k h qn F , m h q F ď ¨ÿ F PF int a h F ψ a σp∇ s u k h qn F 2 F '1 {2 ¨ÿ F PF int a h ´1 F m h 2 F '1 {2 À ¨ÿ F PF int a h F σp∇ s u k h qn F 2 F '1 {2 ∇m h ωa .
Inserting these results into (4.33) yields (4.32).

From the local stopping criteria (4.13), the denition of the discretization error estimator (4.9a) and the local approximation property (4.32) it follows that

η k disc,T `ηk lin,T `ηk quad,T À η k disc,T " σ k h,disc ´σp∇ s u k h q T À η k 7,T T `ηk osc,T T .
Then (4.17) yields the result.

Theorem 4.9 (Global eciency). Let u P rH1 0 pΩqs d be the solution of (2.12), u k h P rH 1 0 pΩqs d X rP p pT h qs d be arbitrary and σ k h,disc and σ k h,lin dened by Constructions 3.3 and 3.4. Let the stopping criteria (4.11) and (4.12) be veried. Then it holds

η k disc `ηk lin `ηk quad `ηk osc À C Lip C ´1 mon u ´uk h en `ηk 5 `ηk osc . (4.34) 
Proof. Proceeding as above, using the global stopping criteria (4.11) and (4.12), and owing to (4.32) we obtain

η k disc `ηk lin `ηk quad `ηk osc À η k disc `ηk osc À ´2 ÿ T PT h pη k 7,T T `ηk osc,T T q 2 ¯1{2 `ηk osc À η k 7 `ηk osc . (4.35)
Then, using again (4.17) we obtain the result.

Numerical results

In this section we illustrate numerically our results on two test cases, both performed with the Code_Aster 1 software, which uses conforming nite elements of degree p " 2. Our intention is, rst, to show the relevance of the discretization error estimators used as mesh renement indicators, and second, to propose a stopping criterion for the Newton iterations based on the linearization error estimator. All the triangulations are conforming, since in the remeshing progress hanging nodes are removed by bisecting the neighboring element.

L-shaped domain

Following [2,23,30], we consider the L-shaped domain Ω " p´1, 1q 2 zpr0, 1s ˆr´1, 0sq, where for the linear elasticity case an analytical solution is given by upr, θq " 1 2µ r α ˆcospαθq ´cosppα ´2qθq A sinpαθq `sinppα ´2qθq

˙,

pigure PX vEshped domin with liner elstiity modelF histriution of the error estimtors @topA nd the nlytil error @ottomA for the initil mesh @leftA nd fter three @middleA nd six @rightA dptive mesh re(nementsF with the parameters µ " 1.0, λ " 5.0, α " 0.6, A " 31{9.

This solution is imposed as Dirichlet boundary condition on BΩ, together with f " 0 in Ω. We perform this test for two dierent stress-strain relations. First on the linear elasticity model (2.3), where we can compare the error estimate (4.3) to the analytical error u ´uh en . The second relation is the nonlinear HenckyMises model (2.6), for which we distinguish the discretization and linearization error components and use the adaptive algorithm from Section 4.3.

Linear elasticity model

We compute the analytical error and its estimate on two series of unstructered meshes. Starting with the same initial mesh, we use uniform mesh renement for the rst one and adaptive renement based on the error estimate for the second series.

Figure 2 compares the distribution of the error and the estimators on the initial and two adaptively rened meshes. The error estimators reect the distribution of the analytical error, which makes them a good indicator for adaptive remeshing. Figure 3 shows the global estimates and errors for each mesh, as well as their eectivity index corresponding to the ratio of the estimate to the error. We obtain eectivity indices close to one, showing that the estimated error value lies close to the actual one, what we can also observe in the graphics on the left. As expected, the adaptively rened mesh series has a higher convergence rate, with corresponding error an order of magnitude lower for 10 3 elements. [20,27,39]), and we set a " 1{20, b " 1{2, and κ " 17{3 so that the shear modulus reduces progressively to approximately 10% of its initial value. This model allows us to soften the singularity observed in the linear case and to validate our results on more homogeneous error distributions. We apply Algorithm 4.5 with γ lin " 0.1 and compare the obtained results to those without the adaptive stopping criterion for the Newton solver. In both cases, we use adaptive remeshing based on the spatial error estimators.

The results are shown in Figure 4. In the left graphic we observe that the linearization error estimate in the adaptive case is much higher than in the one without adaptive stopping criterion. We see that this does not aect the discretization error estimator. The table shows the number of performed Newton iterations for both cases. The algorithm using the adaptive stopping criterion is more ecient. In the right graphic we compare the global distretization error estimate on two series of meshes, one rened uniformly and the other one adaptively, based on the local discretization error estimators. Again the convergence rate is higher for the adaptively rened mesh series.

Notched specimen plate

In our second test we use the two nonlinear models of Examples 2.3 and 2.4 on a more applicationoriented test. The idea is to set a special sample geometry yielding to a model discrimination test, namely dierent physical results for dierent models. We simulate the uniform traction of a notched specimen under plain strain assumption (cf. Figure 5). The notch is meant to favor strain localization phenomenon. We consider a domain Ω " p0, 10mq ˆp´10m, 10mqztx P R 2 | xm ´p0, 11mq T ď 2mu, we take f " 0, and we prescribe a displacement on the boundary leading to the following Dirichlet conditions:

u x " 0m if x " 0m, u y " ´1.1 ¨10 ´3m if y " ´10m, u y " 1.1 ¨10 ´3m if y " 10m.
In many applications, the information about the material properties are obtained in uniaxial experiments, yielding a relation between σ ii and ii for a space direction x i . Since we only consider isotropic materials, we can choose i " 1. From this curve one can compute the nonlinear Lamé functions of (2.6) and the damage function in (2.9). Although the uniaxial relation is the same, the resulting stress-strain relations will be dierent. In our test, we use the σ 11 11 relation indicated in the right of Figure 5 with

σ c " 3 ¨10 4 Pa, E " µp3λ `2µq λ `µ " 3 ¨10 8 Pa, E res " 3 ¨10 7 Pa,
corresponding to the Lamé parameters µ " 3 26 ¨10 9 Pa and λ " 9 52 ¨10 9 Pa. For both stress-strain relations we apply Algorithm 4.5 with γ lin " 0.1. We rst compare the results to a computation on a very ne mesh to evaluate the remeshing based on the discretization error estimators. Secondly, we perform adaptive remeshing based on these estimators but without applying the adaptive stopping of the Newton iterations and compare the two series of meshes. As in Section 5.1.2, we verify if the reduced number of iterations impacts the discretization error.

Figure 6 shows the result of the rst part of the test. In each of the four images the left specimen corresponds to the HenckyMises and the right to the isotropic damage model. To illustrate the dierence of the two models, the top left picture shows the trace of the strain tensor. This scalar value is a good indicator for both models, representing locally the relative volume increase which could correspond to either a damage or shear band localization zone. In the top right picture we pigure TX xothed speimen plteD omprison etween renky!wises @left in eh pitureA nd dmge model @rightAF Top left: trp∇s u h qF Top right: η disc on (ne mesh @no dptive re(nementAF Bottom left: meshes fter six dptive re(nementsF Bottom middle: initil meshF Bottom right: η disc on the dptively re(ned meshesF see the distribution of the discretization error estimators in the reference computation (209,375 elements), whereas the distribution of the estimators on the sixth adaptively rened mesh is shown in the bottom right picture (60,618 elements for HenckyMises, 55,718 elements for the damage model). The corresponding meshes and the initial mesh for the adaptive algorithm are displayed in the bottom left of the gure. To ensure a good discretization of the notch after repeated mesh renement, the initial mesh cannot be too corse in this curved area. We observe that the adaptively rened meshes match the distribution of the discretization error estimators on the uniform mesh, and that the estimators are more evenly distributed on these meshes.

The results of the second part of the test are illustrated in Figure 7. As for the L-shape test, we observe that the reduced number of Newton iterations does not aect the discretization error estimate, nor the overall error estimate which is dominated by the discretization error estimate if the Newton algorithm is stopped.

Conclusions

In this work we have developed an a posteriori error estimate for a wide class of hyperelastic problems. The estimate is based on stress tensor reconstructions and thus independent of the stress-strain relation, except for two constants. In a nite element software providing dierent mechanical behavior laws it can be directly applied to any of these laws. The assumptions we make on the stress-strain relation are only used to obtain the equivalence of the energy norm and pigure UX xothed speimen plteF gomprison of the glol disretiztion nd lineriztion error estimtors without nd with dptive stopping riterion for the renky!wises model @leftA nd the dmge model @middleAD nd omprison of the numer of perfomed xewton itertions @rightAF the dual norm of the residual of the weak formulation. Using the latter as error measure, the method can be applied to a wider range of behavior laws. Exploring both numerical tests, we have promising results for general plasticity and damage models. These results come at the price of solving local mixed nite element problems at each iteration of the linearization solver. In practice, the corresponding saddle point problems can be transformed into symmetric positive denite systems using the spaces of Section 4.4. Furthermore, these matrices (or their decomposition) can be computed once in a preprocessing stage, and only need to be recomputed if one or more elements in the patch have changed due to remeshing. 
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  τ, η P R dˆd sym , |σpτq| dˆd ď C gro |τ| dˆd ,

	(growth)	(2.1a)
	pσpτq ´σpηqq : pτ ´ηq ě C 2 mon |τ ´η| 2 dˆd , (strong monotonicity)	(2.1b)

  α " λ `2 d µ and Φpρq " µρ in (2.4) leads to the linear case (2.2). Deriving the energy density function (2.4) yields

σpτq " λpdevpτqq trpτqI d `2μpdevpτqqτ,

(2.6)

  For the damage model (2.9) we take C gro :" C ˚and C mon :" ? C ˚, where C ånd C ˚are the constants appearing in (2.8). Following [37], we obtain a sharper bound in the case of linear elasticity, with µ ´1{2 instead of ? 2C gro C ´3 mon in (4.3).

.3) Remark 4.2 (Constants C gro and C mon ). For the estimate to be computable, the constants C gro and C mon have to be specied. For the linear elasticity model (2.3) we set C gro :" 2µ `dλ and C mon :" ? 2µ, whereas for the HenckyMises model (2.6) we set C gro :" 2μp0q `dλ p0q and C mon :" a 2μp0q.

  Theorem 4.3 (A posteriori error estimate distinguishing dierent error sources). Let u be the analytical solution of (2.12), u k h the discrete solution of (2.14), and σ h :" σ k

							h,disc	`σk h,lin . Then,
	u ´uk h en ď	?	2C gro C ´3 mon	`ηk disc	`ηk lin	`ηk quad	`ηk osc ˘,	(4.8)

  Calculate the stress reconstructions σ k h,disc and σ k h,lin and the error estimators η k

					disc ,
	η k lin , η k osc and η k quad			
	(c) Improve the quadrature rule (setting ν :" ν `1) and go back to step 3(a) until
	η k quad ď γ quad pη k disc	`ηk lin	`ηk osc q	(4.11)
	(d) End of the linearization loop if	
		η k lin ď γ lin pη k disc	`ηk osc q	(4.12)
	4. Rene or coarsen the mesh T h such that the local discretization error estimators η k disc,T are
	distributed evenly			
	End of the mesh adaptation loop if η k disc	`ηk osc ď Γ	
	Instead of using the global stopping criteria (4.11) and (4.12), which are evaluated over all mesh
	elements, we can also dene the local criteria		
	η k quad,T ď γ quad pη k disc,T	`ηk lin,T	

  QX vEshped domin with liner elstiity modelF Left: gomprison of the error estimte @RFQA nd u´u h en on two series of meshesD otined y uniform nd dptive remeshingF Right: i'etivity indies of the estimte for eh meshD with the meshes stemming from uniform re(nement highlighted in gryF

										|T h |	I eff
										34	1.00
										84	1.01
	10 ´0.5									130 1.02 137 1.01
										214 1.05
										239 1.01
	´1 10 10 ´1.5	error, unif. estimate, unif. error, adap. estimate, adap.						293 1.00 429 1.01 524 1.01 601 1.01 801 1.01 1099 1.02
			10 2				10 3	1142 1.02
		|T h | " number of mesh elements		
	10 ´2			0	norm. adap. 4 2			
				1 2	4 5	2 3	10	´1	
	10 ´5			3	5	3			
				4	5	3			
				5	6	4			
	10 ´11 10 ´8	η disc , no η lin , no η disc , ad η lin , ad		6 7 8 9 10	6 6 7 7 8	4 4 4 5 5	10	´2		η disc , unif. η disc , adap.
	10 2	10 3	10 4	11	9	5				10 2	10 3	10 4
	|T h | " number of mesh elements								|T h | " number of mesh elements
	pigure RX vEshped domin with renky!wises modelF Left: gomprison of the glol disretiztion nd linE
	eriztion error estimtors on series of meshesD without nd with dptive stopping riterion for the xewton
	lgorithmF Middle: xumer of xewton itertions without nd with dptive stopping riterion for eh meshF
	Right: hisretiztion error estimte for uniform nd dptive remeshingF	
	5.1.2 HenckyMises model							
	For the HenckyMises model we choose the Lamé functions		
		μpρq :" a `bp1 `ρ2 q ´1{2 , λpρq :" κ	´3 2	μpρq,
	corresponding to the Carreau law for elastoplastic materials (see, e.g.

pigure

  IH wF ermákD pF rehtD ngD nd wF ohrlíkF edptive inext itertive lgorithms sed on polynomilE degreeEroust posteriori estimtes for the stokes prolemF hlEHIHWUTTPD sumitted for pulitionD PHIUF II wF gerverD wF ghiumentiD nd F godinF wixed stilized (nite element methods in nonliner solid meE hnisX rt ssX trin loliztionF Comput. Methods in Appl. Mech. and Engrg.D IWW@QU!RHAXPSUI!PSVWD PHIHF IP vF ghmoinD F vdevèzeD nd pF ledF en enhned method with lol energy minimiztion for the roust posteriori onstrution of equilirted stress (eld in (nite element nlysisF Comput. Mech.D RWXQSU!QUVD PHIPF IQ F hestuynder nd fF wétivetF ixpliit error ounds in onforming (nite element methodF Math. Comput.D TV@PPVAXIQUW!IQWTD IWWWF IR F hörsek nd tF welenkF ymmetryEfreeD pEroust equilirted error indition for the hpEversion of the piw in nerly inompressile liner elstiityF Comput. Methods Appl. Math.D IQXPWI!QHRD PHIQF IS vF il elouiD eF irnD nd wF ohrlíkF qurnteed nd roust posteriori error estimtes nd lning disretiztion nd lineriztion errors for monotone nonliner prolemsF Comput. Methods Appl. Mech. Engrg.D PHHXPUVP!PUWSD PHIIF
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