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Abstract—It is well-known that the MUSIC method for DoA
estimation degrades when the number of samples N and the
array dimension M are large and of the same order of magnitude.
In this context, several improvements have been proposed, among
which the G-MUSIC method, which was shown to be consistent
in the asymptotic regime where M,N converge to infinity at
the same rate, and under an additional separation condition
between noise and signal subspaces of the SCM. Nevertheless,
this subspace separation condition is only fulfilled for sufficiently
high SNR. Dimension reduction techniques are a classical way
to partially circumvent this condition. In this paper, we provide
an asymptotic analysis in terms of consistency and MSE in the
aforementioned regime, of the Beamspace MUSIC, which is one
popular technique to reduce the dimension of the observations.

I. INTRODUCTION

The problem of estimating the Direction of Arrival (DoA)
of K source signals from a set of N noisy observations
collected by an array of M sensors has been extensively
studied in the past. Among the multiple algorithms that have
been proposed, subspace methods, in particular MUSIC, are
widely considered because they offer a good performance
for a reduced computational cost, compared the maximum
likelihood based method. We consider here the situation where
K narrowband and far-field source signals are impinging on
an array of M sensors (K < M ), with DoA θ1, . . . , θK .
At discrete time n, the received signal yn ∈ CM is usually
modeled as

yn = Asn + vn,

where A = [a(θ1), . . . ,a(θK)] is the matrix contain-
ing the steering vectors a(θ1), . . . ,a(θK), with a(θ) =
M−1/2[1, . . . , ei(M−1)θ]T , where sn ∈ CK contains the K
source signals received at time n, and where vn is a complex,
additive, spatially and temporally white Gaussian noise, with
E[vnv

∗
n] = σ2I. When N samples are collected in the matrix

YN = [y1, . . . ,yN ], the previous model then writes

YN = ASN +VN , (1)

where SN = [s1, . . . , sN ] et VN = [v1, . . . ,vN ]. In the
remainder, we consider the so-called conditional assumption,
where the source signals are assumed (unknown) deterministic.
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When rank(SN ) = K, the DoA θ1, . . . , θK are zeros of the
pseudo-spectrum function

ηN (θ) = a(θ)∗ΠNa(θ), (2)

where ΠN is the orthogonal projection matrix onto the
noise subspace (i.e. the kernel of ASNS∗

NA∗). Since ΠN

is not available in practice, its standard estimate Π̂N is
obtained by computing the orthogonal projection matrix onto
the eigenspace associated with the M−K smallest eigenvalues
of the sample covariance matrix (SCM)

YNY∗
N

N
=

1

N

N∑
n=1

yny
∗
n. (3)

The MUSIC algorithm then consists in estimating θ1, . . . , θK
as the K most significant minima of

η̂N (θ) = a(θ)∗Π̂Na(θ). (4)

The use of Π̂N is motivated by the fact that (law of large
number) ∥∥∥∥YNY∗

N

N
−RN

∥∥∥∥ −→ 0, (5)

almost surely (a.s.), as M is fixed and N → ∞ (‖.‖ stands
for the spectral norm), where RN = A

SNS∗
N

N A∗ + σ2I is the
covariance matrix of the observations. The convergence (5)
implies ‖Π̂N −ΠN‖ → 0 and

sup
θ∈[−π,π]

|η̂N (θ)− ηN (θ)| a.s.−−−−→
N→∞

0,

and therefore the consistency of the MUSIC DoA estimates.
In practice, the use of the empirical estimate Π̂N makes sense
whenever N >> M , and MUSIC performs relatively well in
this context.

When the number of sensors M is large and the signals
are short-time stationary, the number of samples N can be
constrained to be of the same order of magnitude than M .
In this regime, it is well-known that the performance of the
MUSIC method severely degrades, essentially because the
SCM is no more a good estimator of the true covariance
RN . To model this new scenario, Mestre [1] consider a
non-standard asymptotic regime in which M and N both



converge to infinity at the same rate, that is M,N → ∞
while M

N → c > 0. In this new asymptotic regime, (5) does
not hold anymore, and consequently (4) does not estimate
consistently (2). In particular, the eigenvalues of YNY∗

N

N ,
instead of converging to the eigenvalues of RN , spread in
several groups [2], resulting in a poor separation between
noise and signal subspaces. Using results from random matrix
theory, a "subspace separation condition" was derived in [2]
(see also [1]), under which the K largest sample eigenvalues
split from the smallest M −K, resulting in a clear separation
between noise and signal subspaces. Moreover, this condition
was shown to hold for a SNR above a certain threshold. An
extension of MUSIC (termed as "G-MUSIC") was then derived
and shown to outperform the traditional MUSIC method for
realistic values of M,N .

Nevertheless, the above subspace separation condition,
which is inherent to the doubly asymptotic regime considered
here, may be restrictive since it holds only at high SNR. One
way to circumvent partially this drawback is to use dimension-
ality reduction techniques, which consist in virtually reducing
the dimension of the observations M by pre-processing the
data YN before using subspace methods, in order to get back
to a situation where the dimension of the observations is
small compared to the number of samples N . Such techniques
include in particular beamforming (see [3] and the references
therein), spatial smoothing (see the recent reference [4]), or
compressive sensing (see [5]).

In this paper, we propose a performance analysis of
Beamspace-MUSIC, in the doubly asymptotic regime de-
scribed above, when using a Discrete Fourier Transform (DFT)
beamformer focused on a particular angular sector where the
sources are suspected to lie. In particular, we prove the consis-
tency and the asymptotic Gaussianity of the underlying DoA
estimates, and provide an asymptotic analysis of the MSE.
The paper is organized as follows. In section II, we provide
some useful asymptotic results concerning the behaviour of the
eigenvalues and eigenvectors of the SCM. In section III, we
make use of the results of section II to study the performance
of Beamspace MUSIC in terms of consistency and asymptotic
MSE. Some numerical examples illustrate the previous results.

II. ASYMPOTIC BEHAVIOUR OF THE S.C.M

From now on, we assume the asymptotic regime where
M =M(N) is a function of N such that M

N → c ∈ (0, 1) as
N → ∞, and K independent of N .

We recall below useful asymptotic results from random
matrix theory, which will be useful for the subsequent analysis
of Beamspace-MUSIC. For this, we consider a more general
random matrix model

ΣN = XN +WN , (6)

where XN is a rank K deterministic matrix such that
lim supN ‖XN‖ < ∞ and where WN is a random matrix
having i.i.d. zero-mean complex Gaussian entries with vari-
ance σ2

N . Of course, model (6) encompass (1) by setting ΣN =
N−1/2YN , XN = N−1/2ASN and WN = N−1/2VN .

For the remainder, we denote by λ1,N ≥ . . . ≥ λK,N the
non-zero eigenvalues of XNX∗

N and by u1,N , . . . ,uK,N the
associated unit-norm eigenvectors. In the same way, we denote
by λ̂1,N ≥ . . . ≥ λ̂M,N and û1,N , . . . , ûM,N the eigenvalues
and associated eigenvectors of ΣNΣ∗

N .
Due to the non-standard asymptotic regime considered here,

the following subspace separation condition [2] is needed to
ensure an asymptotic separation between the signal and noise
subspaces of the s.c.m. ΣNΣ∗

N .

Assumption 1. For k = 1, . . . ,K, λk,N → λk as N → ∞,
where λ1 ≥ . . . ≥ λK > σ2

√
c.

Indeed, under Assumption 1, we have for k = 1, . . . ,K

λ̂k,N
a.s.−−−−→

N→∞

(λk + σ2c)(λk + σ2)

λk
> σ2(1 +

√
c)2,

while λ̂K+1,N → σ2(1 +
√
c)2 a.s. Thus, under the sepa-

ration condition, the K largest eigenvalues of ΣNΣ∗
N split

asymptotically from the M −K smallest, which implies the
separation of the signal and noise subspaces. Moreover, under
the subspace separation condition, we can characterize the
asymptotic behaviour of any bilinear form of Π̂N . For any
sequences of unitary vectors (d1,N ), (d2,N ), we then define

η̂N = d∗
1,N

(
M∑

k=K+1

ûk,N û∗
k,N

)
d2,N ,

and the following result holds.

Theorem 1. [6] Under Assumption 1, η̂N = ηN + o(1) a.s.,
where

ηN = d∗
1,N

(
I−

K∑
k=1

γk,Nuk,Nu∗
k,N

)
d2,N , (7)

with γk,N =
λ2
k,N−σ4cN

λk,N (λk,N+σ2cN ) .

We now give a Central Limit Theorem (CLT) for η̂N which
can be obtained using the same steps as in [7]. Define 1

ϑN (k, `) = −λk,Nλ`,N
2

I1,N (k, `)2+

σ4 + σ2(λk,N + λ`,N ) + λk,Nλ`,N
2

∑
n≥0

(σ4cN )nIn+1,N (k, `)2,

where In,N (k, `) is defined by the contour integral

In,N (k, `) =
1

2πi

∮
C

(w2 − σ4cN )(w + σ2cN )−1

wn(λk,N − w)(λ`,N − w)
dw,

with C any circle centered at 0 with radius in the interval(
σ2cN , σ

2√cN
)
. Define also

ΓN (k, `) = Re
(
η
(1,2)
k,N η

(1,2)
`,N

)
+
η
(1,1)
k,N η

(2,2)
`,N + η

(1,1)
`,N η

(2,2)
k,N

2

1An explicit expression can be obtained for ϑN (k, `), by solving the
integral In,N (k, `) with residue theorem, but this representation is kept due
to lack of space.



where η(i,j)k,N = d∗
i,Nuk,Nu∗

k,Ndj,N . Finally, we set

ΓN =
M∑
k=1

M∑
`=1

ϑN (k, `)ΓN (k, `). (8)

Theorem 2. If lim infN→∞ ΓN > 0, then
√
NRe (η̂N − ηN )√

ΓN

D−−−−→
N→∞

NR (0, 1) .

III. PERFORMANCE ANALYSIS OF BEAMSPACE-MUSIC

We recall that the general idea of the Beamspace-MUSIC
method consists in applying the classical MUSIC method on
the "beamformed" observations matrix

ỸN = B∗
NYN ,

where BN is a M × L matrix with orthonormal columns.
Hence, the classical "element-space" model (1) reduces to the
"beamspace" model with lower dimension L

ỸN = ÃSN + ṼN ,

where ṼN = [ṽ1, . . . , ṽN ] with ṽ1, . . . , ṽN i.i.d.
NCL

(
0, σ2I

)
, and where Ã = [ã(θ1), . . . , ã(θK)] is the

beamformed steering vectors matrix, with ã(θ) = B∗
Na(θ).

The beamspace MUSIC algorithm then consists in estimating
the DoA θ1, . . . , θK as the K most significant minima of

η̂
(b)
N (θ) = ã(θ)∗Π̂

(b)

N ã(θ),

where Π̂
(b)

N is the orthogonal projection matrix onto the
eigenspace associated with the L − K smallest eigenvalues
of the SCM N−1ỸNỸ∗

N .
We consider here the DFT beamformer, obtained by select-

ing a set of columns from a DFT matrix. Usually, it is assumed
that the sources DoA are located in some spatial sector Θ, that
is, a compact subset of [−π, π], which is assumed known. In
that case, by defining

VN =

{
−π +

2πm

M
: m = 0, . . . ,M − 1

}
,

and {ν1,N , . . . , νL,N} = Θ∩VN , we consider the beamform-
ing matrix

BN = [a(ν1,N ), . . . ,a(νL,N )].

Of course, such a choice of BN ensures that Ã = B∗
NA is

full-rank K as long as L ≥ K.
For the remainder, we assume2 that the DoA θ1, . . . , θK

are independent of N . Moreover, we assume that the angular
sector Θ is such that θ1, . . . , θK ∈ Int(Θ), where Int(Θ) is
the interior of Θ, and that Θ is the union of a fixed number
of compact intervals, with Lebesgue measure ∆ ∈ (0, 2π]. In
that case, we have

dN =
L

N
−−−−→
N→∞

d =
∆

2π
c.

2In practice, for finite N , this would model a situation where the source
DoA are widely spaced.

To study the consistency and asymptotic Gaussianity of the
Beamspace-MUSIC DoA estimates, we essentially rely on the
results of section II, by setting this time ΣN = N−1/2ỸN ,
XN = N−1/2ÃSN and WN = N−1/2ṼN , and replacing
M , cN , c by L, dN , d.

Remark 1. Of course, if Θ = [−π, π], then L = M and
the Beamspace-MUSIC coincides exactly with MUSIC, that is
η̂
(b)
N (θ) = η̂N (θ) for all θ ∈ [−π, π]. Therefore, the subsequent

analysis will also encompass the traditional MUSIC.

The following property on the asymptotic orthonormality of
the beamformed steering vectors will be useful.

Lemma 1. Let I ⊂ Int(Θ) be a closed interval. Then,
supθ∈I

∣∣‖ã(θ)‖2 − 1
∣∣ = O

(
N−1

)
and for all ψ ∈ Int(Θ)\I,

sup
θ∈I

|ã(θ)∗ã(ψ)| = O
(

1

N

)
.

Moreover, Re
(
N−1ã′(θk)u`,Nu∗

`,N ã(θk)
)

= O(N−1) for
k, ` ∈ {1, . . . ,K}.

We also make the following assumption.

Assumption 2. The following convergence holds

SNS∗
N

N
−−−−→
N→∞

Λ,

where Λ = diag(λ1, . . . , λK) where λ1 > . . . > λK > σ2
√
d.

Under Assumption 2, and using Lemma 1, we notice that
Ã∗Ã = I + O(N−1) and the K non-zero eigenvalues
λ1,N , . . . , λK,N of N−1ÃSNS∗

NÃ∗ converge to λ1, . . . , λK .
Therefore, the separation condition (Assumption 1) is satisfied
in this situation.

Remark 2. At this point, we remark that the SNR required
for the subspace separation condition to hold has lowered to√

∆
2π c instead of

√
c, if we define the SNR as the ratio λK

σ2 .

In the remainder, we use the notation (εN ) for a generic
deterministic error term vanishing at rate O

(∥∥∥SNS∗
N

N −Λ
∥∥∥)+

O(N−1) (the value of εN can change from one line to an-
other). Under Assumption 2, we retrieve the usual asymptotic
orthonormality between steering vectors and eigenvectors.
Indeed, |a(θk)∗u`,N | = δk,`+ εN , while for any fixed interval
I ⊂ Int(Θ) such that θk 6∈ I, supθ∈I |ã(θ)∗uk,N | = εN .
Moreover, the following approximations also hold.

Lemma 2. Under Assumption 2,

ã′(θk)
∗

N
u`,Nu∗

`,N ã(θk) = −i
c

2
δk,` + εN , (9)∣∣∣∣ ã′(θk)N

∗
u`,N

∣∣∣∣ = c

2
δk,` + εN , (10)

ã(2)(θk)

N2

∗

u`,Nu∗
`,Na(θk) = −c

2

3
δk,` + εN . (11)

Let I1, . . . , IK be compact disjoint intervals subset of
Int(Θ) and containing respectively θ1, . . . , θK . We define



formally the Beamspace-MUSIC DoA estimates as

θ̂
(b)
k,N = argmin

θ∈Ik

η̂
(b)
N (θ),

for k = 1, . . . ,K. Using Theorem 1 with d1,N = d2,N = ã(θ)
and applying the procedure used in [6, Th. 3], we obtain the
following uniform convergence

sup
θ∈Θ

∣∣∣η̂(b)N (θ)− η
(b)
N (θ)

∣∣∣ a.s.−−−−→
N→∞

0,

where η(b)N (θ) = ‖ã(θ)‖2 −
∑K

k=1 γk,N |ã(θ)∗uk,N |2. More-
over, using Lemma 2, we further obtain

sup
θ∈Ik

∣∣∣η(b)N (θ)−
(
1− γk,N |ã(θ)∗ã(θk)|2

)∣∣∣ a.s.−−−−→
N→∞

0,

while supθ∈Θ\
⋃

k Ik
η
(b)
N (θ) → 1. Since function θ 7→

|ã(θ)∗ã(θk)|2 has a unique global maximum at θk, we deduce
that θ̂(b)k,N → θk a.s. Finally, using a similar analysis as in [6,
Th. 3], we can prove the following refinement.

Theorem 3. Under Assumption 2, for all k = 1, . . . ,K,

θ̂
(b)
k,N = θk + o

(
1

N

)
a.s.

Concerning the 2nd order analysis, we follow the standard
steps of M-estimation, based on a Taylor expansion of η̂(b)

′

N (θ)
around θk (see e.g. [6]). Using Theorem 1 and 3, we obtain

N3/2
(
θ̂
(b)
k,N − θk

)
= −

N−1/2η̂
(b)′

N (θk)

N−2η
(b)(2)
N (θk) + o(1)

a.s.

Finally, Lemma 1 gives N−1η
(b)′

N (θk) = O(N−1), and using
Theorem 2 with d1,N = N−1ã′(θk) and d2,N = ã(θk), we
deduce

η̂
(b)′

N (θk)

2
√
N
√
ΓN

D−−−−→
N→∞

NR(0, 1).

Therefore, the following result holds.

Theorem 4. Under Assumption 2, for any k = 1, . . . ,K,

N3/2N
−2η

(b)(2)
N (θk)

2
√
ΓN

(
θ̂
(b)
k,N − θk

)
D−−−−→

N→∞
NR(0, 1). (12)

Using the approximations of Lemma 2, we can obtain a
more compact expression for the MSE term in (12). Indeed,

η
(2)(b)
N (θk) =

c2

6

λ2k − σ4d

λk(λk + σ2d)
+ εN . (13)

From Lemma 2, we remark that ΓN (k, `) = o(1) for k, ` ∈
{1, . . . ,K}, and consequently, we can prove that

ΓN =
c2

24

σ2(λk + σ2)(λ2k − σ4d)

λ2k(λk + σ2d)2
+ εN .

Finally, Theorem 4 rewrites

N3/2

√
c2

6

(λ2k − σ4d)

σ2(λk + σ2)

(
θ̂
(b)
k,N − θk

)
D−−−−→

N→∞
NR(0, 1). (14)

Remark 3. From the convergence (14), we notice that the
knowledge of an angular sector Θ, symbolized by its length
∆ ≤ 2π, gives a reduced asymptotic MSE, compared to the
one we would have without beamforming (traditional MUSIC),
since d ≤ c.

In Figure 1, we plot the empirical MSE of Beamspace-
MUSIC and G-MUSIC [2] against the SNR, defined as
−10 log(σ2), for 2 sources. The entries of the signal matrix
SN are the realization of independent standard complex Gaus-
sian variables. The theoretical MSE predicted by Theorem 4
is also represented, as well as the Cramer-Rao Bound (CRB).
The SNR required for the subspace separation condition to
hold is visible through the so-called threshold effect, which
occurs for a lower SNR in the case of Beamspace-MUSIC
(around -4 dB against 2 dB for G-MUSIC).
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Figure 1. M = 200, N = 400, cN = 0.5, θ1 = 0, θ2 = 0.05, dN ≈ 0.08
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