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Modulation of large-scale structures by neutrally buoyant and inertial finite-size

particles in turbulent Couette flow
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3FERMaT, Université de Toulouse, CNRS, INPT, INSA, UPS, Toulouse, France

Particle-resolved numerical simulations based on the Force Coupling Method are carried out to
study the effect of finite-size particles on turbulent plane Couette flow. The Reynolds number is close
to the laminar-turbulent transition, such that large scale rotational structures are well developed
and self-sustained. The study particularly considers the effect of concentration, particle size and
particle-to-fluid density ratio on the mixture flow features.

Time averaged profiles, in the wall-normal direction, of the mean flow and Reynolds stress com-
ponents reveal that there is no significant difference between single phase and two-phase flows at
equivalent effective Reynolds number, except that the wall shear stress is higher for the two-phase
flow. However temporal and modal analysis of flow fluctuations, suggest that besides injecting small
scale perturbation due to their rigidity, particles have an effect on the regeneration cycle of turbu-
lence. Indeed, the shape of the streaks and the intermittent character of the flow (amplitude and
period of oscillation of the modal fluctuation energy) are all altered by the particle presence, and
especially by the inertial ones.

(Submitted to Phys.Rev.Fluid 13 December 2016; accepted 16 June 2017)

INTRODUCTION

Particulate flows are ubiquitous in industrial applica-
tions (mixing, transport, fluidization), in engineering like
petroleum or chemical processes, food or solid processing,
water treatment ... The transport of mixtures is often re-
alized under turbulent regime, especially at large scales.
Under turbulent regime, it is known that the dispersed
phase (particles, bubbles, droplets) modulate transport
properties of dispersed flows (see the review by Balachan-
dar and Eaton [1] for turbulent flows laden with solid
particles). The mechanisms of turbulence modulation
by particles depend on many parameters (flow geome-
try, particle size, concentration, flow and particle iner-
tia), and they are still not completely elucidated over
the entire parameter space.

Turbulence modulation by inertial particles (typically
in gas-solid flows) results from a competition between
drag-induced local dissipation and enhanced velocity
fluctuations due to wake dynamics and self-induced vor-
tex shedding. In summary, these phenomena depend pre-
dominantly on the size ratio between the particle diam-
eter d and characteristic flow length scales, the macro-
and micro-scales being set respectively by the flow geom-
etry and bulk Reynolds number. In a review on works
carried out between 1971 and 1988, Gore and Crowe [2]
established a qualitative relationship between the flow
turbulent intensity and the ratio d/le (le being the flow
integral length scale). A critical ratio d/le ≈ 0.1 was
found above (resp. below) which turbulence enhance-
ment (resp. reduction) occurs. Flow modulation de-
pends on d/η (η being the flow micro-scale) in a less
obvious way. Pan and Banerjee [3] have shown through

numerical simulations based on two-way coupling that,
at small particle Reynolds numbers, the increase (resp.
decrease) of turbulence intensity occurs for d/η > 1 (resp.
d/η < 1). However Burton and Eaton [4] who performed
fully-resolved simulation of homogeneous isotropic turbu-
lence around a fixed particle with d/η = 2, showed reduc-
tion of the Turbulence Kinetic Energy (TKE) within 1.5d
of the particle surface but negligible turbulence modifi-
cation outside a layer of 5d from the particle surface. A
large amount of works on this subject can be found in the
literature, showing that modification of flow fluctuating
energy varies with the wavelength compared to the par-
ticle size, and can depend on the direction, and on the
eventual location of the vortical structures with respect
to a wall. It is out of the scope of the paper to make
an exhaustive review on that, so we reference only few
contributions [5–9]...

The effect of neutrally buoyant particles on turbulent
flow is different because there is no mean slip between
phases. Dissipation and velocity fluctuations are both
increased due to the perturbation of locally strained flow
by particle rigidity. Among the few studies realized with
neutrally buoyant particles Rashidi et al. [10] carried
measurements in turbulent channel flow at low concen-
tration, with different particle sizes. They found that
large particles increase the number of wall ejections, lead-
ing to higher turbulent intensities and Reynolds stress,
while the opposite was observed for smaller particles. Re-
cently, with the fast development of computer power and
resources, a few studies considered the simulation of tur-
bulent suspension flow with finite sized particles. In ad-
dition to the conclusion of [10], Shao et al. [11] found
a reduction of the intensity of the large-scale stream-
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wise vortices by particles carried inside these structures,
whereas other particles not carried by these structures
induce small scale perturbation that hinder the devel-
opment of the large-scale streamwise vortices. Mean-
while, an increasing number of smaller-scale structures
are induced. Their conclusions are done for suspension
flows with low concentration up to 7%. Recently, Picano
et al. [12] performed particle-resolved numerical simula-
tions of turbulent channel flow at higher concentration
(up to 30%) and focused on the effect of particles on the
overall drag. They showed that when the concentration
increases, the friction on the walls is increased, mainly
from the increase of particle stress, while turbulent ac-
tivity is reduced.

Close to laminar-turbulent transition, the presence of
particles can advance or delay the transition from one
regime to another. The experiments of Matas et al. [13]
revealed that the effect of neutrally buoyant particles on
the onset of turbulence in a pipe flow is non monotonous
when the particle size and/or concentration is increased.
Recent numerical studies [14–16] have shown a signifi-
cant impact of large particles on the unsteady nature
of pressure-driven flows, enhancing transverse turbulent
stress components and modifying the flow vortical struc-
tures.

While the lifetime and shape of large scale vortices
(LSV) in pressure-driven flows are strongly unsteady,
turbulent plane Couette flow (pCf), close to the tran-
sition threshold, offer steady pairs of counter-rotating
LSV, which size is comparable to the Couette gap width.
Near the wall, the large vortices generate ejection and
sweep flows in the wall-normal direction, that constitute
the large scale streaks (LSS). These two structures per-
manently exchange energy, and play a key role in the
self-sustained turbulence process, so-called regeneration
cycle [17]. In a minimal pCf unit, one can isolate a pair of
LSV, without affecting the regeneration cycle [18]. This
allows to study the impact of particles-vortices interac-
tion on the regeneration cycle, and thereby the turbu-
lent flow features. We are interested in the modulation
of large scale structures by finite sized particles. We
consider first neutrally buoyant particles. Studies ded-
icated to turbulent pCf laden with finite sized particles
are scarce. In addition to being transported by the lo-
cal fluid flow, neutrally buoyant finite sized particles are
subject to inertial migration (across flow streamlines) at
large Reynolds numbers. Therefore its wall-normal mo-
tion results from a competition between repulsive turbu-
lent ejection/inertial migration away from the Couette
walls, attractive turbulent sweep towards the wall, and
turbulent/shear-induced dispersion. All this leads to pos-
sible heterogeneity in the particle distribution. The effect
of particle-to-fluid density mismatch is also interesting
from a fundamental point of view (with zero average slip
between dispersed and fluid phases, no effect of gravity).
It is known that particles denser than the fluid tend nat-

urally to accumulate in low strain rate regions of a vor-
tex whereas lighter particles have an inward motion to-
wards the vortex center. Klinkenberg et al. [19] observed
that inertial point particles (d/η < 1) induce a signifi-
cant time delay on the streak breakdown which may cut
off the regeneration cycle near the transition threshold.
In highly turbulent flows, heavier point particles collect
into low-speed streaks especially in the small-scale hair-
pin vortices corresponding to Q2 events [20–22]. This
leads to an increase in the streamwise fluctuating veloc-
ity, while spanwise and wall-normal velocity fluctuations
are damped. However, heavy particles are confined in
the high speed streak. They reduce near-wall swirling
motion which in turn results in a reduction of the turbu-
lent Reynolds stress.
In this context, we aim at investigating numerically

the properties of turbulent pCf laden with finite size par-
ticles. Particles 10 to 20 times smaller than the LSV
are considered. The particle concentration investigated
in this work is low to moderate (φ ≤ 10%), and the
Reynolds number of the Couette flow is relatively low
Reb = 500 based on the fluid viscosity. The paper is or-
ganized as follows. In section II, particular features of
the Force-Coupling Method used to simulate the suspen-
sion flow dynamics and some validations are outlined.
In section III, the effect of neutrally buoyant particles
on statistical properties of the turbulent flow (velocity
profile, concentration distribution, turbulence intensity,
shear stress) are discussed. In section IV, we consider the
effect of the particle-to-fluid density ratio (ranging from
0 to 5) on the flow properties. Finally, the effect of par-
ticles on the regeneration cycle is discussed, using modal
and quadrant analysis and vorticity stretching. The pa-
per is ended with a conclusion on the main findings.

SIMULATION METHOD AND VALIDATION

Direct numerical simulations of single-phase flows
are performed by using the code JADIM for an in-
compressible Newtonian fluid [23]. The unsteady 3-D
Navier-Stokes equations discretized on a staggered
grid are integrated in space using the finite volume
method. All terms involved in the balance equations are
written in a conservative form and are discretized using
second order centered schemes in space. The solution is
advanced in time by a second-order semi-implicit Runge-
Kutta/Cranck Nicholson time stepping procedure and
incompressibility is achieved by correcting the pressure
contribution which is solution of the Poisson equation.

Numerical simulations of particle trajectories and sus-
pension flow dynamics are based on multipole expansion
of momentum source terms added to the Navier-Stokes
equations (namely Force-Coupling Method as described
in [24–26]), the comparison of FCM with other methods
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that belong to the class of Fictitious Domain methods
can be found in a review by Maxey [27] on the simula-
tion methods for particulate flows. Flow equations are
dynamically coupled to Lagrangian tracking of particles.
The fluid is assumed to fill the entire simulation domain,
including the particle volume. The fluid velocity and
pressure fields are solution of continuity Eq. (1) and mo-
mentum balance Eq. (2) and Eq. (3).

∇ · u = 0 (1)

ρ
Du

Dt
= −∇p+ µ∇2u+ f(x, t) (2)

fi(x, t) =

Np∑

n=1

Fn
i △(x− Y n(t))

+Gn
ij

∂

∂xj
△′(x− Y n(t)) (3)

The body force distribution f(x, t) in the momentum
balance Eq. (3) accounts for the presence of particles in
the flow. It is written as a multipole expansion truncated
after the second term. The first term of the expansion
called the monopole represents the force F n that the
particle exerts on the fluid, due to particle inertia,
external forcing or particle-to-particle contact forces
(Eq. (4)). The second term, called dipole, is based on a
tensor Gn sum of two contributions: an anti-symmetric
part is related to external torques applied on the particle,
and a symmetric part that accounts for the resistance of
a rigid particle to deformation by ensuring zero average
strain-rate inside the particle volume, Eq. (5).

F n = (mp −mf )

(
g − dV n

dt

)
+ F n

ext (4)

Sn
ij(t) =

1

2

∫
(
∂ui
∂xj

+
∂uj
∂xi

)△′(x− Y n(t))d3x = 0 (5)

The particle finite-size is accounted for by spreading
the momentum source terms around the particle center
Y n using a Gaussian spherical envelope, one for the
monopole △(x) = (2πσ2)−3/2e(−|x|/2σ2), and another

one for the dipole △′(x) = (2πσ′2)−3/2e(−|x|/2σ′2). The
widths of the Gaussian envelopes, σ and σ′ are set with
respect to the particle radius a such that the settling
velocity and the hydrodynamic perturbation generated
by a particle in a shear flow are both exactly matched
to Stokes solutions (σ = a/

√
π and σ′ = a/(6

√
π)1/3) for

a single particle.

The particle translation and rotation velocities are ob-
tained from a local weighted average of the volumetric
fluid velocity (resp. rotational velocity) field over the
region occupied by the particle (Eq. (6) and Eq. (7)).

V n(t) =

∫
u(x, t)△(x− Y n(t))d3x = 0 (6)

Ωn(t) =
1

2

∫
(∇× u(x, t))△′(x− Y n(t))d3x = 0 (7)

Particle trajectories are then obtained from numerical
integration of the equation of motion as in Eq. (8).

dY n

dt
= V n (8)

This modelling approach allows calculating the hy-
drodynamic interactions with a moderate computational
cost. In order to capture correctly the dynamics of di-
lute suspension flows, four grid points per particle radius
are usually required when the monopole force is not zero,
and in the case where only dipole forcing is relevant, three
grid points per particle radius are sufficient.
For neutrally buoyant particles, the only contribution

to the monopole is F n
ext due to rigid body contact forces.

For a pair of particles α and β, a force derived from
a repulsive potential is added to the monopole term of
both particles (such as Eq. (4) for particle α) when the
distance between particles is smaller than Rref − 2a and
zero otherwise. Following Abbas et al. [28], this force is
written as in Eq. (9).

F
α,β
ext = Fref

[
R2

ref − (rα,β)2

R2
ref − (2a)2

]
xα,β

2a
(9)

Fref is scaled with the Stokes drag force Fd = 6πµγa2

based on characteristic particle relative velocity in shear
flow γa where γ is the shear rate. The value of the
force barrier during a collision is set in response to the
proximity of the particles. The total force is obtained
through a pairwise summation procedure.

The relative trajectories of two colliding particles in
laminar Couette flow are shown in Fig. 1. The particles
were placed initially in the flow velocity gradient plane.
Their relative initial position was set outside the area
where closed relative trajectories might be observed (see
Kulkarni and Morris [29], Haddadi and Morris [30]). A
condition for utilizing this simplified model is that there
is no elastic or inelastic collisions when contacts between
particles happen. As demonstrated in [31], a no-rebound
situation exists during the collision under the condition
of St < 10 where particle impact Stokes number St
compares particle inertial effect to viscous effect. All
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values St(max) (shown in Table II for this work) are
below this critical value. Figure 1 shows that particles
do not overlap when the repulsive force is activated
for either bubbles, neutrally buoyant or inertial particles.

At higher volume fractions it is necessary to pro-
vide a more detailed representation including viscous
lubrication forces and solid-body contact forces. In
principle, viscous lubrication forces will prevent contact
of perfectly smooth particles but contact occurs in
practice through surface roughness. Tests were made,
varying the magnitude of the force Fref and the cut-off
distance Rref . In turbulent flow simulations, Fref was
chosen such that the number of overlapping particles was
found to be less than 1% of the total particle number
(Fref/Fd = 10) at the largest concentration (Φ = 10%).

FIG. 1. Relative trajectory of a particle pair in laminar Cou-
ette flow, in the case of neutrally buoyant, inertial particles
and bubbles. The red half sphere represents the reference
particle. The semicircle of radius 2a is the limit of particle
overlapping. The other semicircle indicates the barrier corre-
sponding to Rref = 2.2a where the repulsion force is enabled.
The particle Rep ≡ γa2/ν = 1.0 and St ≡ (2Repρp)/(9νρf )
varies between 0.2 and 2. Neutrally-buoyant particle;

ρp/ρf=5; • ρp/ρf=10; bubble.

Validation of FCM

In the absence of external forces (no gravity effect for
neutrally buoyant particles), the coupling between the
particles and the carrier flow occurs exclusively from the
force dipole term which is mainly related to the local flow
strain rate. Accordingly, the method has been validated
under finite Reynolds number flow configurations. The
dipole tensor computed for a particle in pure shear flow
(negligible wall effect in wide-gap pCf) was validated
(in [14] and [32]) against direct numerical simulation
results reported in [33]. The comparison revealed that
our method captures accurately the hydrodynamic
perturbation when particle Reynolds number is below
10. Also the equilibrium position of a particle in laminar
pressure-driven flow due to cross-streamline inertial
migration (Segré - Silberberg effect) agrees well with

theoretical predictions in the same range of particle
Reynolds numbers. In this paper, we show additional
validation tests relevant to particles in Couette flow.
First, the effect of increasing the particle-to-Couette gap
size ratio, i.e. particle confined between walls, is studied
in the limit of low Rep, where theoretical predictions
exist. Second, particle wall-normal velocity is calculated,
in a Couette flow, at low but finite flow inertia. Last, the
effect of particle inertia is considered to test the unsteady
response of a particle in a quiescent fluid experiencing
an oscillatory force. In this latter configuration, FCM
results are accurate as long as the Stokes layer of the
velocity perturbation near the particle surface is not
too thin. An additional configuration is reported in
appendix A where Taylor-Green vortex array mimics to
a certain extent the large scale vortices in turbulent pCf.

Effect of confinement on particle stresslet and rotation in
laminar pCf

The first configuration consists in a single neutrally-
buoyant particle, located at the center of a laminar pCf
for low Reynolds number. The particle does not have
any initial translation or rotational velocity and its trans-
lational velocity remains zero because the flow velocity
cancels at the gap center. However particle rotation due
to the shear flow vorticity converges in time to a steady
value that depends on the Couette gap width. In the
limit of wide gap, where the wall contribution to hy-
drodynamic perturbation is negligible, our previous tests
have shown that the FCM response is accurate especially
when the particle Reynolds number is lower than 10 ([14]
and [32]). In the case of thin gap, short-range particle-
wall interaction becomes important. Particle stresslet
and rotational velocity are calculated numerically and
compared to the theoretical predictions of Sangani et al.
[34] based on Lamb multipoles (following the work of
Ozarkar and Sangani [35]). In their work, the rotational
velocity and stresslet are predicted for both asymptotic
limits : 0 < a/h ≪ 1 and large 0 ≪ a/h < 1 particle-to-
gap size ratio (where h is half the Couette gap width).

As shown in figures 2(a) and 2(b), the confinement re-
duces the rotational velocity of the sphere and increases
its shear stresslet when compared to its value for un-
bounded shear flow. The FCM response is accurate up to
a/h = 0.8. The deviation observed for stronger confine-
ment would need to be supplemented by adding higher
order multipoles or lubrication correction. The largest
discrepancy of FCM results compared to theoretical pre-
dictions, is ≈ 4% and 10% for rotational velocity and
stresslet respectively when the particle size is a/h = 0.8.
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FIG. 2. (a) Rotational velocity and (b) Stresslet of a
neutrally-buoyant sphere at the center of laminar pCf as a
function of the ratio between the particle radius and half of
the gap width a/h. The rotational velocity is scaled by the
flow shear rate γ, and the stresslet is scaled by its value in un-
bounded shear flow G0

12 = 10

3
πµa3γ. The stars ∗ are obtained

using FCM simulations at Rep = 0.01, and circles ◦ are from
simulations of Sangani et al. [34] in Stokes flow. The lines
are from asymptotic limits written in [34]: a/h ≪ 1;
0 ≪ a/h < 1;

Wall-normal particle migration

When a neutrally buoyant particle is not set in the
mid-plane of the Couette gap, the asymmetry of velocity
perturbation leads to a wall-normal force oriented
towards the center of the gap, as long as the particle
Reynolds number is not negligibly small (which breaks
the flow reversibility argument). This was observed
in the experiments of [36] in cylindrical Couette flow
and later in the 2D direct numerical simulation by [37].
Theoretical predictions were derived by [38] and [39],

under quasi-steady state, in the limit of finite particle
size and low but finite particle Reynolds number (the
wall falls inside the region perturbed by the parti-
cle). We tested the accuracy of the FCM under such
conditions, using a Couette gap-to-particle diameter
size ratio Ly/d = 32, and particle Reynolds number

Rep ≡ γd2

4ν = 2.4 × 10−4, where γ is the shear-rate and
ν is the kinematic viscosity. Figure 3 shows the quasi-
steady dimensionless wall-normal migration velocity

Vp,y

κUwRep
where κ = d/Ly is the ratio between particle

diameter with Couette gap width. The numerical
results are obtained after 100 iterations corresponding
to tν/a2 = 1.5, that are required for the convergence of
the velocity while the wall-normal migration distance
is still insignificant. The simulation results are in
very good agreement with the theoretical predictions
proposed by [39]. Near the wall, the method is less
accurate. Higher orders are required in the multipole
expansion to capture the lubrication effect. At higher
particle Reynolds number, the wall-normal velocity is
larger leading to effective particle migration towards the
Couette center (the migration velocity scales as O(Rep)).
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FIG. 3. Quasi-steady wall-normal velocity of a single particle
as a function of the particle distance to the wall in laminar
pCf. The lines are theoretical predictions from Vasseur and
Cox [39] (dashed line) and Ho and Leal [38] (solid line); N

present simulation with κ = d/Ly = 1/32, Rep = 2.4× 10−4.

Periodic oscillation of a single particle

Turbulence has a wide range of length or time scales
which exert forcing on particles. Large scale vortices have
strong forcing amplitudes but longer time scales whereas
small scale vortices may generate higher frequency forc-
ing on particles. As described by Climent and Maxey
[40], FCM framework embeds drag, added-mass, lift and
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history forces experienced by the particle in F
n Eq. (4).

In this section, we focus on the ability of FCM to model
the unsteady response of a particle experiencing an os-
cillatory external force without considering gravity. Fol-
lowing [41], we consider the motion of a rigid (neutrally
buoyant or dense) particle moving in a fluid that is other-
wise quiescent. The solution of this problem is equivalent
to that of an oscillating fluid obtained in a frame at-
tached to the particle which generates the development
of Stokes layer at the particle surface. Particle oscilla-
tion is imposed via temporal evolution of the monopole
term Fext(t) = 6πµau0sin(ωt), where u0 is a constant
vector. The velocity field induced by the particle is ob-
tained by solving Eqs. (1-3), and the particle velocity up

is obtained by integration of the local fluid velocity using
Eq. (6). Snapshots of the velocity field are displayed in
Fig. 4, for two values of δ2 ≡ ωa2/ν which is the ratio
of the particle radius to the Stokes layer thickness. This
figure shows that the flow velocity perturbation repre-
senting the Stokes layer thickness shrinks when the os-
cillation frequency increases. Note that δ2 (as defined
here) is equivalent to the ratio of particle relaxation to
fluid characteristic oscillation time scale, and by conse-
quence to a Stokes number.

FIG. 4. Velocity field and contours of u/up when t = 0 +
2kπ/ω (top half: δ2 = 0.25, and bottom half: δ2 = 4.0 where
δ stands for dimensionless Stokes layer) around an oscillatory
particle.

The motion of the oscillating particle is written as:

up(t) = αu0sin(ωt+ ϕ) (10)

where the velocity is proportional to the force ampli-
tude and ϕ is the phase shift.

FCM results are compared to that of Maxey-Riley
equation (Eq. (A1)) following [42] which is valid in the
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FIG. 5. (a) Amplitude and (b) Phase shift of 6πaµûp/F̂ as a
function of the dimensionless frequency (δ2). The lines are ob-
tained from solving the Maxey-Riley equation Eq. (A1), with
and without the added mass contribution (solid and dashed
lines respectively). The symbols are from present simulation
of + bubbles; ◦ ρp/ρf = 1; △ ρp/ρf = 2; � ρp/ρf = 5.

limit of low particle Reynolds number. For quiescent fluid
far from the particle, the analytical relationship between
the amplitude of external oscillatory forcing (written as

F (t) = F̂ eiωt) and particle velocity is:

F̂ = ûp

[
(mp +

1

2
mf )iω + 6πµa(1 + δeiπ/4)

]
eiϕ (11)

The terms on the right hand side of eq. 11 correspond
to particle inertia, added mass, steady and unsteady drag
forces. The Basset history force is important when the
particle-to-fluid density ratio is low to moderate. The
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theoretical prediction of α and ϕ as well as the FCM re-
sults (eq. 11) are displayed in Figs. 5(a) and 5(b) as a
function of δ2. This figure shows that the modulus is cal-
culated accurately up to δ2 = 2.5. The under-estimation
of the phase lag increases when particle inertia decreases,
and the maximum discrepancy with respect to Maxey-
Rileys prediction is around 13% for the bubble case when
δ2 = 2.5. The numerical simulations corresponding to
turbulent plane Couette flow with the largest particles
(Ly/d = 10) are only carried out with neutrally buoyant
particles, in which case δ2 is less than 1.25 (7% discrep-
ancy in the test case). As for the error corresponding to
the small particle case (Ly/d = 20), its maximum value
is around 5%, according to the oscillation test for the
case of bubbles. For much higher δ2, the Stokes layer is
too thin to be accurately resolved by FCM. The purely
viscous contribution of the hydrodynamic force (in the
absence of added mass term) is also plotted in Figs. 5(a)
and 5(b) for comparison. Furthermore, the effect of den-
sity ratio up to 5 is also investigated. It is clear that
FCM predictions become gradually closer to the theoret-
ical prediction while particle density is increased because
the relative contribution of unsteady Basset drag reduces.

SIMULATION OF SINGLE PHASE TURBULENT

PLANE COUETTE FLOW

The flow is driven by two infinite parallel plates mov-
ing in opposite directions. Periodic boundary conditions
are set in streamwise and spanwise directions, and no slip
condition is imposed at the two walls. The domain size
and velocity components are noted as Lx, Ly, Lz and u,
v, w in the streamwise x, wall-normal y and spanwise z
directions, respectively. The bulk Reynolds number is de-
fined for pCf by Reb =

Uwh
ν where h is half of the Couette

gap width while the bulk flow has a zero mean velocity.
The domain used for the simulations has the size of the
minimal flow unit (or simply Miniunit) as introduced by
Jiménez and Moin [43] and Hamilton et al. [18]. Table I
shows the mesh grid size used for the simulation of the
Miniunit, from some selected publications. Three to four
grid points inside the laminar sub-layer (y+ < 5) are re-
quired in order to calculate accurately the near-wall flow
structures.

First simulations of single phase flow in a Couette con-
figuration were intended to test the unsteady develop-
ment of the fluid flow initially at rest towards a linear
flow when the walls of the domain start to move, at t = 0
with velocity +Uw and −Uw. The theoretical evolution
of the flow profile given by Batchelor [47] occurs with a
characteristic diffusion time scale h2/ν. Figure 6 shows
the numerical simulation by using case A compared with
experiments [48] and [49]. The numerical code used for
this study captures accurately the transient evolution of
the streamwise velocity.

TABLE I. Simulation domain characteristics for the Miniunit
in (a) some selected references and (b) the present work. Mesh
is stretched in the y direction and follows an error-function
mapping y(k) = erf(αk)/erf(α), k = (−1 : 2/Ny : 1) with
α = 2.0.

(a)In the references

Reb △y+ △x+ △z+ Reference
4500 0.92(wall)-5.9(center) 13.7 6.18 Ref. [44]
3000 0.08(wall) 7.55 4.8 Ref. [45]
2150 0.18(wall)-8.34(center) 12.05 6.02 Ref. [46]
625 0.18(wall)-3.7(center) 13 8.9 Ref. [18]

(b)In the present work

case Reb Lx × Ly × Lz Nx ×Ny ×Nz

Stretched Mesh
A 500 2.75× 1.0× 1.88 30× 86× 32
△y+

min = 0.08, △y+
max = 1.91; △x+ = 7.35; △z+ = 4.70

Regular Mesh
B 500 2.758× 1.0× 1.939 182× 66× 128

△y+ = △x+ = △z+ = 1.19
C 500 2.758× 1.0× 1.939 382× 134× 256

△y+ = △x+ = △z+ = 0.60
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FIG. 6. Streamwise velocity profile in wall-normal direction
starting from fluid at rest. Lines correspond to our simula-
tions Reb = 365, η = 0.1; Reb = 650, η = 0.1;
Reb = 300, η = 1.0; Reb = 345, η = 1.0, where η is the
dimensionless time scaled with h2/ν. Symbols stand for ex-
perimental or direct numerical simulation results. △ Tillmark
and Alfredsson [48], Reb = 365, η = 0.1; N Tillmark and Al-
fredsson [48], Reb = 650, η = 0.1; ◦ Reichardt [49], Reb = 300
when flow is fully-developed; • Tillmark and Alfredsson [48],
Reb = 345 when flow is fully-developed.

Simulations of single-phase turbulent flow were real-
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ized in domains needed later for particle laden flows,
with the constraint of 3 to 4 grid points per particle
radius that must be respected for FCM. Therefore two
simulation domains (cases B and C) with regular mesh
grids were designed for two Couette gap-to-particle size
ratios Ly/d = 10 and Ly/d = 20. Simulations of single
phase flow in these domains are compared with the
simulation based on stretched mesh grid (case A). In
cases B and C, at least 3 points stand inside the laminar
sub-layer for Reb = 500. At this Reynolds number, the
discrepancy of the mean and R.M.S velocity profiles
between simulations using domains A, B and C is less
than 5%.

We also performed simulations of turbulent Couette
flow with larger domains in both streamwise and
spanwise directions and the comparison with existing
experimental data and numerical results form Ref.
[50], [51] and [46]. The major effects of increasing the
domain size are the following. First, the average velocity
gradient is steeper near the walls in larger domains.
The non-dimensional velocity gradient in the Couette
gap near mid-plane is ψ = h

Uw

du
dy |y=0≈ 0.18 − 0.2 in

large domains (at low Reb like in Ref. [46])), whereas
it is almost zero in the Miniunit. According to [46], the
non-zero velocity gradient will lead to a finite production
of TKE in the mid-plane. Second, it is found that
the streamwise R.M.S velocity is larger whereas the
wall-normal and spanwise components are smaller in
the Miniunit compared to larger domains. However, the
turbulent Reynolds stress is nearly unchanged close to
the boundary whereas it is slightly smaller in the core
region for larger domain size.

Despite these differences, certainly due to the confine-
ment of large scale vortices in the streamwise direction,
the Miniunit is useful because it allows to accommodate a
single set of (periodic array of) vortical structures, which
are sufficient to reproduce low-order turbulence statis-
tics. In this domain, the turbulence is sustained while the
Reynolds number is decreased down to Reb = 330, be-
low which the flow becomes fully laminar. This threshold
for flow relaminarization is slightly higher than in larger
simulation domains (Rec = 324 ± 1 in Ref. [52]) which
accommodate many longer large-scale structures.

TURBULENT PCF LADEN WITH NEUTRALLY

BUOYANT PARTICLES

The dimensionless length and velocity wall units are

y+ ≡ yuτ

ν , and u+ ≡ u
uτ

, where uτ =
√

τw

ρ is the friction

velocity based on the wall shear stress. Table II contains
a summary of all parameters selected for this study. Both
bulk and frictional Reynolds numbers Reb and Reτ are

based on the fluid viscosity. The effective Reynolds num-
ber Res of the suspension flow is lower than Reb due
to the increase of energy dissipation by rigid particles
in shear flow, and depends on the particle concentration
Φ. Simulations of suspension flows were performed with
two particle sizes Ly/d = 10 and 20 and at Res larger
than the laminar-turbulent transition threshold. Since
one cannot be sure a priori that the suspension will be-
have like an effective fluid with equivalent properties, we
verified a posteriori the flow turbulent nature and statis-
tics. Most of the two-phase flow simulations were carried
out at a Reynolds number Reb = 500, and were compared
to a reference effective fluid flow, at mixture Reynolds
number equal to Res =

Uwh
νeff

. The effective viscosity νeff
was estimated from Eilers fit for low Reynolds number
suspensions and a posteriori compared to the real sus-
pension viscosity obtained from the shear stress distribu-
tion as explained further in this section.

νeff = ν[1 +
1.25Φ

1− Φ/0.63
]2

In the turbulent flow, particles experience turbu-
lent forcing with a characteristic time scale τ

+
f ∼

L+
y /max(v

′+ | w′+) related to large scale vortices. The
characteristic time scale for a particle to relax when sub-
mitted to flow forcing is given by Eq. (12).

τ
+
p =

2

9
(
ρp
ρf

+
1

2
)Re2

τ
(
d

Ly
)2 (12)

The ratio of particle to fluid time scales leads to the
definition of a Stokes number Stturb = τ

+
p /τ

+
f related

to the flow turbulence. Referring to the test of one
particle oscillating in a steady fluid, this Stokes num-
ber can be related to the dimensionless Stokes layer
by δ2 = 9π/(ρp/ρf + 1/2)Stturb. δ2 is below 0.5 for
Ly/d = 20 and reaches its maximum value δ2max = 1.25
for Ly/d = 10. Therefore the turbulent flow simulations
considered for this paper are within the range of validity
of FCM.

Velocity profiles

In turbulent single phase pCf, mean velocity profile
is governed by streamwise vortices. The suspension
flow profile is very close to single phase configuration as
observed in Fig. 7. The largest discrepancy occurs at the
highest concentration Φ = 10% for the highest Reynolds
number Reb = 1000. Since the mean velocity profile is
mainly governed by large scale vortices [18], i.e. here
the vortex pair, we can conclude that particles did not
modify significantly the large scales.
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TABLE II. Parameters used in numerical simulations. The particle Reynolds number Rep ≡ Γa2/ν based on local shear rate

Γ = |
du

dy
|, and the Stokes number St ≡ 2ρp/(9ρf )Rep cancel at the Couette center and are maximum at the wall Rep(max)

takes place near the Couette wall where the shear rate is the strongest. Ensemble averages are formed over 500 time units
(500h/Uw).

Domain size Lx × Ly × Lz = 0.88π × 1.0× 0.6π
Reb 500 750 1000
Reτ 39.5 52.2 67.3
y+ [0-80.5] [0-105.4] [0-134.5]

Ly/d 10, 20 20 20
d+ 8.0, 4.0 5.3 6.7

Rep(max) 17.5, 4.38 5.83 8.75
St(max) 3.89, 0.97 1.30 1.94

τ
+
p 5.31, 1.37 2.32 3.77

Stturb 0.066, 0.017 0.022 0.028
Mesh grid 182× 66× 128 382× 134× 256

(for Ly/d = 10) (for Ly/d = 20)
Φ(%) [0, 1, 5, 10]
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FIG. 7. Mean velocity profiles for different Reynolds numbers,
particle sizes and bulk concentrations. (a) Reb = 500, Ly/d =
10; (b) Reb = 500, Ly/d = 20; (c) Reb = 750, Ly/d = 20; (d)
Reb = 1000, Ly/d = 20. The lines stand for different solid
concentration: Φ = 0%; Φ = 1%; Φ = 5%;

Φ = 10%. The profiles are symmetric with respect to
the Couette center plane. Therefore half of all the profiles are
shown between y = 0 (wall) and y = h (center) in this figure
and elsewhere.

The evolution in time of the dimensionless wall shear
stress, calculated from the flow velocity gradient at the
wall, is displayed in Fig. 8 (friction coefficient averaged
on both walls Cf = 2τw/(ρU

2
w)). Both single phase

and particle laden flows with Φ = 10% are shown. The
suspension wall shear stress is slightly larger than for
single phase. Consequently the power input from the

moving walls per unit time (
∫ Lz

0

∫ Lx

0
Uwτw(x, z)dxdz) is

larger for suspension flows. This observation is almost
independent of the Reynolds number and particle size.

In Fig. 8, the amplitude and frequency of wall friction
fluctuations are modified by the presence of particles. It
is a first indication that the flow intermittency is altered
by particles.
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FIG. 8. Temporal evolution of the wall friction coefficient(Cf ,
averaged on both walls) at Reb = 500. single-phase
flow; Ly/d = 10, Φ = 10%; Ly/d = 20, Φ = 10%.
Straight lines stand for temporal averages.

Spatial distribution of particles

Figure 9 shows the concentration profiles for differ-
ent Reb, particle sizes and bulk concentrations. In all
cases, the concentration is higher in the core than near
the walls, due to particle inertial migration as explained
in section 2. The profiles of concentration are the re-
sult of an equilibrium between several mechanisms. On
the one hand the hydrodynamic wall repulsion and tur-
bulent ejection events push the neutrally buoyant parti-
cles towards the center of the gap whereas on the other
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hand, turbulent sweep events pull the particles towards
the walls. Although on average the concentration profiles
are relatively flat, snapshots in the wall normal - span-
wise plane show strong instantaneous coupling between
the spatial distribution of neutrally buoyant particles and
flow structures as noted in Fig. 10.
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FIG. 9. Concentration profiles for different Reynolds num-
bers, particle sizes and bulk concentrations. From bottom to
top Φ: 1, 5 and 10%. In (a) Ly/d = 20 and Reb = 500;

Reb = 750; Reb = 1000. In (b) Reb = 500 and
Ly/d = 10; Ly/d = 20.

A local maximum can be noticed in the concentration
profile near the walls. It is more evident at higher average
concentrations (Φ = 5 and 10%) and higher Reb. Picano
et al. [12] noted that these peaks are of the same order of
magnitude as the bulk concentration, and therefore they
are not related to turbophoresis drift typically observed
in dilute suspensions when particles are heavier than the
fluid. These near-wall layers are the result of excluded
volume effects when particles are gathering in the near
wall region.

FIG. 10. Top panels: contours of the magnitude of the
streamwise flow velocity in the middle cross section. Bot-
tom panels: particle positions projected on the plane (y, z),
colored according to local magnitude of streamwise velocity.
Comparison between Ly/d = 10 (Left) and 20 (right) for
Reb = 500 and Φ = 5%.

Turbulence intensity

Figure 11 shows the normal Reynolds stress compo-
nents of turbulence agitation for two-phase flows which
are compared to single phase configurations. They are all
scaled with uτ , the friction velocity of single-phase flow
at the corresponding Reynolds number Reb. The overall
turbulent intensity is not much modulated by particles.
Close to the walls (y+ < 20), u′rms slightly decreases
whereas transverse components increase with concentra-
tion, especially the wall-normal component v′rms. The
increase of transverse velocity fluctuations with concen-
tration is even more pronounced with larger particles. It
is not necessarily due to the increase of turbulent activity
but more likely related to the local peak of concentration
observed near the wall (at y+ = 8− 10 when Reb = 500)
where shear is large and generates frequent particle en-
counters.

Also velocity fluctuations profiles in all directions are
flatter for particle-laden than single-phase flow. This in-
dicates that particles redistribute the fluctuating energy
into a more isotropic flow. The trend towards isotropy is
more pronounced with larger particles. Such trend was
also observed in pressure-driven flows [12] with neutrally
buoyant finite-size particles, whereas it is noticeably dif-
ferent for inertial point-particles [20].

! "! #!

!
!
$ "

#
$

%

!

!%&

'

'%&

"

"%&

(

(%&

!!

#$%

&!

#$%

'!

#$%

! '! "! (! #! &!
!

!%&

'

'%&

"

"%&

(

(%&

($
! '! "! (! #! &! )!

!
!
$ "

#
$

%

!

!%&

'

'%&

"

"%&

(

(%&

($
! "! #!

!

!%&

'

'%&

"

"%&

(

(%&

*)+

**+*++

*,+

FIG. 11. Profiles of velocity r.m.s. for different Reynolds
numbers, particle sizes and bulk concentrations. (a) Reb =
500, Ly/d = 20; (b) Reb = 750, Ly/d = 20; (c) Reb = 1000,
Ly/d = 20; (d) Reb = 500, Φ = 5%. Half of the domain is
shown because of mid-plane symmetry. From (a) to (c):
Φ = 0 ; Φ = 1%; Φ = 5%; Φ = 10%. In (d):
Ly/d = 10; Ly/d = 20.
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Energy spectrum

Wall-normal profiles of turbulence intensity did not
show significant modification of turbulence features in
the Couette flow. These profiles are mainly dominated
by large scale vortices which do not seem to be influenced
by the presence of particles (Figure 11). The size of parti-
cles being between the largest and smallest length scales,
it is interesting to investigate the influence of particles
energy distribution among various scales of the flow.

Fourier transform of the turbulent kinetic energy
(TKE) is calculated in order to analyse the energy
cascade. Figure 12 shows the average Fourier transform
of the streamwise velocity fluctuations EΦ

uu scaled by U2
w

as a function of the streamwise wavenumber scaled by
the inverse of both viscous lengthscale and particle size.
The single phase flow spectra are calculated for stretched
mesh (finer in viscous sublayer) and regular mesh (for
the case of Ly/d) and the spectra are scaled by the
wavenumber of the turbulent viscous length scale. The
single phase spectra calculated are very similar and the
maximum energy is contained in the largest wavelength
corresponding to the domain size in the streamwise
direction. It is related to the fact that LSVs are filling
the domain length. The energy drops considerably at
wavelengths between half and quarter of the Couette
gap size, and the agreement between stretched mesh
and regular mesh indicates that the near wall turbulent
structures are well captured whereas regular mesh is
redundant in streamwise. The energy spectrum of single
phase flow is compared to the two-phase dispersed flows
for both particle sizes with an unique scaling of the
wavenumbers by the same 2π/δν based on single-phase
flow, all spectra matched at small wavenumbers, indi-
cating that the large scale motions were not modified by
the presence of the particles. The energy is increased
at the smallest scales because finite size particles induce
perturbations and small scale vortices near the particle
surface especially in the high flow shear rate regions.
This unified scaling shows in addition that the deviation
from the single phase flow spectrum is correlated with
the actual size of the particles, as this deviation takes
place at smaller wavenumbers for the largest particles we
investigated. The energy in large wavenumber overlaps
with each other for different particle sizes if they are
scaled based on individual particle size.

This suggests that finite size particles promote con-
tinuous energy transfer across all scales in the turbulent
Couette flow. Actually, finite size particles add perturba-
tion to the sheared/strained flow, as displayed in Fig. 13
using the λ2 criterion. The number of small scale vor-
tices is increased due to local distortion of flow vortices
by particles, similarly to what was described in the ex-
periment of Tanaka and Eaton [8] who measured the flow

FIG. 12. TKE spectrum as a function of wavenumber in
streamwise direction. Single phase of Reb = 500 scaled
by kd = 2π/δν : ∗ stretched mesh; regular mesh for
Ly/d = 20. Two-phase flow with Φ = 10% and Reb = 500 for
two particle sizes: Ly/d = 10 and Ly/d = 20, scaled
by kd = 2π/δν ; Ly/d = 10, scaled by kd = 2π/d10;
Ly/d = 20, scaled by kd = 2π/d20. d10 and d20 correspond to
particle diameter and δν is the viscous lengthscale based on
single-phase flow.

around a single particle. These perturbations induced by
finite size particles make turbulence in suspension flow
more isotropic.

FIG. 13. Vortex identification for single-phase flow and two-
phase flows using λ2 criterion. (a): single-phase flow with
Reb = 500 using λ2 = −0.1; Φ = 5% and λ2 = −1.0 for the
followings. (b): Ly/d = 10 and Reb = 500; (c): Ly/d = 20
and Reb = 500; (d): Ly/d = 20 and Reb = 1000.

Shear stress budget

The streamwise momentum balance of the suspension
flow in a Couette geometry yields a constant shear stress
τtotal across the gap. In single phase flow, the shear stress
is composed of two contributions, namely viscous and
Reynolds stress contributions. In particle-laden flow, ad-
ditional momentum transfer arises due to particle rigid-
ity, to the forces and torques they apply on the fluid,
and to their fluctuating motion with respect to local
flow. The decomposition of the shear stress according
to Batchelor is written in Appendix B. The increase of
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stress due to particle rigidity τs is calculated using the
particle induced stresslet (from the dipole tensors asso-
ciated to each particle) as follows:

τs(y) =
1

TLxLz

∫ T

0

∫ Lz

0

∫ Lx

0

dGij(x, y, z, t)dxdzdt

(13)
The integral over the streamwise and spanwise direc-

tions is calculated in slabs of width dy, and the differen-
tial dGij refers to weighting the stresslet by the percent-
age of particle volume included into a slab. From τs(y)
one can calculate the increase of mixture viscosity using:

νeff (y)− ν

ν
=

τs(y)

νΓ(y)
(14)

where νeff is the effective suspension viscosity taking
into account the presence of particles. It depends on the
wall-normal position because the stresslet terms depend
on local shear rate. Figure 14 displays the effective vis-
cosity profiles for two particle sizes. They are compared
to Eilers fit (low Reynolds limit) based on the local con-
centration of particles. As expected from the studies on
the effect of finite particle Reynolds number on suspen-
sion viscosity, [29, 53, 54], the suspension viscosity in-

creases (as O(Re
3/2
p ) in the dilute limit). The ratio of

the average effective viscosity in the present simulations
and that of Eilers fit is 1.11 for Ly/d = 10 and 1.02 for
Ly/d = 20. Note that the decrease of effective viscosity
near the mid-plane is due to local weak shear rates.
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FIG. 14. Profiles of relative mixture viscosity across the Cou-
ette gap for Reb = 500, Φ = 10% and two particle sizes
Ly/d = 10, 20. Eilers fit ([1 + 1.25Φ/(1 − Φ/0.63)]2 − 1.0)
based on the local concentration (Φ(y/h)) for two particle
sizes: Ly/d = 10; Ly/d = 20; Eq. (14) based on
the local shear stress: ◦ Ly/d = 10; + Ly/d = 20.

Figure 15 shows the dependence on bulk concentration
of all terms in Eq. (B4), for different Reynolds numbers

and particle sizes. Our numerical simulations lead to an
accurate balance for the shear stress. Only slight im-
balance is obtained near the wall or in the core region
at the highest concentration where the residual is ±3%.
Particle size (upto Ly/d = 10 used in this work) has no
significant effect on the shear stress budget contributions.
The impact of increasing the bulk concentration on

stress components depends on the wall-normal distance.
The fluid and particle turbulent stress contributions
reach their maximum values at the gap center, where
cross-gradient mixing (as defined in [55]) is ensured by
large scale structure motion [56]. When concentration
increases, turbulent fluid stress is reduced whereas tur-
bulent particle stress is enhanced. Near the walls, the
momentum transfer is governed by the viscous contribu-
tion. When the concentration increases, the fluid viscous
stress decreases whereas the rigidity stress significantly
increases (it becomes as high as 20% of the total stress),
the latter being especially promoted by the high shear
rate of the flow near the walls (whereas it is almost zero
at the center of the gap).
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FIG. 15. Profiles of the shear stress budget components for
different Reynolds numbers, particle sizes and bulk concen-
trations. Plots in (a) to (c) compare single-phase flow results
(solid line) to two-phase flow simulations (dashed lines) at

Φ = 5% and Φ = 10%. In (d) the shear stress com-
ponents are compared at Φ = 5% Ly/d = 10 and
Ly/d = 20.

EFFECT OF INERTIAL PARTICLES AND

BUBBLES

Before studying the influence of particle density on the
turbulent flow statistics, we considered the trajectory of
a single particle in turbulent pCf in order to observe if
it exhibits preferential position depending on its inertia,
like in Taylor-Green vortex (see Appendix A). Fig. 16
shows the particle trajectory with unfolded periodic
boundary conditions. Like in a Taylor-Green vortex,
the lighter particle ρp/ρf = 1.2.10−3 is trapped inside
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one of the large scale vortices and can hardly leave it.
The neutrally buoyant particle spans the entire domain.
Heavier particles ρp/ρf = 2.0, 5.0 tend slightly to be
ejected out of LSV in the high speed streak where the
fluid is swept towards the wall. These observations
suggest that the concentration spatial distribution for
two-phase flow laden with denser or lighter particles
might be different from the case with neutrally buoyant
particles.
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FIG. 16. Effect of particle inertia on the trajectory of a single
particle in turbulent pCf at Reb = 500. bubble;
ρp/ρf = 1.0; ρp/ρf = 2.0; ρp/ρf = 5.0.

Simulations of suspensions with light (ρp/ρf =
1.2.10−3) and heavy (ρp/ρf = 2.0, 5.0) particles are
realized with the small particle size, i.e. Ly/d = 20 for
flow Reynolds number Reb = 500 and concentration
Φ = 10%. The Stokes number corresponding to the
these density ratios range from 0.0012 to 4.85.

The average concentration contours in the transverse
plane is shown in Fig. 17. These contours are averaged
over ∼ 400 time units. As it can be expected, bubble
concentration is higher inside the core of the flow.
Bubbles are not exclusively found inside the vortex
cores: they are permanently exchanged between both
rolls. For denser particles, the probability of finding
them close to the Couette walls increases with the
density. Unlike neutrally buoyant particles, they are
found in both low and high speed streaks (ejection
regions). The preferential accumulation found for these
finite size particles correspond to a distance equal to
one particle radius from the wall (see Fig. 18(b)). It is
different from what is known on heavy point-particles
that tend to “stick” near the walls in pCf, see for
instance Richter and Sullivan [20]. This phenomenon
called turbophoretic drift, has been already observed
in the experiments of [57] who investigated the inter-
action between turbulent-burst activity and deposited
particles within the viscous sublayer. They suggested
that, once particles of diameter less than 1.3 viscous
sublayer thickness are trapped in this layer, wall normal
flow velocity fluctuations are not efficient anymore for
particle re-entrainment in the bulk.

The velocity profiles of pCf laden with light and heavy
particles are plotted in Fig. 18(a). They are similar to
the profiles obtained with neutrally buoyant particles. As

FIG. 17. Contour of particle concentration in the transverse
y-z plane averaged over ∼ 400 time units. (a): Bubble; (b):
ρp/ρf = 1.0; (c): ρp/ρf = 2.0; (d): ρp/ρf = 5.0.

discussed earlier in this paper, the mean velocity profile is
governed by LSV in turbulent pCf, which seem to be un-
affected by the particle distribution at the average solid
volume fraction we considered. The inset in this figure
displays τw/(µUw/h) as a function of the density ratio.
The mean wall friction is slightly enhanced when inertia
is increased.

Fig. 18(c) shows the diagonal components of R.M.S ve-
locity fluctuation tensor scaled by the corresponding wall
friction velocity uτ . Turbulence modulation is observed
in the case ρp/ρf = 5, in contrast with what is classi-
cally observed for heavy point-particles [58, 59]. Point
particles add energy dissipation through the drag force
in the fluid phase momentum balance. Their slip veloc-
ity increases with inertia and damped turbulent fluctu-
ations especially in transverse directions. In the case of
heavy finite-size particles as shown in Fig. 18(c), u′rms

decreases across the gap whereas transverse components
are unchanged when the density ratio is increased.

Finally, modification of energy distribution by parti-
cles is considered. The question related to the effect of
particle inertia on turbulence modulation does not have
a unique answer in the literature. Many works were done
with very high density ratio (gas-solid), and the conclu-
sions depend upon the flow configuration (see for exam-
ple Elghobashi and Truesdell [6], Richter [22]). Therefore
the impact on the flow energy distribution is different
when coupling particle finite size with particle fluid den-
sity mismatch. The average streamwise energy spectrum
EΦ

uu is plotted in Fig. 18(d) as a function of both stream-
wise and spanwise wavenumbers, for the cases of light and
heavy particles in comparison with the neutrally buoyant
case. Inertia does not significantly influences the energy
transfer process, in the range of parameters we consid-
ered.
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FIG. 18. Effect of inertia on the turbulent flow statistics.
Mean profiles of (a) streamwise flow velocity, (b) concentra-
tion and (c) r.m.s. of velocity fluctuations. (d) contains TKE
spectrum as a function of streamwise and spanwise wavenum-
bers (Ly/d20 = 20 and kd = 2π/d20). The line style is the
same as in Fig. 16.

MODIFICATION OF THE REGENERATION

CYCLE

The shape of Large Scale Vortices (LSV) can be clearly
observed in Fig. 19(a) that displays the streamwise vor-
ticity. As mentioned before, in Miniunit, two spanwise
counter-rotating LSVs are filling the entire simulation do-
main.

FIG. 19. Streamwise vorticity averaged over ∼ 500 time
units, comparison between (a) Reb = 500 single-phase flow
and (b), (c) Reb = 500, Φ = 10% for two particle sizes
Ly/d = 10, 20, respectively. The corresponding contours of
concentration projected onto the transverse plane (yz-plane)
is shown in (d) and (e).

As stated by Waleffe [60] and Hamilton et al. [18],
turbulence activity in turbulent pCf follows a regenera-
tion cycle with a period of ∼ 100h/Uw when Reb = 400.
Each cycle consists of three sequential sub-processes:
streak formation, streak breakdown and vortex regen-
eration. Streak formation is due to an ejection event by
two counter-rotating large scale vortices, which forms a
low-speed streak by pumping fluid away from the no-slip
boundary. When a streak comes across the region of
strong mean shear flow, streak breakdown occurs form-
ing a secondary flow. Finally the vortex is regenerated
due to the breakdown of streaks, being governed by a
strong non-linear process. In this part, we consider LSS
(Large Scale Streaks) and LSV separately, in view of un-
derstanding how finite-size particles are affecting the re-
generation cycle. We will observe that the particles re-
duce the magnitude of ωx only in the core of the LSVs,
without changing significantly their shape and size.

Quadrant analysis

A LSS corresponds to an ejection or sweep event, that
can be identified by sampling u′−v′ correlation as shown
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in Fig. 20 (probability distribution is also shown). This
figure is realized in the mid-plane (xz) along the wall-
normal direction. The LSS are identified from events
(u′ < 0, v′ > 0) and (u′ > 0, v′ < 0) in the second and
fourth quadrants that are dominant in this plane. In
pCf configuration, sweep and ejection events can not be
distinguished because an ejection from one wall which
is crossing the mid-plane corresponds to a sweep on the
opposite wall. Fig. 20 reports on these events taking
place in single-phase flow as well as for two-phase flow
with neutrally buoyant particles. The event distribution
is stretched from a curved shape to a more straight one,
suggesting that the shape of the streak is altered by par-
ticles especially for Ly/d = 10. The probability density
functions of u′ and v′ reveal that the interaction between
particles and streaks promotes strong streamwise fluctu-
ations with no significant impact on wall-normal fluctu-
ations.

FIG. 20. Modification by the neutrally buoyant particles of
the quadrant analysis of u′ and v′ and of their probability
Density Functions (PDF) in the Couette center plane. The
single phase plots in solid lines are performed at the effective
Reynolds number of the suspension flow (Res = 380). Other
lines are from two-phase simulations at Φ = 10% and Reb =
500. Ly/d = 10; Ly/d = 20.

Similar analysis is realized with light and heavy finite
size particles. The shape of streak is clearly altered when
heavier particles are added to the flow (see Fig. 21). Par-
ticularly in the streamwise direction, the intensity of u′

is drastically reduced corresponding to the u′rms attenu-
ation as in Fig. 18(c). In the present study, both lighter
and heavier finite-size particles have damped the turbu-
lence intensity in the mid-plane compared with neutrally-
buoyant particles. On the other hand, the maximum of
v′ is decreased due to inertial heavier particles while its
R.M.S is almost unchanged as shown in Fig. 18(c).

Modal decomposition of velocity fluctuations

To evidence the energy contained in different flow
structures, we performed modal analysis of the flow fluc-

FIG. 21. Effect of particle inertia on the modification of the
quadrant analysis of u′ and v′ and of their probability Density
Functions (PDF) in the Couette center plane, for Ly/d =
20,Φ = 10% and Reb = 500. The line style is the same as
Fig. 16.

tuating energy. The Fourier decomposition of the energy,
as introduced by Hamilton et al. [18] in the periodic di-
rections (streamwise and spanwise), is written in Eq. (15)

M(kx = mα, kz = nβ) ≡ {
∫ 1

0

[û′
2
(mα, y, nβ)

+v̂′
2
(mα, y, nβ) + ŵ′

2
(mα, y, nβ)]dy}1/2 (15)

where (m,n) are the integer wavenumbers, and (α, β)
are the fundamental wavenumbers in streamwise and
spanwise directions defined as (2π/Lx, 2π/Lz). A com-
bination (mα,nβ) represents different characteristic tur-
bulent structures. For instance, (0, nβ), n 6= 0 is the x-
independent structure (e.g. LSS) and (mα,nβ),m 6= 0 is
the x-dependent structure (e.g. streaks confined in the
streamwise direction).
Fig. 22 shows the evolution in time of the finite energy

modes, the highest energy content corresponds to the
mode (0, β). The energy signals are fluctuating in time
with a period of order 100 time units, resulting from flow
intermittency. In Fig. 22, M(0, β) and M(α, 0) are plot-
ted for two particle sizes and compared with single-phase
flow at Res = 380. The average values of M(0, β) and
M(α, 0) are nearly unchanged. However one can note
that the intermittent character of the flow is modified by
the particle presence, since the amplitude of fluctuations
is reduced, and the period is also modified, especially by
the large particles. As a conclusion, particles have an ef-
fect on the streaks dynamics. However this modification
is not strong enough to destroy the stability of the cycle
sustaining shear-driven turbulence.
Fig. 23(a) shows the effect of particle inertia on the

time evolution ofM(0, β) andM(α, 0), based on the sim-
ulations with small particles (Ly/d = 20). In all cases
the average energy content is almost unchanged. Inertial
particles have the same effect as the neutrally buoyant
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FIG. 22. Modal decomposition: M(0, β) and M(α, 0). The
solid lines are for single-phase flow with effective Reynolds
number Res = 380; The two-phase flow simulations are ob-
tained for neutrally-buoyant particles using Φ = 10% and
Reb = 500 and Ly/d = 10; Ly/d = 20.

particles. As for the bubble laden case, the frequency
and amplitude of both modes are very close to single-
phase flow configuration, suggesting that bubbles have
weak impact on turbulent flow activity.

[61] and [18] stipulated that over one cycle, vortices
must have a circulation above a given threshold in order
to produce unstable streaks so that turbulence can be
sustained. The circulation Γ of the streamwise vortices
is defined by

Γx =

∫
ωxdA (16)

where ωx(y, z) is the streamwise average of the stream-
wise flow vorticity, and the integration is calculated over
an arbitrary transverse plane A (normal to ωx). We
consider here the maximum circulation of vortices cor-
responding to mode 0 in the streamwise direction, like
the streaks.

Γkx=0(n) =

∫
ω̂x(0, y, nβ)dS(n) (17)

where S(n) is the transverse surface of ω̂x(0, y, nβ), from
wavenumbers in the spanwise direction (0, nβ;n 6= 0),
and the integral is calculated in the rectangular plane
yz where y varies from 0 to 1 and z varies from 0 to
2π/(nβ) for all n every n. The circulation used in this
work is the maximum of Γkx=0(n).

Figure 23(b) shows that, regardless of particle iner-
tia, the dimensionless circulation Γkx=0/4Uwh is higher
than the threshold given by [18], which is 0.0375. Like
the modal energy, the average value of the circulation
is maintained, whereas the amplitude of fluctuations
around the mean is reduced when particle inertia is in-
creased. We can note that the circulation oscillation has
phase shift when compared toM(0, β) (standing for LSS)
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FIG. 23. Effect of inertia on (a) modal decomposition and (b)
flow circulation. The light blue dashed line is for single-phase
flow with effective Reynolds number Res = 380. Other lines
correspond to two-phase flow simulations with Reb = 500 and
smaller particles Ly/d = 20. with bubble; ρp/ρf =
1.0; ρp/ρf = 2.0; ρp/ρf = 5.0.

in Fig. 23(a). The circulation is the highest when the en-
ergy of the streaks is the lowest.

It can be noted that the flow circulation is in phase
with the x-dependent streamwise streaks in Fig. 23(a)
and 23(b). Hamilton et al. [18] argue that generation of
LSSs is the result of nonlinear interactions of x-dependent
streaks. These x-dependent streaks are part of the coher-
ent structures that are the constitutive elements of near-
wall turbulence. Schoppa and Hussain [62] have shown
that the main contribution to the transient growth of
the streamwise streaks comes from the vorticity stretch-
ing term (ωx∂u/∂x, where ωx is the streamwise vortic-
ity). Instantaneous snapshots of this term, averaged in
the streamwise direction are shown in Fig. 24. It can
be observed that particles, especially inertial ones, damp
significantly the streamwise vortices generated on the two
flanks of the ejection streaks (as sketched in panel (a) of
this figure for single-phase flow). It is very likely that
the reduction of the circulation amplitude by the parti-
cles is directly related to this damping of the x-dependent
streamwise streaks.

ymombois
Rectangle 



17

FIG. 24. (a) Profile of Circulation and spacial av-
erage of absolute value of vorticity stretching (| ωx∂u/∂x |
within 0.2 < y < 0.4 where LSVs take place as seen in
Fig. 19) in single-phase flow and Reb = 380, (b-e) Contours
of the streamwise velocity fluctuations u′/Uw in the snapshot
plane in the center of Couette gap (y/Ly = 0.5), showing
the streak structures. The iso-contour interval is 0.07.

stands for u′/Uw < 0 and stands for u′/Uw > 0.
The color contours indicate the stretching term ωx∂u/∂x.
(a) and (b) are for single-phase flow and Reb = 380, with
x-independent flow (at the crest of the circulation instant
∆tUw/h = 200) and for x-dependent flow (at the peak of
the circulation ∆tUw/h = 235) respectively. The crest and
peak instants are noted by dots in the panel (a) at the top of
this figure. The contours in (c) and (d) are both x-dependent
with bubbles and inertial particles (ρp/ρf = 5) respectively.

Evolution of Reynolds stress

In turbulent wall shear flows, ejection events are driven
by the presence of coherent structures such as hairpin
vortices or LSV. Ejections of fluid and sweeps are al-
ways responsible for energy transfer from large scale flow
structures in the bulk to small scale near-wall structures.
During this process, the turbulent fluctuations are en-
hanced. From the investigation of total energy input and
dissipation rate, Kawahara and Kida [63] evidenced the
temporal evolution of spatial structures. They observed
that this cyclic sequence is consistent with the regenera-
tion cycle proposed by Hamilton et al. [18]. This quasi-
periodicity of the ejection events can be represented by
the evolution of Reynolds stress in Fig. 25. We can ob-
serve that the maximum of Reynolds stress amplitude
occurs in the core region rather than at the walls. The
quasi-periodic evolution of Reynolds stress is existing for
all single phase and two-phase configurations. A strong
ejection event is followed by a gradual decrease of in-
tensity over a certain time period. The maxima of the
temporal evolution of the Reynolds stress occur when dis-

sipation rate is large along the periodic orbit described in
[63]. This maximum intensity of ejection event is decreas-
ing with heavy particles corresponding to a reduction of
the level of turbulent fluctuations as shown in Fig. 18(c).
The typical period of ejection events occurrence is longer
when Reb is lower (see Fig. 25(a) and (b)). Moreover, this
time interval between strong ejection for particulate flows
(Fig. 25(c-f)) becomes very similar to single-phase flow
associated to effective viscosity (Fig. 25(b)) highlighting
that enhanced dissipation by the presence of particles is
a major effect on the flow. Either larger particle size or
higher particle density has a tendency to delay ejection
events compared to single phase flows.
It is interesting to compare this evolution to the min-

imal turbulent channel flow investigated in Ref. [64].
Although both of them are wall shear turbulence, the
configurations of channel flow and pCf lead to different
flow dynamics of ejection events due to the interaction
between high and low-speed streaks. As stated by Itano
and Toh [64], two walls share one buffer layer and a couple
of LSV in pCf whereas the channel flow contains log-law
region and the central region is ruled by the velocity-
defect law. In pCf, the existence of the LSVs leads to a
strong coupling between the two low-speed streaks gen-
erated by the two walls with opposite velocities. The
low-speed streak will extend to the other wall acting as
the high-speed streak on this wall. These two low-speed
streaks promote each other while LSVs are located in the
core of pCf. These different coherent structures also de-
termine the different locations and periodicity of ejection
events for these two configurations. Comparing Fig.1 in
[64] to Fig. 25, in channel flow, the intervals between ejec-
tion events are distributed intermittently and close to the
boundary whereas they are quasi-periodic and located in
the core region for pCf.

CONCLUSION

In this study we addressed the effect of finite size
particles on turbulent plane Couette flow, at moderate
concentration. The Reynolds numbers considered were
close to the laminar-turbulent transition, such that
large scale rotational structures were well developed
and self-sustained. Thereby, interaction of particles
with coherent structures could be evidenced using
particle-resolved numerical simulations with two Cou-
ette gap-to-particle size ratios (10 and 20), and with
particle-to-fluid density ratio ranging from 0 to 5.
The average settling induced by gravity forces was
neglected to focus on the interactions induced by the
sheared/strained flow. Careful tests were carried out to
verify the numerical method accuracy in the range of
particle Reynolds and Stokes numbers up to 10, which
corresponds to turbulent suspension flow configuration.
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FIG. 25. Evolution in time of shear Reynolds stress
u′+v′+(y, t) averaged over the homogeneous directions. (a)
and (b) are for single phase flow at Reb=500 and 380 respec-
tively. (c) to (f) correspond to two-phase flow simulations at
Reb = 500, Φ = 10% and different particle size and inertia.
In (c), Ly/d = 10 and ρp/ρf = 1. In (d), Ly/d = 20 and
bubbles are used. In (e), Ly/d = 20 and ρp/ρf = 2. Finally
in (f): Ly/d = 20 and ρp/ρf = 5.

Regarding the distribution of particles, the volumetric
concentration profiles (averaged in the homogeneous
streamwise and spanwise directions) have shown a
homogeneous distribution of particles across the Couette
gap, resulting from the balance between hydrodynamic
repulsive force from the walls, turbulent mixing and
shear-induced diffusion. In the case of neutrally-buoyant
particles, 2D snapshots of particle positions revealed
higher (resp. lower) presence of particles in the sweep
(resp. ejection) regions where they are periodically
trapped (resp. expelled). Light particles (ρp/ρf < 1)
were experiencing, in addition to the above-mentioned
flow interactions, an inertia-induced lift force towards
the center of large scale vortices. This led to an increase
of the concentration in the Couette center. On the
contrary, inertial particles (ρp/ρf > 1), were rather
moving towards the walls, leading to small localized
peaks in the concentration profile in that region.

Time averaged profiles, in the wall-normal direction,
of the mean flow and Reynolds stress components did
not reveal significant difference between single phase and
two-phase flows at equivalent effective Reynolds number,
except that the wall shear stress is higher for the two-
phase flow. However temporal and modal analysis of

flow fluctuations, suggested that particles had an effect
on the regeneration cycle of turbulence. While the energy
of large scale vortices (LSV) was unchanged by particles
(only the rotation rate inside the vortex core was slightly
reduced), the level of kinetic energy was increased over
the range of intermediate wavenumbers for all consid-
ered particle sizes and densities. This is mainly due to
flow perturbations induced by the non-deformability of
the dispersed phase (finite size effect). The shape of the
streaks was altered by particles, with an increased prob-
ability of strong streamwise fluctuations with the largest
particles and reduction of the range of streamwise fluc-
tuations by the heaviest ones. The modal analysis of
velocity fluctuations revealed that particles had also an
effect on the streak dynamics. The intermittent charac-
ter of the flow was modified by the particle presence: the
amplitude of fluctuations was reduced and the period was
modified especially by the largest particles. Similarly to
the modal energy, the average value of the circulation
was kept unchanged, whereas its standard deviation was
reduced when particle inertia was increased.
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Appendix A: Effect of inertia on particle dynamics

in Taylor-Green vortex

In rotational flows, particles are known to exhibit
preferential concentration in vortices that depends
on their inertia: bubbles accumulate in low pressure
regions (center of a vortex) whereas heavy particles
are expelled towards high strain regions. To test the
ability of FCM to predict the correct particle motion
across flow streamlines for different particle inertia, we
performed numerical simulations using a single finite
size particles in a periodic Taylor-Green vortex array.
Fig. A1 shows the particle trajectory in a Taylor-Green
vortex for different particle-to-fluid density ratios and
different particle Rep, with a particle-to-vortex size ratio
d/le = 0.4/π. The behaviour of light and heavy particles
is correctly captured by FCM: bubbles move towards the
vortex center and inertial particles are pushed towards
the high strain rate regions (not shown here). Only the
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motion of bubbles is illustrated in fig. A1 for different
Reynolds numbers. The higher the Reynolds number,
the faster is the inward spiralling motion.

FIG. A1. Trajectory of a bubble (ρp/ρf = 1.257.10−3) in a
Taylor-Green vortex at different Rep. (a) trajectory in x− y
plane. Rep = 0.1; Rep = 1.0; Rep = 5.0.
(b) shows comparison of the FCM results with the numerical
solution of Eq. (A1): Eq. (A1); Eq. (A1) with
adding the lift force from Eq. (A3) and Eq. (A2); present
simulation.

Numerical results were compared to the trajectory of
a single particle predicted by the Maxey-Riley equation
[42] written for point particles (of radius a and mass mp)
at low Reynolds number:

mp
dup

dt
= mf

Duf

Dt
− mf

2
(
dup

dt
− Duf

Dt
)

− 6πapρfν(up − uf )

− 6a2pρf
√
πν

∫ t

t0

1√
t− τ

(
dup

dτ
− duf

dτ
) (A1)

In Eq. (A1), the Faxén terms due to velocity curvature
in the added mass, drag and Basset contributions are
neglected. Eq. (A1) was solved using Adams-Bashforth
multi-step integral method with an explicit scheme for
the Basset history force (following Daitche [65]), the
accuracy of this scheme being second order in time. The
numerical integration of Eq. (A1) was tested against the
analytical solution of [66] to calculate particle trajectory
in a rigid-body vortex. The agreement was very good.

The single particle trajectory in a Taylor-Green
vortex from FCM simulations is very well predicted by
Maxey-Riley equation of motion at Rep = 0.1. At higher
Rep, the agreement is good during the first period of ro-
tation. Then discrepancy builds up in following periods.
Adding Faxen terms (except for the history contribution)

did not have any significant impact on particle trajectory.

Maxey-Riley equation of motion does not contain the
lift force due to shear of the undisturbed flow. This force
perpendicular to the particle slip velocity is negligible
at low Reynolds numbers, and becomes significant when
Rep increases. Its analytical expression is somehow com-
plicated to derive in a general flow configuration, because
the contribution of convective and unsteady terms to this
force are not additive due to non-linearity [67]. However
we can use the model proposed in Saffman’s work [68]
in the limit of low but finite Reynolds number based on
the particle slip velocity (uf − up) with respect to the
unperturbed fluid flow velocity uf .

FL(Sa) = −6.45ρfνa
2

(
ν

|Ω|

) 1

2

Ω× (uf − up) (A2)

Ω = ▽ × uf is the flow vorticity. An extension of
this lift force can be found in Mei [69] at finite particle
Reynolds number (Res 6 40) fitting the numerical results
reported in Dandy and Dwyer [70]

FL

FL(Sa)
= (1−0.3314α0.5)exp(−Res

10
)+0.3314α0.5 (A3)

where Res is a Reynolds number based on the slip ve-

locity ReS =
|uf−up|2a

ν and α is a dimensionless shear

rate α =
|∂uf/∂y|a
|uf−up|

.

Adding the lift force to the Maxey-Riley equation
reduces the over-estimate of the theoretical prediction,
but it did not match exactly the numerical evolution
obtained with FCM.

Appendix B: Shear stress budget

The stress of a suspension flow has been derived by
Batchelor [71] assuming homogeneous conditions. Batch-
elor introduced a decomposition of the stress into fluid

and particulate phase contributions Σij = Σ
(f)
ij + Σ

(p)
ij

where both terms are explicitly written in Eq. (B1) and
Eq. (B2) (the dispersed phase has total surface ΣA0 and
volume ΣV0).

Σ
(f)
ij =

1

V

∫

V−
∑

V0

[
µ(
∂ui
∂xj

+
∂uj
∂xi

)

]
dV

︸ ︷︷ ︸
τv ,viscous stress

− 1

V

∫

V−
∑

V0

ρu′iu
′
jdV

︸ ︷︷ ︸
τTf

, fluid Reynolds stress

(B1)
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Σ
(p)
ij =

1

V

∑ 1

2

∫

A0

[σikxj + σjkxi]nkdA

︸ ︷︷ ︸
τs, particle stresslet

+
1

V

∑ 1

2

∫

A0

[σikxj − σjkxi]nkdA

︸ ︷︷ ︸
particle rotlet

− 1

V

∫
∑

V0

ρf ′ixjdV

︸ ︷︷ ︸
stress due to particle acceleration

− 1

V

∫
∑

V0

ρu′iu
′
jdV

︸ ︷︷ ︸
τTp , particle Reynolds stress

(B2)

In the absence of external torques and forces applied on
particles, the first and last terms of Eq. (B2) account for
the contribution of particles to the total stress. Note that
the Reynolds stress components in the work of Batchelor
only appear inside the particle contribution because the
flow is laminar. Here, the Reynolds stress appears also in
the stress of the fluid phase due to the flow turbulence.
To summarize,the stress budget is

τtotal = τv + τTf
+ τs + τTp

(B3)

similarly to what has been written in [12] following
[72]. When scaled by the wall shear stress τw, this budget
writes:

τ
+
total = 1 = τ

+
v + τ

+
Tf

+ τ
+
s + τ

+
Tp

(B4)

Appendix C: Reynolds stress budget

The Reynolds stress budget was obtained starting from
the Navier-Stokes equations coupled to particle volume
forcing terms derived from the Force Coupling Method,

ρ(
∂ui
∂t

+ uj
∂ui
∂xj

) = − ∂p

∂xj
+ µ

∂2ui
∂xi∂xj

+ fm(xi, t) + fd(xi, t) (C1)

fm and fd correspond to monopole and dipole forces,
respectively. Multiplying eq. C1 by the fluid velocity
and subtracting the mean energy balance equation, one
can obtain the balance for the flow velocity fluctuations
or Reynolds stress. The Reynolds stress and mean energy
balances are written in Eq. (C2) and Eq. (C3).

ρ

(
∂

∂t
u′iu

′
j + uk

∂

∂xk
u′iu

′
j

)
= P′

ij − ε′ij + T′
ij

+Π′
ij +D′

ij + FB′
ij (C2)

ρ

(
∂

∂t
(
1

2
ui ui) + uj

∂

∂xj
(
1

2
ui ui)

)
= Pij − εij + Tij

+Πij +Dij + FBij

(C3)

Prime symbol is added to all fluctuating components.
The expressions of the contributions on the right hand
side of Eq. (C2) and Eq. (C3) are written in table C1
The Reynolds stress budgets allow to obtain the rate of

change of both normal and off-diagonal Reynolds stress
terms. As stated by Jeong et al. [73], energy is extracted
from the mean flow large scale vortices to u′u′ due to ad-
vection. Inter-component energy transfer (from u′u′ to
v′v′ and w′w′) occurs by vortex stretching and reorien-
tation of vorticity from the mean flow.
In the feedback term FBij derived from the source term

in Navier-Stokes equations, the main contribution comes
from the dipole forcing (stresslets) due to particle rigidity.
The monopole term is different from zero only when two
particles are close to contact, and its contribution to the
balances Eq. (C2) and Eq. (C3) is negligible in the range
of concentrations considered in this work.
Different contributions to Reynolds stress and mean

flow budgets are plotted in Fig. C1. In two-phase flow,
the sign of all contributions is not changed with respect
to the reference single phase flow case. It is observed that
particles mainly increase the rate of energy dissipation in
all directions. Other observations can be summarized as
follows:

• P ′
11 is the only term that extracts energy from the

mean flow to produce u′u′. This production term
is almost unchanged by particles;

• FB′
22 injects energy in v′v′. The feedback term is

maximum near the wall where the shear rate is the
strongest. It generates the major evident signature
of the turbulence modulation by particles;

• Π′s
33, the source term in the budget of w′w′, is

slightly stronger in two-phase flow;

• P ′
12 is the main production term of u′v′ and Π′s

12 is
the main sink term. Their respective rates are both
increased when particles are added to the flow (see
figures Fig. C1).
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