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ABSTRACT5

The major cause of earthquake damage to an embankment is the liquefaction of the6

soil foundation that induces ground level deformations. The aim of this paper is to assess7

numerically the effect of the liquefaction-induced settlement of the soil foundation on an8

levee due to real earthquakes. The seismic vulnerability is evaluated in terms of analytical9

fragility curves constructed on the basis of non-linear dynamic Finite Elements (FE) analysis.10

However, FE analysis can be expensive due to very large number of simulations needed for an11

accurate assessment of the system failure behaviour. This problem is addressed by building12

a Gaussian Process (GP) emulator to represent the output of the expensive FE model. A13

comparison with the FE reference results suggests that the proposed GP model works well14

and can be successfully used as a predictive tool to compute the induced damage on the15

levee. Findings also illustrate clearly the importance and the advantages of an adequate16

definition of the input parameters to built the GP model.17

Keywords: Liquefaction, Damage levels, Gaussian processes, Fragility functions, Performance-18

based methodology.19
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Earthquakes are the most natural phenomenon that cause damage to the soil and to21

the structures, in addition to other losses such as human and economic. Liquefaction phe-22

nomenon is considered as one of the most devastating and complex behaviours that affect the23

soil due to earthquake loading. It was observed that geotechnical structures, such as river24

dikes, highway embankments, and earth dams, founded on saturated loose sandy ground25

have been frequently damaged during past major earthquakes (Matsuo 1996; Ozutsumi et al.26

2002; Unjoh et al. 2012; Okamura et al. 2013). According to the state of the art in the27

assessment of earthquake-induced soil liquefaction performed by the National Academies of28

Sciences, Engineering, and Medicine (2016), it is necessary to refine, develop, and implement29

performance-based approaches to evaluating liquefaction, including triggering, the geotech-30

nical consequence of triggering, structural damage, and economic loss models to facilitate31

performance-based evaluation and design. The Pacific Earthquake Engineering Research32

Center (PEER)’s performance-based earthquake engineering methodology deals with four33

stages: the hazard analysis in which an intensity measure (IM) parameter is identified, the34

structural analysis in which the response to the earthquake is represented by the engineering35

demand parameter (EDP ), the damage analysis in which the probability of failure is quan-36

tified and the final stage is the loss analysis which requires the estimation of the decision37

based on the cost and maintenance of the project (Porter 2003; Baker and Cornell 2008a).38

The present work would be dealing with two stages of this methodology: the structural and39

the damage analyses. The dynamic structural analysis requires a deterministic approach to40

calculate the used parameters of the study. As the final objective is to evaluate expected41

losses, it is necessary to perform a large number of non-linear calculations, providing suffi-42

cient details about the damage state and with an acceptable computational cost. Previous43

works have used such approach to study the apparition of soil liquefaction and their effects44

on the response of the structures or dams (Koutsourelakis et al. 2002; Juang et al. 2005;45

Popescu et al. 2006; Lopez-Caballero and Modaressi-Farahmand-Razavi 2010).46

The aim of this work is to assess numerically the effect of soil liquefaction-induced failure47
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to a levee due to real earthquakes. A deterministic study to quantify a failure way of a48

levee (crest settlement) and a probabilistic study to find the probability of exceedance of a49

certain level of performance, took place. As a first approach, only the aspects concerning50

the uncertainties in the seismic ground motion are addressed. Fragility functions were drawn51

for this purpose. The Finite Element (FE) calculations were performed using the GEFDyn52

code and the numerical model was inspired from the one proposed by Rapti et al. (2017).53

Consequently, a database including a great number of ground motions is required to provide54

enough information to estimate in a reliable way the parameters defining the fragility curves55

(Luco and Cornell 2007; Saez et al. 2011).56

However, due to the high computational cost to perform the numerous non-linear dynamic57

calculations, it is no feasible to explore a large design space using the complex proposed Finite58

Element model (FEM). In this context, fast-running models, also called surrogate models59

could be implemented by means of input-output data sets to approximate the response of the60

original FEM. Several kinds of surrogate models (e.g. Linear regression, Neural networks,61

Chaos polynomials, support vector machines among others) have been implemented to assess62

the damage of non linear structures or networks under earthquake loading (Bucher and Most63

2008; Cardoso et al. 2008; Seo et al. 2012; Ghosh et al. 2013; Gidaris et al. 2015; Ferrario64

et al. 2017; Stern et al. 2017). Hence, in this work a Gaussian Process model (GPM) was65

used as a surrogate model for the levee-foundation system, so as to reduce the computation66

time associated keeping an accurate prediction (Sacks et al. 1989; Toal et al. 2008). The67

GPM was built using input model parameters that are relevant to represent system response68

of the inelastic transient FE analysis. Once the GPM was trained and validated, it is applied69

to quantify the effect of soil liquefaction-induced failure on a levee subject to a large variety70

of earthquake events. In particular, the maximal induced crest settlement is computed and71

the corresponding fragility curves for a given damage threshold are estimated. Although72

Gaussian process emulators have been used in other disciplines, there is no knowledge of it73

having been implemented in the framework of performance-based approaches to evaluating74
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liquefaction induced damage of dams or embankments.75

In the next section, a brief description of a construction of Gaussian process model is76

given. In the third section, a synthetic description of the Finite Element model used to77

simulate the levee is provided. Next, the main results of the analysis with the FEM are78

presented. In the the fifth section, the choice of the input parameters and the validation of79

the GPM in terms of its capability of prediction are shown. In the last section, intensive80

simulations are performed with the GPM in order to estimate the fragility curves for a given81

levee damage threshold. Finally, conclusions summarizing the obtained results and future82

developments of this work are provided.83

GAUSSIAN PROCESS EMULATOR84

A meta-model or surrogate model is an analytical function used to provide rapid approx-85

imations of more expensive models (e.g. an analytical model or a finite element numerical86

model). In the Gaussian process (GP), the responses and input values are combined statis-87

tically to create functional relationships in a non-intrusive approach (i.e. the original model88

is considered as a black box). One of the advantages of Gaussian processes is that they89

are flexible enough to represent a wide variety of complex models using a limited number90

of parameters. In contrast to other kind of meta-models (e.g. Linear regression, Neural91

networks, Chaos polynomials among others), GP provides a function that does not depend92

on the probabilistic model for the input data.93

Let us consider a non-linear computer model response, that could be represented by94

a multivariate function y = f(x); where x is a d-dimensional vector describing the input95

parameters of the model and y is a vector of n observed outputs. Usually, f(x) is deter-96

ministic whenever the same input (x) results in the same output (y). It is also assumed97

that evaluation of f(x) is computationally expensive, thus, only limited function evaluations98

y1 = f(x1), . . . ,yn = f(xn) are available. These evaluations are called experimental design99

(ED) and they are used as a database for training or learning the meta-model (i.e. the100

learning database LDB). The purpose of the meta-model is therefore to predict the response101
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(y = f(x∗)) for a new data set where only the input x∗ are known (i.e. the test database,102

TDB) (Sacks et al. 1989; Rasmussen and Williams 2006; DiazDelaO et al. 2013; Dubourg103

et al. 2013; Strong and Oakley 2014). Hence, it is possible to obtain a statistical approxima-104

tion to the output of a numerical model after evaluating a small number n of design points105

if f(x) is modelled as a Gaussian process (GP). A GP is a collection of random variables,106

which have a joint multivariate Gaussian distribution. The GP model will be separated in107

mean and covariance functions :108

f(x) = h(x)Tβ + Z(x) (1)109

where h(x)Tβ is the mean function (usually modelled as a generalized linear model and110

sometimes times assumed to be zero), h(x) is a vector of known functions and β is a vector of111

unknown coefficients. The function Z(�) is a Gaussian process with mean zero and covariance112

function Cov(Z(x), Z(x′)|σ2, θ) between output points corresponding to input points x and113

x′ :114

Cov(Z(x), Z(x′)|σ2, θ) = σ2 · cθ(x,x′) (2)115

where σ2 is the variance of Z, θ the range parameter and cθ( , ) its correlation function. The116

GP assumes that the correlation between Z(x) and Z(x′) is a function of the “distance”117

between x and x′. The covariance can be any function having the property of generating118

a positive definite covariance matrix (Rasmussen and Williams 2006; Iooss et al. 2010). A119

wide variety of covariance functions could be used in the Gaussian process framework, thus,120

in this work three common correlation functions were used, namely, exponential (equation121
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3), Matérn (3/2) (equation 4) and γ-exponential (equation 5).122

cθ(x,x
′) = exp

{
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d
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cθ(x,x
′) = exp
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−
d
∑
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(

xi − x′

i

θi

)γ
}

(5)125

for x = (x1, . . . , xd). Note that equation 4 is parametrized as in Genton (2001). The hyper-126

parameters involved in each covariance function are estimated by likelihood maximization.127

Finally, the predictor and the variance of the GP for the new input x∗ are estimated as128

follows:129

E (f(x∗)) = h(x∗)Tβ + k(x∗)TΣ−1(f(x)− h(x)Tβ) (6)130

Var (f(x∗)) = σ2 − k(x∗)TΣ−1k(x∗) (7)131

k(x∗) = σ2[cθ(x1,x
∗), . . . , cθ(xn,x

∗)]T (8)132

Σ = σ2 (cθ(xi,xj)i=1...n ,j=1...n) (9)133

where Σ is the covariance matrix. Refer to Sacks et al. (1989), Rasmussen and Williams134

(2006) or Iooss et al. (2010) among others for further details about the GP meta-model.135

SELECTED LEVEE CASE STUDY136

The geometry of the model, as shown in Figure 1(a), consists of an embankment of 9m137

high composed of dry dense sand. The soil foundation is composed of a liquefiable loose-to-138

medium sand (LMS) of 4m at the top of a saturated dense sand of 6m. The bedrock at the139

bottom of the dense sand has a shear wave velocity (Vs) equal to 1000m/s and a mass density140

(ρbd) of 2000kg/m3. The water table is situated at 1m below the base of the embankment141

and it was kept dry. The levee’s inclination is a slope of 1:3 (vertical: horizontal). The142

geometry used in the FEM was inspired from the one proposed by Rapti et al. (2017).143
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All computations were conducted with GEFDyn FE code (Aubry et al. 1986; Aubry and144

Modaressi 1996). The elastoplastic multi-mechanism model briefly described below is used145

to represent the soil behaviour (Figure 1(a)). For the bedrock representing a half-space, an146

isotropic linear elastic behaviour was assumed. The model length is 194m.147

A 2D coupled dynamic approach derived from the u−pw version of the Biot’s generalized148

consolidation theory (Zienkiewicz and Shiomi 1984) was adopted for the soil. The so-called149

u − pw formulation, consists of neglecting fluid acceleration terms and convective terms150

of this acceleration so that the unknown variables remain the displacement of the solid151

u and the pressure of the water pw. The saturated soil was modelled using quadrilateral152

isoparametric elements with eight nodes for both solid displacements and fluid pressures.153

The size of elements is 0.5m×0.5m. It was chosen in order to have 8 to 10 elements per154

wavelength which are sufficient to prevent numerical dispersion. A plane-strain condition155

was assumed in the finite element model. In the analysis, only vertically incident shear waves156

are introduced into the domain and as the response of an infinite semi-space is modelled,157

equivalent boundaries have been imposed on the nodes of lateral boundaries (i.e. the normal158

stress on these boundaries remains constant and the displacements of nodes at the same depth159

in two opposite lateral boundaries are the same in all directions). The model is 194m wide160

so as to ensure that the effect of the boundaries on the model response can be neglected161

and also to satisfy the free field condition at the lateral boundaries. For the half-space162

bedrock’s boundary condition, paraxial elements simulating “deformable unbounded elastic163

bedrock” have been used (Modaressi and Benzenati 1994). The incident waves, defined at164

the outcropping bedrock are introduced into the base of the model after deconvolution.165

The elastoplastic multi-mechanism model developed at Ecole Centrale Paris (ECP)166

(Aubry et al. 1982) is used to represent the soil behaviour. This model can take into167

account the soil behaviour in a large range of deformations. The model is written in terms of168

effective stress. The representation of all irreversible phenomena is made by four coupled el-169

ementary plastic mechanisms: three plane-strain deviatoric plastic deformation mechanisms170
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in three orthogonal planes and an isotropic one. The model uses a Coulomb-type failure171

criterion and the critical state concept. The evolution of hardening is based on the plastic172

strain (deviatoric and volumetric strain for the deviatoric mechanisms and volumetric strain173

for the isotropic one). To take into account the cyclic behaviour a kinematical hardening174

based on the state variables at the last load reversal is used. The soil behaviour is decom-175

posed into pseudo-elastic, hysteretic and mobilized domains. Refer to Aubry et al. (1982),176

Lopez-Caballero and Modaressi-Farahmand-Razavi (2008) among others for further details177

about the ECP model. The obtained curves of cyclic stress ratio (SR = σv−cyc/(2 · p′o), with178

σv−cyc the cyclic vertical stress applied in the cyclic loading) as a function of the number of179

loading cycles to produce liquefaction (N) and G/Gmax − γ curves are given in Figure 1(a).180

As qualitative comparison, the modelled test results are compared with the experimentally181

obtained curves given by Byrne et al. (2004) for Nevada sand at different densities (i.e. Dr182

= 40% and 60%) and with the reference curves given by Seed and Idriss (1971).183

Input earthquake motion184

The selection of input motions for geotechnical earthquake engineering problems is im-185

portant as it is strongly related to the non-linear dynamic analyses. So as to obtain analytical186

fragility curves, it is necessary to analyse the embankment response to a wide range of ground187

motions. In addition, when dealing with surrogate models, it is required to have a repre-188

sentative set of data to train, to validate and to test the proposed meta-model. A total of189

540 unscaled records were chosen from the Pacific Earthquake Engineering Research Center190

(PEER) database (Ancheta et al. 2013), the Center for Engineering Strong Motion Data191

and the Kiban Kyoshin strong-motion network (KIK-NET) (Aoi et al. 2001). The events192

range between 5.2 and 7.6 in magnitude and the recordings have site-to-source distances193

from 15 to 50km and concern dense-to-firm soil conditions (i.e. 360m/s < Vs 30m < 800m/s).194

All input signals have a baseline correction, a sampling time (∆t) equal to 0.005s and they195

are filtered using a non-causal 4th-order Butterworth bandpass filter (i.e. Zero-phase digital196

filtering), between 0.1-25Hz.197
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The database was split as follows : 95 signals concern the learning database (LDB),198

50 ground-motions are used for the validation set (VDB) and the test database (TDB) is199

composed of 395 unscaled records. The statistics on some input earthquake characteristics200

obtained for each database are summarized in Table 1. These earthquake characteristics are201

maximal outcropping acceleration (amax out), Arias intensity (IA), mean period (Tm), peak202

ground velocity (PGV ), period of equivalent harmonic wave (TV/A = α ·PGV/amax out, with203

α=4.89) and significant duration from 5% to 95% Arias intensity (D5−95).204

RESULTS WITH THE LEARNING DATABASE SET (LDB)205

For embankments placed in seismic zones, it has been shown that the widespread damage206

to such embankments occurred mainly due to the liquefaction of foundation soil, resulting207

in excessive settlements, lateral spreading and slope instability (Sharp and Adalier 2006;208

Oka et al. 2012; Okamura et al. 2013). Thus, in this study, the crest settlement is chosen209

to be the mode of failure because it is a quantifiable measurement. Figure 1(b) shows a210

zoomed view of the typical response of vertical displacement contours in the levee after the211

earthquake loading. The computed deformed shape is characterized by a crest settlement212

due to soil liquefaction in the foundation and associated with lateral spread in foundation213

soil. In addition, Figure 1(c) shows a box plot of the ratio of CPU time per earthquake214

duration spent to perform the computations using LDB and VDB sets. It is noted that for215

the used FE model, CPU time varies between 1.2 and 1.7 minutes per second of earthquake216

duration. It means that a single FEM run for an earthquake with a typical duration of 30s,217

takes approximatively 35 to 55 minutes.218

Even if the earthquake loading applied to the soil-levee system is very complex, it is219

necessary to select few strong-motion intensity parameters that can be accurately represent220

the levee behaviour. Swaisgood (2003) analysed a historical database on the performance221

of dams during earthquakes and found that the crest settlement is directly related to some222

input ground motion characteristics (i.e. the peak ground acceleration and magnitude). In223

addition, he proposes four damage levels according to the induced crest settlement. Following224

9



Swaisgood’s proposition, in this work the obtained percentage crest settlement (δuz,rel/H ,225

where uz,rel is the crest settlement, H is the height of the dam and the foundation which is226

19m as seen in Figure 1(a)) is compared to the peak ground acceleration at the outcropping227

bedrock (amax out). To take into account all the signals in the LDB set, the crest settlement228

was calculated accordingly and was drawn as function of amax out (Figure 2(a)). It is interest-229

ing to note that, as expected, the calculated crest settlement increases when the acceleration230

at the outcrop increases.231

On the other hand, it is also noticed that two motions with very different amax out values232

could provide the same crest settlement ratio (i.e. damage level), which implies that not233

only the amplitude of a motion controls the levee response. Hence, Kawase (2011) proposes234

to use the equivalent predominant frequency (1/TV/A), the maximum velocity (PGV ) and235

acceleration of the ground motion to represent the earthquake loading. Figure 2(b) displays236

the variation of crest settlement ratio of the FE model as a function of amax out and 1/TV/A. It237

is observed that the values of increasing crest settlements of the FE models follow the lines of238

increasing velocity. In addition, according to Kayen and Mitchell (1997) and Koutsourelakis239

et al. (2002) among others, the liquefaction induced seismic settlement on structures is also240

well correlated with the Arias intensity value, which represents the input seismic energy.241

NONLINEAR SYSTEM IDENTIFICATION USING GPM242

One of the problem of calibrating or training a surrogate model (GPM) to observations243

from the numerical model (FEM) deals with finding input values such that the GPM outputs244

match the observed data as closely as possible. According to the previous section, several245

strong-motion intensity parameters have a great influence on the levee response, e.g. amax out,246

1/TV/A and IA among others. Thus, it means that the proposed GPM will be a multiple-247

input single-output one. Other aspect concerns the correlation function defining the Gaussian248

process itself (i.e. found the unknown hyperparameters). As recalled before, three common249

correlation functions will be tested in this section, equations 3 to 5. The hyperparameters250

for those models are estimated with the R-code packages for the Analysis of Computer251
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Experiments developed by Roustant et al. (2012). Once the GPM was trained with the252

LDB set, the possible models are validated, hence, a comparison of all responses in terms253

of δuz,rel/H obtained with FEM and predicted by GPM using the VDB set will be done.254

Further, the selected GP model is tested on a database (TDB) that is similar in structure255

to the database which was used for training, but was not used to built the surrogate model.256

Figure 3 displays a comparison of the distribution of the GPM input parameters used as257

training set (LDB) and the set which is used to validate the predictions of the model on new258

data (VDB). It concerns three possible input parameters, namely, 1/TV/A, amax out and IA.259

It is important to note the great variance of those distributions and the overlap between the260

training data and the validation one.261

In order to assess how well the GP model has been trained (i.e. Validation phase) a com-262

parison between the δuz,rel/H values obtained with the FEM and the mean predicted ones263

by the GPM using the VDB set is done (Figure 4). Thus, the relative error or discrepancy264

between the GPM predictions (ypredi ) with the FEM computations (yi) is calculated with the265

predictive squared correlation coefficient (Q2) :266

Q2(yi, y
pred
i ) = 1−

∑N
i=1

(ypredi − yi)
2

∑N
i=1

(yi − µy)2
(10)267

where µy is the mean of the N observations (i.e. FEM computations). It ranges between 0268

and 1. The results of the performed parametric study are summarized in Table 2 for a size of269

the learning sample (NLDB) equal to 95. For the sake of brevity, only the two better responses270

are displayed in Figure 4. It is noted that, the best fit to the FEM data is given for the271

case when three input parameters are used and the exponential and γ-exponential covariance272

functions seem to provide the best predictions. When only 2 input parameters (1/TV/A and273

amax out) are used to train the GPM, the best fit is obtained with the γ-exponential covariance274

function.275

In addition, it is well know that the choice and the size of the learning samples are key276
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issues on the quality of the GPM predictions. Thus, in order to study the evolution of the277

estimated Q2

V DB criteria as a function of the size of the learning sample (NLDB) the following278

procedure was used: For both, a fixed NLDB value (ranging from 20 to 95) and for a GPM279

type, the 95 signals from the learning database are permuted randomly and the first NLDB280

samples are used to construct the GPM. Then, the accuracy of the prediction of the obtained281

GPM is evaluated using the Q2

V DB criteria. This procedure is repeated 20 times for each282

fixed NLDB value and the obtained median value is used to define the accuracy of the GPM.283

As example, Figure 5 displays the boxplots of the obtained Q2

V DB evolution as a function284

of the learning sample size (NLDB) for a) γ-exponential GPM with 2 input parameters and285

b) Exponential GPM with 3 input parameters. It is observed that in the case when three286

input parameters (1/TV/A, amax out and IA) are adopted the variation of the estimated median287

Q2

V DB value with NLDB is very small.288

Concerning the variance of the GPM, Figure 6(a) displays the obtained mean squared289

error (MSE) of predictions as a function of 1/TV/A and amax out using the model with 3 input290

parameters. It is noted that the obtained MSE values are in general less than 0.2 for the291

cases when amax out < 1g. On the other hand, it is important to note that for the same input292

values, a reduction in the MSE values is found with respect to the ones obtained when the293

GPM with 2 input parameters is used (Figure 6(b)). This figure shows the ratio between the294

MSE for 3 input parameters and the one for 2 input parameters (δMSE=MSE3pr/MSE2pr).295

Finally, the GPM with 2 input parameters and with 3 input ones that provided the best296

fits are now used to simulate other earthquake scenarios (i.e. TDB with 445 signals). The297

mean δuz,rel/H values predicted by the two GPM are shown in Figure 7. It can be noted298

that both GP models selected for this study show a reasonable capability to reproduce the299

variation of δuz,rel/H as a function of amax out. However, visually a less dispersion in the300

predicted values seems to be obtained using the 2 input parameters model for amax out values301

between 0.4 and 0.6g.302

EVALUATION OF LEVEE VULNERABILITY USING GPM303
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In the context of the PBEE, the damage analysis, which is the third stage of this method-304

ology, is a procedure to quantify the structural damage. It consists of setting fragility func-305

tions in order to find the conditional probability of the design to exceed a certain level of306

performance for a given seismic input motion parameter. Usually, fragility curves are con-307

structed by using a single parameter to relate the level of shaking to the expected damage308

(Koutsourelakis et al. 2002; Baker and Cornell 2008a; Zentner 2010). So as to derive analyt-309

ical fragility functions, it is necessary to define damage states in terms of some mechanical310

parameters that can be directly obtained from the analysis (e.g. δuz,rel/H). The damage311

states limits or the performance levels of the levee are those proposed by Swaisgood (2003).312

The three damage levels thresholds are superposed in Figures 2(a) and 7. They correspond313

to δuz,rel/H=0.02, 0.2 and 1.0%. In this work, the fragility curves are constructed following314

the methodology proposed by Shinozuka et al. (2000), i.e. the maximum likelihood method315

is used to compute numerical values of the estimators α̂ and β̂ of Log-normal distribution.316

The obtained fragility curves for the third and fourth state damages (i.e. minor to317

moderate and moderate to serious damages) are shown in Figure 8. These curves are drawn318

as solid lines whereas the statistical confidence of the derived fragility curves are drawn as319

dashed lines (i.e. {α̂ β̂}±{σ1 σ2}). This confidence is a function of the information provided320

by the size of motion database over the parameters α̂ and β̂ describing the shape of each321

curve and it is computed via the Fisher information matrix (Saez et al. 2011). Figure 8(a)322

presents fitted fragility functions obtained for two damage levels with respect to amax out using323

the FEM and the training dataset (LDB) (Figure 2(a)). These curves are used as reference324

case study. The obtained α̂, β̂, σ1 and σ2 values at which the levee reaches the threshold of325

the minor to moderate and moderate to serious damages are provided in Table 3. According326

to Figure 8(a), it is clear that, for this database size, no enough information is available327

to develop a fragility curve for moderate to serious damages. It includes less information328

regarding statistical confidence of parameters. For a given value of amax out, the probability329

of exceeding the damage threshold varies up to ± 15%. Consequently, a database including330
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a great number of ground motions is required to provide enough information to estimate in a331

reliable way the parameters defining the fragility curve (Luco and Cornell 2007; Seyedi et al.332

2010; Lancieri et al. 2015). Due to the high computational cost to perform the numerous333

non-linear dynamic calculations of the TDB set with the FEM (Figure 1(c)), the proposed334

GPM with 3 input parameters was used. A comparison of the fragility curves obtained using335

the GPM and the FEM is displayed in Figure 8(b) and 8(c). This comparison is done for336

two damage levels (i.e. minor to moderate and moderate to serious damages) with respect to337

amax out. GPM curves displayed in these figures have been derived using 445 ground motions338

(i.e. VDB and TDB set).339

According to this comparison, the benefit of using a surrogate model appears principally340

in the reduction of the statistical confidence of the derived fragility curves for both damage341

levels by increasing the size of tested motions (i.e. the obtained σ1 and σ2 values, Table 3).342

It is noted that a reduction in the σ values for each fragility curve is obtained when the GPM343

predictions are used. A reduction of 70% for the case of minor to moderate damage and344

50% for the moderate to serious damage. However, concerning the mean values, for the case345

of minor to moderate damage (Figure 8(b)), both α̂ and β̂ estimators have similar values346

independent of the used database. On the contrary, for the moderate to serious damage347

(Figure 8(c)), it is noted that the fragility curve shifts slightly to higher acceleration values348

when the GPM is used. It means that for the same amax out input value a lower probability349

of exceedance is found. Finally, it is important to note that both curves obtained with the350

GPM are placed inside the statistical confidence of the derived FEM fragility curves. This351

parametric study confirms that the use of a well constructed surrogate models allows to352

obtain fragility curves with a reasonable accuracy and with a manageable computational353

effort.354

Moreover, so as to assess the performance of the obtained GPM, a comparison between355

the computed fragility curves using the predicted values from the GPM and the obtained356

ones with FEM employing the TDB set is performed (Figure 9). It is noted that the curves357
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obtained using the two approaches are comparable. For the case of minor to moderate358

damage level (Figure 9(a)), some differences for higher acceleration values are remarked and359

on the contrary, for the moderate to serious damage level case the discrepancies are found for360

lower acceleration values (Figure 9(b)). These results confirm that for this particular case,361

the mean predicted GP values provide a good approximation to the FE outputs. However,362

it is clear that those differences could be reduced if the LDB is enriched with more input363

data in the regions where the variance is maximum (see Figure 6(a)).364

Coming back to Figure 2(b), the response of the levee is a function of amax out and 1/TV/A,365

thus, the induced damage must be also related with a vector composed by various input366

motion parameters, characterizing different aspects of the shaking (Baker and Cornell 2008b;367

Seyedi et al. 2010). Hence, a comparison of the obtained distribution of the induced damage368

levels in the levee as two dimensional failure surfaces is provided in Figure 10. Figures 10(a)369

and 10(b) show the distribution obtained with the FEM using the LDB and with the GPM370

using the TDB respectively. It is remarked that the boundaries between each damage level371

are well defined for both studied cases and only few responses (i.e. a vector of 1/TV/A, amax out372

and DL) are overlapped. It is also noted the shape similarity between the observed surface373

(FEM-LDB) and the predicted one (GPM-TDB), which confirms again the applicability of374

the proposed metamodel to approximate the induced settlement and damage level in the375

levee for the range of parameters considered. Again from Figure 10, those results imply that376

instead of use fragility curves, fragility surfaces must be used to improve the representation377

of the strong ground motion in the damage assessment of the studied non-linear system378

(Seyedi et al. 2010). Nevertheless, this aspect is out of the scope of the present work but379

further researches will be done in this direction.380

CONCLUSIONS381

A FE analysis and a meta-model were used to investigate the soil liquefaction induced382

settlement and associated damage for an levee due to real earthquakes. Fragility functions383

were obtained for that purpose. The main conclusions drawn from this study are as follows:384
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Seismic demand fragility evaluation is one of the basic elements in the framework of385

performance-based earthquake engineering (PBEE). For solving the absence of sufficient386

Finite Element responses to obtain fragility curves with a reasonable accuracy, a Gaussian387

process model was build to mimic the FEM and used to increase the number of levee model388

evaluations reducing the computational time.389

The predictive capability of the adopted GPM was assessed comparing the obtained levee390

settlements and induced damage levels with the ones simulated with the FEM. With respect391

to the case study considered, the GPM has shown a good capability of approximating the392

non-linear FEM response.393

Results reveal that a GPM with three inputs parameters (i.e. 1/TV/A, amax out and IA)394

to describe the liquefaction induced settlement of a levee, provides the most accurate esti-395

mates. Further investigations in this direction will be needed in order to obtain more general396

conclusions for diverse structure and soil typologies.397

Based on these analyses, it is concluded that the proposed Gaussian process model is398

accurate enough for practical purposes and represents an important economy in CPU con-399

sumption time. It is confirmed by the comparison between the fragility curves obtained by400

the two methods on the test data set.401

Further research can be done to ameliorate the results as to account for a better way402

to select the input parameters and to minimize the number of FEM computations so as to403

reduce discrepancies between both models (i.e. FEM and GPM).404

Finally, it was found that fragility surfaces must be used to improve the representation405

of the strong ground motion in the damage assessment of the studied non-linear system.406

Further researches will be done in this direction.407
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TABLE 1. Statistics characteristics for the selected earthquakes in each database (DB)

LDB VDB TDB
Parameter Range Range Range

amax out [g] 0.01 − 1.93 0.03− 1.16 0.03 − 1.93
Tm [s] 0.12 − 1.69 0.17− 1.69 0.17 − 1.81
TV/A [s] 0.09 − 1.91 0.13− 1.42 0.13 − 1.32

IA [m/s] 0.001 − 20.64 0.04− 4.13 0.004 − 20.64
D5−95 [s] 2.26 − 69.84 2.96 − 42.77 2.26 − 47.36
PGV [cm/s] 0.23 − 167.6 4.27 − 83.58 0.86 − 166.1
DB Size 95 50 395
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TABLE 2. Relative error between the GPM predictions and the FEM computations.
Case of VDB set.

Q2
V DB [1] Q2

V DB [1]
Covariance 2 input param. 3 input param.
Function NLDB=95 NLDB=95

Matérn (3/2) 0.63 0.83
Exponential 0.74 0.94
γ-exponential (γ = 2) 0.80 0.93
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TABLE 3. Fragility curve parameters from the mean GPM predictions (TDB set) and
the FEM computations (LDB set).

Damage FEM GPM σGPM/σFEM
state α̂ β̂ σ1 σ2 α̂ β̂ σ1 σ2 σ1 σ2

DL III 0.21 0.26 0.015 0.067 0.21 0.21 0.005 0.023 0.33 0.34
DL IV 0.45 0.51 0.041 0.135 0.47 0.53 0.021 0.068 0.51 0.50
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FIG. 1. a) Geometry and behaviour of soils used in the numerical model; b) Enlarged
view of typical vertical co-seismic displacement contours at the end of the shaking and
c) box plot of the ratio of CPU time per earthquake duration spent to perform the
computations using LDB and VDB sets.
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FIG. 2. Scatter plot of crest settlement ratio of the FE model as a function of a)
amax out and b) amax out and 1/TV/A. Case of LDB sets.
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FIG. 3. Comparison of the distribution of the GPM input parameters for LDB and
VDB; a) 1/TV/A; b) amax out and c) IA.
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FIG. 4. Comparison of δuz,rel/H values obtained with FEM and with GPM approaches.
a) γ-exponential GPM with 2 input parameters and b) Exponential GPM with 3 input
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FIG. 6. a) Obtained mean squared error (MSE) in the prediction of δuz,rel/H values
obtained using GPM with 3 input parameters and b) Ratio between the obtained MSE
for 3 input parameters and the MSE for 2 input parameters (δMSE=MSE3pr/MSE2pr).
Case of VDB sets.
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FIG. 7. Mean predicted δuz,rel/H as a function of amax out obtained with the GPM
approach. a) GPM with 2 input parameters and b) GPM with 3 input parameters.
Case of TDB sets.
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FIG. 8. Computed fragility curves for two damage levels following a) FEM approach;
b) and c) FEM and GPM approaches.
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FIG. 9. Computed fragility curves for two damage levels, a) minor to moderate and
b) moderate to serious damages. Comparison of responses obtained with FEM and
predicted with GPM using the TDB sets.
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FIG. 10. Two dimensional failure surface, a) FEM with LDB set and b) GPM with
TDB set.
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