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This paper adresses the statistical performance of subspace DoA estimation using a sensor array, in the asymptotic regime where the number of samples and sensors both converge to infinity at the same rate. Improved subspace DoA estimators were derived (termed as G-MUSIC) in previous works, and were shown to be consistent and asymptotically Gaussian distributed in the case where the number of sources and their DoA remain fixed. In this case, which models widely spaced DoA scenarios, it is established that the traditional MUSIC method also provides consistent DoA estimates having the same asymptotic MSE as the G-MUSIC estimates. In the case of closely spaced DoA (i.e. with a spacing of the order of a beamwidth), it is shown that G-MUSIC is still able to consistently separate the sources, while it is no longer the case for MUSIC.

INTRODUCTION

The estimation of the Direction of Arrival (DoA) of plane waves impinging on an array of sensors is a fundamental problem in statistical signal processing and several methods have been developed since the past 40 years. In the context of K narrow-band and far-field source signals received by an uniform linear array of M > K sensors, the problem consists in estimating the DoA θ1, . . . , θK from a set of N (we assume N ≥ M for simplicity) observations YN = [y1, . . . , yN ] modeled as YN = ASN + VN , where • A = [a(θ1), . . . , a(θK )] is the matrix of steering vectors, with

a(θ) = 1 √ M [ 1 
, . . . , e i(M -1)θ ] T ;

• SN contains the transmit source signals, considered as unknown deterministic ;

• VN has i.i.d complex circular N (0, σ 2 ) entries, and represents a temporally and spatially white noise.

Among the most popular high resolution methods, the subspace algorithms, such as MUSIC [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF], are widely used due to their reduced complexity since they involve a one-dimensional search over the set This work has been partially supported by the French programs GDR ISIS/GRETSI "Jeunes Chercheurs" and Project ANR-12-MONU-OOO3 DIONISOS Project. of possible DoA, and are usually prefered over Maximum Likelihood which requires a multi-dimensional search. In particular, subspace methods are based in general on the observation that if the source signal matrix SN is full rank K, the DoA θ1, . . . , θK are the unique zeros of the pseudo-spectrum

η(θ) = a(θ) * Πa(θ), (1) 
where ΠN is the orthogonal projection matrix onto the noise subspace, defined as the kernel of N -1 ASN S * N A * . In practice, ΠN is usually estimated from the so-called sample correlation matrix of the observations (SCM)

RN = YN Y * N N = 1 N N n=1 yny * n ,
for which we will denote by λ1,N ≥ . . . ≥ λM,N the eigenvalues and by û1,N , . . . , ûM,N the eigenvectors. The MUSIC method consists in estimating θ1, . . . , θK as the K most significant minima of the estimated pseudo-spectrum 1

η(t) N (θ) = a(θ) * ΠN a(θ),
where ΠN is the orthogonal projection matrix onto the eigenspace associated with the M -K smallest eigenvalues of RN . It is also well-known that MUSIC methods (or subspace methods in general) suffer the so-called "threshold effect", which involves a severe degradation of performance when either the Signal to Noise Ratio (SNR) and/or the sample size N are not large enough. In particular, this last situation may occur when the signal are short-time duration and/or stationary, and when the number of sensors M is large. In that case, M and N may be of the same order of magnitude, and the usual statistical analysis of MUSIC, which assumed N >> M (see e.g. [START_REF] Stoica | Music, maximum likelihood, and cramer-rao bound[END_REF]), is irrelevant. One of the main reason is that MUSIC mainly relies on the SCM, which does not properly estimate the true covariance matrix RN = 1 N ASN S * N A * + σ 2 I in this context.

To model this more stringent scenario, [START_REF] Mestre | Modified subspace algorithms for doa estimation with large arrays[END_REF] proposed to consider a new asymptotic regime in which both M, N converges to infinity at the same rate, that is

M, N → ∞ such that M N → c > 0.
In particular, in this new asymptotic regime, the eigenvalues of RN , instead of converging to the eigenvalues of RN , spread in several groups, involving a poor separation between the noise subspace and its orthogonal complement the signal subspace. Based on results describing the behaviour of the eigenvalues and eigenvectors of large random matrices, an improved MUSIC DoA technique, termed as "G-MUSIC", was derived in [START_REF] Mestre | Modified subspace algorithms for doa estimation with large arrays[END_REF] in the unconditional model case and later extended in [START_REF] Vallet | Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signal Case[END_REF] to the conditional model case.

In this paper, focused on the conditional case, we compare the statistical performance of MUSIC and G-MUSIC in two scenarios involving widely and closely spaced DoA. More precisely, we establish that

• when the number of sources K and the corresponding DoA remain fixed as M, N → ∞, while the "pseudo-spectrum" estimate of MUSIC is unconsistent, its minimization w.r.t.

the DoA provides N -consistent2 estimates having the same asymptotic MSE as G-MUSIC.

• for two sources with an angular spacing of the order of a beamwidth, that is

O(M -1 ) as M, N → ∞, G-MUSIC re- mains N -consistent while MUSIC is no more N -consistent,
which means that MUSIC is no more able to asymptotically separate the DoA.

THE G-MUSIC METHOD

We consider for the remainder the doubly asymptotic regime where M = M (N ) is a function of N such that the ratio M N converges to c ∈ (0, 1), and where K is fixed and independent of N . In general, the DoA θ1,N , . . . , θK,N may depend on N , and we also assume sup N SN < ∞, where . stands for the spectral norm.

The G-MUSIC method, described in [START_REF] Vallet | Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signal Case[END_REF], relies on the asymptotic theory of random matrices, from which we recall below some results. Let

mN (z) = 1 M tr RN -zI -1
.

The function z → mN (z) represents the Stieltjes transform of the empirical distribution μN = 1 M M k=1 δ λk,N of the eigenvalues of the S.C.M. RN , that is

mN (z) = R dμN (λ) λ -z .
From [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF], for all z ∈ C\R + , mN (z) → m(z) a.s. as N → ∞, where m(z) = R (λ -z) -1 dµ(λ) is the Stieltjes transform of the so-called Marcenko-Pastur distribution µ, and which admits a density given by

dµ(x) dx = (x -x -) (x + -x) 2σ 2 cπx 1 [x -,x + ] (x). with x -= σ 2 (1 - √ c) 2 and x + = σ 2 (1 + √ c) 2 . Moreover, m(z) satisfies the following fundamental equation m(z) = 1 -z (1 + σ 2 cm(z)) + σ 2 (1 -c) . (2) 
Equivalently, with probability one, μN → µ in distribution, that is, the empirical eigenvalue distribution of RN has the same asymptotic behaviour as the Marcenko-Pastur distribution.

Remark 1. The Marcenko-Pastur distribution was originally obtained as the limit distribution of the empirical eigenvalue distribution of the noise part N -1 VN V * N . Nevertheless, since the rank K of the deterministic perturbation N -1 ASN S * N A * is independent of N implies that the Marcenko-Pastur limit still holds for RN .

Under an additional assumption ensuring that the K non-zero eigenvalues λ k,1 ≥ . . . ≥ λK,N of 1 N ASN S * N A * are sufficiently separated from the M -K zeros , we can describe the behaviour of the K largest eigenvalues of RN .

Assumption 1. For k = 1, . . . , K, we have λ k,N → λ k as N → ∞, where λ1 > . . . > λK > σ 2 √ c.
This condition, termed as subspace separation condition, also ensures that the range of 1 N ASN S * N A * is sufficiently separated from its kernel. Under the previous assumption, it is shown in [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF] that for all k = 1, . . . , K, λk,N p.s.

----→

N →∞ φ(λ k ) = λ k + σ 2 c λ k + σ 2 λ k , where φ(λ k ) > σ 2 (1 + √ c) 2 . Moreover, for all > 0, λK+1,N , . . . , λM,N ∈ σ 2 (1 - √ c) 2 -, σ 2 (1 + √ c) 2 ,
a.s. for N large enough. Rephrased in another way, under the separation condition, the K largest eigenvalues of ΣN Σ * N escape from the support of the Marcenko-Pastur distribution while the smallest

M -K eigenvalues are concentrated in a neighborhood of [x -, x + ].
Under the previous assumption, we also have results on the behaviour of the eigenvectors associated with λ1,N , . . . , λK,N ; for all deterministic sequence (dN ) of unitary vectors,

|d * N ûk,N | 2 = h (φ(λ k )) |d * N u k,N | 2 + o(1) a.s., (3) 
where

h(z) = m(z) 2 (czm(z) -(1 -c)) cm(z) 2 + 2czm (z)m(z) -(1 -c)m (z)
.

Using algebric relations between m(φ(λ k )) and λ k , one can obtain the explicit formula

h (φ(λ k )) = λ 2 k -σ 4 c λ k (λ k + σ 2 c) .
The convergence (3) is the keystone of the G-MUSIC method. Indeed, by taking dN = a(θ), and using the fact that φ(λ k ) = λk,N + o(1) a.s., we obtain

ηN (θ) = 1 - K k=1 |a(θ) * u k,N | 2 = ηN (θ) + o(1), (4) 
where

ηN (θ) = 1 - K k=1 1 h λk,N |a(θ) * ûk,N | 2 . (5) 
Therefore, ηN (θ) is a consistent estimator of the pseudo-spectrum ηN (θ), for all fixed θ, in the doubly asymptotic regime considered above. The G-MUSIC method then consists in estimating the DoA by considering the K deepest local minima of θ → ηN (θ).

The consistency of these DoA estimates, which is the object of the next section, requires a stronger result on the following uniform convergence of the pseudo-spectrum, that is proved in [START_REF] Hachem | Large information plus noise random matrix models and consistent subspace estimation in large sensor networks[END_REF].

sup θ∈[-π,π] |a(θ) * ûk,N | 2 -h (φ(λ k )) |a(θ) * u k,N | 2 a.s.
----→ N →∞ 0.

(6)

MUSIC AND G-MUSIC FOR WIDELY SPACED DOA

In this section, we consider a widely spaced DoA situation, which occurs in practice when the DoA have an angular separation much larger than a beamwidth 2π M . Mathematically speaking, we consider that the DoA θ1, . . . , θK are fixed with respect to N . In that case, A * A → I and the separation condition holds if and only if the eigenvalues of ----→

N →∞ 0 and N θ(t) k,N -θ k a.s.
----→

N →∞ 0.
Proof. The N -consistency of G-MUSIC is already established in [START_REF] Hachem | Large information plus noise random matrix models and consistent subspace estimation in large sensor networks[END_REF], and we prove hereafter the N -consistency of MUSIC. From ( 6), we easily obtain that

sup θ∈[-π,π] η(t) N (θ) -η (t) N (θ) a.s.
----→

N →∞ 0. ( 8 
)
where

η (t) N (θ) = 1 -a(θ) * UN DU * N a(θ),
with UN = [u1,N , . . . , uK,N ], D = diag(d1, . . . , dK ) and

d k = λ 2 k -σ 4 c λ k (λ k + σ 2 c) .
Using the fact that UN and A share the same image, we have

UN = A (A * A) -1/2 VN ,
where VN is a K × K unitary matrix. Since A * A → IK and

sup θ∈I k |a(θ) * a(θ )| → 0
for all = k, as N → ∞, we obtain for all k = 1, . . . , K,

sup θ∈I k η (t) N (θ) -1 -|a(θ) * a(θ k )| 2 D 1/2 V * N e k 2 ----→ N →∞ 0, (9) 
Moreover, it holds that sup θ

∈ k I k η (t) N (θ) ----→ N →∞ 1. As the func- tion θ → |a(θ) * a(θ k )| 2 has a unique global maximum at θ k , we deduce that θ(t) k,N a.s. ----→ N →∞ θ k . ( 10 
)
We now improve (10) by showing the N -consistency, and for that purpose we follow the approach of [START_REF] Hannan | The estimation of frequency[END_REF] (also used in [START_REF] Hachem | Large information plus noise random matrix models and consistent subspace estimation in large sensor networks[END_REF]Sec. 4]).

By definition, we have

η (t) N ( θ(t) k,N ) ≤ η (t) N ( θ(t) k,N ) - η(t) N ( θ(t) k,N ) + η(t) N ( θ(t) k,N ) ≤ sup θ∈[-π,π] η (t) N (θ) - η(t) N (θ) + η(t) N (θ k ),
and from (8), we obtain

lim sup N →∞ η (t) N ( θ(t) k,N ) ≤ lim sup N →∞ η(t) N (θ k ) = 1 -lim inf N →∞ D 1/2 V * N e k 2 < 1, (11) 
since

D 1/2 V * N e k 2 ≥ dK > 0. Assume that the sequence N θ(t) k,N -θ k is not bounded. Then we can extract a subsequence ϕ(N ) θ(t) k,ϕ(N ) -θ k such that ϕ(N ) θ(t) k,ϕ(N ) -θ k ----→ N →∞ ∞.
This implies that η

(t) ϕ(N ) ( θ(t) k,ϕ(N ) ) → 1, a contradiction with (11). Since N θ(t) k,N -θ k is bounded, we can extract a subsequence such that ϕ(N ) θ(t) k,ϕ(N ) -θ k ----→ N →∞ β. If β = 0, then (9) gives η (t) ϕ(N ) ( θ(t) k,ϕ(N ) ) = 1 -e * k VN DV * N e k sinc (βc/2) 2 + o(1)
with probability one, where sinc(x) = sin(x)/x if x = 0 and sinc(0) = 1. Since in that case,

lim sup N →∞ η (t) N ( θ(t) k,N ) > 1 -lim inf N →∞ e * k VN DV * N e k ,
this contradicts (11) again. Therefore all converging subsequences of the bounded sequence N θ(t) k,N -θ k have the same limit, which is 0, and thus the whole sequence converges itself to 0, which concludes the proof.

By Theorem 1, MUSIC and G-MUSIC have the same first order behaviour, for widely spaced source DoA. In fact, we can also prove that this similarity holds at the 2nd order, for asymptotically uncorrelated sources, thanks to the following result whose proof is omitted due to space constraints. Theorem 2. Under the separation condition, and if N -1 SN S * N → diag(λ1, . . . , λK ),

N 3/2 θk,N -θ k D ----→ N →∞ N 0, 6 c 2 σ 2 (λ k + σ 2 ) λ 2 k -σ 4 c
, and

N 3/2 θ(t) k,N -θ k D ----→ N →∞ N 0, 6 c 2 σ 2 (λ k + σ 2 ) λ 2 k -σ 4 c
.

The results of Theorem 1 and 2 are illustrated in Figure 1, where we compared the empirical MSE of θ1,N together with its theoretical MSE given in Theorem 2 and the empirical MSE of θ(t) 1,N . The parameters are M = 40, N = 80, and θ1 = 0, θ2 = 5 × 2π M . The signal matrix SN has standard i.i.d NC(0, 1) entries, and the separation condition occurs around SNR = 0 dB.

MUSIC AND G-MUSIC FOR CLOSELY SPACED DOA

In this section, we consider a closely spaced DoA scenario, where we let the DoA θ1,N , . . . , θK,N depends on N and converge to the same value at rate O 1 M . To simplify the presentation, we only consider K = 2 sources with DoA θ1,N and θ2,N = θ1,N + α N , where α > 0, and assume asymptotic uncorrelated sources with equal powers, that and the subspace separation condition holds iff λ2 > σ 2 √ c. Since the DoA are not fixed with respect to N , we define, in the same way as [START_REF] Hachem | Large information plus noise random matrix models and consistent subspace estimation in large sensor networks[END_REF], the G-MUSIC and MUSIC DoA estimates as θk,N = argmin

θ∈I k,N ηN (θ) and θ(t) k,N = argmin θ∈I k,N η(t) N (θ) (12) 
where I k,N is defined, for ∈ (0, α), as the compact interval ----→ N →∞ 0.

I k,N = θ k,N - α - 2N , θ k,N + α - 2N , Theorem 
Moreover, there exists values of α such that N θ(t) k,N -θ k,N does not converge to 0.

Proof. Recall from (6) that we have sup θ |ηN (θ) -ηN (θ)| →N 0 with probability one, with

ηN (θ) = a(θ) * ΠN a(θ) = 1 -a(θ) * A (A * A) -1 A * a(θ).
Like for (11), we have

lim sup N →∞ ηN ( θk,N ) ≤ lim sup N →∞ |ηN (θ k,N )| = 0. ( 13 
)
The key of the proof relies on the property that if (ψN ) is a sequence of angles,

ηN (ψN ) → 1 if N |ψN -θ k,N | → ∞ 1 -κ(β) if N (ψN -θ k,N ) → β , (14) 
where

κ(β) = sinc (βc/2) 2 + sinc ((β -α)c/2) 2 1 -sinc (αc/2) 2 - 2sinc (αc/2) sinc (βc/2) sinc ((β -α)c/2) 1 -sinc (αc/2) 2 .
Morever, κ(β) ≤ 1 with equality iff β = 0 or β = α. Therefore, if a subsequence of N θk,N -θ k,N converges to β, we get thanks to (13) and ( 14), that β = 0 necessarily, which proves the N -consistency of G-MUSIC. By doing the same way for MUSIC, we obtain for a sequence of angles (ψN ), Function κ (t) (β) does not admit in general a maximum at β = 0, α.

η (t) N (ψN ) → 1 if N |ψN -θ k,N | → ∞ 1 -κ (t) (β) if N (ψN -θ k,N ) → β ,
As for (13), we can show that for all |β| < α/2, and all sequence (ψN ) such that N (ψN -θ k,N ) → β, lim sup

N →∞ η (t) N ( θ(t) k,N ) ≤ lim sup N →∞ η(t) N (ψN ) ≤ 1 -κ (t) (β). (15) 
If N θ(t) k,N -θ k,N → 0, then η

N ( θ(t) k,N ) → 1 -κ (t) (0), which contradicts (15), since in general, it may exist some values of α for which 0 is not maximum of κ (t) (β) on the interval [-α 2 , α 2 ].

The result of Theorem 3 is illustrated in Figure 2 where we use the same parameters as in Figure 1, except for the DoA set to θ1 = 0, θ2 = π 2M . We can observe a difference of 4 dB between the threshold points of G-MUSIC and MUSIC. 

S N S * N NTheorem 1 .

 N1 converge to λ1 > . . . > λK > σ 2 √ c, which we will assume for the remainder of this section.Let I1, . . . , IK ⊂ [-π, π] be K compact disjoint intervals such that θ k ∈ Int (I k ), where Int (I k ) is the interior of I k . We define formally the G-MUSIC and MUSIC DoA estimators as θk,Under the separation condition, for k = 1, . . . , K, N θk,N -θ k a.s.

Fig. 1 .

 1 Fig. 1. Empirical MSE of θ1,N and θ(t) 1,N for widely spaced DoA

3 .

 3 Under the separation condition and the close DoA scenario, for k = 1, 2, N θk,N -θ k,N a.s.

whereκ

  (t) (β) = (sinc(βc/2) -sinc ((β -α)c/2)) 2 d1(α) 2 (1 -sinc(αc/2)) + (sinc(βc/2) + sinc ((β -α)c/2)) 2 d2(α) 2 (1 + sinc(αc/2)) ,withd1(α) = (1 -sinc(αc/2)) 2 -σ 4 c (1 -sinc(αc/2)) (1 -sinc(αc/2) + σ 2 c) d2(α) = (1 + sinc(αc/2)) 2 -σ 4 c (1 + sinc(αc/2)) (1 + sinc(αc/2) + σ 2 c).

Fig. 2 .

 2 Fig. 2. Empirical MSE of θ1,N and θ(t) 1,N for closely spaced DoA

The superscript(t) refers to "traditional estimate".

An estimator θN of a (possibly depending on N ) DoA θ N is defined as N -consistent if almost surely (a.s.), N θN -θ → 0, as N → ∞.