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ABSTRACT

This paper addresses the statistical behaviour of spatial smoothing
subspace DoA estimation schemes using a sensor array in the case
where the number of observations N is significantly smaller than
the number of sensors M , and that the number of virtual arrays L
is such that M and NL are of the same order of magnitude. This
context is modelled by an asymptotic regime in which NL and M
both converge towards∞ at the same rate. As in recent works de-
voted to the study of (unsmoothed) subspace methods in the case
where M and N are of the same order of magnitude, it is shown
that it is still possible to derive improved DoA estimators termed as
Generalized-MUSIC (G-MUSIC). The key ingredient of this work
is a technical result showing that the largest singular values and cor-
responding singular vectors of low rank deterministic perturbation
of certain Gaussian block-Hankel large random matrices behave as
if the entries of the latter random matrices were independent identi-
cally distributed.

1. INTRODUCTION
The statistical analysis of subspace DoA estimation methods using
an array of sensors is a topic that has received a lot of attention since
the seventies. Most of the works were devoted to the case where
the number of available samples N of the observed signal is much
larger than the number of sensors M of the array (see e.g. [11] and
the references therein), The case whereM andN are large and of the
same order of magnitude was addressed for the first time in [9] us-
ing large random matrix theory. [9] was followed by various works
such as [5], [14], [7]. In this paper, the number of observations may
also be much smaller than the number of sensors. In this context,
it is well established that spatial smoothing schemes, originally de-
veloped to address coherent sources ([1], [13], [12]), can be used
to artificially increase the number of snapshots (see e.g. [11] and
the references therein, see also the recent related contributions [3],
[4] devoted to the case where N = 1). Spatial smoothing consists
in considering L < M overlapping arrays with M − L + 1 sen-
sors, and allows to generate artificially NL snapshots observed on a
virtual array of M − L + 1 sensors. (M − L + 1) × NL matrix
Y

(L)
N collecting the observations is the sum of a low rank compo-

nent generated by M − L + 1–dimensional steering vectors with
a noise matrix having a block-Hankel structure. Subspace methods
can therefore still be developed. The statistical analysis of the corre-
sponding DoA estimators is standard in the regime whereM−L+1
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remains fixed while NL converges towards ∞. When M is large,
this regime appears relevant when L is chosen in such a way that
M−L+1 << M , thus limiting the aperture of the virtual array and
the statistical performance of the subspace estimates. In this paper,
we study spatial smoothing subspace DoA estimators in asymptotic
regimes modelling contexts in whichM andNL are large and of the
same order of magnitude and where L is much less than M in order
to not affect the aperture of the virtual array. The number of sources
K is moreover assumed small enough w.r.t. M . As in [9] and [14],
we derive improved subspace DoA estimates (called G-MUSIC es-
timates), and establish their consistency. For this, we evaluate the
behaviour of the K largest eigenvalues and corresponding eigenvec-

tors of the empirical covariance matrix Y
(L)
N

Y
(L)∗
N

NL
. To address this

issue, we prove that the above eigenvalues and eigenvectors have the
same asymptotic behaviour as if the noise contribution V

(L)
N to ma-

trix Y
(L)
N , a block-Hankel random matrix, was a Gaussian random

matrix with independent identically distributed entries.
This paper is organized as follows. In section 2, we precise

the signal models and the underlying assumptions In section 3, we
present our main results concerning the behaviour of the K greatest
eigenvectors and eigenvalues of the empirical covariance, and de-
duce the G-MUSIC estimates and its properties. Finally, section 4
present numerical experiments sustaining our theoretical results.

2. PROBLEM FORMULATION.
We assume that K narrow-band and far-field source signals are im-
pinging on a uniform linear array of M sensors, with K < M . In
this context, the M–dimensional received signal (yn)n≥1 can be
written as

yn = Asn + vn,

where A = [aM (θ1), . . . ,aM (θK)] is the M × K matrix of
M–dimensionals steering vectors aM (θ1), . . . ,aM (θK), with
θ1, . . . , θK the source signals DoA, and aM (θ) = 1√

M
[1, . . . , ei(M−1)θ]T .

sn ∈ C
K contains the source signals received at time n, con-

sidered as unknown deterministic and (vn)n≥1 is a temporally
and spatially white complex Gaussian noise with spatial covari-
ance E[vnv∗n] = σ2I. When the number of observations N is
much less than the number of sensors M , the standard subspace
DoA estimation scheme fails, and it is possible to use spatial
smoothing schemes in order to increase artificially the number
of snapshots (see e.g. [11] and the references therein). Roughly
speaking, if L < M , spatial smoothing consists in considering L
overlapping subarrays of dimension M − L + 1. At each time



n, the snapshot available on subarray l is the (M − L + 1)–
dimensional vector y

(l)
n = (yl,n, . . . ,yM−L+l−1,n)

T . We col-
lect the available NL observations (y

(l)
n )l=1,...,L,n=1,...,N into

the block-Hankel (M − L + 1) × NL matrix Y
(L)
N defined by

Y
(L)
N = (y

(1)
1 , . . . ,y

(L)
1 , . . . ,y

(1)
N , . . . ,y

(L)
N ). If we define matrix

AL(θ) as the rank 1 (M − L+ 1)× L Hankel matrix given by

A(L)(θ) =
√
L(M − L+ 1)/M aM−L+1(θ) (aL(θ))

T (1)

and if A(L) is the rank K (M − L+ 1)×KL matrix

A(L) =
(
A(L)(θ1),A(L)(θ2), . . . ,A(L)(θK)

)
(2)

then, matrix Y
(L)
N can be written as

Y
(L)
N = A(L) (SN ⊗ IL) + V

(L)
N (3)

where SN is the K ×N matrix SN = (s1, . . . , sN ) assumed to be
full row rank K. It is easily checked that matrix A(L) (SN ⊗ IL)
has rank K, and that its range is the K–dimensional subspace
generated by vectors aM−L+1(θ1), . . . , aM−L+1(θK). When
M − L + 1 remains fixed while NL converges towards ∞, the
law of large numbers implies that the empirical covariance ma-
trix Y

(L)
N Y

(L)∗
N /NL has the same asymptotic behaviour than

A(L) (SS∗ ⊗ IL/NL) A(L)∗ + σ2IM−L+1. In this context,

the orthogonal projection matrix Π̂
(L)

N onto the eigenspace associ-
ated to theM−L+1−K smallest eigenvalues of Y

(L)
N Y

(L)∗
N /NL

is a consistent estimate of the orthogonal projection matrix Π(L) on
the noise subspace, i.e. the orthogonal complement of
sp{aM−L+1(θ1), . . . ,aM−L+1(θK)}. The traditional pseudo-
spectrum estimate η̂(t)N (θ) defined by

η̂
(t)
N (θ) = aM−L+1(θ)

∗Π̂
(L)

N aM−L+1(θ) thus verify

sup
θ∈[−π,π]

∣∣∣η̂(t)N (θ)− η(θ)
∣∣∣ a.s.−−−−→
N→∞

0. (4)

where η(θ) = aM−L+1(θ)
∗Π(L)aM−L+1(θ) is the MUSIC

pseudo-spectrum. Moreover, the K MUSIC traditional DoA es-
timates, defined formally, for k = 1, . . . ,K, by

θ̂
(t)
k,N = argmax

θ∈Ik
η̂
(t)
N (θ),

where Ik is a compact interval containing θk and such that Ik∩Il =
∅ for k 6= l, are consistent, i.e.

θ̂
(t)
k,N

a.s.−−−−→
N→∞

θk. (5)

However, when M is large, this regime is not very interesting in
practice because it appears relevant when the size M − L + 1 of
the subarrays is much smaller that the number of antennas M , thus
reducing the resolution of the method. We therefore study spatial
smoothing schemes in regimes where the dimensions M − L + 1

and NL of matrix Y
(L)
N are of the same order of magnitude and

where L << M in order to not affect significantly the aperture of
the array. More precisely, we assume that integers N and L depend
on M and that

M → +∞, N = O(Mβ), 1/3 < β ≤ 1,
M − L+ 1

NL
→ c (6)

where 0 < c <∞. In regime (6), N thus converges towards∞ but
at a rate that may be much lower than M , thus modelling contexts in

which N may be much smaller than M . As M
NL
→ c, it is clear that

L = O(Mα) where α = 1 − β verifies 0 ≤ α < 2/3. Therefore,
L may converge towards ∞ but in any case, L

M
→ 0. We finally

notice thatLmay converge towards∞ faster thanN when β < 1/2.
While in this regime,N andL depend in principle onM ,N → +∞
should be understood as the asymptotic regime (6) in order to short
the notations.

In regime (6), (4) is no more valid because ratio (M − L +
1)/NL does not converge towards 0. Hence, (5) is questionable,
and the aim of the following section is to derive consistent improved
subspace DoA estimates.

3. DERIVATION OF A CONSISTENT G-MUSIC METHOD.
In order to simplify the notations, we denote by XN , WN and BN

the matrices defined by XN = Y
(L)
N /
√
NL, WN = V

(L)
N /
√
NL

and BN = 1√
NL

A(L)(SN⊗IL). This paper is based on a technical
result which establishes that, in a certain sense, the eigenvalues of
matrix WNW∗

N behave as if the entries of WN were i.i.d. In order
to state the corresponding result, we recall that the Marcenko-Pastur
distribution µ with parameters (σ2, c) is the probability distribution
defined by

dµ(x) = δ0[1− c−1]+ +

√
(x− x−) (x+ − x)

2σ2cπx
1[x−,x+](x) dx

with x− = σ2(1 −
√
c)2 and x+ = σ2(1 +

√
c)2. We denote

by m(z) its Stieltjes transform defined by m(z) =
∫
R

dµ(λ)
λ−z and

by m̃(z) the function m̃(z) = cm(z) − (1 − c)/z. We denote by
QN (z) and Q̃N (z) the so-called resolvent of matrices WNW∗

N

and W∗
NWN defined by QN (z) = (WNW∗

N − zIM−L+1)
−1

and Q̃N (z) = (W∗
NWN − zINL)−1 Then, in regime (6), the fol-

lowing result holds.

Proposition 1. The eigenvalue distribution of matrix WNW∗
N con-

verges almost surely towards the Marcenko-Pastur distribution µ.
Moreover, for each ε > 0, almost surely, for N large enough, all the
eigenvalues of WNW∗

N belong to [x− − ε, x+ + ε] if c ≤ 1, and
to [x− − ε, x+ + ε] ∪ {0} if c > 1. Moreover, if aN ,bN are 2 unit
norm (M −L+1)–dimensional deterministic vectors, then it holds
that for each z ∈ C+

a∗N (QN (z)−m(z)I)bN → 0 a.s. (7)

Similarly, if ãN , b̃N are 2 unit normNL–dimensional deterministic
vectors, then for each z ∈ C+, it holds that

ã∗N

(
Q̃N (z)− m̃(z)I

)
b̃N → 0 a.s. (8)

Moreover, for each z ∈ C+, it holds that

a∗N (QN (z)WN ) b̃N → 0 a.s. (9)

Finally, for each ε > 0, convergence properties (7, 8, 9) hold uni-
formly w.r.t. z on each compact subset of C− [0, x+ + ε].

We recall that, roughly speaking, the convergence of the eigen-
value distribution of WNW∗

N towards distribution µmeans that the
histograms of the eigenvalues of any realization of WNW∗

N tend
to accumulate around the graph of the probability density of µ. The
statements of Proposition 1 are well known when L = 1 and that
M and N converge towards +∞ at the same rate. Apart (7) and
(9), Proposition appears as a consequence of the results of [8]. We



note that the convergence of the eigenvalue distribution of WNW∗
N

towards the Marcenko-Pastur holds as soon as N → +∞, and does
not need to assume that N = O(Mβ) for β > 1/3. The latter
assumption is necessary to ensure that the eigenvalues of WNW∗

N

stay in the neighborhood of the support of µ, a crucial point to es-
tablish Theorem 1 below. We finally note that if M and L converge
toward∞ at the same rate and thatN remains fixed, the convergence
of the eigenvalue distribution WNW∗

N towards µ is no longer true.
Intuitively, this is because WN depends on MN independent ran-
dom variables, and that if N is fixed, this number is not sufficient to
ensure nice averaging effects. In particular, if N = 1, it is shown in
[2] that the eigenvalue distribution of WNW∗

N converges towards
an unbounded probability distribution that can be characterized by
its moments.

In the following, we denote by (λ̂k,N )k=1,...,M−L+1 and
(ûk,N )k=1,...,M−L+1 the eigenvalues and corresponding eigen-
vectors of XNX∗N , and by λ1,N ≥ λ2,N . . . ≥ λK,N and
(uk,N )k=1,...,K the non zero eigenvalues and eigenvectors of
BNB∗N . Proposition 1 allows to generalize immediately the ap-
proach used in [6] (see also [7]), and to prove that the K greatest
eigenvalues and corresponding eigenvectors of XNX∗N also behave
as if the entries of WN were i.i.d.

Theorem 1. We assume that:

Assumption 1. TheK non zero eigenvalues (λk,N )k=1,...,K of ma-
trix BNB∗N converge towards λ1 > λ2 > . . . > λK when N →
+∞.

We denote by s, 0 ≤ s ≤ K, the largest integer for which
λs > σ2√c. Then, for k = 1, . . . , s, it holds that

λ̂k,N
a.s.−−−−→
N→∞

ρk = φ(λk) =
(λk + σ2)(λk + σ2c)

λk
> x+.

while for k = s + 1, . . . ,K, λ̂k,N → x+ a.s. Moreover, for all
deterministic sequences of unit norm vectors (aN ), (bN ), we have
for k = 1, . . . , s

a∗N
(
ûk,N û∗k,N − h(ρk)uk,Nu∗k,N

)
bN → 0 a.s. (10)

where function h(z) is defined by h(z) = zm(z)2m̃(z)

(zm(z)m̃(z))
′

Here, for ease of exposition, we have assumed that λk 6= λl
for k 6= l. However, Theorem 1 and the forthcoming results still
hold true if some (λk)k=1,...,K coincide (see [7]). Theorem 1 leads
immediately to the derivation of the following improved estimate
η̂N (θ) of the pseudo-spectrum η(θ).

Theorem 2. Assume that Assumption 1 holds and that the separa-
tion condition

λK > σ2√c (11)
holds. Then, the pseudo-spectrum estimate η̂N (θ) defined by

η̂N (θ) = a∗M−L+1(θ)

I−
K∑
k=1

1

h
(
λ̂k,N

) ûk,N û∗k,N

aM−L+1(θ)

(12)

verifies

sup
θ∈[−π,π]

|η̂N (θ)− ηN (θ)| a.s.−−−−→
N→∞

0, (13)

Finally, the corresponding DoA estimates (θ̂k,N )k=1,...,K are con-
sistent, and verify

M(θ̂k,N − θk)→ 0 a.s. (14)

This result can be proved as Theorem 3 in [7]. We remark that
in [7], it is assumed that the angles (θk)k=1,...,K do not scale with
M,N,L. However, it is possible to extend the results of [7], and
thus Theorem 2 to the case where certain DoAs are spaced of the
order of the beamwidth, i.e. for some k, θk+1 − θk = O( 1

M
).

Under the separation condition (11), it is thus possible to derive
consistent subspace DoA estimators in the context of spatial smooth-
ing schemes. Roughly speaking, (11) means that the smallest non
zero eigenvalue of the signal matrix BNB∗N should be large enough
in order to ensure the separation of the noise and signal subspaces
of the empirical covariance matrix XNX∗N . In the case where pa-
rameter L does not converge towards∞, it is interesting to get some
insights on the separation condition, and to evaluate how it behaves
when L increases. If L does not converge towards∞, β is reduced
to 1, and M

N
→ d, where d = cL. If AM−L+1 is the matrix

AM−L+1 = (aM−L+1(θ1), . . . ,aM−L+1(θK)), it is easy to check
that

BNB∗N = AM−L+1

(
SNS∗N
N

•AT
LAL

)
A∗M−L+1 (15)

where • represents the Hadamard (i.e. element wise) product of ma-
trices, and where B stands for the complex conjugation operator
of the elements of matrix B. In order to simplify, we assume that
SNS∗N
N

converges towards a diagonal matrix D when N increases.
Therefore, SS∗

N
• (AT

LAL) → D. Therefore, the separation condi-
tion is equivalent to

lim
N→+∞

λK (AM−L+1D A∗M−L+1) >
σ2
√
d√
L

If the DoAs (θk)k=1,...,K do not scale withM,N , matrix A∗M−L+1AM−L+1

converges towards IK when N → +∞, and the separation condi-
tion reduces to

min
k=1,...,K

Dk,k >
σ2
√
d√
L

This analysis means that, provided that M and N are large enough
and thatL is much lower thanM , spatial smoothing allows to reduce
the threshold σ2

√
d corresponding to G-MUSIC methods without

spatial smoothing by the factor
√
L. Therefore, if M and N are

of the same order of magnitude, our asymptotic analysis allows to
predict an improvement of the performance of the spatial smoothing
subspace methods when L increases provided L << M . If L is
however too large, the above analysis is no more justified, and the
impact of the diminution of the number of antennas becomes domi-
nant, and the performance tends to decrease.

4. NUMERICAL EXPERIMENTS.
In this section, we provide numerical simulations illustrating the re-
sults given in the previous sections. In the following experiments, we
consider 2 closely spaced sources with DoAs θ1 = 0 and θ2 = π

2M
,

and we assume that M = 160 and N = 20. The 2 ×N signal ma-
trix is the realization of a random matrix withNC(0, 1) i.i.d. entries.
The 2 source signals are normalized in order to force the sources
to have power 1, and so that the signal to noise ratio is defined by
SNR = 1/σ2. Table 1 provides the minimum value of SNR for
which the separation condition (in its finite length version) holds,
i.e.

(σ2)−1 =
1

λK,N

√
(M − L+ 1)/NL

When L increases,
√

(M − L+ 1)/NL decreases. However, when
L increases, M −L+1 decreases and λK,N also decreases because



the smallest eigenvalue of matrix A∗M−L+1AM−L+1 decreases.
This explains why the minimal SNR first decreases, and then in-
creases.

L 2 4 8 16 32 64 96 128
SNR 33.46 30.30 27.46 25.31 24.70 28.25 36.11 51.52

Table 1. Minimum value of SNR for separation condition

In figure 1, we represent the mean-square errors of the G-
MUSIC estimator θ̂1 for L = 2, 4, 8, 16 versus SNR. The corre-
sponding Cramer-Rao bounds is also represented. As expected, it is
seen that the performance tends to increase with L until L = 16. In
figure 2, L is equal to 16, 32, 64, 96, 128.
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Fig. 1. Empirical MSE of G-MUSIC SS estimator θ̂1 versus SNR

For L = 32, it is seen that the MSE tends to degrade at high
SNR w.r.t. L = 16, while the performance severely degrades for
larger values of L.
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Fig. 2. Empirical MSE of G-MUSIC SS estimator θ̂1 versus SNR

In Figure 3, parameter L is equal to 16. We compare the perfor-
mance of G-MUSIC SS with the standard MUSIC method with spa-
tial smoothing. We also represent the MSE provided by G-MUSIC
and MUSIC for L = 1. The standard unsmoothed MUSIC method
of course completely fails, while the use of the G-MUSIC SS pro-
vides a clear improvement of the performance w.r.t. MUSIC SS and
unsmoothed G-MUSIC.
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Fig. 3. Empirical MSE of different estimators of θ1 when L=16

We finally consider the case L = 128, and compare as above
G-MUSIC SS, MUSIC SS, unsmoothed G-MUSIC and unsmoothed
MUSIC. G-MUSIC completely fails because L and M are of the
same order of magnitude. Theorem 2 is thus no more valid, and the
pseudo-spectrum estimate is not consistent.
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Fig. 4. Empirical MSE of different estimators of θ1 when L=128

5. CONCLUSION

In this paper, we have addressed the behaviour of subspace DoA es-
timators in the case where the number of observations may be much
lower than the number of sensors. In this context, we have stud-
ied the statistical performance of subspace estimators based on spa-
tial smoothing schemes. For this, we have evaluated the behaviour
of the largest singular values and corresponding singular vectors of
large random matrices defined as additive low rank perturbations of
certain random block-Hankel matrices, and established that they be-
have as if the entries of the block-Hankel matrices were i.i.d. Start-
ing from this result, we have shown that it is possible to generalize
the G-estimators introduced in [10] and [14], and have proved their
consistency.
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