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ABSTRACT
The MUSIC method is widely used in the field of DoA estimation
using an array of M sensors, and is known to perform well as long
as the number of available samples N is much larger than M . Nev-
ertheless, in the scenario where N is of the same order of magnitude
than M , its performance degrades, essentially because the sample
covariance matrix (SCM) is no more a good estimator. A classical
improvement, known as "rectification", consists in forcing the SCM
to have a Toeplitz structure. In this paper, we analyze this method,
by considering the asymptotic regime where M,N both converge to
infinity at the same rate, and by studying consistency and asymptotic
normality of the related DoA estimates.

Index Terms— DoA estimation, MUSIC, small sample size,
Toeplitz rectification.

1. INTRODUCTION

The estimation of the directions of arrival (DoA) of source signals
using an array of sensors is a fundamental topic in statistical sig-
nal processing, which has been extensively studied since the early
1960’s. Consider an uniform linear array of M sensors, receiving
signals transmitted by K (K < M ) narrowband sources, with DoA
θ1, . . . , θK . At discrete time n, the received sample yn ∈ C

M is
usually modeled as

yn = Asn + vn,

where A = [a(θ1), . . . ,a(θK)] is the matrix containing the steering
vectors a(θ1), . . . ,a(θK), with a(θ) = M−1/2[1, . . . , ei(M−1)θ]T ,
where sn ∈ C

K contains the K source signals received at time n,
and where vn is a complex, additive, spatially and temporally white
Gaussian noise, with E[vnv∗n] = σ2I. Assuming N samples are
collected in the matrix YN = [y1, . . . ,yN ], one obtain

YN = ASN + VN ,

where SN = [s1, . . . , sN ] et VN = [v1, . . . ,vN ]. In the remainder,
we assume that the source signals are (unknown) deterministic

Among the popular solutions to the estimation of the DoA
θ1, . . . , θK , offering a high resolution performance, the subspace
methods, such as MUSIC, are usually prefered over the maximum
likelihood based algorithms, due to their reduced computational
cost. Under the additional assumption that rank(SN ) = K, the
MUSIC method relies on the fact that θ1, . . . , θK are zeros of the
pseudo-spectrum function

ηN (θ) = a(θ)∗ΠNa(θ), (1)
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where ΠN is the orthogonal projection matrix onto the kernel of
ASNS∗NA∗, i.e. the "noise subspace". Since ΠN is not available in
practice, its standard estimate 1 Π̂

(t)

N is obtained by computing the
orthogonal projection matrix onto the eigenspace associated with the
M−K smallest eigenvalues of the sample covariance matrix (SCM)

YNY∗N
N

=
1

N

N∑
n=1

yny∗n,

and the MUSIC algorithm consists in estimating θ1, . . . , θK as the
K most significant minima of

η̂
(t)
N (θ) = a(θ)∗Π̂

(t)

N a(θ). (2)

The use of Π̂N is motivated by the fact that (law of large number)∥∥∥∥YNY∗N
N

−RN

∥∥∥∥ −→ 0, (3)

almost surely (a.s.), as M is fixed and N → ∞ (‖.‖ stands for the
spectral norm), where RN = A

SNS∗N
N

A∗ + σ2I is the covariance

matrix of the observations. The convergence (3) implies ‖Π̂(t)

N −
ΠN‖ → 0 and

sup
θ∈[−π,π]

∣∣∣η̂(t)N (θ)− ηN (θ)
∣∣∣ a.s.−−−−→
N→∞

0,

and therefore the consistency of the MUSIC DoA estimates. In prac-
tice, the use of the empirical estimate Π̂

(t)

N makes sense whenever
N >> M , and MUSIC performs relatively well in this context (see
Stoica & Nehorai [1] for a further analysis of the MSE).

However, in certain scenarios, the number of available samples
N can be restricted and of the same order of magnitude than the
number of sensors M , for example when the signals are short-time
stationary, or when the array contains a large number of sensors.
In this "small sample size" situation, it is well-known that the sub-
space methods perform very poorly, essentially because the SCM,
on which they mainly rely, is no more a good estimator of the true
covariance matrix.

To provide a statistical analysis of the previous situation, Mestre
[2] proposed to consider a non-standard asymptotic regime in which
M and N both converge to infinity at the same rate, that is M,N →
∞ while M

N
→ c > 0. In this new asymptotic regime, (3) does

not hold anymore, and consequently (2) does not estimate consis-
tently (1). Using results from random matrix theory, Mestre derived
an extension of MUSIC (called "G-MUSIC"), in the case of Gaus-
sian temporally i.i.d. signals, by providing a new consistent esti-
mator of any quadratic form d∗NΠNdN , with ‖dN‖ = 1, hence a

1The superscript (t) stands for traditional estimate.



new consistent estimator of the pseudo-spectrum function. Later, an
extension of G-MUSIC, to the case of deterministic unknown sig-
nals was derived in [3]. The resulting DoA estimates were shown to
outperform the traditional MUSIC estimates, especially for realistic
values of M,N . However, we notice that the estimator of Mestre
does not provide a consistent estimator of the noise subspace pro-
jection matrix strictly speaking, that is an estimator Π̂N such that
‖Π̂N −ΠN‖ → 0 a.s., as M,N →∞, M

N
→ c > 0.

Among the methods to improve the covariance estimation, the
so-called Toeplitz rectification is widely used (see e.g. Forster [4]
and the references therein), and leads to a remarkable improvement
of the DoA estimates, when applied to MUSIC. Under the assump-
tion that SNS∗N

N
converges to a positive diagonal matrix Γ (spatial

uncorrelation assumption), the covariance matrix RN converges to
the Toeplitz matrix AΓA∗+σ2I, and the Toeplitz rectification con-
sists in forcing the SCM to have a Toeplitz structure by averaging its
entries along the diagonals.

In this paper, we propose a statistical analysis of the Toeplitz
rectification procedure when M and N converge towards infinity at
the same rate. Surprisingly, we prove in section 2 that the rectified
SCM is a norm-consistent estimator of the true covariance, in this
doubly asymptotic regime decribed above. We also analyze in sec-
tion 3 the statistical properties of the MUSIC algorithm, when using
the rectified SCM, in terms of consistency and asymptotic normal-
ity. Finally, in section 4, numerical examples illustrate the proposed
results.

To conclude this introduction, we mention that Cai et al. [5]
proposed a norm consistent of estimator a large covariance Toeplitz
matrix. They used the rectification scheme followed by a tapering of
the estimated correlation coefficient, and showed that this procedure
leads to a consistent estimator when the entries of the true covari-
ance matrix that are far enough from the main diagonal converge
towards 0 fast enough. This hypothesis is of course not verified by
the Toeplitz covariance matrices considered here. One of our contri-
bution is to establish that the rectification provides by itself a con-
sistent estimator. We also mention that when M and N are of the
same order of magnitude, the spatial smoothing scheme, originally
introduced by Evans et al. [6], and studied more recently by Thakre
et al. [7], allows in some sense to be back to the case where M/N
is small, and to use the standard MUSIC method. We do not dis-
cuss this approach here, but mention that the statistical analysis of
its performance is a topic of interest.

2. CONSISTENCY OF THE TOEPLITZ RECTIFICATION

From now on, we consider the asymptotic regime where M =
M(N) is a function of N such that M

N
→ c > 0 as N → ∞, and

that K is independent of N . We moreover consider asymptotically
uncorrelated sources in the spatial domain, that is

SNS∗N
N

−−−−→
N→∞

Γ,

where Γ is a positive diagonal matrix. 2 In this case, the covariance
matrix RN converge to the Toeplitz matrix RN = AΓA∗ + σ2I,
that is ‖RN −RN‖ → 0 as N →∞, and the Toeplitz rectification
procedure consists in averaging the SCM YNY∗N

N
along its diago-

nals, to obtain a Toeplitz structure. Hence, the (i, j)-th entry of the

2We underline here the fact that the technique used in the forthcoming
analysis heavily relies on this source uncorrelation assumption.

resulting rectified covariance matrix R̂N is given by[
R̂N

]
i,j

=
1

M − |i− j|
∑

k−l=i−j

[
YNY∗N
N

]
k,l

.

This procedure, also known as "rectification" (or sometimes "Toeplitz-
ification"), can be interpreted as an orthogonal projection onto the
space of hermitian Toeplitz matrices [4].

Let J be the M ×M shift matrix having only non zero entries
equal to 1 on the superdiagonal. For a M ×M matrix X, we define
by T (X) the transformation

T (X) =

M−1∑
m=−(M−1)

1

M − |m|Tr (XJm) J−m,

where J−m stands for
(
JT
)m

, and J0 = I, by abuse of notation.
Hence, the rectified SCM can be written in the more appealing way

R̂N = T
(

YNY∗N
N

)
.

We now analyze the consistency of the rectified SCM R̂N . Sur-
prisingly, the rectified SCM leads to a norm-consistent estimator.

Theorem 1. The following convergence holds∥∥∥R̂N −RN

∥∥∥ a.s.−−−−→
N→∞

0.

Proof. Consider the following bound∥∥∥R̂N −RN

∥∥∥ ≤ ∥∥∥R̂N − E[R̂N ]
∥∥∥

+
∥∥∥E[R̂N ]− (AΓA∗ + σ2I)

∥∥∥
+

∥∥∥∥A(SNS∗N
N

− Γ

)
A∗
∥∥∥∥ , (4)

and denote by χ1,N , . . . , χ3,N the three term appearing in the right-
hand side. Obviously, χ3,N → 0 as N → ∞ from the spatial
uncorrelation assumption. Using the classical bound on the spectral
norm of hermitian Toeplitz matrices, one have

χ2,N =

∥∥∥∥T (A

(
SNS∗N
N

− Γ

)
A∗
)∥∥∥∥ ≤ sup

ν∈[−π,π]
|gN (ν)| ,

where gN (ν) is the Fourier series of the coefficients defining the

Toeplitz matrix T
(
A
(

SNS∗N
N
− Γ

)
A∗
)

, that is

gN (ν) = Tr

(
A

(
SNS∗N
N

− Γ

)
A∗L(ν)

)
,

where L(ν) is defined by

L(ν) =

M−1∑
m=−(M−1)

eimν

M − |m|J
m.

Since maxk,l |a(θk)∗L(ν)a(θl)| ≤ 2, and K is independent of N ,
we easily deduce that χ2,N → 0.

It remains to prove that

χ1,N =

∥∥∥∥T (YNY∗N
N

− E
[

YNY∗N
N

])∥∥∥∥



vanishes a.s., asN →∞. To that end, we proceed as previously and
show that supν |hN (ν)| → 0, where

hN (ν) = Tr

((
YNY∗N
N

− E
[

YNY∗N
N

])
L(ν)

)
.

Notice that hN (ν) can be rewritten in the following way

hN (ν) = a(ν)∗
((

YNY∗N
N

− E
[

YNY∗N
N

])
�ML(0)

)T
a(ν),

For ν1, ν2 ∈ [−π, π], we have ‖a(ν1) − a(ν2)‖ ≤ CN |ν1 − ν2|,
where C > 0 is a constant 3 independent of N, ν1, ν2. Using the
fact that the spectral norm is sub-multiplicative for the Hadamard
product, one obtain that

|hN (ν1)− hN (ν2)| ≤

CN2|ν1 − ν2|
∥∥∥∥YNY∗N

N
− E

[
YNY∗N
N

]∥∥∥∥ ‖L(0)‖ .

Using ‖L(0)‖ ≤ ‖L(0)‖F = O(
√

log(N)), where ‖.‖F is the
Frobenius norm, and the fact that (see Geman [8])∥∥∥∥YNY∗N

N
− E

[
YNY∗N
N

]∥∥∥∥ = O(1) a.s., (5)

we get

|h(ν1)− h(ν2)| ≤ CN2
√

log(N)|ν1 − ν2| a.s. (6)

Consider the set VN =
{

2πk
N3 − π : k = 0, . . . , N3 − 1

}
. For each

ν ∈ [−π, π], there exists νN ∈ VN such that |ν − νN | = O(N−3).
In consequence, using (6)

sup
ν∈[−π,π]

|hN (ν)| ≤ max
ν∈VN

|h(ν)|+O

(√
log(N)

N

)
.

Finally, using iteratively a Poincaré inequality for Gaussian vari-
ables, as in [9, Lem. 3.1], we can show that for all integer p,

E |hN (ν)|2p = O
((

log(N)

N

)p)
,

which implies, using Markov’s inequality, that for all ε > 0,

P

(
max
ν∈VN

|hN (ν)| ≥ ε
)
≤
∑
ν∈VN

P (|hN (ν)| ≥ ε) = O
(

1

N `

)
,

for all integer `, and therefore χ1,N → 0 a.s.

3. PERFORMANCE ANALYSIS OF R-MUSIC

In this section, we provide a statistical analysis in terms of consis-
tency and asymptotic normality of the MUSIC algorithm when using
the rectified SCM (refered in the remainder as R-MUSIC).

We thus define a new pseudo-spectrum estimate as

η̂N (θ) = a(θ)∗Π̂Na(θ),

3We use C as a generic positive constant in the remainder, which may
take different values from one line to another.

where Π̂N is the orthogonal projection matrix onto the eigenspace
associated with the M −K smallest eigenvalues of R̂N , Theorem 1
thus implies that

sup
θ∈[−π,π]

|η̂N (θ)− ηN (θ)| a.s.−−−−→
N→∞

0,

and the consistency of the related R-MUSIC DoA estimates, which
we define formally, for k = 1, . . . ,K, as

θ̂k,N = argmin
θ∈Ik

|η̂N (θ)|, (7)

where I1, . . . , Ik are disjoint compact intervals such that θk ∈ Ik.
Indeed, we have the following corollary, by applying verbatim the
arguments of [9, Prop. 4.1].

Corollary 1. The R-MUSIC DoA estimates satisfy

N
(
θ̂k,N − θk

)
a.s.−−−−→
N→∞

0.

We now study a central limit theorem for the DoA estimates
θ̂1,N , . . . , θ̂K,N . For this, we define

ρ2k,N =
σ4Tr (T2

k,N ) + 2σ2Tr
(
T2
k,NA

SNS∗N
N

A∗
)

(
a′(θk)∗

N
ΠN

a′(θk)∗

N

)2 , (8)

with

Tk,N =
1

2
T
(

(AΓA∗)]a(θk)
a′(θk)∗

N
ΠN

)
+

1

2
T
(

ΠN
a′(θk)

N
a(θk)∗(AΓA∗)]

)
, (9)

where (.)] stands for the pseudo-inverse. Define also

∆k,N =
1

N

Tr
(
A
(

SNS∗N
N
− Γ

)
A∗Tk,N

)
a′(θk)∗

N
ΠN

a′(θk)
N

.

Then, we have the following result.

Theorem 2. With the definitions above,

N3/2ρ−1
k,N

(
θ̂k,N − θk −∆k,N

)
D−−−−→

N→∞
N (0, 1). (10)

Proof. Using a Taylor expansion of η̂′N (θ) around θk, we obtain, as
in [10],

N3/2
(
θ̂k,N − θk

)
= −
√
N

Re
(

a′(θk)
∗

N
Π̂Na(θk)

)
a′(θk)∗

N
ΠN

a′(θk)
N

+ oP(1).

Let C a circle, counterclockwise oriented, enclosing σ2 and leaving
outside γ1 + σ2, . . . , γK + σ2, where γ1, . . . , γK are the diagonal
entries of Γ. Thus from theorem 1, almost surely for all large N ,
C encloses the M − K smallest eigenvalues of R̂N and leaves the
K largest outside. Moreover, since the K non-zero eigenvalues of
AΓA∗ converge to γ1, . . . , γK , we obtain from residue theorem

Π̂N −ΠN =
1

2πi

∮
C

(
R̂N − zI

)−1

∆̂N

(
RN − zI

)−1
dz,



where we have denoted ∆̂N = R̂N − RN and RN = AΓA∗ +

σ2I for short. Replacing
(
R̂N − zI

)−1

by
(
RN − zI

)−1
in the

previous integrand, we further obtain

Π̂N −ΠN =

1

2πi

∮
C

(
RN − zI

)−1
∆̂N

(
RN − zI

)−1
dz

− 1

2πi

∮
C

(
R̂N − zI

)−1

∆̂N

(
RN − zI

)−1
∆̂N

(
RN − zI

)−1
dz.

Moreover,

1

2πi

∮
C

(
RN − zI

)−1
∆̂N

(
RN − zI

)−1
dz =

−ΠN∆̂N (AΓA∗)] − (AΓA∗)]∆̂NΠN .

Let d1,N = ΠN
a′(θk)
N

and d2,N = (AΓA∗)]a(θk). Straightfor-
ward computations leads to

Re
(
d∗1,N

(
R̂N − E

[
R̂N

])
d2,N

)
=

Tr

((
YNY∗N
N

− E
[

YNY∗N
N

])
Tk,N

)
,

and

E

∣∣∣Re
(
d∗1,N

(
R̂N − E[R̂N ]

)
d2,N

)∣∣∣2 = N−1β2
k,N ,

where β2
k,N is the denominator of (8). Using the Lyapunov version

of the classical central limit theorem, we find
√
Nβ−1

k,NRe
(
d∗1,N

(
R̂N − E

[
R̂N

])
d2,N

)
D−−−−→

N→∞
N (0, 1).

Moreover,

Re
(
d∗1,N

(
E[R̂N ]−RN

)
d2,N

)
=

Tr

(
A

(
SNS∗N
N

− Γ

)
A∗Tk,N

)
.

Thus,

√
NRe

(
a′(θk)∗

N
Π̂Na(θk)

)
= Re

(
d∗1,N∆̂Nd2,N

)
+ oP(1),

and the convergence (10) holds.

4. DISCUSSION AND NUMERICAL RESULTS

As a first remark on results obtained in the previous section, we no-
tice that the R-MUSIC DoA estimates are consistent from theorem
1, whatever the level of noise σ2 is. This is remarkable feature, com-
pared to the G-MUSIC estimates, which are known to be consistent
if and only if the SNR is sufficiently high (an explicit condition,
called "separation condition" is given in [3]).

However, by analyzing the result of theorem 2, we also remark
that the MSE of the R-MUSIC estimates suffers from a"saturation
phenomenon". Indeed, it can be proved that the MSE of θ̂k,N writes

E

∣∣∣θ̂k,N − θk∣∣∣2 = |∆k,N |2 +
ρ2k,N
N3

+ o

(
1

N3

)
,

that is, can be decomposed into a "bias term" |∆k,N |2, which is
independent of the noise variance σ2 and mainly depends on the
difference between SNS∗N

N
and Γ, and a "variance term" N−3ρ2k,N

decreasing linearly with σ2. As a consequence, when σ2 → 0, the
MSE "saturates" at the bias part |∆k,N |2. In most practical cases,

the difference
∥∥∥SNS∗N

N
− Γ

∥∥∥ converges to 0 at a rate slower than

O(N−1/2), and the bias part is also preponderant for large N .
To summarize, when comparing with the G-MUSIC method,

one expects a better behaviour of R-MUSIC in low SNR situations,
while in high SNR situations the superiority of G-MUSIC is ex-
pected. These remarks are illustrated in figure 1, where we con-
sider an array with M = 20 sensors, N = 40 samples and two
sources with DoA θ1 = 0 and θ2 = 0.16. The SNR is defined as
−10 log(σ2). The entries of the source signal matrix SN are the
realization of standard independent Gaussian variables. The prepon-
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Fig. 1. MSE saturation with Gaussian uncorrelated signals

derance of the bias part of the MSE is visible from 14 dB, while the
G-MUSIC achieves the Cramer-Rao bound around 16 dB.

In figure 2, we consider the same parameters, except that the
source signals are generated as mutually independent AR(1) pro-
cesses, with correlation 0.9. We observe in this case that the bias is
more important than for the Gaussian temporally uncorrelated sig-
nals.
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Fig. 2. MSE saturation with Gaussian AR(1) signals
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