Damien Scieur
email: damien.scieur@inria.fr

Francis Alexandre D'aspremont

Alexandre D'aspremont
email: aspremon@ens.fr

Francis Bach
email: francis.bach@inria.fr

Nonlinear Acceleration of Stochastic Algorithms

Keywords: acceleration, stochastic, extrapolation. 1

research documents, whether they are published or not. The documents may come L'archive ouverte pluridisciplinaire

INTRODUCTION

We focus on the problem

min x∈R d f (x) (1)
where f (x) is a smooth and strongly convex function with respect to the Euclidean norm. We consider a stochastic first-order oracle, which gives a noisy estimate of the gradient of f (x), with

∇ ε f (x) = ∇f (x) + ε, (2)
where ε is a noise term with bounded variance. This is the case for example when f is a sum of strongly convex functions, and we only have access to the gradient of one randomly selected function. Stochastic optimization (2) is typically challenging as classical algorithms are not convergent (for example, gradient descent or Nesterov's accelerated gradient). Even the averaged version of stochastic gradient descent with constant step size does not converge to the solution of (1), but to another point whose proximity to the real minimizer depends of the step size [START_REF] Nedić | Convergence rate of incremental subgradient algorithms[END_REF][START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF].

When f is a finite sum of N functions, then algorithms such as SAG [START_REF] Schmidt | Minimizing finite sums with the stochastic average gradient[END_REF], SAGA [START_REF] Defazio | Saga: A fast incremental gradient method with support for nonstrongly convex composite objectives[END_REF], SDCA [START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF] and SVRG [START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF] accelerate convergence using a variance reduction technique akin to control variate in Monte-Carlo methods. Their rate of convergence depends of 1 -µ/L and thus does exhibit an accelerated rate on par with the deterministic setting (in 1 -µ/L). Recently a generic acceleration algorithm called Catalyst [START_REF] Lin | A universal catalyst for first-order optimization[END_REF], based on the proximal point methods improved this rate of convergence, at least in theory. Unfortunately, numerical experiments show this algorithm to be conservative, thus limiting practical performances. On the other hand, recent papers, for example [START_REF] Shalev-Shwartz | Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization[END_REF] (Accelerated SDCA) and [START_REF] Allen-Zhu | Katyusha: The first direct acceleration of stochastic gradient methods[END_REF] (Katyusha), propose algorithms with accelerated convergence rates, if the strong convexity parameter is given.

When f is a quadratic function then averaged SGD converges, but the rate of decay of initial conditions is very slow. Recently, some results have focused on accelerated versions of SGD for quadratic optimization, showing that with a two step recursion it is possible to enjoy both the optimal rate for the bias term and the variance [START_REF] Flammarion | From averaging to acceleration, there is only a step-size[END_REF], given an estimate of the ratio between the distance to the solution and the variance of ε.

A novel generic acceleration technique was recently proposed by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] in the deterministic setting. This uses iterates from a slow algorithm to extrapolate estimates of the solution with asymptotically optimal convergence rate. Moreover, this rate is reached without prior knowledge of the strong convexity constant, whose online estimation is still a challenge, even in the deterministic case [START_REF] Fercoq | Restarting accelerated gradient methods with a rough strong convexity estimate[END_REF].

Convergence bounds are derived by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF], tracking the difference between the deterministic first-order oracle of (1) and iterates from a linearized model. The main contribution of this paper is to extend the analysis to arbitrary perturbations, including stochastic ones, and to present numerical results when this acceleration method is used to speed up stochastic optimization algorithms.

In Section 2 we recall the extrapolation algorithm, and quickly summarize its main convergence bounds in Section 3. In Section 4, we consider a stochastic oracle and analyze its asymptotic convergence in Section 5. Finally, in Section 6 we describe numerical experiments which confirm the theoretical bounds and show the practical efficiency of this acceleration.

REGULARIZED NONLINEAR ACCELERATION

Consider the optimization problem min

x∈R d f (x)
where f (x) is a L-smooth and µ-strongly convex function [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. Applying the fixed-step gradient method to this problem yields the following iterates

xt+1 = xt - 1 L ∇f (x t). (3)
Let x * be the unique optimal point, this algorithm is proved to converge with

xt -x * ≤ (1 -κ) t x0 -x * (4)
where • stands for the 2 norm and κ = µ/L ∈ [0, 1[is the (inverse of the) condition number of f [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. Using a two-step recurrence, the accelerated gradient descent by [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] achieves an improved convergence rate

xt -x * ≤ O (1 - √ κ) t x0 -x * .
(5) Indeed, (5) converges faster than (4) but the accelerated algorithm requires the knowledge of µ and L.

Extrapolation techniques however obtain a similar convergence rate, but do not need estimates of the parameters µ and L. The idea is based on the comparison between the process followed by xi with a linearized model around the optimum, written

x t+1 = x t - 1 L ∇f (x *) + ∇ 2 f (x *)(x t -x *) , x 0 = x0 .
which can be rewritten as

x t+1 -x * = I - 1 L ∇ 2 f (x *) (x t -x *), x 0 = x0 . (6)
A better estimate of the optimum in (6) can be obtained by forming a linear combination of the iterates (see [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF][START_REF] Cabay | A polynomial extrapolation method for finding limits and antilimits of vector sequences[END_REF][START_REF] Mešina | Convergence acceleration for the iterative solution of the equations x= ax+ f[END_REF]), with

t i=0 c i x i -x * x t -x * ,
for some specific c i (either data driven, or derived from Chebyshev polynomials). These procedures were limited to quadratic functions only, i.e. when xi = x i but this was recently extended to generic convex problems by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] and we briefly recall these results below.

To simplify the notations, we define the function g(x) and the step

xt+1 = g(x t), (7)
where g(x) is differentiable, Lipchitz-continuous with constant (1 -κ) < 1, g(x *) = x * and g (x *) is symmetric. For example, the gradient method (3) matches exactly this definition with g(x) = x-∇f (x)/L. Running k steps of (7) produces a sequence {x 0 , ..., xk }, which we extrapolate using Algorithm 1 from [START_REF] Scieur | Regularized nonlinear acceleration[END_REF].

Algorithm 1 Regularized Nonlinear Acceleration (RNA)

Input: Iterates x0 , x1 , ..., xk+1 ∈ R d produced by (7), and a regularization parameter λ > 0. ..., rk], where ri = xi+1 -xi is the i th residue. 2: Solve cλ = argmin

1: Compute R = [r 0 ,
c T 1=1 Rc 2 + λ c 2 ,
or equivalently solve

(RT R + λI)z = 1 then set cλ = z/1 T z. Output: Approximation of x * computed as k i=0 cλ i xi
For a good choice of λ, the output of Algorithm (1) is a much better estimate of the optimum than xk+1 (or any other points of the sequence). Using a simple grid search on a few values of λ is usually sufficient to improve convergence (see [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] for more details).

CONVERGENCE OF REGULARIZED NONLINEAR ACCELERATION

We quickly summarize the argument behind the convergence of Algorithm (1). The theoretical bound compare xi to the iterates produced by the linearized model

x t+1 = x * + ∇g(x *)(x t -x *), x 0 = x0 . (8)
We write c λ the coefficients computed by Algorithm (1) from the "linearized" sequence {x 0 , ..., x k+1 } and the error term can be decomposed into three parts,

k i=0 cλ i xi -x * ≤ k i=0 c λ i x i -x * Acceleration + k i=0 cλ i -c λ i (x i -x *) Stability + k i=0 cλ i xi -x i Nonlinearity . (9)
Convergence is guaranteed as long as the errors (x i -x *) and (x i -xi) converge to zero fast enough, which ensures a good rate of decay for the regularization parameter λ, leading to an asymptotic rate equivalent to the accelerated rate in (5).

The stability term (in cλ -c λ) is bounded using the perturbation matrix

P R T R -RT R (10)
where R and R are the matrices of residuals,

R [r 0 ...r k] r t = x t+1 -x t , (11) R [r 0 ...r k] rt = xt+1 -xt . (12
)
The proofs of the following propositions were obtained by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF].

Proposition 3.1 (Stability). Let ∆c λ = cλ -c λ be the gap between the coefficients computed by Algorithm (1) using the sequences {x i } and {x i } with regularization parameter λ. Let P = R T R -RT R be defined in (10), (11) and (12). Then

∆c λ ≤ P λ c λ . (13
)
This implies that the stability term is bounded by

k i=0 ∆c λ i (x i -x *) ≤ P λ c λ O(x 0 -x *). (14)
The term Nonlinearity is bounded by the norm of the coefficients cλ (controlled thanks to the regularization parameter) times the norm of the noise matrix

E = [x 0 -x0 , x 1 -x1 , ..., x k -xk]. (15
)
Proposition 3.2 (Nonlinearity). Let cλ be computed by Algorithm 1 using the sequence {x 0 , ..., xk+1 } with regularization parameter λ and R be defined in (12). The norm of cλ is bounded by

cλ ≤ R 2 + λ (k + 1)λ ≤ 1 √ k + 1 1 + R 2 λ . (16
)
This bounds the nonlinearity term because

k i=0 cλ i (x i -x i) ≤ 1 + R 2 λ E √ k + 1 , (17
)
where E is defined in (15).

These two propositions show that the regularization in Algorithm 1 limits the impact of the noise: the higher λ is, the smaller these terms are. It remains to control the acceleration term. We introduce the normalized regularization value λ, written

λ λ x 0 -x * 2 . (18
)
For small λ, this term decreases as fast as the accelerated rate (5), as shown in the following proposition.

Proposition 3.3 (Acceleration). Let P k be the subspace of polynomials of degree at most k and S κ (k, α) be the solution of the Regularized Chebychev Polynomial problem,

S κ (k, α) min p∈P k max x∈[0,1-κ] p 2 (x) + α p 2 s.t. p(1) = 1. (19
)
Let λ be the normalized value of lambda defined in (18). The acceleration term is bounded by

k i=0 c λ i x i -x * ≤ 1 κ S κ (k, λ) x 0 -x * 2 -λ c λ 2 . (20
)
We also get the following corollary, which will be useful for the asymptotic analysis of the rate of convergence of Algorithm 1.

Corollary 3.4. If λ → 0, the bound (20) becomes k i=0 c λ i x i -x * ≤ 1 - √ κ 1 + √ κ k x 0 -x * .
These last results controlling stability, nonlinearity and acceleration are proved by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF]. We now refine the final step of [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] to produce a global bound on the error that will allow us to extend these results to the stochastic setting in the next sections.

Theorem 3.5. If Algorithm 1 is applied to the sequence xi with regularization parameter λ, it converges with rate

k i=0 cλ i xi ≤ x 0 -x * S κ (k, λ) 1 κ 2 + O(x -x * 2) P 2 λ 3 + E √ k + 1 1 + R 2 λ . (21)
Proof. The proof is inspired by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] and is also very similar to the proof of Proposition 5.2. We can bound (9) using (14) (Stability), (17) (Nonlinearity) and (20) (Acceleration). It remains to maximize over the value of c λ using the result of Proposition 8.2.

This last bound is not very explicit, but an asymptotic analysis simplifies it considerably. The next new proposition shows that when x 0 is close to x * , then extrapolation converges as fast as in (5) in some cases.

Proposition 3.6. Assume R = O(x 0 -x *), E = O(x 0 -x * 2) and P = O(x 0 -x * 3
), which is satisfied when fixed-step gradient method is applied on a twice differentiable, smooth and strongly convex function with Lipchitz-continuous Hessian.

If we chose λ = O(x 0 -x * s) with s ∈ [2, 8 3] then the bound (21) becomes lim x 0 -x * →0 k i=0 cλ i xi x 0 -x * ≤ 1 κ 1 -κ 1 + κ k .
Proof. The proof is based on the fact that λ decreases slowly enough to ensure that the Stability and Nonlinearity terms vanish over time, but fast enough to have λ → 0.

If λ = x 0 -x * s , equation (21) becomes k i=0 cλ i xi x 0 -x * ≤ S κ (k, x 0 -x * s-2) 1 κ 2 + O(1) P 2 x 0 -x * 3s-2 + E x 0 -x * √ k + 1 1 + R 2 x 0 -x * s .
By assumption on R , E and P , the previous bound becomes

k i=0 cλ i xi x 0 -x * ≤ S κ (k, x 0 -x * s-2) 1 κ 2 + O(x 0 -x * 8-3s) + O x 0 -x * 2 + x 0 -x * 4-s .
Because λ ∈]2, 8 3 [, all exponents of x 0 -x * are positive. By consequence, when

lim x 0 -x * →0 k i=0 cλ i xi x 0 -x * ≤ 1 κ S κ (k, 0).
Finally, the desired result is obtained by using Corollary 3.4.

The efficiency of Algorithm 1 is thus ensured by two conditions. First, we need to be able to bound R , P and E by decreasing quantities. Second, we have to find a proper rate of decay for λ and λ such that the stability and nonlinearity terms go to zero when perturbations also go to zero. If these two conditions are met, then the accelerated rate in Proposition 3.6 holds.

NONLINEAR AND NOISY UPDATES

In (7) we defined g(x) to be non linear, which generates a sequence xi . We now consider noisy iterates

xt+1 = g(x t) + η t+1 (22)
where η t is a stochastic noise. To simplify notations, we write (22) as

xt+1 = x * + G(x t -x *) + ε t+1 , (23)
where ε t is a stochastic noise (potentially correlated with the iterates x i) with bounded mean ν t , ν t ≤ ν and bounded covariance Σ t (σ 2 /d)I. We also assume 0 G (1 -κ)I and G symmetric. For example, (23) can be linked to (22) if we set

ε t = η t + O(xt -x * 2
). This corresponds to the combination of the noise η t+1 with the Taylor remainder of g(x) around x * . The recursion (23) is also valid when we apply the stochastic gradient method to the quadratic problem

min x 1 2 Ax -b 2 .
This correspond to (23) with G = I -hA T A and mean ν = 0. For the theoretical results, we will compare xt with their noiseless counterpart to control convergence,

x t+1 = x * + G(x t -x *), x 0 = x0 . (24)

CONVERGENCE ANALYSIS WHEN ACCELERATING STOCHASTIC ALGORITHMS

We will control convergence in expectation. Bound (9) now becomes

E k i=0 cλ i xi -x * ≤ k i=0 c λ i x i -x * + O(x 0 -x *)E ∆c λ + E cλ E . (25
)
We now need to enforce bounds (14), (17) and (20) in expectation. For simplicity, we will omit all constants in what follows.

Proposition 5.1. Consider the sequences x i and xi generated by (22) and (24). Then,

E[R] ≤ O(x 0 -x *) + O(ν + σ) (26)
E[E] ≤ O(ν + σ) (27)
E[P] ≤ O((σ + ν) x 0 -x *) + O((ν + σ) 2). (28)
Proof. First, we have to form the matrices R, E and P . We begin with E, defined in (15). Indeed,

E i = x i -xi ⇒ E 1 = ε 1 , E 2 = ε 2 + Gε 1 , E k = k i=1 G k-i ε i . It means that each E i = O(ε i). By using (33), E E ≤ i E E i ≤ i E E i -ν i + ν i ≤ O(ν + σ)
For R, we notice that

Rt = xt+1 -xt , = R t + E t+1 -E t
We get (26) by splitting the norm,

E[R] ≤ R + O(E) ≤ O(x 0 -x *) + O (ν + σ) .
Finally, by definition of P ,

P ≤ 2 E R + E 2 .
Taking the expectation leads to the desired result,

E[P] ≤ 2E[E R] + E[E 2], ≤ 2 R E[E] + E[E 2 F], ≤ O (x 0 -x * (σ + ν)) + O (σ + ν) 2 .
We define the following stochastic condition number

τ ν + σ x 0 -x * .
The Proposition 5.2 gives the result when injecting these bounds in (25).

Proposition 5.2. The accuracy of extrapolation Algorithm 1 applied to the sequence {x 0 , ..., xk } generated by (22) is bounded by

E k i=0 cλ i xi -x * x 0 -x * ≤ S κ (k, λ) 1 κ 2 + O(τ 2 (1 + τ) 2) λ3 + O τ 2 + τ 2 (1 + τ 2) λ . (29
)
Proof. We start with (25), then we use (13)

k i=0 c λ i x i -x * + O(x 0 -x *)E ∆c λ + E cλ E , ≤ k i=0 c λ i x i -x * + O(x 0 -x *) c λ λ E P + E cλ 2 E E 2 .
The first term can be bounded by (20),

k i=0 c λ i x i -x * ≤ 1 κ S κ (k, λ) x 0 -x * 2 -λ c λ 2 .
We combine this bound with the second term by maximizing over c λ . The optimal value is given in (34),

k i=0 c λ i x i -x * + O(x 0 -x *) c λ λ E P ≤ x 0 -x * S κ (k, λ) 1 κ 2 + O(x -x * 2)E[P] 2 λ 3 ,
where λ = λ/ x 0 -x * 2 . Since, by Proposition 5.1,

E[P] 2 ≤ O (ν + σ) 2 (x 0 -x * + ν + σ) 2 , we have k i=0 c λ i x i -x * + O(x 0 -x *) c λ λ E P ≤ x 0 -x * S κ (k, λ) 1 κ 2 + O(x -x * 2 (ν + σ) 2)(x 0 -x * + ν + σ) 2 λ 3 . (30
)
The last term can be bounded using (16),

E c λ 2 E E 2 ≤ O k i=0 E 2 i E cλ 2 1/2 ≤ O (ν + σ) E cλ 2 ≤ O (ν + σ) E 1 + R 2 λ ≤ O (ν + σ) 1 + E R 2 F λ However, E R 2 F = k i=0 E ri 2 = k i=0 r i 2 + E r T i E i + E i 2 ≤ O x 0 -x * 2 + (ν + σ) x 0 -x * + (ν + σ) 2 ≤ O x 0 -x * + (ν + σ)) 2
Finally,

E c λ 2 E E 2 ≤ O (ν + σ) 1 + (x 0 -x * + (ν + σ)) 2 λ (31)
We get (29) by summing (30) and (31), then by replace all ν+σ x 0 -x * by τ and λ x 0 -x * 2 by λ. Consider a situation where τ is small, e.g. when using stochastic gradient descent with fixed step-size, with x 0 far from x * . The following proposition details the dependence between λ and τ ensuring the upper convergence bound remains stable when τ goes to zero.

Proposition 5.3. When τ → 0, if λ = Θ(τ s) with s ∈]0, 2 3 [, we have the accelerated rate

E k i=0 cλ i xi -x * ≤ 1 κ 1 - √ κ 1 + √ κ k x 0 -x * . (32)
Moreover, if λ → ∞, we recover the averaged gradient,

E k i=0 cλ i xi -x * = E 1 k + 1 k i=0 xi -x * .
Proof. Let λ = Θ(τ s), using (29) we have

E k i=0 cλ i xi -x * ≤ x 0 -x * S κ (k, τ s) 1 κ 2 O(τ 2-3s (1 + τ) 2) + x 0 -x * O(τ 2 + τ 2-3s (1 + τ 2)).
Because s ∈]0, 2 3 [, means 2 -3s > 0, thus lim τ →0 τ 2-3s = 0. The limits when τ → 0 is thus exactly (32). If λ → ∞, we have also

lim λ→∞ cλ = lim λ→∞ argmin c:1 T c=1 Rc + λ c 2 = argmin c:1 T c=1 c 2 = 1 k + 1
which yields the desired result. Proposition 5.3 shows that Algorithm 1 is thus asymptotically optimal provided λ is well chosen because it recovers the accelerated rate for smooth and strongly convex functions when the perturbations goes to zero. Moreover, we recover Proposition 3.6 when t is the Taylor remainder, i.e. with ν = O(x 0 -x * 2) and σ = 0, which matches the deterministic results.

Algorithm 1 is particularly efficient when combined with a restart scheme [START_REF] Scieur | Regularized nonlinear acceleration[END_REF]. From a theoretical point of view, the acceleration peak arises for small values of k. Empirically, the improvement is usually more important at the beginning, i.e. when k is small. Finally, the algorithmic complexity is O(k 2 d), which is linear in the problem dimension when k remains bounded.

The benefits of extrapolation are limited in a regime where the noise dominates. However, when τ is relatively small then we can expect a significant speedup. This condition is satisfied in many cases, for example at the initial phase of the stochastic gradient descent or when optimizing a sum of functions with variance reduction techniques, such as SAGA or SVRG.

6. NUMERICAL EXPERIMENTS 6.1. Stochastic gradient descent. We want to solve the least-square problem

min x∈R d F (x) = 1 2 Ax -b 2
where A T A satisfies µI (A T A) LI. To solve this problem, we have access to the stochastic first-order oracle

∇ ε F (x) = ∇F (x) + ε,
where ε is a zero-mean noise of covariance matrix Σ σ 2 d I. We will compare several methods.

• SGD. Fixed step-size, x t+1 = x t -1 L ∇ ε F (x t). • Averaged SGD. Iterate x k is the mean of the k first iterations of SGD.
• AccSGD. The optimal two-step algorithm in [START_REF] Flammarion | From averaging to acceleration, there is only a step-size[END_REF], with optimal parameters (this implies x 0 -x * and σ are known exactly). • RNA+SGD. The regularized nonlinear acceleration Algorithm 1 applied to a sequence of k iterates of SGD, with k = 10 and λ = RT R /10 -6 . By Proposition 5.2, we know that RNA+SGD will not converge to arbitrary precision because the noise is additive with a non-vanishing variance. However, Proposition 5.3 predicts an improvement of the convergence at the beginning of the process. We illustrate this behavior in Figure 3. We clearly see that at the beginning, the performances of RNA+SGD is comparable to that of the optimal accelerated algorithm. However, because of the restart strategy, in the regime where the level of noise becomes more important the acceleration becomes less effective and finally the convergence stalls, as for SGD. Of course, for practical purposes, the first regime is the most important because it effectively minimizes the generalization error [START_REF] Défossez | Averaged least-mean-squares: Bias-variance trade-offs and optimal sampling distributions[END_REF][START_REF] Jain | Parallelizing stochastic approximation through mini-batching and tail-averaging[END_REF].

Finite sums of functions. We focus on the composite problem min x∈R

d F (x) = N i=1 1 N f i (x) + µ 2 x 2
, where f i are convex and L-smooth functions and µ is the regularization parameter. We will use classical methods for minimizing F (x) such as SGD (with fixed step size), SAGA [START_REF] Defazio | Saga: A fast incremental gradient method with support for nonstrongly convex composite objectives[END_REF], SVRG [START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF], and also the accelerated algorithm Katyusha [Allen-Zhu, 2016]. We will compare their performances with and without the (potential) acceleration provided by Algorithm 1 with restart each k iteration. The parameter λ is found by a grid search of size k, the size of the input sequence, but it adds only one data pass at each extrapolation. Actually, the grid search can be faster if we approximate F (x) with fewer samples, but we choose to present Algorithm 1 in its simplest version. We set k = 10 for all the experiments.

In order to balance the complexity of the extrapolation algorithm and the optimization method we wait several data queries before adding the current point (the "snapshot") of the method to the sequence. Indeed, the extrapolation algorithm has a complexity of O(k 2 d) + O(N) (computing the coefficients cλ and the grid [START_REF] Flammarion | From averaging to acceleration, there is only a step-size[END_REF] and RNA+SGD. We tested the performances on a matrix A T A of size d = 500, with (top) random eigenvalues between κ and 1 and (bottom) decaying eigenvalues from 1 to 1/d. We start at x 0 -x * = 10 4 , where x 0 and x * are generated randomly. search over λ). If we wait at least O(N) updates, then the extrapolation method is of the same order of complexity as the optimization algorithm.

• SGD. We add the current point after N data queries (i.e. one epoch) and k snapshots of SGD cost kN data queries. • SAGA. We compute the gradient table exactly, then we add a new point after N queries, and k snapshots of SAGA cost (k + 1)N queries. Since we optimize a sum of quadratic or logistic losses, we used the version of SAGA which stores O(N) scalars. • SVRG. We compute the gradient exactly, then perform N queries (the inner-loop of SVRG), and k snapshots of SVRG cost 2kN queries. • Katyusha. We compute the gradient exactly, then perform 4N gradient calls (the inner-loop of Katyusha), and k snapshots of Katyusha cost 3kN queries.

We compare these various methods for solving least-square regression and logistic regression on several datasets (Table 1), with several condition numbers κ: well (κ = 100/N), moderately (κ = 1/N) and badly (κ = 1/100N) conditioned. In this section, we present the numerical results on Sid (Sido0 dataset, where N = 12678 and d = 4932) with bad conditioning, see Figure 4. The other experiments are highlighted in the supplementary material. In Figure 4, we clearly see that both SGD and AccSGD do not converge. This is mainly due to the fact that we do not average the points. In any case, except for quadratic problems, the averaged version of SGD does not converge to the minimum of F with arbitrary precision.

We also notice that Algorithm 1 is unable to accelerate Katyusha. This issue was already raised by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF]: when the algorithm has a momentum term (like the Nesterov's method), the underlying dynamical system is harder to extrapolate.

Because the iterates of SAGA and SVRG have low variance, their accelerated version converges faster to the optimum, and their performances are then comparable to Katyusha. In our experiments, Katyusha was faster than AccSAGA only once, when solving a least square problem on Sido0 with a bad condition number. Recall however that the acceleration Algorithm 1 does not require the specification of the strong convexity parameter, unlike Katyusha.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under grant agreement no 607290 SpaRTaN, as well as support from ERC SIPA and the chaire conomie des nouvelles donnes with the data science joint research initiative with the fonds AXA pour la recherche. Proposition 8.1. Let E be a matrix formed by [1 , 2 , ..., k], where i has mean ν i ≤ ν and variance Σ i σI. By triangle inequality then Jensen's inequality, we have

E[E 2] ≤ k i=0 E[ε i] ≤ k i=0 E[ε i 2] ≤ O(ν + σ). (33
)
Proposition 8.2. Consider the function

f (x) = 1 κ a -λx 2 + bx defined for x ∈ [0, a/λ].
The its maximal value is attained at

x opt = b √ a λ 2 κ 2 + λb 2 ,
and its maximal value is thus, if

x opt ∈ [0, a/λ], f max = √ a 1 κ 2 + b 2 λ . (34
) Proof. The (positive) root of the derivative of f follows b a -λx 2 - 1 κ λx = 0 ⇔ x = b √ a λ 2 κ 2 + λb 2 .
If we inject the solution in our function, we obtain its maximal value,

1 κ a -λ   b √ a λ 2 κ 2 + λb 2   2 + b b √ a λ 2 κ 2 + λb 2 = 1 κ a -λ b 2 a λ 2 κ 2 + λb 2 + b b √ a λ 2 κ 2 + λb 2 , = 1 κ a -λ b 2 a λ 2 κ 2 + λb 2 + b b √ a λ 2 κ 2 + λb 2 , = 1 κ aλ 2 1 κ 2 λ 2 κ 2 + λb 2 + b b √ a λ 2 κ 2 + λb 2 , = √ a 1 κ 2 λ + b 2 λ 2 κ 2 + λb 2 , = √ a λ λ 2 κ 2 +

 FIGURE 1. * Left: σ = 10, κ = 10 -2 . Center: σ = 1000, κ = 10 -2 . Right: σ = 1000, κ = 10 -6 .

FIGURE 3 .

 3 FIGURE 3. Comparison of performances between SGD, averaged SGD, Accelerated SGD[START_REF] Flammarion | From averaging to acceleration, there is only a step-size[END_REF] and RNA+SGD. We tested the performances on a matrix A T A of size d = 500, with (top) random eigenvalues between κ and 1 and (bottom) decaying eigenvalues from 1 to 1/d. We start at x 0 -x * = 10 4 , where x 0 and x * are generated randomly.

FIGURE 4 .

 4 FIGURE 4. Optimization of quadratic loss (Top) and logistic loss (Bottom) with several algorithms, using the Sid dataset with bad conditioning. The experiments are done in Matlab. Left: Error vs epoch number. Right: Error vs time.

FIGURE 5 .FIGURE 6 .FIGURE 7 .FIGURE 8 .FIGURE 9 .FIGURE 10 .FIGURE 11 .FIGURE 12 .

 56789101112 FIGURE 5. Quadratic loss with (top to bottom) good, moderate and bad conditioning using Son dataset.

 λb 2 . The simplification with λ in the last equality concludes the proof. 8.2. Additional numerical experiments. 8.2.1. Legend.

	8.2.3. Quadratic loss.						
	Sonar dataset.							
	SAGA	Sgd	SVRG	Katyusha	AccSAGA	AccSgd	AccSVRG	AccKat.
	8.2.2. datasets.							
			Sonar UCI (Son) Madelon UCI (Mad) Random (Ran) Sido0 (Sid)
	# samples N	208	2000		4000	12678	
	Dimension d	60	500		1500	4932	
			TABLE 1. Datasets used in the experiments.