Don't Stop Me Now! Using Global Dynamic Oracles to Correct Training Biases of Transition-Based Dependency Parsers - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Don't Stop Me Now! Using Global Dynamic Oracles to Correct Training Biases of Transition-Based Dependency Parsers

Résumé

This paper formalizes a sound extension of dynamic oracles to global training, in the frame of transition-based dependency parsers. By dispensing with the pre-computation of references, this extension widens the training strategies that can be entertained for such parsers; we show this by revisiting two standard training procedures, early-update and max-violation, to correct some of their search space sampling biases. Experimentally, on the SPMRL treebanks, this improvement increases the similarity between the train and test distributions and yields performance improvements up to 0.7 UAS, without any computation overhead.
Fichier principal
Vignette du fichier
E17-2051.pdf (141.04 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01618377 , version 1 (17-10-2017)

Identifiants

Citer

Lauriane Aufrant, Guillaume Wisniewski, François Yvon. Don't Stop Me Now! Using Global Dynamic Oracles to Correct Training Biases of Transition-Based Dependency Parsers. Conference of the European Chapter of the ACL, Jan 2017, Valencia, Spain. pp.318 - 323, ⟨10.18653/v1/E17-2051⟩. ⟨hal-01618377⟩
495 Consultations
97 Téléchargements

Altmetric

Partager

More