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ON EXTREME POINTS OF P-BOXES AND BELIEF

FUNCTIONS

IGNACIO MONTES1 AND SEBASTIEN DESTERCKE2

Abstract. Within imprecise probability theory, the extreme points of con-
vex probability sets have an important practical role (to perform inference
on graphical models, to compute expectation bounds, . . . ). This is especially
true for sets presenting speci�c features that make them easy to manipulate
in applications. This easiness is the reason why extreme points of such models
(probability intervals, possibility distributions, . . . ) have been well studied.
Yet, imprecise cumulative distributions (a.k.a. p-boxes) constitute an impor-
tant exception, as the characterization of their extreme points remain to be
studied. This is what we do in this paper, where we characterize the maximal
number of extreme points of a p-box, give a family of p-boxes that attains this
number and show an algorithm that allows to compute the extreme points of
a given p-box. To achieve all this, we also provide what we think to be a new
characterization of extreme points of a belief function.

1. Introduction

Imprecise probability theory [29] is a powerful unifying framework for uncer-
tainty treatment, that uses as basic model of uncertainty a convex probability set
M, also called credal set. However, manipulating general credal sets often comes
with a high computational price, and in practice simple models [9] are often used
in applications. Such models include for instance belief functions, possibility distri-
butions, probability intervals and p-boxes. This latter consists in providing a lower
and upper cumulative distribution, extending in a straightforward way cumulative
distribution functions. As such, they are instrumental in risk or reliability anal-
ysis [1, 4, 25], in decision making processes based on stochastic orderings [20] or
in applications involving naturally ordered spaces such as ordinal regression prob-
lems [2, 11].

To apply these simpler models, it is important to study their practical aspects,
among which is the characterization of the extreme points of the probability sets
M these models induce, when they are de�ned over �nite spaces. Indeed, these
extreme points are instrumental to solve computational issues arising in settings
such as graphical models [5, 6, 21] or statistical learning [30]. Extreme points of
many models1 have already been characterized in previous studies. For instance,
Dempster [8] shows that the maximal number of extreme points of a belief function
on a n-element space is n!. It was later [14] proved that the maximal number of
extreme points for possibility distributions in a n-element space is 2n−1, and in [23]
an algorithm to extract them was provided. In [7], authors studied the extreme
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1To simplify the paper, we will make a small abuse of language and speak of �extreme points
of a model� when referring about the extreme points of the credal set induced by such a model.
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points of probability intervals, providing an algorithm to compute them, as well as
their maximal number. Extreme points of other speci�c models such as so-called
k-additive measures have also been studied [15], although not necessarily with an
imprecise probabilistic interpretation in mind.

However, the extreme points of p-boxes [12] and their generalized version [10] still
remain uncharacterised, despite the fact that other aspects such as their connections
with existing models or the monotonicity of the lower probability they induce [13,
26, 27, 29] are well-known. The closest existing work we know of explores the shape
of extreme cumulative distributions when p-boxes are de�ned over the continuous
real-line [28], yet it does not explore the combinatorial nature of extreme points
when p-boxes are de�ned on �nite spaces.

This is the topic of this paper, in which we show that the maximal number of
extreme points of a p-box de�ned on a �nite space is a recursive number known as
Pell number (Section 4). To do so, we �rst provide in Section 2 what we believe to
be a new characterization of extreme points of belief functions, and then exploit in
Section 4 the fact (reminded in Section 3) that p-boxes induce lower probabilities
that are belief functions. Finally, Section 5 describes an algorithmic procedure to
enumerate the extreme points of the p-boxes, of which the result is a tree whose
leaves contain the extreme points.

This paper extends signi�cantly a previous short conference version [18], by
providing proofs, examples as well as additional discussions and results.

2. Extreme points of belief functions

We start this paper by exploring a new way to characterize the extreme points of
a belief function, through a set of counting vectors determined by its focal elements.
In addition to their own interest, these results will be instrumental to study the
extreme points of p-boxes. We �rst remind the basic de�nitions of belief functions
and their associated credal sets, before proceeding to the characterization of extreme
points.

2.1. Basic de�nitions. Belief functions have been seminally introduced by Demp-
ster [8] and Shafer [24]. They correspond to so-called completely monotone capac-
ities, and can be associated to speci�c sets of probabilities. Given their attractive
mathematical properties, the extreme points of probability sets described by belief
functions have already been studied by many authors [3, 8, 23].

A classical means to induce or describe belief functions is through basic prob-
ability assignment (bpa). Given a space X = {x1, . . . , xn}, a basic probability
assignment (bpa) is a non-negative function m : P(X ) → [0, 1] from the power set
P(X ) of X to the unit interval, satisfying m(∅) = 0 and

∑
B⊆X m(B) = 1. A bpa

m de�nes a belief Bel and a plausibility Pl function [24] by:

(1) Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B:A∩B 6=∅

m(B) ∀A ⊆ X .

These two functions are conjugate since Bel(A) = 1−Pl(Ac) for any A ⊆ X , hence
we can focus on only one of them. A focal set of the belief function Bel is a set
E such that m(E) > 0, and F will denote the set of focal sets. A belief function
induces a credal set

(2) M(Bel) = {P Prob. | Bel(A) ≤ P (A) ∀A ⊆ X}.
Being closed and convex, the setM(Bel) can be characterized by its set of extreme
points2, that we will denote Ext(Bel). Throughout the paper, and for the sake of

2Recall that an extreme point P of M(Bel) is a point such that, if P1, P2 ∈ M(Bel) and
αP1 + (1− α)P2 = P for some α ∈ (0, 1), then P1 = P2 = P .
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simplicity, we will use the expression �extreme points of a belief function� to refer to
the extreme points of the credal set induced by the belief function. It is known [3, 8]
that there is a correspondence between the extreme points of a belief function and
the permutations of the elements of X . The extreme point Pσ ∈ Ext(Bel) associated
with the permutation σ of {1, . . . , n} is given by

Pσ({xσ(i)}) = Bel({xσ(i), . . . , xσ(n)})− Bel({xσ(i+1), . . . , xσ(n)})(3a)

=
∑
E⊆Aσi

m(E)−
∑

E⊆Aσi+1

m(E) =
∑

xσ(i)∈E,E∩Aσ,Ci =∅

m(E)(3b)

where Aσi = {xσ(i), . . . , xσ(n)} and Aσ,Ci = {xσ(1), . . . , xσ(i−1)} is its complement,

and where the convention Aσn+1 = Aσ,C1 = ∅ is adopted. However, we may have that
Pσ1

= Pσ2
for some distinct permutations σ1, σ2, as in general not all permutation

give rise to di�erent extreme points, otherwise every belief function would have
n! extreme points. Equation (3b) indicates that building an extreme point comes
down, given a permutation σ, to assign the mass of focal elements E containing
xσ(1) to P (xσ(1)), remove the corresponding focal elements and then to iterate the
procedure until reaching xσ(n) or until no focal set remains. Alternatively, we can
reinterpret Equation (3b) into a simple pseudo-algorithmic procedure summarised
in Algorithm 1, where each focal element E assigns its mass to the �rst element of
E when considering the permutation σ.

Algorithm 1: Extreme point computation from permutation σ

Input: σ,m,F
Output: Pσ

1 for each E in F do

2 kmin = min{k|xσ(k) ∈ E};
3 assign m(E) to Pσ({xσ(kmin)})
4 end

Example 1. Consider a belief function Bel de�ned on X = {x1, x2, x3, x4} whose
focal sets and their masses are:

E1 = {x1, x2} E2 = {x2, x3, x4} E3 = {x3}
m 0.2 0.5 0.3

Consider for example the permutation σ = (1, 2, 3, 4). It generates the extreme
point Pσ = (0.2, 0.5, 0.3, 0) in the following way: according to Algorithm 1, m(E1)
is assigned to x1, m(E2) to x2 and m(E3) to x3.

If we consider the permutation σ′ = (1, 2, 4, 3), it generates the same extreme
point than σ because, from Algorithm 1, m(E1) is assigned to x1 and m(E2) to x2.
Then, the only remaining focal set is E3 = {x3}, which only can assign its mass to
x3. �

We can already note in Algorithm 1 and Equation (3b) that the structure of the
extreme points rely on counting focal elements including speci�c elements, and not
on the numbers m(E). This is formalized in the next section, where we provide a
new characterization of belief function extreme points.

2.2. Extreme point characterization. Let us now introduce another way to
characterize the extreme points of a belief function. Given a permutation σ, we
denote by ~vσ = (vσ1 , . . . , v

σ
n) the vector

vσi =
∣∣{E ∈ F | xi ∈ E 6 ∃j < σ(i) s.t. xσ−1(j) ∈ E}

∣∣(4)

=
∣∣{E ∈ F | xi ∈ E, E ∩ {xσ(1), . . . , xσ(σ−1(i)−1)} = ∅}

∣∣,
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whose ith value is simply the number of focal sets having xi as �rst element once
they are permuted according to σ. We will also denote by V(Bel) the set of vectors
obtained through Equation (4) for all permutations. We then have the following
result.

Proposition 2. Given Bel and two permutations σ1, σ2, we have that Pσ1
= Pσ2

if and only if ~vσ1 = ~vσ2 .

Proof. Let us �rst prove that if Pσ1
= Pσ2

, then ~vσ1 = ~vσ2 . For simplicity and
without loss of generality, assume that

σ1(1) = 1, . . . , σ1(i) = i, σ1(i+ 1) = i+ 1, . . . , σ1(n) = n

σ2(1) = 1, . . . , σ2(i) = i, σ2(i+ 1) 6= i+ 1, , . . . , σ2(n)

where i+ 1 is the �rst index for which the two permutations take di�erent values,
and we directly have that vσ1

j = vσ2
j for j ≤ i. Let us now show that vσ1

i+1 = vσ2
i+1.

Without loss of generality, assume that the focal elements that contain one element
among x1, . . . , xi are E1, . . . , E`, and that E`+1, . . . , Es are those that contain xi+1

but none of the previous ones. Then

Pσ1({xi+1}) = m(E`+1) + . . .+m(Es).

Now, let us assume that vσ2
i+1 < vσ1

i+1 (the inequality cannot be in the other sense,

since σ−12 (i+ 1) > i+ 1): this means that there is at least one focal element within
E`+1, . . . , Es that assigns its mass to an element other than x1, . . . , xi, xi+1, and in
this case

Pσ2
(xi+1) < m(E`+1) + . . .+m(Es) = Pσ1

(xi+1),

which contradicts our initial assumption, hence vσ2
i+1 = vσ1

i+1. We can iterate this
reasoning for all j, concluding that ~vσ1 = ~vσ2 .

Let us now prove the converse result, that is if ~vσ1 = ~vσ2 , then Pσ1 = Pσ2 .
Throughout this proof, we use the following notation: given a permutation σ and
i ∈ {1, . . . , n}, de�ne the set Eσi as the set of focal sets that assign their masses to
the element xi in the extreme point Pσ:

Eσi = {E ∈ F | xi ∈ E, 6 ∃j < σ(i) s.t. xσ−1(j) ∈ E}.
Following this notation, it holds that ~vσi = |Eσi |.

Consider now two permutations σ1, σ2 such that ~vσ1 = ~vσ2 . For the sake of
simplicity and without loss of generality, we assume that σ1(i) = i for any i =
1, . . . , n.

First, let us see that Eσ1
i = Eσ2

i for any i = 1, . . . , n. For i = 1, it holds that:

Eσ1
1 = {E ∈ F | x1 ∈ E}.

Eσ2
1 = {E ∈ F | x1 ∈ E, 6 ∃j < σ2(1) s.t. xσ−1(j) ∈ E} ⊆ E1.

Since both Eσ1
1 and Eσ2

1 have the same cardinality (because ~vσ1
1 = ~vσ2

1 ), both sets
must coincide.

Assume now that Eσ1
2 = Eσ2

2 , . . . , Eσ1
i−1 = Eσ2

i−1, and let us prove that E
σ1
i = Eσ2

i .
In this case, these sets can be expressed by:

Eσ1
i = {E ∈ F | xi ∈ E, {x1, . . . , xi−1} ∩ E = ∅}.

Eσ2
i = {E ∈ F | xi ∈ E, 6 ∃j < σ2(i) s.t. xσ−1(j) ∈ E}.

Let us see that Eσ2
i ⊆ Eσ1

i . Firs note that if E ∈ Eσ2
i , then xi ∈ E. Also,

assume that there is j < i such that xj ∈ E (take j the minimum value satisfying
this property). Then, E ∈ Eσ1

j = Eσ2
j , and therefore E /∈ Eσ2

i , a contradiction.

Therefore, if E ∈ Eσ2
i , then xi ∈ E and {x1, . . . , xi−1} ∩ E = ∅. We conclude that

Eσ2
i ⊆ Eσ1

i , and also that they coincide because they have the same cardinality
(because ~vσ1

i = ~vσ2
i ).
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Finally, for any i = 1, . . . , n, it holds that:

Pσ1
({xi}) =

∑
E∈Eσ1i

m(E) =
∑

E∈Eσ2i

m(E) = Pσ2
({xi}).

�

Also note that any vector ~v ∈ V(Bel) can be associated with a permutation
σ generating an extreme point (to see this, note the link between Eq. (4) and
Algorithm 1), for instance the permutation having generated it. Since V(Bel) is
in bijection with Ext(Bel) (any vector is associated with one and only one distinct
extreme point), given a vector ~v ∈ V(Bel), we can easily determine a permutation
generating it by using Algorithm 2.

Algorithm 2: Permutation generating algorithm

Input: ~v ∈ V(Bel), E = F
Output: One permutation σ generating ~v

1 for k=1,. . . ,n do

2 Find i s.t. vi = |{E ∈ E|xi ∈ E}| De�ne σ(k) = i;

3 E ← E \ {E ∈ E|xi ∈ E}
4 end

Example 3. Consider a belief function Bel de�ned on Example 1. We have con-
sidered the permutation σ = (1, 2, 3, 4), which induces the extreme point Pσ =
(0.2, 0.5, 0.3, 0). Then, σ generates the vector:

~vσ = (vσ1 , v
σ
2 , v

σ
3 , v

σ
4 ) = (1, 1, 1, 0).

Algorithm 2 can then generate permutations (1, 2, 4, 3) or (1, 2, 3, 4):

(1) in the �rst iteration we have E = F , and only

v1 = |{E ∈ F|x1 ∈ E}|

satis�es the condition of Line 2 of Algorithm 2, meaning σ(1) = 1;
(2) in the second iteration where E = {E2, E3}, only v2 = 1 satisfy the condi-

tion, hence σ(2) = 2 and E = {E3};
(3) in the third iteration, both v3 = 1 and v4 = 0 satisfy the condition in

Line 2, hence we can have σ(3) = 3 or σ(3) = 4, and the last value of the
permutation is the remaining one.

The extreme points of the belief function de�ned in Example 1, as well as the
permutations that generate them, can be seen in Table 1. �

Incidentally, this new characterization in terms of �counting� vectors allows us
to derive a number of interesting new results about the extreme points of belief
functions.

2.3. Some properties of the extreme points of a belief function. We now
give some interesting properties about the number of extreme points of belief func-
tions. The �rst result characterizes the belief functions which have the maximum
number of extreme points.

Proposition 4. Let Bel be a belief function on X = {x1, . . . , xn}. The number
of extreme points of Bel is n! if and only if {xi, xj} is a focal set for any i, j ∈
{1, . . . , n} such that i 6= j.
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Permutation Probability (vσ1 , v
σ
2 , v

σ
3 , v

σ
4 )

(1,2,3,4) (1,2,4,3) Pσ1 = (0.2, 0.5, 0.3, 0) (1,1,1,0)
(1,3,2,4) (1,3,4,2) (3,4,1,2)

Pσ2 = (0.2, 0, 0.8, 0) (1, 0, 2, 0)
(3,1,2,4) (3,1,4,2)

(1,4,3,2) (1,4,2,3) (4,3,1,2)
Pσ3 = (0.2, 0, 0.3, 0.5) (1, 0, 1, 1)

(4,1,3,2) (4,1,2,3)
(2,3,1,4) (2,3,4,1) (2,4,1,3)

Pσ4
= (0, 0.7, 0.3, 0) (0, 2, 1, 0)

(2,1,3,4) (2,1,4,3) (2,4,3,1)
(3,2,1,4) (3,2,4,1) (3,4,2,1) Pσ5 = (0, 0.2, 0.8, 0) (1,0,2,0)
(4,3,2,1) (4,2,3,1) (4,2,1,3) Pσ6

= (0, 0.2, 0.3, 0.5) (0,1,1,1)

Table 1. Extreme points of the belief function of Example 3.

Proof. Only if: We will proceed by contradiction, showing that if {xi, xj} is not a
focal set, then the number of extreme point is lower than n!. If the belief function
Bel has n! extreme points, it means that any permutation σ of {1, . . . , n} induces a
di�erent probability Pσ. Consider two identical permutations σ1 and σ2, except for
the two last elements, which are such that σ1(n−1) = i, σ1(n) = j and σ2(n−1) =
j, σ2(n) = i. If {xi, xj} is not a focal set, all the non-singleton focal sets including xi
or xj would already have assigned their masses to other element xk (k 6= i, j), and
therefore Pσ1

(xi) = Pσ2
(xi) and Pσ1

(xj) = Pσ2
(xj). In that case, we would have

Pσ1 = Pσ2 , and the belief function Bel could not have more than n! − 1 extreme
points, a contradiction. Hence for every pair i, j, {xi, xj} must be a focal set for
Bel to have n! extreme points .
If: Let us show that if all the sets {xi, xj} are focal sets for any i, j ∈ {1, . . . , n}

(i 6= j), then any two permutations σ1 6= σ2 will generate distinct extreme points.
Since σ1 6= σ2, we can assume that:

(5) σ1(i) 6= σ2(i), but σ1(1) = σ2(1), . . . , σ1(i− 1) = σ2(i− 1).

Let us compute Pσ1({xσ1(i)}) and Pσ2({xσ1(i)}):

Pσ1
({xσ1(i)}) =

∑
E focal s.t.
xσ1(i) ∈ E

xσ1(1), . . . , xσ1(i−1) /∈ E

m(E).

Among the focal sets that assign their mass to xσ1(i) we �nd {xσ1(i), xσ2(i)}. How-
ever, when we compute Pσ2({xσ1(i)}) we obtain that:

Pσ2
({xσ1(i)}) ≤

∑
E focal s.t.
xσ2(i) ∈ E

xσ2(1), . . . , xσ2(i−1) /∈ E

m(E)−m({xσ1(i), xσ2(i)}) < Pσ1
({xσ1(i)}),

because by assumption (Eq. (5)), σ−12 (σ1(i)) > i, and for this reason the non-null
mass of the focal set {xσ1(i), xσ2(i)} is assigned to xσ2(i) and not to xσ1(i). Then,
we conclude that Pσ1

6= Pσ2
whenever σ1 6= σ2. �

This result is quite surprising, as it tells us that the maximal number of extreme
points n! will be reached only if speci�c focal elements (those with cardinality two)
are present, and that only a quadratic number (i.e., n(n−1)/2) of such elements
among the 2n possible ones are needed to reach this number. The next property
tells us that having more focal elements can only increase the number of extreme
points, without needing to know the exact mass of the focal elements.
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Proposition 5. Let Bel be a belief function on X = {x1, . . . , xn}. Denote by F the
set of focal sets of Bel. Let Bel′ be another belief function and let F ′ = F ∪ {E} be
the set of focal sets of Bel′, where E /∈ F . Then, Bel′ has at least as many extreme
points as Bel.

Proof. Let us denote by (wσ1 , . . . , w
n
σ) and (vσ1 , . . . , v

n
σ ) the vectors associated with

σ for Bel′ and Bel, respectively.
In order to prove this result, it is enough to prove that if two permutations σ1, σ2

give rise to the same extreme point P
′

σ1
= P

′

σ2
of Bel′, these permutations also give

rise to the same extreme point Pσ1
= Pσ2

of Bel.
Consider such two permutations σ1, σ2 that generate the same extreme point of

M(Bel′). As we have explained, this is equivalent to say that (wσ1
1 , . . . , wσ1

n ) =
(wσ2

1 , . . . , wσ2
n ). Now, we have to see that σ1, σ2 generate the same extreme point

of Bel, or equivalently, (vσ1
1 , . . . , vσ1

n ) = (vσ2
1 , . . . , vσ2

n ).
Let E = {z1, . . . , zk} be the added focal element, where z1 < . . . < zk, zi ∈

{x1, . . . , xn} and k ≤ n. Let us note that the �rst element in E must be the same
for σ1 and σ2, otherwise E would assign its mass to di�erent elements zi, zj , and
we would have Pσ1

6= Pσ2
. Let zj be this element.

Now, if we remove the focal set E, we obtain the vector (v1, . . . , vn) given by

v(x) =

{
wσ1(x) = wσ2(x), if x 6= zj .

wσ1(zj)− 1 = wσ2(zj)− 1, if x = zj .

Then, both σ1 and σ2 also generate the same vector (v1, . . . , vn) for the focal sets
of Bel, and therefore they generate the same extreme point of Bel. �

Example 6. Let us continue with the belief function in Example 1. We add a new
focal set, E4 = {x2, x3}, and we modify the masses:

E1 = {x1, x2} E2 = {x2, x3, x4} E3 = {x3} E4 = {x2, x3}
m 0.2 0.5 0.2 0.1

For the belief function in Example 1, both permutations σ = (1, 4, 2, 3) and σ =′

(1, 4, 3, 2) generate the same extreme point, (0.2, 0, 0.3, 0.5). However, for the new
belief function, their associated counting vectors are di�erent. The counting vector
associated with σ is ~vσ = (1, 1, 1, 1), while the counting vector associated with

σ′ is ~vσ
′

= (1, 0, 2, 1). Therefore, they induce di�erent extreme points, which are
Pσ = (0.2, 0.1, 0.2, 0.5) and Pσ′ = (0.2, 0, 0.3, 0.5).

In general, it can be seen that the belief function in this example has eight
di�erent extreme points (and also eight counting vectors), which are summarized
in Table 2. This means that adding the new focal set {x2, x3} increases the number
of extreme points from six to eight. �

Remark 7. Proposition 5 shows that increasing the number of focal sets never
decreases the number of extreme points, but does not necessarily increase it. For
example, this is the case for a belief function whose focal sets are only all the sets
of cardinality two. From Proposition 4 we know that this belief function has n!
extreme points. In this case, we can add as many focal sets as we want (and share
the mass between them), the number of extreme points will never be greater than
n!. �

Now that we have established some new ways to look at belief function extreme
points, we can connect them to p-boxes and study the extreme points of this latter
model.
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Permutation Probability (vσ1 , v
σ
2 , v

σ
3 , v

σ
4 )

(1,2,3,4) (1,2,4,3) Pσ1 = (0.2, 0.5, 0.3, 0) (1,1,1,0)
(1,3,2,4) (1,3,4,2) (3,4,1,2)

Pσ2 = (0.2, 0, 0.8, 0) (1, 0, 2, 0)
(3,1,2,4) (3,1,4,2)
(1,4,2,3) (4,1,2,3) Pσ3

= (0.2, 0.1, 0.2, 0.5) (1, 1, 1, 1)
(1,4,3,2) (4,1,3,2) (4,3,1,2) Pσ4 = (0.2, 0, 0.3, 0.5) (1, 0, 2, 1)
(2,3,1,4) (2,3,4,1) (2,4,1,3)

Pσ5
= (0, 0.7, 0.3, 0) (0, 2, 1, 0)

(2,1,3,4) (2,1,4,3) (2,4,3,1)
(3,2,1,4) (3,2,4,1) (3,4,2,1) Pσ6

= (0, 0.2, 0.8, 0) (1,0,2,0)
(4,2,1,3) (4,2,3,1) Pσ7

= (0, 0.3, 0.2, 0.5) (0, 2, 1, 1)
(4,3,2,1) Pσ8 = (0, 0.2, 0.3, 0.5) (0, 1, 2, 1)

Table 2. Extreme points of the belief function of Example 6.

3. Belief functions and p-boxes

To study p-boxes, we will consider from now on that X , in addition to be �nite,
is an ordered set X = {x1, . . . , xn} such that x1 < . . . < xn. We will say that a set
E ⊆ X is an interval if any x ∈ X between minE and maxE also belongs to X .
We will use the following notation for intervals: [xi, xi+k] = {xi, xi+1, . . . , xi+k}.

Probability boxes (p-boxes, for short) were introduced in [12]. A p-box, denoted
(F , F ), is a pair of functions F , F : X → [0, 1] such that F , F are increasing,
F (xn) = F (xn) = 1 and F ≤ F . Here we interpret p-boxes as lower and upper
bounds of an imprecisely de�ned cumulative distribution function. Then, a p-box
also de�nes a credal set

(6) M(F , F ) = {P Prob. | F (x) ≤ FP (x) = P ([x1, x]) ≤ F (x) ∀x ∈ X},

where FP denotes the cumulative distribution function associated with the proba-
bility P .

It is known that p-boxes are particular instances of belief functions [10], in the
sense that for any p-box (F , F ) we can de�ne a belief and a plausibility function
Bel and Pl such thatM(F , F ) =M(Bel) and

(7) F (xi) = Bel({x1, . . . , xi}) and F (xi) = Pl({x1, . . . , xi}) ∀i = 1, . . . , n.

This belief function can be computed as follows:

(8) Bel(A) = min{P (A) | F (x) ≤ FP (x) ≤ F (x) ∀x ∈ X} ∀A ⊆ X ,

where again FP denotes the cumulative distribution function associated with the
probability P .

We can also characterize the belief functions that are equivalent to a p-box
(in the sense that for such belief functions Bel, there is a p-box (F , F ) such that
M(F , F ) =M(Bel)) in terms of the structure of the focal elements. If we consider
the interval order given by

(9) [a1, a2] � [b1, b2]⇔ a1 ≤ b1, a2 ≤ b2,

then a belief function Bel whose focal sets E1, . . . , Ek are intervals ordered such that
E1 ≺ E2 ≺ . . . ≺ Ek will be equivalent to a p-box. Conversely, a belief function Bel
whose focal sets are intervals ordered according to ≺ de�nes a p-box using Eq. (7),
and Bel coincides with the belief function given in Eq. (8), so this property of focal
sets is characteristic of p-boxes: a belief function will be a p-box i� it has ordered
intervals as focal sets.
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(F , F ) Bel,Pl with E1 ≺ . . . ≺ Ek intervals

Eq. (8)

Eq. (7)

Figure 1. Connection between p-boxes and belief functions.

E5

E4

E3

E2

E1m(E1)

m(E2)

m(E3)

m(E4)

m(E5)

x1x1 x2x2 x3x3 x4x4 x5x5 x6x6

1

0

F

F

Figure 2. P-box (left) and its associated belief function (right),
with focal elements E1 = {x1, x2, x3}, E2 = {x2, x3}, E3 =
{x2, x3, x4, x5}, E4 = {x4, x5} and E5 = {x4, x5, x6}.

Moreover, the focal elements can be computed from (F , F ) as follows: if there
exists θ ∈ [0, 1] such that

F (xi+1) > θ ≥ F (xi) and F (xj+1) > θ ≥ F (xj)

for some i, j ∈ {0, . . . , n−1}, where F (x0) = F (x0) = 0, then E = {xj+1, xj+2, . . . , xi}
is a focal set with mass m(E) = min{F (xi+1), F (xj+1)} −max{F (xi), F (xi)}. We
refer to [10, 13] for detailed proofs and algorithms. The connection between p-boxes
and belief functions is graphically depicted in Figure 1.

De�nition 8. Given a p-box (F , F ) de�ned on X , a set E is called focal set of (F , F )
if E is a focal set of the belief function associated with (F , F ) by means of Eq. (8).

Example 9. Consider the p-box (F , F ) de�ned on X = {x1, . . . , x6} by:

F (x) =


0 if x < x3.

0.4 if x3 ≤ x < x5.

0.8 if x5 ≤ x < x6.

1 if x = x6.

F (x) =


0.2 if x = x1.

0.6 if x1 < x ≤ x4.
1 if x > x4.

The focal sets and mass distribution of (F , F ) are given by:

E1 E2 E3 E4 E5

{x1, x2, x3} {x2, x3} {x2, x3, x4, x5} {x4, x5} {x4, x5, x6}
m 0.2 0.2 0.2 0.2 0.2

Figure 2 provides a picture of the p-box (F , F ) and its focal sets. �

Possibility measures are another well-known family of plausibility functions. A
function Π : X → [0, 1] is a possibility measure when Π(A) = supx∈A Π({x}) for
any A ⊆ X . A possibility measure Π is a plausibility, and the function N(A) = 1−
Π(Ac), called necessity measure, is a belief function. Since we are dealing with �nite
sets, the focal sets of a necessity measure, E1, . . . , Ek, are nested: E1 ⊂ . . . ⊂ Ek.

The connection between p-boxes and possibility measures has been studied in
[27]. We say that a p-box is a possibility measure when its associated belief function
is a possibility measure.
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x1 x2 x3 x4 x1 x2 x3 x4

Case F 0-1 valued Case F 0-1 valued

Figure 3. Focal sets of the belief function associated with a p-box
with 0-1 valued lower or upper bounds.

n 1 2 3 4 5 6 . . .
2n−1 1 2 4 8 16 32 . . .
Pn 1 2 5 12 29 70 . . .
n! 1 2 6 24 120 720 . . .

Table 3. First numbers of sequences 2n−1,Pn, n!.

Proposition 10 ([27, Cor. 13]). Consider a p-box (F , F ) de�ned in the �nite set
X . Its associated belief function by means of Eq. (8) is a possibility measure if and
only if either F or F is 0-1 valued.

It straightforwardly follows that the focal sets of the possibility measure associ-
ated with a p-box are

E1 = [x1, xi1 ], E2 = [x1, xi2 ], . . . Ek = [x1, xik ] = [x1, xn],

where x1 ≤ xi1 < . . . < xik = xn, if F is 0-1 valued, or

E1 = [xi1 , xn] = [x1, xn], E2 = [xi2 , xn], . . . Ek = [xik , xn],

where x1 = xi1 < . . . < xik ≤ xn, if F is 0-1 valued. This can be graphically seen
in Figure 3.

4. The number of extreme points of a p-box

Before studying the extreme points of p-boxes, we need to make a small, useful
digression about a speci�c number sequence: the Pell numbers. Pell numbers form a
sequence that follows a recursive relation: P0 = 0, P1 = 1, Pn = Pn−2+2Pn−1.
It is known that 2n−1 ≤ Pn ≤ n! for any n ≥ 1, and the �rst numbers associated
to these sequences are reminded in Table 3. As we shall see, it turns out that the
maximal number of extreme points of p-boxes on a n-element space X is Pn.

4.1. Properties of extreme points of a p-box. Since p-boxes are equivalent to
belief functions whose focal elements have a speci�c structure (are ordered inter-
vals), it is natural to investigate whether the maximal number of extreme points a
p-box can have is lower than n!, and in this case what is this maximal number. In
order to determine this number, we will �rst provide a set of useful properties to
do so. A �rst immediate result is the following

Corollary 11. The maximal number of extreme points of a p-box (F , F ) on X =
{x1, . . . , xn} (n > 2) lies in the interval [2n−1, n!).

Proof. When n > 2, {x1, xn} cannot be a focal set because the focal sets of a p-box
are intervals. Then, according to Proposition 4, (F , F ) cannot have n! extreme
points.

On the other hand, let us consider the p-box (F , F ) such that F = 1 and F is
strictly increasing (F (x1) < F (x2) < . . . < F (xn) = 1). From Proposition 10 we
know that the belief function associated with (F , F ) is a necessity measure, and its
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focal sets are E1 = {x1}, E2 = {x1, x2}, . . . , En = {x1, . . . , xn}. This necessity
measure, or its conjugate possibility measure, has the maximal number of extreme
points for a necessity measure, 2n−1. Therefore, we have found a p-box with 2n−1

extreme points. �

Let us now provide properties showing how, starting from an initial p-box, we
can incrementally change it into another p-box having a higher number of extreme
points.

Proposition 12. Let (F , F ) be a p-box on X = {x1, . . . , xn} and denote by Bel its
associated belief function, and by F the set of focal sets of Bel. Assume that the
following sets are focal sets:

E− = [xi, xj ], E = [xi, xj+1], E+ = [xi+1, xj+1],

for j ≥ i+ 2. Denote by Bel′ a belief function whose set of focal sets F ′ is given by
F ′ = (F\{E}) ∪ E∗, where E∗ = [xi+1, xj ].

(1) Bel′ is a belief function associated with a p-box (F
′
, F
′

).

(2) (F
′
, F
′

) has at least as many extreme points as (F , F ).

(3) (F
′
, F
′

) has more extreme points than (F , F ) only if j > i+ 2.

Proof. (1): First of all, note that E− ≺ E∗ ≺ E+, so these three focal sets are
ordered according to ≺. Furthermore, the remaining focal sets are also ordered
because they are the focal sets of the p-box (F , F ), and because E and E∗ are the
only two focal sets between E− and E+ according to ≺. Then, we conclude that
the focal sets of the belief function Bel′ are intervals and they are ordered with
respect to ≺, which implies that it is the belief function associated with a p-box

(F
′
, F
′

).
(2)+(3): Let us now show that |V(Bel′)| ≥ |V(Bel)|. Given a permutation σ,

denote by wσ and vσ the vectors in |V(Bel′)| and |V(Bel)| generated by σ, and by
x∗ the element in E∗ = [xi+1, xj ] that �rst appears in σ, meaning that σ−1(∗) ≤
min(σ−1(i+ 1), σ−1(j)). Note also that, since E∗ ⊂ E, x∗ ∈ E.

Since the only change between Bel and Bel′ is the replacement of E by E∗,
distinction between extreme points of Bel and Bel′ only depends on the relative
positions of x∗, xi and xj+1 in a permutation. There are then two cases (forming
a partition of every possible permutations).

Case 1: if σ−1(∗) 6≥ max(σ−1(i), σ−1(j+1)), then there is a bijection between
wσ and vσ, more precisely

wσ = vσif σ−1(∗) ≤ max(σ−1(i), σ−1(j + 1))

since in this case both m(E) and m(E∗) are assigned to x∗. If σ−1(i) ≤
σ−1(∗) ≤ σ−1(j + 1), then

vσ(x) =


wσ(xi) + 1, if x = xi.

wσ(x∗)− 1, if x = x∗.

wσ(x), otherwise.

since m(E) is assigned to xi and m(E∗) to x∗. The situation σ
−1(j + 1) ≤

σ−1(∗) ≤ σ−1(i) is similar. Let us denote by k1 the number of distinct
vectors in both |V(Bel′)| and |V(Bel)| corresponding to this situation.

Case 2: Consider now a permutation with σ−1(∗) ≥ max(σ−1(i), σ−1(j +
1)) and the associated wσ, vσ, meaning that m(E) is assigned to xk with
k = argi,j+1 min(σ−1(i), σ−1(j + 1)), and m(E∗) to x∗. Now, consider the
following:
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x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

0.2

0.7

1

0.2

0.7

1

P-box (F, F ) P-box (F
′
, F
′
)

Figure 4. P-boxes (F , F ) and (F
′
, F
′

) of Example 13.

• on one hand, if we consider the permutation σ′ such that σ′(k) = σ(k)
for any k 6= i, j + 1, and σ′(i) = σ(j + 1), σ′(j + 1) = σ(i), then we

have vσ 6= vσ
′
, but wσ = wσ

′
;

• on the other hand, we can consider j−i (the number of elements of E∗)
permutations σ′ where we exchange in the permutation σ the indices
of x∗ and of another element of E∗, for which vσ = vσ

′
, but wσ 6= wσ

′
.

This means that for a permutation satisfying σ−1(∗) ≥ max(σ−1(i), σ−1(j+1)), we
can construct one additional permutation satisfying this constraint and generating 2
distinct vectors of |V(Bel)| whose permutation will give the same vector of |V(Bel′)|,
and construct j−i additional permutations satisfying this constraint and generating
distinct vectors of |V(Bel)| but giving the same vector of |V(Bel′)|. Let k2 be the
quantity of such initial permutations. Then we have

|V(Bel)| = k1 + 2k2 ≥ k1 + (j− i)k2 = |V(Bel′)|

with the inequality being strict only if j − i > 2. �

Example 13. Consider the p-box (F , F ) on {x1, x2, x3, x4, x5} whose focal sets are:

E1 = {x1, x2, x3, x4}, E2 = {x1, x2, x3, x4, x5}, E3 = {x2, x3, x4, x5}

withm(E1) = 0.2, m(E2) = 0.5 andm(E3) = 0.3. Also, consider the p-box (F
′
, F
′

)
whose focal sets are:

E1 = {x1, x2, x3, x4}, E∗2 = {x2, x3, x4}, E3 = {x2, x3, x4, x5},

with the same masses m′(E1) = 0.2, m′(E∗2 ) = 0.5 and m′(E3) = 0.3. These
p-boxes are depicted in Figure 4.

Using the notation of the previous proposition, we have xi = x1, xi+1 = x2,
xj = x4 and xj+1 = x5. The permutations and vectors w that generates the
extreme points of Bel′ are the following:

Case Permutation Vector w Probability

Case 1 (2, 1, 3, 4, 5) (0, 3, 0, 0, 0) (0, 1, 0, 0, 0)
Case 1 (3, 1, 2, 4, 5) (0, 0, 3, 0, 0) (0, 0, 1, 0, 0)
Case 1 (4, 1, 2, 3, 5) (0, 0, 0, 3, 0) (0, 0, 0, 1, 0)

k1 = 9
Case 1 (1, 2, 3, 4, 5) (1, 2, 0, 0, 0) (0.2, 0.8, 0, 0, 0)
Case 1 (1, 3, 2, 4, 5) (1, 0, 2, 0, 0) (0.2, 0, 0.8, 0, 0)
Case 1 (1, 4, 2, 3, 5) (1, 0, 0, 2, 0) (0.2, 0, 0, 0.8, 0)
Case 1 (5, 2, 1, 3, 4) (0, 2, 0, 0, 1) (0, 0.7, 0, 0, 0.3)
Case 1 (5, 3, 1, 2, 4) (0, 0, 2, 0, 1) (0, 0, 0.7, 0, 0.3)
Case 1 (5, 4, 1, 2, 3) (0, 0, 0, 2, 1) (0, 0, 0, 0.7, 0.3)

(j − i)k2 = 3
Case 2 (1, 5, 2, 3, 4) (1, 1, 0, 0, 1) (0.2, 0.5, 0, 0, 0.3)
Case 2 (1, 5, 3, 2, 4) (1, 0, 1, 0, 1) (0.2, 0, 0.5, 0, 0.3)
Case 2 (1, 5, 4, 2, 3) (1, 0, 0, 1, 1) (0.2, 0, 0, 0.5, 0.3)
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where for the second situation, σ = (1, 5, 2, 3, 4) and other vectors are obtained by
permuting 2 with either 3 or 4. Thus, M(Bel′) has 12 extreme points. On the
other hand, the extreme points of Bel are the following:

Case Permutation Vector v Probability

Case 1 (2, 1, 3, 4, 5) (0, 3, 0, 0, 0) (0, 1, 0, 0, 0)
Case 1 (3, 1, 2, 4, 5) (0, 0, 3, 0, 0) (0, 0, 1, 0, 0)
Case 1 (4, 1, 2, 3, 5) (0, 0, 0, 3, 0) (0, 0, 0, 1, 0)

k1 = 9
Case 1 (1, 2, 3, 4, 5) (2, 1, 0, 0, 0) (0.7, 0.3, 0, 0, 0)
Case 1 (1, 3, 2, 4, 5) (2, 0, 1, 0, 0) (0.7, 0, 0.3, 0, 0)
Case 1 (1, 4, 2, 3, 5) (2, 0, 0, 1, 0) (0.7, 0, 0, 0.3, 0)
Case 1 (5, 2, 1, 3, 4) (0, 1, 0, 0, 2) (0, 0.2, 0, 0, 0.8)
Case 1 (5, 3, 1, 2, 4) (0, 0, 1, 0, 2) (0, 0, 0.2, 0, 0.8)
Case 1 (5, 4, 1, 2, 3) (0, 0, 0, 1, 2) (0, 0, 0, 0.2, 0.8)

2 · k2 = 2
Case 2 (1, 5, 2, 3, 4) (2, 0, 0, 0, 1) (0.7, 0, 0, 0, 0.3)
Case 2 (5, 1, 2, 3, 4) (1, 0, 0, 0, 2) (0.2, 0, 0, 0, 0.8)

As we can see, in the �rst situation we obtain the same number (k1 = 9) of extreme
points. In the second situation, the permutations (1,5,2,3,4) and (5,1,2,3,4) generate
the same extreme point for Bel′, but di�erent for Bel. Furthermore, permutations
(1,5,2,3,4), (1,5,3,2,4) and (1,5,4,2,3) give rise to the same extreme point for Bel,
while for Bel′ they generate three di�erent extreme points because the mass of
E∗2 goes to x2, x3 or x4, respectively. The same happens with the permutations
(5,1,2,3,4), (5,1,3,2,4) and (5,1,4,2,3).

So in the end, Bel′ has k1+3k2 = 12 extreme points while Bel only has k1+2k2 =
11 extreme points. �

Finally, we adapt the results from Subsection 2.3 to the speci�c case of p-boxes.
The �rst result is somewhat similar to Proposition 12, who was telling us when
we can replace a focal element E by another E∗ ⊂ E to increase the number of
extreme points.

Corollary 14. Let (F , F ) be a p-box on {x1, . . . , xn} and denote by Bel its asso-
ciated belief function. Let F denote the set of focal sets of Bel, and assume that
Ek = {xi} ∈ F for some i = 2, . . . , n− 1. Consider a belief function Bel′ whose set
of focal sets is given by F ′ = (F\{xi}) ∪ E∗k , where E∗k = {xi−1, xi, xi+1}. Then,
Bel′ is also a p-box and Bel′ has strictly more extreme points than Bel.

Proof. The fact that Bel′ is a p-box follows from the fact that if Ek = {xi}, then
Ek−1 satis�es maxEk−1 ≤ xi and minEk−1 ≤ xi−1 and Ek+1 satis�es minEk+1 ≥
xi and maxEk+1 ≥ xi+1, hence we still have Ek−1 ≺ E∗k ≺ Ek+1 and the focal sets
of Bel′ are still ordered. The second part is direct since for any permutation m(Ek)
can only go to xi, while this is not the case for m(E∗k). �

The second result builds upon Proposition 5, and shows that adding non-singleton
focal sets, in the case of p-boxes, strictly increases the number of extreme points.

Proposition 15. Let (F , F ) be a p-box on {x1, . . . , xn} and denote by Bel its
associated belief function, and let E1 ≺ . . . ≺ Ek be its focal elements. If there
exists an interval E = [xi, xj ], with i < j, such that El ≺ E ≺ El+1 for some

i = 1, . . . , n− 1, then the p-box (F
′
, F
′

) whose focal elements are E1, . . . , Ek, E has
more focal sets than (F , F ) and has more extreme points than (F , F ).

Proof. That it has at least as many extreme points is direct using Proposition 5,
and we now have to prove that it has strictly more.
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If |E| = 2, the result can be proved by using the same arguments as in Proposi-
tion 4. If |E| > 2, let us consider the two following permutations

σ1 = (i− 1, i− 2, . . . , 1, j + 1, j + 2, . . . , n, i, j, i+ 1, i+ 2, . . . , j − 2, j − 1)

and

σ2 = (j + 1, j + 2, . . . , n, i− 1, i− 2, . . . , 1, j, i, i+ 1, i+ 2, . . . , j − 2, j − 1)

that will generate the same vectors and extreme points for Bel. To see this, consider
that

• any focal set preceding E in the order will necessarily contain an element
within x1, . . . , xi and have an upper bound with an index being at most j,
and that if it contains xi, its upper bound index is necessarily lower than j
and that,

• any focal set succeeding E will necessarily contain an element within xj ,
. . . , xn and have a lower bound with an index being at least i, and that if
it contains xj , its lower bound index is necessarily higher than i.

Furthermore, the focal sets preceding E and succeeding E form the partition
{E1, . . . , El} ∪ {El+1, . . . , Ek} of E1, . . . , Ek. This means that no set in E1, . . . , Ek
can contain both xi and xj . Also note that, if we denote vσ the vector of V(Bel)
obtained for σ, we have vσ(i+ 1) = vσ(i+ 2) = ... = vσ(j − 2) = vσ(j − 1) = 0 for
σ = σ1 and σ = σ2 (otherwise E could not be inserted in the existing focal sets).

To �nish the proof, it is then su�cient to note that σ1 and σ2 would generate
two distinct vectors of V(Bel′), since m(E) would be assigned to xi for σ1, and to
xj for σ2, as E contains both xi and xj �

This Proposition also tells us that, to have a maximal number of extreme points,
a p-box should be such that if Ei = [xk, xl] is a focal set, then Ei+1 should be either
[xk+1, xl] or [xk, xl+1], that is the p-box focal sets should be obtained by iteratively
incrementing their lower/upper bound by one element, so that they have a maximal
number of them.

4.2. The Pell family of p-boxes. Let us now show that a particular subset of
p-boxes, that we will call the Pell family, and its members Pell p-boxes, have as
number of extreme points the Pell number. We will then proceed to show that these
p-boxes are actually the only one having the maximal number of extreme points a
p-box can have.

The family of Pell p-boxes consists of those p-boxes on X = {x1, . . . , xn} such
that the following sets are focal:

{x1, x2}, {xn−1, xn},
∀i = 2, . . . , n− 1, {xi−1, xi, xi+1},
∀i = 2, . . . , n− 1, either [xi−1, xi+2] or [xi, xi+1].

The sets {x1} and {xn} are also allowed to be focal; therefore, we assume through-
out this paragraph thatm({x1}),m({xn}) ≥ 0. However, the mass of the remaining
sets is strictly positive. In Figure 5 we have depicted all the p-boxes of the Pell
family for n = 4 and n = 5. Note that Pell p-boxes are characterized by the fact
that their focal sets have a maximal cardinality of 4.

Let us �rst start by showing that some members of the Pell family indeed have
a number of extreme points equal to the Pell number.
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Figure 5. P-boxes of the Pell family for n = 4 and n = 5.

Proposition 16. Consider the p-box (F , F ) of the Pell family such that the fol-
lowing sets are focal:

{x1, x2}, {xn−1, xn},
{xi−1, xi, xi+1} ∀i = 2, . . . , n− 1,
[xi, xi+1] ∀i = 2, . . . , n− 1.

Also, we assume that m({x1}),m({xn}) ≥ 0. Then, the number of extreme points
of (F , F ) is the Pell number Pn.

Proof. We will proceed by induction over n. For n = 1, the result is trivial. As-
suming now that the results is true for n− 1, let us consider the case of n. Assume
that m({x1}) > 0; the case m({x1}) = 0 follows by analogy. First note that
vσ1 ∈ {1, 2, 3} whatever the permutation, as the only focal sets including x1 are
{x1}, {x1, x2}, {x1, x2, x3} by hypothesis. In the case m({x1}) = 0, vσ1 ∈ {0, 1, 2},
and the proof is completely analogous.

Let us count the number of vectors vσ such that vσ1 = 3. This means that
{x1, x2} and {x1, x2, x3} assign their mass to x1. For this, x1 necessarily appears
before x2 and x3 in the permutation σ associated with vσ. Furthermore, since x1
has no common focal sets with x4, . . . , xn, the position of x1 w.r.t. x4, . . . , xn is
irrelevant. Therefore, we can consider that x1 appears in the �rst position in the
permutation σ associated with vσ. Then, the number of di�erent vectors vσ such
that vσ1 = 3 equals the number of di�erent combinations of x2, . . . , xn generating
di�erent extreme points, which by hypothesis of induction equals Pn−1.

Let us now count the number of vectors vσ such that vσ1 = 2. This means that
x3 appears before x1, and x1 appears before x2 in the permutation σ associated
with vσ. Again, since x1 has no common focal sets with x4, . . . , xn, we can assume
that the two last elements in the permutation σ associated with vσ are xσ(n−1) =
x1, xσ(n) = x2. Then, the number of vectors v

σ such that vσ1 = 2 equals the number
of combinations of the elements x3, . . . , xn, which by hypothesis of induction equals
Pn−2.
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Finally, let us count the number of vectors vσ such that vσ1 = 1. This means
that both x2 and x3 appear before x1 in the permutation σ associated with vσ.
Using again the fact that x1 has no common focal set with x4, . . . , xn, so we can
assume that x1 appears in the last position of the permutation: xσ(n) = x1. Then,
the number of vectors such that vσ1 = 1 is the number of di�erent combinations of
x2, . . . , xn, which equals Pn−1.

Then, the number of extreme points coincide with the sum of vectors such that
vσ1 equals 1, 2 or 3: 2Pn−1 + Pn−2 = Pn, the Pell number. �

In fact, we can use Propositions 12 and 16 to prove that all the p-boxes of the
Pell family have Pn extreme points.

Theorem 17. If (F , F ) is a p-box of the Pell family on X = {x1, . . . , xn}, its
number of extreme points is the Pell number Pn.

Proof. Consider a p-box (F , F ) of the Pell family. If [xi, xi+1] is a focal set for
any i = 2, . . . , n, we can apply Proposition 16 directly to get the result. Assume
that this is not the case, and denote by xi1 < . . . < xik the elements such that
2 ≤ i1 < . . . < ik < n− 1 and the focal set is [xij−1, xij+2], for j = 1, . . . , k.

Applying Proposition 12 with the sets

E− = {xi1−1, xi1 , xi1+1}, E+ = {xi1 , xi1+1, xi1+2},
E = {xi1−1, xi1 , xi1+1, xi1+2} and E∗ = {xi1 , xi1+1},

we obtain a new p-box that has the same number of focal sets than (F , F ), since
we substitute the focal set E by E∗ and i1 + 1 − (i1 − 1) = 2. Again, we can do
the same for j = 2, . . . , k, keeping the same number of extreme points, and at the
end we will obtain a p-box described by Proposition 16, whose number of extreme
points is Pn. �

4.3. Maximal number of extreme points of a p-box. Using the tools we
have developed so far, we can now establish the main result of the paper, that is
characterizing the maximal number of extreme points of a p-box, and that this
number is reached only for speci�c structures.

Theorem 18. Let (F , F ) be a p-box on {x1, . . . , xn}. The following holds:

(1) The maximal number of extreme points of a p-box on {x1, . . . , xn} is the
Pell number Pn.

(2) (F , F ) has Pn extreme points if and only if it is a p-box of the Pell family.

Proof. The idea of the proof is simple: starting with an arbitrary p-box (F , F ), we
will increase its number of focal sets and extreme points to reach a p-box of the
Pell family, through the mechanisms we have developed so far.

The �rst step is to remove unnecessary singletons in the following way: if Ei =
{xi} is a focal set of (F , F ) for some i = 2, . . . , n − 1, we substitute it by E∗i =
{xi−1, xi, xi−1}. We consider the p-box (F 1, F 1) by considering the non-singleton
focal sets of (F , F ) plus the elements E∗i such that {xi} is a focal set. According
to Corollary 14, (F 1, F 1) has at least as many points as (F , F ), and strictly more
if one singleton focal set has been replaced.

The second step consists in adding focal sets to �ll in �gaps� between two con-
secutive focal sets of (F 1, F 1) (thus non-decreasing the number of extreme points),
building a second p-box (F 2, F 2). Denote by E1 ≺ . . . ≺ Ek the focal sets of
(F 1, F 1). Let us use the following notation:

ei = minEi and ei = maxEi
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ei ei+1 ei ei+1

Ei

Ei+1

Figure 6. Construction of F−i (blue sets) and F+
i (red sets) from

Ei and Ei+1 (in gray).

for any i = 1, . . . , k, and let us de�ne the following sets:

F1 = {[x1, x] | x ∈ [x2, e1)},
Fk = {[x, xn] | x ∈ (ek, xn]},
F−i = {[ei, x] | x ∈ (ei, ei+1]},
F+
i = {[y, ei+1] | y ∈ (ei, ei+1},

for any i = 2, . . . , k − 1. The construction of the sets F−i and F+
i is pictured in

Figure 6.
These sets satisfy the following properties:

(1) E ≺ E1 for any E ∈ F1.
(2) Ek ≺ E for any E ∈ Fk.
(3) Ei ≺ E ≺ E∗ ≺ Ei+1 for any E ∈ F−i , E∗ ∈ F

+
i for i = 2, . . . , n− 1.

Then, all the elements in {E1, . . . , Ek}∪F1∪Fk
⋃k−1
i=2

(
F−i ∪ F

+
i

)
are ordered with

respect to ≺ and de�ne a p-box (F 2, F 2). According to Proposition 15, it holds
that:

a) If F1∪Fk
⋃k−1
i=2

(
F−i ∪ F

+
i

)
⊆ {E1, . . . , Ek}, then (F 1, F 1) = (F 2, F 2), and

therefore they have the same number of extreme points.
b) Otherwise, (F 2, F 2) has more extreme points than (F 1, F 1).

Let G1 ≺ . . . ≺ Gs denote the focal sets of (F 2, F 2), and let G be the set of these
focal sets. Now, there are two cases:

(1) If max{|G1|, . . . , |Gs|} ≤ 4, (F 2, F 2) is a p-box of the Pell family.
(2) If max{|G1|, . . . , |Gs|} = l > 4, denote by i1 < . . . < ir the indexes such

that |Gi1 | = . . . = |Gis | = l. Let us use again the following notation:

g
ij

= minGij and gij = maxGij

for j = 1, . . . , r. Then, by construction, [g
ij−1

, gij ], [gij
, gij+1] ∈ F for any

j = 1, . . . , r. Then, for any j = 1, . . . , r, we de�ne the following sets:

G∗ij = [g
ij+1

, gij−1].

Then, the sets in F∗ = F\({Gi1 , . . . , Gir}) ∪ {G∗i1 , . . . , G
∗
ir
} de�ne a p-box

(F 3, F 3) which, according to Proposition 12 has more extreme points than
(F 2, F 2) and maxG∈F∗ |G| = l∗ < l. If l∗ ≤ 4, we are in case 1 and get a Pell

p-box; otherwise, we repeat the process until we obtain a p-box (F ∗, F
∗
)

such that the length of its focal sets is less than or equal to 4.

In both cases, at the end we obtain a p-box of the Pell family that, as we already
know from Theorem 17, has Pn extreme points. Furthermore, by construction, the
only p-boxes with Pn extreme points are those p-boxes which admit no more focal
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x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6

P-box (F , F ) P-box (F 1, F 1)

P-box (F 2, F 2) P-box (F 3, F 3)

Figure 7. The original p-box (F , F ) from Example 19 is depicted
in the top-left. Applying Corollary 14 we obtain p-box (F 1, F 1),
and using Corollary 15 we obtain the p-box (F 2, F 2). Finally,
using Proposition 12 we obtain the p-box (F 3, F 3), that is a p-box
from the Pell family. We have drawn in blue the focal sets that are
modi�ed or added.

sets and whose length is less than or equal to 4, that is, p-boxes from the Pell
family.

�

As we can see, the number of extreme points of a p-box is strictly lower than n!,
but it is at least 2n−1, as we had already seen in Corollary 11.

Example 19. Consider a p-box (F , F ) on {x1, x2, x3, x4, x5, x6} with focal sets:

E1 = [x1, x2], E2 = [x1, x2, x3], E3 = [x1, x5], E4 = [x3, x5],
E5 = [x4, x5], E6 = {x5}, E7 = [x5, x6].

It can be proven that this p-box has 38 extreme points. Figure 7 illustrates the
processes of the previous proof to obtain new p-boxes with a strictly higher number
of extreme points. It can be seen that applying Corollaries 14, as well as Propo-
sitions 12 and 15 we obtain a p-box from the Pell family that has more extreme
points than (F , F ). �

5. Counting the number of extreme points of a p-box

Now that we have characterized those p-boxes reaching the maximal number of
extreme points a p-box may induce, as well as this maximal number, one problem
that remains is whether we can �nd an Algorithm that exploits the particular
structure of p-boxes to �nd and enumerate those extreme points.

This is what we propose in this section, where we give an Algorithm to grow a
tree of depth n whose leaves correspond to the distinct elements of V(Bel) when
Bel is induced by a p-box.

In this section, we provide an algorithm to enumerate the extreme points of a
given p-box. This algorithm that builds a tree consists in incrementally forming
vectors ~v ∈ V(Bel) by successively assigning values vi to their elements. The ith
level of the tree corresponds to vi values, and each leaf then corresponds to a
distinct extreme point (whose values can be found back by going from the leaf
to the root). Pseudo-Algorithm 3 describes how children are created from a node
having depth d < n. The idea of the algorithm is, for a given depth d, to make
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as many branches as the value vd+1 that vectors v ∈ V(Bel) can take, knowing
the values v1, . . . , vd de�ned by the parents of this node in the tree. At a given
depth d, a node is created (Loop 4-22 of Algorithm 3) for each possible number of
focal elements that can assign their masses to xd+1 (including 0), and the created
node receives the corresponding probability P ({xd+1}) as well as the value vd+1 of
the corresponding permutation vector in V, and the update set of focal elements
determining which mass remains to be distributed to which possible elements. Note
that since all focal sets of Bel are distinct, the value `∗ (line 7) will be di�erent
for all numbers in Nb, . . . , Nb that ~vd+1 can take. This ensures that every such
number correspond to a possible permutation (hence to an extreme point) where
xd+1 ≤σ xj for j ∈ {d + 2, . . . , `∗}, hence to an extreme point of the p-box. The
whole tree can then be built by applying this method recursively, until a depth n
is reached. The root node (level 0) simply starts with E = F .

The idea of the algorithm is as follows: assume that for x1, the only focal sets
in F containing it are E1 = {x1}, E2{x1, x2} and E3 = {x1, x2, x3, x4}. If v1 = 2,
then it necessarily means that m(E1) and m(E2) are assigned to x1, and m(E3) to
another element, concluding that P ({x1}) = m(E1) + m(E2) for this path. This
is formalized by Lines 5-6 in Algorithm 3. v1 = 2 also necessary means that x2
is, in the corresponding permutation, after x1, otherwise E2 would not have been
assigned to x1, and that x3 or x4 is before x1 in the permutation, so we can safely
remove x2 and x1 from all sets containing x3, x4 in addition to removing E1, E2

whose mass have been a�ected, which is equivalent to all the sets containing x2
after E3. When v1 = 3, then all we know is that x2, x3, x4 are after x1 in the
permutation, and we can only remove E1, E2, E3, without changing the other sets
(as we do not know the ordering between x2, x3, x4). This update corresponds to
Lines 9 to 21 in Algorithm 3. Example 20 provides a more complete illustration of
the mechanism.

Example 20. Consider a p-box (F , F ) on {x1, x2, x3, x4} whose focal sets are given
by:

E1 = {x1}, m(E1) = 0.2.
E2 = {x1, x2, x3}, m(E2) = 0.1.
E3 = {x1, x2, x3, x4}, m(E3) = 0.4.
E4 = {x3, x4}, m(E4) = 0.3.

Following the previous steps, the number of focal sets that can be assigned to x1
lies between 1 and 3.

v1 = 3: In this case, P ({x1}) = 0.7. Updating the focal sets using Line 15-17, we
only obtain one updated focal set E4 = {x3, x4} such that m(E4) = 0.3,
having removed E1, E2, E3. We necessarily have along this path v2 = 0
(only one children is created), and v3 can either be 0 or 1. Then, we obtain
two extreme points, given by:

P1 = (0.7, 0, 0.3, 0), P2 = (0.7, 0, 0, 0.3).

and corresponding respectively to v3 = 1, v3 = 0
v1 = 2: In this case, P ({x1}) = 0.3. If v1 = 2, this means that x4 appears before

x1 in the permutation assigned to the vector v, but that x2 and x3 appear
after it. Then, after updating the focal sets, we only obtain E3 = {x4} and
E4 = {x4}, that we merge into E4 = {x4} with mass m(E4) = 0.7. Then,
we obtain one extreme point:

P3 = (0.3, 0, 0, 0.7).
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Algorithm 3: Tree building algorithm

Input: Tree node with depth d < n and associated set E of focal elements
Output: Children of node

1 Nb←
{

0 if {xd+1} 6∈ E ,
1 else.

;

2 Nb← |{Ek ∈ E|xd+1 ∈ Ek}| /* Number of focal sets containing xd+1

*/ ;

3 k ← infEk∈E k ;

4 for i = Nb, . . . , Nb do

5 P ({xd+1})←
∑i
j=Nbm(Ej+k−1) /* m(E0) = 0 */ ;

6 vd+1 ← i ;

7 `∗ ← max`{x` ∈ Ei+k−1} /* `∗ = d+ 1 if Ek−1 */;

8 E∗ ← E ;
9 if i 6= Nb then

10 foreach E ∈ E∗ do
11 E ← E \ {x1, . . . , x`∗} ;
12 if E = ∅ then Remove E from E∗;
13 end

14 foreach Ek = Ek+1 ∈ E∗ do
15 m(Ek+1)← m(Ek) +m(Ek+1);

16 Remove Ek from E∗ ;
17 end

18 end

19 else

20 foreach E ∈ E∗ s.t. xd+1 ∈ E do Remove E from E∗;
21 end

22 Create children of depth d+ 1 and associate P ({xd+1}), vd+1, E∗ to it. ;

23 end

v1 = 1: In this case, P ({x1}) = 0.2. Updating the focal sets, we obtain:

E2 = {x2, x3}, m(E2) = 0.1.
E3 = {x2, x3, x4}, m(E3) = 0.4.
E4 = {x3, x4}, m(E4) = 0.3.

Now, we apply again Algorithm 3 with these three focal sets. For this aim,
note that Nb = 0 and Nb = 2:

v2 = 2: In this case P ({x2}) = 0.5 and updating the focal sets we only obtain
E4 = {x3, x4} with mass 0.3. Similarly to the case v1 = 3, we obtain
two extreme points:

P4 = (0.2, 0.5, 0.3, 0), P5 = (0.2, 0.5, 0, 0.3).

v2 = 1: In this case P ({x2}) = 0.1 and updating the focal sets we only obtain
(after merging of identical sets) E4 = {x4} with mass 0.7. Then we
obtain one extreme point:

P6 = (0.2, 0.1, 0, 0.7).

v2 = 0: In this case P ({x2}) = 0. If we update the focal sets, we obtain:

E3 = {x3}, m(E3) = 0.1.
E4 = {x3, x4}, m(E4) = 0.7.
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v1 = 1

P ({x1}) = 0.2

x2 x3 x4

v2 = 1

P ({x2}) = 0.1
x3 x4

v2 = 0

P ({x2}) = 0
x3 x4

v2 = 2

P ({x2}) = 0.5 x3 x4

P6 = (0.2, 0.1, 0, 0.7)

P7 = (0.2, 0, 0.8, 0)
P8 = (0.2, 0, 0.1, 0.7)

P4 = (0.2, 0.5, 0.3, 0)
P5 = (0.2, 0.5, 0, 0.3)

v1 = 2

P ({x1}) = 0.3

x2 x3 x3

P3 = (0.3, 0, 0, 0.7)

v1 = 3

P ({x1}) = 0.7

x2 x3 x4

P1 = (0.7, 0, 0.3, 0)
P2 = (0.7, 0, 0, 0.3)

Figure 8. Algorithm for extracting the extreme points.

Applying again Algorithm 3 to these sets, we obtain the following
extreme points:

P7 = (0.2, 0, 0.8, 0), P8 = (0.2, 0, 0.1, 0.7).

We have depicted this procedure in Figure 8, developing only those branches that
are non-trivial, that is the �rst level of the tree and the second level when v1 = 1.
�

Finally, let us note that the algorithm will have one leaf per extreme point,
meaning that its complexity is linear in the number m of such extreme points. In
the worst case, this number is the Pell number, which grows exponentially with
n, rather than super-exponentially (as the general maximum number of extreme
points is n!). Also, we can expect that, in general, practical p-boxes will have a
quite lower number of extreme points.

6. Conclusions

This paper mainly deals with the problem of characterizing, and �nding, the
extreme points of p-boxes. The main theoretical result of the paper is that the
maximal number of extreme points of a p-box de�ned on {x1, . . . , xn} is the Pell
number Pn, and that only those speci�c p-boxes of the Pell family have this number
of extreme points. To do so, we have also provided a number of what we believe
to be new and interesting results about the number of extreme points of belief
functions, among which a new characterization in terms of �counting� vectors and
a speci�cation of the condition under which a belief function has n! extreme points.
These counting vectors also show that the number of extreme points of a belief
function only depends on the focal sets, but they are irrelevant of their associated
mass.

On the more practical side, we have provided a tree-growing algorithm allowing
one to enumerate and �nd the extreme points associated to a p-box. It should
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be noted that our results somehow complement those obtained in the continuous
case [28], and allow one to work, for example, in a discretized setting. Possible
extensions of this work include the study of extreme points of bivariate p-boxes [22],
which unfortunately are not special cases of belief functions in general (yet, �rst
studies could focus on those cases where bivariate p-boxes are also belief functions,
such as comonotone [16, 17] or maxitive bivariate p-boxes [19]).
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