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Visual Servoing Control of Soft Robots based on Finite Element
Model

Zhongkai Zhang, Thor Morales Bieze, Jeremie Dequidt, Alexandre Kruszewski, Christian Duriez

Abstract—In this paper, we propose a strategy for the
control of soft robots with visual tracking and simulation-based
predictor. A kinematic model of soft robots is obtained thanks to
the Finite Element Method (FEM) computed in real-time. The
FEM allows to obtain a prediction of the Jacobian matrix of the
robot. This allows a first control of the robot, in the actuator
space. Then, a second control strategy based on the feedback
of infrared cameras is developed to obtain a correction of the
effector position. The robust stability of this closed-loop system
is obtained based on Lyapunov stability theory. Otherwise, to
deal with the problem of image features (the marker points
placed on the end effector of soft robot) loss, a switched control
strategy is proposed to combine both the open-loop controller
and the closed-loop controller. Finally, experiments on a parallel
soft robot driven by four cables are conducted and show the
effectiveness of these methods for the real-time control of soft
robots.

Index Terms—Soft robot, Finite Element Model, simulation-
based predictor, robust stability, image features loss

NOMENCLATURE

x Position vector of all FEM nodes.

dx Incremental displacement of nodes.

f,; External load vector.

f(x) Internal stiffness forces vector.

K (x) Tangent stiffness matrix.

H, Mapping matrix between nodes and actuator directions.
H, Mapping matrix between nodes and effector directions.
A, Force contribution vector of actuators.

0, Position vector in the actuator space.

6. Position vector of effectors.

W,, (x) Coupling matrix between effectors and actuators.
W, (x) Coupling matrix between actuators.

877 Position vector of effectors when A, = 0.

877 Position vector of actuators when A, = 0.

AA, Incremental force contribution of actuators.

A8, Incremental position contribution of actuators.

J(x) Jacobian Matrix for soft robot.

J (%) The predicted Jacobian matrix.

** Corresponding variables * of the simulated FEM model.

I. INTRODUCTION

Compared to the rigid robots, soft robots are more suitable
to be used in confined spaces [1], for manipulation of
objects with different shapes [2], and for safe interaction with
humans [3]. The promising applications stimulate researchers
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to develop effective methods for the design and analysis of
soft robots. New design methodologies are proposed using
promising soft actuator technologies [4], [5]. However, the
accuracy and efficiency of soft robots is still limited by the
difficulties of modeling and control of deformable systems
that have, theoretically, an infinite number of degrees of
freedom. With such a problem in mind, the purpose of this
paper is to show a general kinematic model and tracking
control method for soft robots.

The FEM provides an approach to model soft robots with
generic assumption on the shape and on the constitutive
material of the robots. The computation of FEM models
is often considered as too costly for real-time applications.
However, it has been proved that we are capable today of
computing FEM models of soft tissues in real-time for haptic
rendering [6]. In order to get the Jacobian matrix for the
control design, a simulation-based predictor is realized by
updating a simulation model built in SOFA [7] (an open-
source real-time FEM simulator). In this paper, combining the
soft robotic system and its simulation model, a closed-loop
controller is designed and the condition of robust stability is
provided when the error of the estimated Jacobian matrix is
considered.

The closed-loop controller proposed in this paper employs
the position-based visual servoing strategy. A fundamental
requirement is to keep the image features available in the im-
plementation of robot control. In general, image features loss
can be caused by image processing error, camera breakdown,
occlusions, or features leaving the camera field of view. One
purpose of our work is to develop a more general method
which can be widely used to solve this problem. Combining
the open-loop and closed-loop control strategies, we present
a novel switched control method to handle the image features
loss. Compared with the switching strategy in [8] which tries
to keep features in the field of view, our method can allow
the image feature loss without constraint on the duration.

To the best of our knowledge, this is the first paper
which addresses the robust stability of soft robots which
are controlled based on the real-time FEM model. Three
main contributions are shown in this paper: (1) A simulation-
based predictor is designed to get the Jacobian matrix for
both the open-loop and closed-loop control design of soft
robot. (2) We obtain the condition of robust stability for
the closed-loop system based on Lyapunov stability theory;
(3) Combining the open-loop controller and the closed-loop
controller, aswitched control method is proposed to deal with
the problem of image features loss.



This paper is organized as follows. The related research in
the field of model and control of soft robot is reviewed in
Section 2. The discrete-time kinematic model and its features
are shown in Section 3. In Section 4, The control problems
about simulation-based predictor, open-loop control, and the
closed-loop control are presented. Section 5 presents the
switched control method to deal with the problem of image
features loss. Some experiments are tested on a soft parallel
robot and the results are presented in Section 6. Finally,
conclusions and feature work are shown in Section 7.

II. RELATED RESEARCH

Several works about modeling and control of soft ma-
nipulators can be found in the literature. In [9], the vi-
sual servoing approach is applied for position control of
cable-driven soft robotic manipulator based on a constant
curvature models (CCM) model. In [10], a cascaded cur-
vature controller is designed to control a highly compliant
2D manipulator actuated by bi-directional fluidic elastomer
actuators. Then the method is extended to control a soft
spatial fluidic elastomer manipulator [11]. In many practical
cases, such as the significant contacts with the environment
and the nonconstant deformation, the CCM does not capture
all features of soft robots. Non-constant curvature models
(NCCM) are therefore proposed, with a higher degree of
accuracy, to model soft robots [12], [13]. However, controller
design based on NCCM is more challenging. Besides, the
traditional modeling methods are difficult to be used to model
soft robots with complex geometrical shapes, like parallel
deformable structures.

In the field of soft robotics, FEM is applied to model the
deformation of soft structures [14], [15]. The first application
of FEM in control design is shown in [16] where a novel
method of modeling and control of soft robots is presented
by extracting the reduced mechanical compliance in the space
of the actuators and the end-effector. Further improvements
and applications of this idea are presented in [17] where an
asynchronous simulation framework is proposed to improve
the control performances. Without using the feedback infor-
mation from the robotic system, the above controllers are
implemented in open-loop form which results in low control
performances when the robots are modeled imprecisely. To
overcome this drawback, in our former work [18], a closed-
loop controller is designed with the assumption that the
Jacobian matrix is estimated accurately. However, for real
applications, the estimation error could affect the stability
of the closed-loop system so that the robust stability is
investigated in this paper.

Some existing methods that deal with image feature loss
can be found. One strategy is to improve the algorithms to
avoid any visual feature loss [19]. Another approach that
addresses the problem of image feature loss is based on a
prediction of the location of the features [20], [21]. Generally
speaking, the methods based on prediction are available to
continue the visual servoing task in case of feature loss.
However, none of them can effectively deal with image
feature loss during a long period of time.

III. BACKGROUND: KINEMATIC MODELING BASED ON
REAL-TIME FINITE ELEMENT METHOD

In this section, the kinematic model of soft robot is
deduced from the FEM model with the assumption of large
displacements (non-linear internal forces) but ignoring inertia
(we compute a succession of quasi-static problems) [16],
[18], [22]. Then we show the basic features of the Jacobian
matrix of soft robot.

A. Kinematic model

Based on FEM, the computation of soft robotic config-
urations is implemented step by step in the workspace of
soft robots. The quasi-static equilibrium function of the entire
robot at the (k+ 1)th sampling time is given by:
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In (1), £(x41) is expressed by its first-order Taylor expan-
sion:

f(xpp1) = F(xk) + K (xx) dXp 1 2

Combining (1) and (2), the equilibrium equation of soft
robots at each step can be established. To reduce its size, the
equation can be projected into a constraint space defined by
nodes that are the “effectors” of the robot and other nodes
that are “actuated”. See [17] or [18] for the detail:

Sekrt = Wea (x¢) Aap+ 807 3)

5a7k+l =Wy (Xk) A’ak + 657’:6 €]
where W, (x;) = He7k+1K’1 (X¢) Hikﬂ and Wy, (x¢) =
Ha,k+1K_1 (Xk) HZ,kH-

Assuming that the external force f,; is constant (i.e.
gravity), the kinematic equation (3) and (4) can be simplified
as:

Ockr1 = Ock+ Wea (Xk) Ay js )
Ouk+1 = Oak +Waa (Xk) Ay g1 (6)

Then, combining (5) and (6), we have
Ockr1 = ek +J (Xp) NSk @)

where J (x;) = Weq (x¢) W (x).
At the next sampling time, the configuration of the robot
is updated by

X1 =X + K THE Al g g ®)

so that the Jacobian Matrix J(x;) can be computed at each
sampling time.

B. Features of the Jacobian Matrix

The features of J(x) depend on those of the compliance
matrices W,, (x) and W, (x). Two features needed for the
controller design are:



(1) Non constant matrices. The compliance matrices
W, (x) and W, (x) cannot be pre-computed because their
values depend on the positions of all nodes (the configuration
of soft robot) so that they change at each iteration. Based
on the fact that the soft materials have slow dynamics and
are not subject to high-frequency external loads, we make
the assumption that the matrices W,,(x) and W,, (x) are
constant between two sampling times.

(2) Rank of the matrix. The tangent stiffness matrix K (x)
is positive definite when the robot is constrained to have
no rigid body motion. By placing the actuators on different
nodes of the FEM or with different directions, there will be
no linear dependency between lines of H, and H, so that the
matrices W, (X) is positive-definite and W, (x) is generally
full row rank when the number of lines in H, is smaller than
the number of lines in H, , and W, (x) is full column rank
in the opposite case. Further discussion about these matrices
can be found in [18].

V. CONTROL DESIGN FOR VISUAL SERVOING OF SOFT
ROBOTS

The control strategy proposed in this paper consists of two
parts: A predictor of the value of Jacobian matrix at each
sampling time and a closed-loop controller for the tracking
control of soft robot.

A. simulation-based predictor and open-loop control

For traditional robots, that have generally few Degrees of
Freedom (DoF), Jacobian matrix J (x) can be computed easily
using the state variables of the real robots. This is feasible
because J (x) depends on some fixed parameters and several
state variables which can be measured or observed on the
robots directly. However, the way we obtain J(x) for soft
robots, as presented above, is different. Namely, the Jacobian
matrix only includes a small part of the state of the robots.

Thanks to the development of the real-time FEM technol-
ogy, the soft robots can be simulated in real-time to get the
value of J(x) at each sampling time after the configuration
has been updated. A closed-loop controller for the simulation
model can be designed based on (7) to make sure that the
Jacobian matrix of the simulation model stays close to the
Jacobian matrix of the real robot. Besides the function of es-
timating the Jacobian matrix, the simulation-based predictor
can also generate an open-loop controller for soft robots.

As shown in Fig. 1, the implementation of open-loop
controller consists of two parts: closed-loop control of simu-
lation model and the open-loop control of soft robot. We still
define the strategy as open-loop control because no feedback
information from the soft robot is needed. In this strategy,
both the simulation model and the soft robot share the same
control input which is the contribution of the actuators and
is computed based on the simulation model.

B. Closed-loop control of soft robots

The first consideration in the design of our closed-loop
controller is the use of the simulation-based predictor. In

" Simulation model |

Fig. 1. The implementation of the open-loop controller. At each sampling
time, J (&) is computed from the simulation model and is used for the
computation of control input for both the simulation model and soft robot.
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Fig. 2. The implementation of closed-loop controller. Controller 1 and Con-
troller 2 are the closed-loop controllers for the soft robot and the simulation
model, respectively. The two controllers can be designed independently.

order to decouple the controller design for the compound
system, we propose the strategy to implement the closed-
loop control which is illustrated in Fig. 2.

Controller 1 is designed to make sure that the end effector
of soft robot tracks its desired trajectory 8,. Controller 2
is employed to actuate the simulation model so that the
end effector of simulation model follows the end effector
of the real robot. Thanks to controller 2, the configurations
of both simulation model and soft robot are similar. We
assume that there is no big perturbation on the robot (strong
contact or force) which would create dissimilar configurations
between the real and simulated robot, while having a good
registration of the effector (more formal proof of convergence
with errors on J (x) can be found in section IV.D.). Therefore,
the Jacobian matrix of soft robot can be predicted by the
simulation model.

C. Closed-loop control law design

The control law design is based on proportional control
strategy and pseudo-inverse control allocation. In order to
simplify the controller design for trajectory tracking, two
assumptions are required:

1. rankJ (%) = 3 which means that there is no singular
configuration in the workspace.

2. The actuators are not constrained (no saturation).

By defining a new control vector Uy = J (X) Adgy, the
kinematic model can be rewritten as

Ockt1 = Ok + U 9)

The tracking error is defined as ¢, = 8, — 04 In the task
space, the control vector Uy can be designed as:

U = —kpex — (8ax — Sax+1) (10)



where k), is a constant parameter for the proportional gain.
Then the Pseudo-inverse based control allocation is em-
ployed to obtain a unique solution:

which is the minimum 2-norm solution of Uy = J (Xr) DOy g
and u = Ad,y is the control input of the robot. For over-
actuated system, the contribution of actuators with minimal
energy can be computed by (11). Considering that the matrix
J (%) has full row rank, the Pseudo-inverse matrix J* (&) can
1

be computed by J* (%) =J7 (%) J (%) I (%))

Substituting (10) into the (11), the control law can be
written as:

u=—J" (&) (kpex +Sax — Sax+1) (12)

We use the same implementation strategy for the control
law of controller 2, concerning the simulated robot:

= —J" (&) (kpei + 855 — 8 a1 (13)

where k), is also a constant parameter for the proportional
gain.

D. Closed loop stability analysis

In this subsection, we consider the situation where the
Jacobian matrix is estimated imprecisely, i.e. J (%) # J (x).
The object of the analysis is to get the range of control
parameter k, to make sure that the closed-loop system is
stable. Considering that the closed-loop system is linear, the
stability analysis is done with 84 % = 84 k+1-

Substituting (12) into (7), we have the closed-loop system:

err1 = (1—kp)ex+ o (14)

where
o =ky [T=J (x) I ()] ex

We assume that, even if the Jacobian matrix is es-
timated imprecisely, the error is bounded. By introduc-
ing a scalar y, we have of w; < }/zkf,e,{ek where > >||

PR AL a
T=J(x0)J" )] [T-T(x)J* (R)] || and 7> 0.

In order to keep the robust stability of the closed-loop
system (14), we have the following theorem:

Theorem 1. The robust stability of the closed-loop system
(14) stands if 5
kp S ( 0, Ty )

where 0 <y < 1.
Proof: We consider the Lyapunov canditate function:

Vie)=ele 15)

In the following, we will find the conditions so that the
variation of Lyapunov function is negative:

A

aV =V (exr1) =V (ex)
=€l €1 — e[ e

_ [(1 —ky)* - 1} lep+2(1—ky) el o+ ol o (16)

In (16), we add the term —o[w] wx—Y?ksefer] +

o [0f O — Y*ksef e] where o> 0 is a accessorial parameter

for the proof. Then we have
AV = [(1+ay?) b — 2k, ef e +2 (1 —kp) ef @k
+(1—a) o o+ a[of oy —Phele]  (17)

Given that a),{ ;< yzklz,e,{ek, we can find a bound for dV.
(17) can be rewritten into a matrix form:

T
ol o]
Wy (0]

_ 1 -k,
| e
To make sure that dV < 0, the matrix B should be negative

definite so that 1 — o < 0 or

(1+ay?) k; —2k, <0

(18)

where

(1+ar) & 2%,
1—k,

(19)
and

det(B) = (ay’ —a— o’y ) kr + 20k, —1>0  (20)

The analytical solution of (19) and (20) is obtained from
the following analysis.

From (19), we have 0 <k, < Faz . In (20), ay? — o —
a?y* < 0 with o > 1 and 7> 0. In order to make sure that
(20) has solution, we need the discriminant to be positive,
ie. a(1—7y*)(a—1)>0so that y< 1.

(20) can be rewritten in o as

—Vhoo? +kp (kY —kp+2) . —1>0 1)

The dominant term in (21) is negative. We need to have
real roots, which means that the discriminant must be posi-
tive:

o (v =1) (Vk; — ko + 4k, —4) > 0

With the condition of k, > 0 and y < 1, (22) can be
simplified as

(22)

(V= 1)k} +4k, —4 <0 (23)

so that we have k, < liy or ky > ,%l.
2 and k, > —
the solution of (23) is k, < S H’

Now we check if there is intersection between the solution
set of (21) and o > 1. The solution of (21) is o < a < o
where o and oy are the roots of the polynomial in (21). o
is computed as

There is no

intersection between k), <3 . Therefore,



Phy—ky+2+ \/y“k;, — 222+ 42k, + kG — 42 — 4k, + 4
272k,

To make sure that (21) holds with o > 1, we need a; > 1,
i.e.

£ (0 kp) < \J VG — 20203 + 472k, + K — 472 — 4k +4
(24
where f (7, k,) = Y?k, +k, — 2. One can prove that there is no
intersection between the solution set of (23) and f (7, k,) > 0.
On the other hand, f (7, k,) <0 implies k, < ﬁ which is
compatible with the constraint k, < %, given that 0 <y < 1.
Therefore, we have 0 <k, < %, [ |

V. SWITCHED CONTROL FOR IMAGE FEATURE LOSS

A common failure using visual servoing strategies is
caused by the image feature loss when the feedback infor-
mation is not available in applications. To deal with this
problem, we introduce a switching control strategy. The
switched controller consists of an open-loop controller, a
closed-loop controller and switching conditions. If the image
feature is available, the closed-loop controller shown in Fig.
2 is employed. When the image feature loss occurs, the
controller switches to the open-loop strategy shown in Fig.
1.

At the last sampling time before the switching time, the
contributions of the actuators computed by controller 1 and
controller 2 (both are shown in Fig. 2) are §, and &,
respectively. When the image loss occurs, the incremental
contribution of the actuators is AJ7, so that the control inputs
for both systems are &; + A8, It is noted that the control
inputs (83 + A&;) and 8, for the soft robot at the switching
time are different. To avoid abrupt motions at the switching
time, the input 8,41 of the soft robot should progressively
switch from one input to the other:

Oakt1 = Ok +p (5Z,k RAY R Suk) 25)

where p is a constant parameter ( 0 < p < 1). This parameter
can be used to tune the length of the switching time period.

Remark 1. Intuitively, if the closed-loop subsystem is acti-
vated long enough with slow switching (i.e., long enough
dwell or average dwell time), the energy increase caused by
switching or unstable subsystem can be trade off to maintain
the stability of the system [23]. For the implementation
of the controller, we assume that the image loss happens
occasionally so that switching frequency is low.

VI. EXPERIMENTS

In this section, we show the experimental setup and control
performances for trajectory tracking of soft robot.

A. Experimental setup

The experimental setput for the visual servoing control of
soft robot is depicted in Fig. 3. The system consists of a

Fig. 3. Experimental setup for trajectory tracking of soft robot. The robot
has four soft legs and is actuated by cables. The simulation model servers
as a simulation-based predictor. The 3D position of the end effector can be
obtained by the position perception system.

soft robot, a simulation model, and four cameras for position
perception. For simplicity, we employ a commercial tracking
system (OptiTrack by NaturalPoint company with sampling
frequency 100Hz and a precision of 0.1mm ) to track the 3-D
position of end effector.

As a simulation-based predictor, the simulation model is
built in SOFA framework and its configuration is updated
with the frequency of 15 Hz. A volumetric mesh is generated
based on the geometry of the robot. The mesh used for this
study is composed by 4147 tetrahedra. The optimal number
of elements in the mesh cannot be determined analytically,
and it is usually chosen as a trade-off between accuracy
and computation time. The soft robot is a parallel robot
with four soft legs and is actuated by cables. Without using
any rigid components, the robot is made of silicone with
Young modulus being 240kPa. At each sampling time, the
displacements of cables are computed by the control law and
are sent to servomotors. In the experiments, the workspace
of the robot is limited into a range where the forces of cables
can be computed to be positive values.

B. Experiment results

The tracking performances with controllers proposed in
this paper are shown in this section. Firstly, the performance
to track a predefined circle trajectory with the closed-loop
control strategy is illustrated. In this case, the position vector
O4+1 is known for controller 1 (see Fig. 2). However, it is
unknown for controller 2 so that we simplify the controller 2
as u® = fkf,j * (&) ¢*. Then the switched control performance
is presented in the case of image feature loss. The control
strategy can also be employed for tracking other kinds of
trajectory. The performances are similar so that we only show
the performances for circle trajectory in this paper.

1) Control performances of closed-loop controller: The
desired trajectory is predefined as a circle with radius 15
mm and the desired angular velocity is 27t/30 (rad/step). We
express the coordinates of the robot and of the simulation
model in a unique coordinate system. To get the minimum
tracking error, the optimal control parameter is tuned through
intensive tests. In the experiments, the control parameters are
chosen as k, = kj, =0.5.
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Fig. 5. Control inputs of soft robot and simulation mode using the closed-
loop controller

The 3-D trajectory of end effector within one period (191
sampling times) is illustrated in Fig. 4. The average tracking
errors for the real robot and the simulation model are 0.34
mm and 0.89 mm respectively. The synchronous movement
can be guaranteed between the simulation model and the soft
robot so that the Jacobian matrix can be predicted by the
simulation model for the controller design.

The control inputs of the actuators are illustrated in Fig.
(5). Because of the periodical movement of the end effector,
the control inputs are also periodical. In order to compen-
sate the unmodelled disturbances, chattering phenomenon is
found in the control inputs.

2) Control performances of switched control: The control
performances of switched control strategy are tested on the
robot which is controlled to track the desired trajectory:
a circle with radius 15 mm and angular velocity 27/30
(rad/step). When the image features are available, the closed-
loop controller is activated with control parameters k, =k}, =
0.5. The open-loop controller with k), = p = 0.5 is employed
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Fig. 6. End effector trajectories of soft robot and simulation model using
the switched control strategy.

if the image features loss is detected. In the experiments, the
image feature loss occurs between sampling steps 100-120,
180-220, and 350-600. The desired trajectory of simulation
model is the trajectory of real robot. However, it changes
to be the predefined trajectory when the image feature loss
happens.

The trajectory of end effector is shown in Fig. 6. If the
interval of image feature loss is shorter, the desired trajectory
can be tracked with high accuracy using the switched con-
troller. However, the tracking performance deteriorates when
the interval is larger. It is noted that the performance of the
proposed switch controller highly depends on the simulation
model. Thanks to the high accuracy of finite element model,
the tracking error is always limited in a small bound.

The components of control inputs are shown in Fig. 7.
In the switching time, the chattering phenomenon becomes
more significant which is similar to that of the trajectory.
Without the feedback correction at each sampling time, the
control inputs with open-loop controller are smooth, however
at the cost of larger tracking error.
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the switched control strategy.

VII. CONCLUSION

The paper presents a general method for the kinematic
modeling and visual servoing control of soft robots based
on FEM. The robot is simulated in real time to predict
the Jacobian matrix and to generate an open-loop controller.
Combined with the predictor and the soft robot, a closed-
loop control strategy is proposed for visual servoing control
of soft robot. Considering the unaccurate simulation model,
the robust stability is proved based on Lyapunov stability
theory. Futher, to deal with the problem of image feature loss
during the visual servoing, the open-loop control and closed-
loop control are combined to generate a switched strategy.
A parallel soft robot actuated by cables is used to test these
methods proposed in this paper.

The implementation of our strategy needs that the open-
loop system is stable and the movement of the robot is quasi-
static. In our further work, the constraints on the actuators
and the workspace will be considered in the position control
and path planning.
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