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Abstract When having to make a prediction under probabilistic uncertainty in ordinal prob-
lems, the median offers a number of interesting properties compared to other statistics such
as the expected value. In particular, it does not depend on a particular metric defined over
the elements, but still takes account of the ordinal nature of the data. It can also be shown
to be the minimizer of the L1 loss function. In this paper, we show that similar results can
be obtained when the uncertainty is described not by a single probability distribution, but
by a convex set of those. In particular, we relate the lower and upper medians to the L1 loss
function via the notion of lower and upper expectations (and extend these results to general
quantiles). We also show that, using a different decision rule, the lower and upper median
can be retrieved when assuming the cost to be strictly monotonic and symmetric, and noth-
ing more. Finally, we run some tests to show the interest of using Median based predictions
with convex sets of probabilities in ordinal regression problems.

keywords: Ordinal space, ordinal classification, ordinal regression, imprecise prob-
abilities, median, sign-desirability

1 Introduction

There are many practical problems in which ordinal variables appear, as they are instrumen-
tal to model spaces where there exists a natural ordering of possible values, but where a
numerical treatment of those values is unwarranted. For example, the rating of movies can
be one of the following labels: Very-Bad, Bad, Average, Good, Very-Good, that are ordered
from the worst situation to the best, but without claiming that a Very-Bad movie is five times
worse than a Very-Good. Other examples include the selection of applicants for a position,
the selection of papers for conferences (Reject statement is worse than accept, but they
are not numerically related), judging the crisis level of some situations, the risk associated
to particular loans or contracts for banks and insurances, . . .
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Two of the main fields where such variables appear are the multi-criteria decision mak-
ing and ordinal classification. In multi-criteria decision making, it is often easier to define
an order between possible values of a criteria than to associate meaningful numbers (i.e.,
utility functions) to each of these values, unless such numbers (e.g., monetary units) already
exist. Such ordinal variables can then be exploited by adequate methods [1,2] or by adapt-
ing existing numerical ones to an ordinal setting [3]. Ordinal classification [4,5] (or ordinal
regression [6,7,8]), on the other hand, aims at learning from a set of examples a model that
predict the output label of a new instance when the finite set of possible labels (elements,
classes, . . . ) is naturally ordered.

Note that in these problems, ordinal variables should be treated differently than nominal
ones (e.g., appearing in multi-class classification) and continuous or numerical ones, since
in the former case there is no ordering between elements and in the latter there usually exists
a metric on the outputs (value 5 is five times bigger than value 1). When our knowledge of
the ordinal variable value is modelled by a probability, the median plays an important role as
a predictive value. Indeed, in contrast to the notion of expected value, the median does not
depend on a particular metric defined over the elements, therefore not facing the problem
of defining such a metric, and in contrast with the notion of modal (most probable) value, it
takes account of the ordinal nature of the labels.

Just as the modal value can be associated to the minimization of the 0/1 loss function,
and the expected value to the minimization of the L2 loss function, the median is known to
be the minimizer of the L1 loss function [9]. This result, by connecting the median with usual
loss minimization approaches, provides it with a sound interpretation in learning problems,
and allows one to learn a model by directly minimizing the L1 loss function rather than by
estimating a probabilistic model.

All those results, however, rely on the fact that the estimated probabilistic model is
reliable, in the sense that it is close to the theoretical unknown distribution. While this a
reasonable assumption when sufficient, precise data are available, it may become unrea-
sonable when data are scarce, missing or noisy. In such situations, imprecise probability
approaches [10,11] may be instrumental. These approaches consider not a single but a (con-
vex) set of probability models to describe uncertainty, with the idea that this set should
converge towards a single estimate as more reliable data become available. Such imprecise
probabilistic models can be used to produce cautious inferences in the form of imprecise
predictions, making precise predictions only when the available information is sufficient to
do so [12]. Imprecise probabilistic ideas have recently been applied to ordinal regression
problems [13], yet those applications considered the usual 0/1 loss and its associated pre-
dictions which, as we shall see, may produce counter-intuitive results in an ordinal setting.

When applying imprecise probabilistic approaches to ordinal problems, a natural exten-
sion of the median is to look at lower and upper medians as potential predictors, yet we
may wonder if they are still related to specific loss functions, and what is the nature of this
relation. Exploring these questions is the main goal of the present paper, in which we show
in Section 3 that lower and upper median intervals are natural predictions when considering
the L1 loss (Section 3.1). These intervals can also be retrieved by considering symmetric and
strictly increasing losses, which are special cases of V -shaped costs [14,15], provided we
use the notion of sign-preference (Section 3.2). We perform in Section 4 some experiments
demonstrating the potential interest of imprecise median predictions. Finally, we show in
Section 5 that some of our results can be extended to linear losses, by considering lower and
upper quantiles.
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2 Setting

In an ordinal problem such as ordinal classification, we are interested in making predictions
and inferences on a space Y = {y1, . . . ,ym} of ordered possible elements, that is yi ≺ yi+1
for i = 1, . . . ,m− 1. This is different from usual classification problems, where the space
Y = {y1, . . . ,ym} is assumed to be unordered (i.e., without structure), and also from usual
regression problems, as no metric is assumed between the elements of Y , in the sense that
y5 is not “five times better” than y1.

2.1 Ordinal problem under probabilistic uncertainty

When the uncertainty over Y is defined by a probability mass p : Y → [0,1] with p j :=
p(y j), classical predictions associated to p include the modal value

Mop = arg max
yi∈Y

pi, (1)

the expected value
Ep( f ) = ∑

yi∈Y
pi f (yi) (2)

where f : Y →R is a real-valued function on Y , typically f (yi) = i, and finally the median
value, defined as

Mep = {yi ∈ Y : P({y ≥ yi})≥ 0.5∧P({y ≤ yi})≥ 0.5}. (3)

As said in the introduction, modal and expected values do not appear as the most natural
choices in an ordinal setting.

The modal value ignores the ordinal nature of the problem, and has a particularly counter-
intuitive behaviour in an ordinal setting: it is not monotonic w.r.t. stochastic dominance [14].
Recall that a probability p2 stochastically dominates p1 if P2({y≥ yk})≥ P1({y≥ yk}) for
all k ∈ [1;m], where Pi denotes the probability measure induced by pi. In such a case, it
seems natural to require that ŷ2 � ŷ1, with ŷi the prediction taken w.r..t. pi.

Example 1 Consider the space Y = {y1, . . . ,y3} and the probability masses (denoted in
vectorial form)

p1 = (0.34,0.36,0.3),

p2 = (0.34,0.33,0.33).

p2 stochastically dominates p1, yet the modal value of p1 and p2 are respectively ŷ1 = y2
and ŷ2 = y1, hence ŷ2 ≺ ŷ1, in contrast with what could be naturally expected in an ordinal
context.

This does not happen with the expected value, since it is known [16] that if p2 stochasti-
cally dominates p1, then for any function f (y1), . . . , f (ym) increasing with the index i of yi,
we will have Ep1( f ) ≤ Ep2( f ). However, the expected value depends on a function f that,
beyond being increasing with the rank i of labels yi, can be defined arbitrarily and does not
take account of the non-numerical nature of Y . It can also result in a value that is different
from all the values f (y1), . . . , f (ym), therefore not corresponding to an element of Y . It is
also more sensible to the definition of Y to a certain extent, for instance if one splits a label
into two sublabels.
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`

y1 y2 y3 y4 y5

`3,·

Fig. 1 A V-shaped loss function `3,·.

Example 2 Consider again the space Y = {y1, . . . ,y3} and the probability mass

p = (0.2,0.2,0.6),

with f (yi) = i, we obtain the expected value

Ep( f ) = 0.2 ·1+0.2 ·2+0.6 ·3 = 2.4

that we would associate to y2. Assume now that y3 is split in two labels y3,y4 and that the
new estimated distribution is

p = (0.2,0.2,0.3,0.3).

this time, the expected value is

Ep( f ) = 0.2 ·1+0.2 ·2+0.3 ·3+0.3 ·4 = 2.7

which would no be associated to y2 but to y3. Yet, in both cases the median would be y3.

Another usual means to derive a prediction ŷ from a probability distribution consists of
minimizing the expected value of some loss function ` : [1;m]2→ R where `i, j := `(i, j) is
the loss incurred by choosing yi as a prediction when y j is the true value. That is, to find

ŷ = arg min
yi∈Y

E(`i,·) (4)

with E(`i,·) = ∑ j∈1,...,m p j`i, j. This prediction can then be considered as optimal w.r.t. to the
loss `. This is equivalent to compare every possible pair yi,yk, stating that yi is preferred to
yk, denoted yi >p yk, if

E(`k,·− `i,·)> 0, (5)

and then take the maximal element of the complete order >p.
In ordinal problems, it is natural to ask the losses to follow a V-shaped form [15], that

is `i, j+1 ≥ `i, j if j ≥ i, and `i, j−1 ≥ `i, j if j ≤ i. Such a generic V-shaped loss function is
shown in Figure 1 for i = 3 and m = 5. This means that the loss `i,· should not decrease
as we consider elements further away from yi. It is also natural to assume that `i,i = 0 and
`i, j > 0 for i 6= j. We will call strict a V-shaped loss function where `i, j+1 > `i, j if j ≥ i, and
`i, j−1 > `i, j if j ≤ i.

Both the mode, the expected value obtained for f (yi) = i and the median can be retrieved
as predictions minimizing some particular losses, all being V-shaped. For instance, the mode
is obtained by minimizing the 0/1 loss, that is `i, j = 1 for all i 6= j, which is a very specific
form of V-shaped loss where `i,· is constant (hence neither increasing nor decreasing) on all
elements but yi.

The expected value is obtained by minimizing the L2 loss defined as

`i, j = (i− j)2 (6)
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while the median Mep of the distribution p corresponds to minimizing the L1 loss

`i, j = |i− j|, (7)

which are both strict V-shaped loss functions, and are moreover symmetric. As recalled in
the introduction, this connection between the Median and the L1 loss provides an interesting
justification for taking the Median as a predictive value, and allows to minimize this loss to
directly get the median rather than first estimating p. In the next section, we will investigate
to which extent the link between the median and the L1 loss still holds when considering im-
precisely defined probabilities. We will also propose a new connection between the median
and more qualitative losses.

2.2 Imprecise probabilities and ordinal problems

In some cases, identifying the probability p accurately may be problematic, due to lack of
information. This lack may be due to scarce, noisy or imprecise data, or to the use of expert
opinions only providing partial information about p. In such situations, many authors [10,
17,9] have argued that it is sensible to consider as estimate a convex set P of probabilities
rather than a precise probability p. This is the approach we consider here. Recall that given
a function f : Y → R, the lower expectation E( f ) of f w.r.t. P is

E( f ) = inf
p∈P

E( f ) (8)

and the upper expectation E( f ) is obtained by considering sup instead of inf in Equation (8).
As P is most often described by linear constraints over Y , solving Equation (8) can usu-
ally be done by using linear programming techniques. The lower expectation is translation
invariant, i.e., E(c+ d f ) = c+ dE( f ) with c and d constants, and dual to the upper, i.e.,
E( f ) = −E(− f ). The lower (upper) probability P(A) (P(A)) of an event A corresponds to
the lower (upper) expectation of the indicator function 1(A) : Y →{0,1}.

Extending the decision rule and Equation (5) to the case where uncertainty is described
by P can be done in several ways [12]. Here, we retain the notion of maximality, which
states that yi is preferred to yk, denoted yi >P yk, if

inf
p∈P

E(`k,·− `i,·) = E(`k,·− `i,·)> 0, (9)

that is if, considering all probabilities in P , the lower bound of the expectation of `k,·− `i,·
is positive. The possibly imprecise decision Ŷ then consists in taking the maximal elements
of the partial order >P , that is

Ŷ = {yi ∈ Y : ∀y j, j 6= i,y j 6>P yi}. (10)

When P = {p}, we retrieve the usual loss minimizer as a prediction. One question is then to
know which kind of losses are adapted to the ordinal setting when predictions are obtained
through Equations (9) (10). In addition to the problem illustrated in Example 1, 0/1 loss may
provide, in the imprecise setting, predictions that contains ”gaps”, in the sense that Ŷ may
not be an interval [yi,y j] = {yk : i≤ k ≤ j} with i≤ j, as illustrates the next example.
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Example 3 Consider the space Y = {y1, . . . ,y3} and the set P described by the following
constraints

0.35≤ p(y1)≤ 0.45,

p(y2) = 0.2,

0.35≤ p(y3)≤ 0.45.

In this case under the 0/1 loss ` we have that Ŷ = {y1,y3}, since for all probabilities within
P , we have p(y1) and p(y3) higher than p(y2), hence

E(`2,·− `1,·) = inf
p∈P

p(y1)− p(y2) = 0.15

is higher than 0, meaning that y1 is preferred to y2 (by symmetry, the same happens for y3).

Clearly, providing an interval [yi,y j] as a prediction rather than an arbitrary set in an
ordinal setting may be a desirable feature. For instance, it is enforced in the framework
proposed by Del Coz et al. [18]. Also, since the median as a prediction has very good
properties for ordinal problems when the uncertainty is described by p, it seems natural to
consider its extension when uncertainty is described as a set P . Given a set P , the lower
and upper medians [19] are defined as

MeP = inf
p∈P

inf{yi ∈ Y : P({y ≥ yi})≥ 0.5∧P({y ≤ yi})≥ 0.5}, (11)

MeP = sup
p∈P

sup{yi ∈ Y : P({y ≥ yi})≥ 0.5∧P({y ≤ yi})≥ 0.5}, (12)

or using the notation of Equation (3),

MeP = inf
p∈P

infMep and MeP = sup
p∈P

supMep.

In Example 3, the prediction using the lower and upper median would have been y2, a quite
different answer from the one obtained by using the 0/1 loss.

3 Retrieving median bounds with probability sets

The next sections explore how the prediction [MeP ,MeP ] can be justified from a loss min-
imisation perspective. We will show that this can be done in at least two ways, one consider-
ing the L1 loss within Equation (9), the other considering the notion of sign-preference [19]
for strict V-shaped loss functions.

The connection with the L1 loss shows that the results true in the precise setting remain
true in the imprecise one (a feature that is not true for many concepts such as indepen-
dence [20], conditioning [21], etc.), while the second connection links the median with a
more qualitative view allowing some (numerical) imprecision in the loss definition.

To simplify notations, we will denote Me and Me the indices of respectively MeP and
MeP in the rest of the paper, hence yMe := MeP and yMe := MeP .
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`

y1 y2 y3 y4 y5

1

2

`4,·− `3,·

`4,·− `2,·

Fig. 2 Difference of L1 loss function for k = 4 and different values of i < k.

3.1 Imprecise median and the L1 loss

Before showing that [yMe ,yMe ] can be obtained by applying Equations (9) and (10) with the
L1 loss (7), let us first look at the form of this L1 loss. Consider two labels yi,yk with i < k,
then the difference

`k, j− `i, j =


k− i if j < i
k+ i−2 j if i≤ j ≤ k
i− k if k < j

(13)

is a constant for j outside the interval [yi,yk], positive for j < i and negative for j > k, and is
decreasing between i and k. This is pictured for m = 5 in Figure 2. Similarly, we have that

`i, j− `k, j =


i− k if j < i
2 j− k− i if i≤ j ≤ k
k− i if k < j

(14)

is a constant for j outside the interval [yi,yk], negative for j < i and positive for j > k, and
is increasing between i and k. We can now demonstrate the following result

Proposition 1 Under L1 loss and given an uncertainty model P , the prediction Ŷ obtained
by Equation (10) is

Ŷ = [yMe ,yMe ] (15)

Proof The proof will be done in two steps. First, we will show that any element outside
[yMe ,yMe ] is dominated (in the sense of Equation (9)) by an element within [yMe ,yMe ], hence
is not maximal. Second, we will prove that any two elements within [yMe ,yMe ] are incom-
parable according to Equation (9)). Note that if [yMe ,yMe ] reduces to one element, then the
second step is not needed.

First part: consider an element yi with i < Me and the element yMe . yi >P yMe if

E(`i, j− `Me, j)

is positive. Now consider the following function g : [1;m]→ R such that

g( j) =

{
i−Me if j < Me
Me− i if Me ≤ j.
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g is such that g < `i,·− `Me,·, hence E(g)< E(`i,·− `Me,·). Now, if 1(A) stands for the indi-
cator function of event A, we have that

E(g) = E(1( j<Me) (i−Me)+1(Me≤ j) (Me− i))

≥ E(1( j<Me) (i−Me))+E(1(Me≤ j) (Me− i))

= (i−Me)E(1( j<Me) )+(Me− i)E(1(Me≤ j) )

= (Me− i)(E(1(Me≤ j) )−E(1( j<Me) ))

> 0.

The first inequality follows from E( f +g)≥E( f )+E(g), while the last one follows from the
fact that by definition all probability measures within P are such that P(y ≥ yMe)≥ 0.5 and
P(y < yMe) < 0.5, hence (E(1(Me≤ j) )−E(1( j<Me) )) is positive. The case yi with Me < i
can be proved using a similar reasoning. Hence the only possible optimal elements are those
within the interval [yMe ,yMe ].

Second part: consider two elements yi,yk with Me ≤ i < k ≤ Me (remember that if
Me = Me, the first part of the proof shows that this is the unique optimal element). Let us
now consider the function f such that

f ( j) =

{
i− k if j < k
k− i if k ≤ j.

Clearly f > `i,·− `k,·, hence E( f )> E(`i,·− `k,·). We then have

E( f ) = E(1( j<k) (i− k)+1(k≤ j) (k− i))

≤ E(1( j<k) (i− k))+E(1(k≤ j) (k− i))

= (k− i)(E(1(k≤ j) )−E(1( j<k) ))

= (k− i)(1−2E(1( j<k) ))

≤ 0

which shows that yk 6>P yi. The fourth equality follows from the fact that E(A) = 1−
E(Ac) (where event A is equivalent to its indicator function), and since Me < k < Me, all
probabilities within P are such that P(y < yk) > 0.5. A similar reasoning can be followed
to show yi 6>P yk.

Proposition 1 does show that the results holding for the L1 loss with precise probabilities
extend to convex sets of probabilities, in the sense that the obtained prediction is now the set
of medians, that reduces to a unique element when the uncertainty model is a distribution p
with a unique median. Also, using the L1 loss avoids having ”gaps” in the prediction, which
is a reasonable requirement in an ordinal setting.

In practice, this also means that when we consider the L1 loss function in ordinal prob-
lems, there is no need to compare every pair of possible elements when assessing 10, just
to compute two boundary values. This may be especially interesting when m, the number of
elements, is high.

Remark 1 The above results can be easily extended to the case where the space Y is the real
line (following similar reasonings), in which case we can show that the prediction obtained
with the L1 loss is the interval bounded by the lower and upper Median. Similar results have
been obtained for the L2 loss and the interval bounded by lower and upper expectations [22].
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3.2 Imprecise median and strict V-shaped symmetric losses

So far, we have assumed specific numeric form of the loss function, showing that using
the L1 loss leads to predict interval [yMe ,yMe ] when using Equation (10). Yet using other
V-shaped loss functions such as the L2 loss will lead to other predictions [22].

Also, it may appear strange in some settings to consider that we can exactly specify a
loss function while only providing imprecise estimates of probabilities. It would then be
appealing to connect the median (or its interval-valued counter-part) with a looser or more
qualitative definition of loss functions, that is without assuming a particular numerical form
of this function.

With this idea in mind, we show that the notion of sign-preference, developed by Couso
et al. [19] and that can be applied to any ordered values, can be used to justify producing
[yMe ,yMe ] as a prediction when

1. V-shaped loss function `i, j are strict and,
2. `i, j = c(|i− j|) is a function of |i− j|.

These two assumptions encompass all losses that are increasing and symmetric around la-
bel yi, and therefore define a family L of loss functions that we will call strict V-shaped
symmetric. Using only these two assumptions means that the difference `k, j − `i, j is not
numerically defined for two labels yi,yk with i < k, hence classical lower and upper expec-
tations cannot be computed. However, we have that

`k, j− `i, j is


> 0 if |k− j|> |i− j|
= 0 if |k− j|= |i− j|
< 0 if |k− j|< |i− j|

(16)

This means that the notion of sign-preference can be applied to this kind of function. Recall
that this notion states that yi is sign-preferred to yk, noted yi >SP yk, if the following value

E(1(`k,·−`i,·>0) −1(`i,·−`k,·>0) ) (17)

is positive. Contrary to the expectation of `k,·− `i,·, Equation (17) can be evaluated under
our assumptions (strict increase and symmetry), using Equation (16). A possibly imprecise
prediction ŶSP can then be defined according to this new criterion, i.e.,

ŶSP = {yi ∈ Y : ∀y j, j 6= i,y j 6>SP yi}, (18)

Before demonstrating that [yMe ,yMe ] is again the natural prediction in this framework, we
first need an intermediate result.

Lemma 1 Let f : Y → R and g : Y → R be two functions such that their sum f +g = c is
some constant c ∈ R, then

E( f −g) = E( f )−E(g)

Proof We have
E( f −g) = E( f +g−2g) = c−2E(g)

by translation invariance and duality (with E) of E. Similarly, we have E( f −g) = 2E( f )−c.
Finally, we have

2E( f −g) = 2E( f )−2E(g)

by summing the two previous equalities.
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Using Lemma 1, we can show the result

Proposition 2 Under strict V-shaped symmetric losses L and given an uncertainty model
P , the prediction ŶSP obtained by Equation (18) is

ŶSP = [yMe ,yMe ] (19)

Proof We will proceed in two steps similar to the ones of the proof of Proposition 1, and
with a very similar reasoning.

First part: consider an element yi with i < Me. We have that yMe >SP yi, since

E(1(`i,·−`Me ,·>0) −1(`Me ,·−`i,·>0) )≥

E(1(`i,·−`Me ,·>0) )+E(−1(`Me ,·−`i,·>0) )≥

E(1(`i,·−`Me ,·>0) )−E(−1(`Me ,·−`i,·>0) )≥

P([yMe ,ym])−P([y1,yMe−1])> 0.

The last inequality follows from the fact that P([y1,yMe−1])< 0.5 and P([yMe ,ym])≥ 0.5 for
any p ∈P . The third inequality is due to the fact that 1(`Me ,·−`i,·>0) ⊆ [y1,yMe−1] and that
[yMe ,ym]⊆ 1(`i,·−`Me ,·>0) . The case yi with i > Me can be treated similarly.

Second part: consider two elements yi,yk with Me ≤ i< k≤Me (again if Me =Me, the
first part of the proof shows that this is the unique optimal element). We have that yk 6>SP yi,
since

E(1(`i,·−`k,·>0) −1(`k,·−`i,·>0) )≤

E(1(`i,·−`k,·>0) −1(`k,·−`i,·≥0) ) =

E(1(`i,·−`k,·>0) )−E(1(`k,·−`i,·≥0) )≤ 0

where the second inequality follows from Lemma 1 and the last inequality follows by the
fact that [yMe ,ym] ⊆ 1(`i,·−`k,·>0) ⊆ [yMe ,ym] (hence P({y j : ` j,·− ` j,· > 0}) ≤ 0.5) and that
[y1,yMe ] ⊆ 1(`k,·−`i,·≥0) ⊆ [y1,yMe ] (hence P({y j : `k, j− `i, j ≥ 0}) ≥ 0.5). This shows that
yk 6>P yi.

This interesting property indicates that using the notion of sign-preference allows us to re-
trieve the median bounded interval under very mild assumptions. Actually, we can either
see L as a qualitative definition of the loss (there is no need to specify numerical values,
just the shape of the losses) or as considering a whole family of loss functions at once. In
practice, this may be useful if an expert or a decision maker does not want to define a precise
numerical loss function, but is ready to accept that the loss is symmetric and increasing as
we get further away from the right label.

4 Experiments on ordinal classification

The goal of ordinal classification is to associate an instance x coming from an instance space
X to a single label of the space Y = {y1, . . . ,ym} of possible classes. Ordinal classification
differs from multi-class classification in that labels yi are ordered, that is yi ≺ yi+1 for i =
1, . . . ,m−1. An usual task is then to estimate the theoretical conditional probability measure
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Px : 2Y → [0,1] associated to an instance x from a set of n training samples (xi, `xi) ∈
X ×Y , i = 1, . . . ,n, and to produce predictions from this conditional probability.

In this section, we will apply our previous results to this problem of ordinal classifica-
tion, and will compare the case where the estimation is a precise model Px to the case where
it corresponds to a set Px of models.

4.1 Evaluation

Comparing classifiers that return cautious (partial) predictions in the form of multiple classes
is a hard problem. Indeed, compared to the usual setting, measures of performance have to
include the informativeness of the predictions in addition to the accuracy. Zaffalon et al. [23]
discuss in details the case of comparing a cautious prediction with a precise one under a 0/1
loss assumption, using a betting interpretation.

However, under the mild assumption of Section 3.2, we do not even have access to nu-
merical loss functions and it is not obvious how to properly define the numerical evaluation
in this case. What we propose is a qualitative comparison of classifiers by declaring whether
a prediction is better than another. Given two (cautious) classifications Ŷ1,Ŷ2 coming from
two different classifiers C1,C2 and a ground truth yk, we say that

– If min{| j− k| : y j ∈ Ŷ1} < min{| j− k| : y j ∈ Ŷ2}, C1 wins. That is, among the classes
predicted by C1 is a better one (in the sense of V-shaped losses) than among the classes
predicted by C2 (and inversely for C2 to win).

– If min{| j− k| : y j ∈ Ŷ1} = min{| j− k| : y j ∈ Ŷ2}, then C1 wins if |Ŷ1| ≤ |Ŷ2|, that is if
C1 is more informative than C2 and their predictions are equally good.

– Else, the result is a tie.

Example 4 Assume that the observed ground truth for an instance x is y2, with Y = {y1, . . . ,y6},
and that classifier C1 predicts Ŷ1 = {y3,y4}. Then,

– if C2 predicts Ŷ2 = {y2,y3,y4}, C2 wins because

min{| j−2| : y j ∈ Ŷ1}= 1 > 0 = min{| j−2| : y j ∈ Ŷ2},

– if C2 predicts Ŷ2 = {y3,y4,y5}, C1 wins because

min{| j−2| : y j ∈ Ŷ1}= 1 = min{| j−2| : y j ∈ Ŷ2}

but Ŷ1 is more precise.

Once the number of wins, ties, losses have been estimated over the test data set, we
can apply a classical sign-test [24] to check whether the difference between win and loss is
significant.

4.2 Method

The method we use is the extension of Frank and Hall [4] method to imprecise probabili-
ties presented in details in [13]. Frank and Hall propose to estimate the m−1 probabilities
Px(Ak) := F(yk) where Ak = {y1, . . . ,yk}, and the mapping F : Y → [0,1] can be seen as
discrete cumulative distribution. The probabilities Px(`x = yk) are then deduced through the
formula Px(yk) = max{0,Fx(yk)−Fx(yk−1)}.
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The same idea can be applied to sets of probabilities, in which case we estimate the
bounds

Px(Ak) := Fx(yk) and Px(Ak) := Fx(yk),

where Fx,Fx : Y → [0,1] can be seen as lower and upper cumulative distributions defin-
ing a well-studied [25] probability set Px([F ,F ]). Similarly to Frank and Hall, if esti-
mated F ,F are non-increasing or do not satisfy inequality F ≤ F , they can be corrected
through Algorithm 1. Any base classifier returning probability bounds can be used to esti-
mate Px(Ak),Px(Ak).

Algorithm 1: Correction of estimates F ,F into proper estimates
Input: estimates F ,F obtained from data
Output: corrected estimates F ,F

1 for k=1,. . . ,m-1 do
2 if F(yk)> F(yk+1) then F(yk+1)← F(yk);
3 if F(ym−k+1)< F(ym−k) then F(ym−k)← F(ym−k+1);

The lower expectation of any function f over Y can then be computed through the
Choquet Integral: if we denote by () a reordering of elements of Y such that f (y(1))≤ . . .≤
f (y(N)), this integral reads

E( f ) =
N

∑
i=1

( f (y(i))− f (y(i−1))P(A(i)) (20)

with f (x(0))= 0, A(i) = {x(i), . . . ,x(N)} and P(A(i))= infP∈Px([F ,F ]) P(A(i)) is the lower prob-
ability of A(i). We refer to [25] or [13] for details about how these lower probabilities can be
computed efficiently.

Example 5 Consider the case given by Table 1, where the considered function is the L1 loss
around y2. The elements used in the computation of the Choquet integral (20) for this case
are summarized in Table 1.

i y(i) f(i) A(i) Px(A(i))

1 y2 0 Y 1
2 y1 1 {y1,y3,y4,y5} 0.6
3 y3 1 {y3,y4,y5} 0.5
4 y4 2 {y4,y5} 0.45
5 y5 3 {y5} 0.25

Table 1 Choquet integral components of Example 5

The lower probability of E( f ) of f is then

E( f ) = (0−0) ·1+(1−0) ·0.6+(1−1) ·0.5+(2−1) ·0.45+(3−2)0.25 = 1.3
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Name #instances #features Name #instances #features

autoPrice 159 16 house 8L 22784 9
bank8FM 8192 9 house 16H 22784 17
bank32NH 8192 33 kinematics 8192 9

boston housing 506 14 puma8NH 8192 9
california housing 20640 9 puma32H 8192 33

cpu small 8192 13 stock 950 10
delta ailerons 7129 6 delta elevators 9517 7

friedman 40768 11

Table 2 Data set details

As a base classifier to evaluate Px(Ak),Px(Ak), we use the Naive Credal Classifier (NCC)
[26] that extends the Naive Bayesian Classifier (NBC) by allowing conditional probabilities
to become imprecise. This classifier relies on a positive real-valued hyper-parameter s, the
imprecision of Px(Ak),Px(Ak) increasing as the value s increases. For s = 0, we retrieve
the classical NBC, which makes comparison between a precise method and its imprecise
counter-part easy.

4.3 Results

In this section, our method is tested on 16 datasets of the UCI machine learning reposi-
tory [27], whose details are given in Table 2. As there is a general lack of benchmark data
sets for ordinal classification data, we used regression problems that we turned into ordi-
nal classification by discretizing the output variable. The results reported in this section are
obtained with a discretization into 7 classes of equal frequencies. We also performed exper-
iments with 5 and 9 discretized classes, obtaining the same conclusions.

All experiments compare the results of the NBC with the results of the NCC used with
s = 2, counting for each data set the number of win/loss/tie according to Section 4.1. We
study the performances of each method when using a limited amount of data, respectively
100, 200 and 300 in three different experiments, as well as the performances when consid-
ering all data. The results of these experiments are reported in Table 3. For each experiment
we performed a 10-fold cross validation. For experiments involving only a part of the data
sets (either 100, 200 or 300 data), results are averages (rounded over the closest integer)
over 10 repetitions in which data were randomly selected .

Table 3 clearly shows that while the imprecise approach is quite competitive and often
wins when there are few data (10 victory and 1 loss when considering 100 samples, 8 victory
and 1 loss with 200 samples), the results are much more balanced when the number of data
increases (even with only 300 samples). When considering the whole data sets, it can be
seen that most predictions are precise (given by the number of ties). It should also be noted
that even in case of losses, the imprecise predictions still contain the precise predictions, but
the added imprecision is not very useful (it may still warn the user that a second look at the
prediction could be worthwhile, but do not improve much over the precise method). A ten-
tative conclusion we may extract from these experiments is that using cautious predictions
in an ordinal setting is mainly useful when the number of samples is quite low, i.e., when
available information is very limited.
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number of samples
data sets 100 200 300 all data

W/L/T W/L/T W/L/T W/L/T
autoPrice 20/43/37∗ 25/55/79∗

bank8FM 85/15/0∗∗ 114/69/17∗ 128/114/58 93/104/7995
bank32NH 81/19/0∗∗ 171/29/0∗∗ 264/34/2∗∗ 813/1063/6316∗

Boston housing 42/29/29 61/68/71 54/76/170 54/90/362
California housing 78/21/1∗∗ 113/73/14∗∗ 134/117/49 128/195/20317

cpu small 50/28/22∗ 61/60/79 54/107/139∗∗ 70/128/7994
delta ailerons 54/43/3 47/74/79 61/79/160 62/68/6999

friedman 89/11/0∗∗ 138/53/9∗∗ 176/100/24∗∗ 209/320/40239
house 8L 76/22/2∗∗ 59/79/62 60/103/137∗ 86/126/22572

house 16H 64/24/12∗∗ 100/39/61∗∗ 101/98/101 130/199/22455
kinematics 87/13/0∗∗ 138/55/7∗∗ 178/104/18∗∗ 227/297/7668.
puma 8NH 92/8/0∗∗ 184/16/0∗∗ 248/52/0∗∗ 233/358/7601
puma 32H 87/13/0∗∗ 179/21/0∗∗ 245/55/0∗∗ 850/1032/6310∗

stock 48/42/10 39/69/92∗ 42/93/165∗∗ 46/101/803
delta elevators 43/51/6 49/68/83 52/98/150∗ 77/108/9332

Table 3 Result of experiments. ∗: significant difference for significance level 0.05. ∗∗: significant difference
for significance level 0.005. In bold are the case where the imprecise approach significantly win.

5 From the median to other quantiles: linear losses

So far, we have considered symmetric loss functions. Yet there may be cases in ordinal clas-
sification where such symmetry is not desirable. For instance, when judging the seriousness
of a given disease, it may be more damaging to underestimate its severity rather than overes-
timate it (or the other way around). The notion of linear loss [9] (a.k.a. pinball loss) is well
adapted to the situation. A linear loss Lα is defined as

`i, j =

{
α(i− j) if i > j
(1−α)( j− i) if i≤ j

(21)

with 0 < α < 1. The L1 loss function is retrieved for α = 1/2 (up to a constant), and α > 1/2

means that predicting higher classes than the true one is more penalized than predicting
lower ones. It has been shown [9] that the prediction optimizing the expected loss (21) using
a single probability p is the (1−α) quantile Q1−α

p defined as

Q1−α
p = {yi ∈ Y : P({y ≥ yi})≥ 1−α ∧P({y ≤ yi})≥ α}. (22)

When our uncertainty is given by a set P of potential probabilities, then this notion extends
naturally to the one of lower and upper (1−α) quantiles

Q1−α

P
= inf

p∈P
infQ1−α

p (23)

Q1−α

P = sup
p∈P

supQ1−α
p . (24)

Again, to simplify notation, we will denote Q1−α and Q1−α the indices of Q1−α

P
and Q1−α

P .
An immediate question is then to know whether Proposition 1 extends to the case of Lα loss
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functions? Before showing that, first observe that for two labels yi,yk with i < k, then the
difference

`k, j− `i, j =


α(k− i) if j < i
i− j+α(k− i) if i≤ j ≤ k
(1−α)(i− k) if k < j

(25)

is a constant for j outside the interval [yi,yk], positive for j < i and negative for j > k, and
is decreasing between i and k. This shape is similar to (13) for the L1 loss. Similarly, the
difference

`i, j− `k, j =


α(i− k) if j < i
j− i+α(i− k) if i≤ j ≤ k
(1−α)(k− i) if k < j

(26)

behaves as the Equation (14) obtained for the L1 loss.

Proposition 3 Under Lα loss and given an uncertainty model P , the prediction Ŷ obtained
by Equation (10) is

Ŷ = [yQ1−α ,yQ1−α ] (27)

Proof The proof will follow the same steps as the proof of Proposition 1, we will first show
that elements outside [yQ1−α ,yQ1−α ] are dominated by an element within it, and will then
prove that any two elements within [yQ1−α ,yQ1−α ] do not dominate each others.

First part: consider yi with i < Q1−α and the element yQ1−α . Then the function

g( j) =

{
α(i−Q1−α) if j < Q1−α

(1−α)(Q1−α − i) if Q1−α ≤ j.

is such that g≤ `i,·− `Q1−α ,·. We also have that

E(g) = E(1( j<Q1−α ) α(i−Q1−α)+1(Q1−α≤ j) (1−α)(Q1−α − i))

≥ α(i−Q1−α)E(1( j<Q1−α ) )+(1−α)(Q1−α − i)E(1(Q1−α≤ j) )

= (Q1−α − i)((1−α)E(1(Q1−α≤ j) )−αE(1( j<Q1−α ) ))> 0

where the last inequality follows from the fact that E(1(Q1−α≤ j) )≥ α and E(1( j<Q1−α ) )<

1−α , hence the term

((1−α)E(1(Q1−α≤ j) )−αE(1( j<Q1−α ) ))

is strictly positive.
Second part: consider two elements yi,yk with Q1−α ≤ i < k ≤ Q1−α (again, this part

is unnecessary if Q1−α = Q1−α ). Let us now consider the function f such that

f ( j) =

{
α(i− k) if j < k
(1−α)(k− i) if k ≤ j.
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Clearly f > `i,·− `k,·, hence E( f )> E(`i,·− `k,·). We then have

E( f ) = E(1( j<k) α(i− k)+1(k≤ j) (1−α)(k− i))

≤ E(1( j<k) α(i− k))+E(1(k≤ j) (1−α)(k− i))

= (k− i)((1−α)E(1(k≤ j) )−αE(1( j<k) ))

= (k− i)((1−α)(1−E(1( j<k) )−αE(1( j<k) ))

= (k− i)((1−α)−E(1( j<k) ))

≤ 0

which shows that yk 6>P yi. The last inequality follows from te fact that since k∈]Q1−α ,Q1−α
[,

all probabilities within P are such that P( j < yk)> 1−α . A similar reasoning can be fol-
lowed to show yi 6>P yk.

6 Conclusions and perspectives

In this paper, we have studied the problem of making prediction in an ordinal setting when
the uncertainty about the labels is described by a set of probabilities (rather than a single
one), and when the associated prediction is set-valued. In such a setting, considering the set
of predictions induced by the 0/1 loss appears somewhat unnatural, in particular because the
resulting prediction set can contain gaps, as shows Example 3.

Another solution is to consider V -shaped loss, and in particular losses depending on the
absolute value of rank differences. Considering such losses, we have shown that:

– when considering the L1 loss, the predicted set is the set bounded by the lower and upper
medians, thus generalizing results obtained in the precise case. Among other things, this
means that rather than making pairwise comparisons to produce the final prediction
when using the L1 loss, one can just compute two values;

– the set bounded by the lower and upper medians could also be justified as a prediction
when considering qualitative (i.e., not numerically defined) symmetric V -shaped losses,
using the notion of sign-desirability;

– when considering linear losses Lα , the predicted set is the set bounded by (1−α) quan-
tiles, again generalizing results obtained in the precise case.

The second result in particular seems quite interesting, as it indicates that sign-desirability
is, in some situations, a suitable tool to study families of costs defined solely by inequalities.

We have applied our findings to the problem of ordinal regression or classification, and
have proposed a way to compare precise and imprecise predictions in such settings (since
numerical comparisons are not possible with symmetric V -shaped losses without specific
numerical forms). Results indicate that providing cautious predictions in the form of Median
bounds is mainly interesting when only few learning data are available.

This work focused on the median and its relation to loss functions within an imprecise
setting, with an application to ordinal regression. However, this study suggests different
interesting avenues of research:

– Investigating the necessary and sufficient conditions to impose to loss functions in order
to retrieve the median interval, under different decision rules (e.g., classical maximality
as in Section 3.1 or sign-preference as in Section 3.2). Results from Section 5 suggest
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that symmetry and strict convexity are necessary conditions. Also, in the case of max-
imality, results from [22] linking expected value and L2 loss, and Example 3 indicate
that retrieving the median interval with other symmetric losses than the L1 loss may be
difficult;

– More generally, it would be interesting to know what are the conditions to impose on
losses for the prediction to be a closed interval, as this means that one only needs to
compute the bounds of such intervals. Again, this paper and [22] suggest that strict
convexity of the loss function is a necessary condition;

– Study to which extent the presented results can be used in other applications involving
ordinal variables, in particular the field of multi-criteria decision making, in which some
methods are closely related to ordinal regression problems [8]. Another potential field of
application is the one of robust statistics and quantile regression [28,29], which would
nevertheless require to properly extend the results of this paper to a continuous setting.
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