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Abstract

Two variables are called comonotone when there is an increasing relation be-
tween them, in the sense that when one of them increases (decreases), so does the
other one. This notion has been widely investigated in probability theory, and is
related to copulas. This contribution studies how the notion of comonotonicity
can be extended to an imprecise setting on discrete spaces, where probabili-
ties are only known to belong to a convex set. We define comonotonicity for
such sets and investigate its characterizations in terms of lower probabilities, as
well as its connection with copulas. As this theoretical characterization can be
tricky to apply to general lower probabilities, we also investigate specific models
of practical importance. In particular, we provide some sufficient conditions
for a comonotone belief function with fixed marginals to exist, and characterize
comonotone bivariate p-boxes.

Keywords: Copula, Sklar’s Theorem, Comonotonicity, Lower Probability,
Belief Function, P-box.

1. Introduction

When modelling dependencies between two variables in probability theory,
the celebrated Sklar’s Theorem [20] tells us that we can express any joint distri-
bution by means of a function called copula [17], which contains all the depen-
dency information. For example, the product copula corresponds to independent
variables.

Some other copulas also play an important theoretical role: among them are
the minimum and the  Lukasiewicz operator. Those two copulas correspond to
the so-called Frechet-Hoeffding bounds, and respectively constitute the lower
and upper bounds of every possible copula. They also model extreme cases
of positive and negative dependencies between variables: the minimum mod-
els comonotone variables, i.e., variables that increase simultaneously, while the
 Lukasiewicz operator models countermonotone random variables, i.e., variables

Email address: igmontes@est-econ.uc3m.es, sebastien.destercke@hds.utc.fr

(Ignacio Montes1 and Sebastien Destercke2)

Preprint submitted to Elsevier September 21, 2016



such that when one increases (resp., decreases) the other one decreases (resp.,
increases). The notions of comonotonicity and countermonotonicity also have
a practical importance: they are applied to different fields [4, 6, 11, 12, 24, 25]
such as finance, and can be used to model expert information (e.g., “pressure
always increases with temperature”) in systems such as Bayesian networks.

While dependency modelling is a well studied matter when using precise
probabilities, there are only a few works studying it when considering lower prob-
abilities and sets of probabilities induced by such measures [9, 10, 16, 18, 22],
in contrast with the notion of independence [2, 3]. Lower probabilities and sets
of probabilities are instrumental models when obtaining a unique probability
is difficult or impossible (due to lack of data, imprecise expert opinions, non-
probabilistic uncertainty, . . . ). Formally, they are general enough to include as
particular cases many existing models such as belief functions [19], possibility
measures [7, 26] and probability boxes [9] (imprecise cumulative distributions),
both univariate [21] and bivariate [18]. In this paper, we adopt a view more con-
sistent with the robust interpretation of such models (sets including an ill-known
precise probability) than with their subjective one (where lower/upper proba-
bilities are belief measures not assuming the existence of a precise, objective
probability [23]).

Given the theoretical and practical importance of comonotonocity and coun-
termonotonicity as dependence models, it seems important to study what they
become in an imprecise setting. This is what we do in this paper, where we
extend the notion of comonotonicity to lower probabilities, and explore its the-
oretical properties as well as some of its more interesting practical aspects (all
results also apply to countermonotonicity through a simple change of variable).

Our extension of comonotonicity to lower probabilities and probability sets
is introduced and studied in Section 3. Two main results of this section are that
only a weak form of the link between comonotonicity and Fréchet-Hoeffding
bounds holds in the imprecise case, and that there are pairs of marginal proba-
bility sets for which no joint comonotonic probability sets exist. This contrasts
with precise probabilities, that can always be combined with the minimum cop-
ula to produce a comonotonic joint, and implies that situations where a comono-
tone probability set exists are much harder to characterize.

For this reason, we study in Sections 4 and 5 specific cases of practical
interest, for which this characterization is easier. Section 4 focuses on belief
functions and uses the fact that they can be seen as probability distributions over
subsets to find necessary and sufficient conditions for a joint comonotonic belief
function to exist. These conditions will also provide us with practical means to
build a joint comonotonic belief function, or to check the existence of such a
joint. We then particularize those results to marginal p-boxes in Section 5, since
p-boxes are the natural extension of cumulative distributions, and therefore the
imprecise probabilistic model best fitted to study (imprecise) copulas. Section 2
reminds the basic notions about lower probabilities, p-boxes and copulas we
shall need in the paper. Note that this paper extends significantly (by providing
proofs, examples as well as additional discussions and results) a previous short
conference version [15].
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2. Preliminary notions

This section introduces concepts and results concerning coherent lower prob-
abilities, probability sets and copulas that are necessary in this paper. For an
in-depth review of these theories, we refer to [14, 23] and [17], respectively.

2.1. Lower probabilities

A lower probability on a (finite) space Ω is a functional P : K ⊆ P(Ω) →
[0, 1] whose domain K is a subset of the power set P(Ω) of Ω. In a subjective
setting, the lower probability P (A) of event A can be interpreted as the subject’s
supremum acceptable buying price for the bet that obtains 1 if A happens and
0 otherwise, while in an objective setting, P can be interpreted as the lower
bound of some ill-known precise probability. Any lower probability is associated,
through a conjugacy relation, to an upper probability P : Kc → [0, 1] such that

P (Ac) = 1− P (A) ∀A ∈ K (1)

and where Kc = {Ac : A ∈ K}. Any lower probability defines a convex set of
probabilities, usually called credal set, given by the set

M(P ) = {P ∈ P | P (A) ≤ P (A) ∀A ∈ K} (2)

of all probabilities P that dominate P , where P is the set of probability measures
defined over P(Ω). The upper probability also defines a set of probabilities given
by:

M(P ) = {P ∈ P | P (A) ≥ P (A) ∀A ∈ Kc}. (3)

Due to the conjugacy relation of Eq. (1),M(P ) =M(P ) and both sets contain
the same information. If M(P ) 6= ∅, then the lower probability is commonly
said to avoid sure loss, and it then follows that for any A ∈ K ∩ Kc, we have
the inequality P (A) ≤ P (A). Avoiding sure loss can be seen as a minimal
consistency requirement, as it ensures that the lower probability is dominated
by at least one probability.

Another stronger consistency requirement usually imposed on lower proba-
bilities is coherence: a lower probability P is coherent when

P (A) = min
P∈M(P )

P (A) ∀A ∈ K, (4)

that is, when P is the lower envelope of M(P ). Due to the conjugacy relation
of Eq. (1), when P is coherent we also have

P (A) = max
P∈M(P )

P (A) ∀A ∈ Kc. (5)

Some of the most important properties of coherent lower and upper probabilities
used in this paper are summarized in the next result.

Proposition 1. [23, Sec. 2.7.4] The conjugate coherent lower and upper prob-
abilities P and P satisfy the following properties:

3



P.1 A ⊆ B implies both P (A) ≤ P (B) and P (A) ≤ P (B).

P.2 P (A ∪B) ≤ P (A) + P (B) and, if A ∩B = ∅, P (A ∪B) ≥ P (A) + P (B).

P.3 A ∩B = ∅ ⇒ P (A ∪B) ≥ P (A) + P (B) and P (A ∪B) ≤ P (A) + P (B).

Any coherent lower probability defined on K can be coherently extended to
a greater domain K′ ⊇ K. The natural extension, [23] defined as

E(A) = min{P (A) : P ∈M(P )} for all A ∈ K′, (6)

is the most conservative way to do so, in the sense that E(A) ≤ P ′(A) for
all A ∈ K′ and for every other coherent extension P ′ of P to K′. It can be
interpreted as the extension that adds no further information to P , in contrast
with other, less conservative ones.

2.2. Cumulative distributions and p-boxes

Cumulative distributions, both univariate and bivariate, and their imprecise
counterparts, p-boxes [9], are strongly connected to copulas and will play an
important role in this paper.

From now on, we consider the finite ordered spaces1 X = {x1, . . . , xn} and
Y = {y1, . . . , ym}, and their cartesian product X × Y. Using the notation
introduced in [18], we consider the sets

Ax = [x1, x], Ay = [y1, y], and Ax,y = Ax ×Ay, (7)

where [x1, x] (respectively, [y1, y]) stands for the set {x1, x2, . . . , x} (respectively,
{y1, y2, . . . , y}). PX,Y will denote a joint probability PX,Y : P(X × Y) → [0, 1],
while PX : P(X )→ [0, 1] and PY : P(Y)→ [0, 1] denote the marginal probabil-
ities. Also, the joint and marginal cumulative distribution functions FX,Y, FX

and FY given by:

FX,Y(x, y) = PX,Y(Ax,y), FX(x) = PX(Ax) and FY(y) = PY(Ay) (8)

for all x ∈ X , y ∈ Y.
Let us now introduce uni- and bivariate p-boxes, which can be understood

as bounds of a unknown or imprecisely defined (uni- or bivariate) cumulative
distribution function.

Definition 2. A (discrete) univariate p-box defined on an ordered finite set
X = {x1, . . . , xm} is a pair of increasing functions F , F : X → [0, 1] such that
F ≤ F and F (xn) = F (xn) = 1.

Definition 3. A (discrete) bivariate p-box defined on the Cartesian product
X × Y = {x1, . . . , xn} × {y1, . . . , ym} of two ordered finite sets is a pair of
component-wise increasing functions F , F : X ×Y → [0, 1] such that F ≤ F and
F (xn, ym) = F (xn, ym) = 1.

1We assume the elements are indexed according to this order.
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Remark 4. In the previous definition we have not required univariate p-boxes
(F , F ) to satisfy the condition F (x1) = F (x1) = 0, as (F , F ) models here some
imprecise knowledge of a cumulative distribution function. Indeed, consider a
precise probability P defined on P(X ), where X = {x1, . . . , xn}. Denote by
FP its associated cumulative distribution function, which satisfies the following
properties:

• FP is increasing.

• FP (xn) = P ({x1, . . . , xn}) = P (X ) = 1.

However, as soon as P ({x1}) > 0, FP (x1) > 0 hence we do not require F and F
to be 0 in x1. The same reasoning can be used to justify why we do not require
bivariate p-boxes (F , F ) to satisfy F (x1, y1) = F (x1, y1) = 0. �

Univariate [21] and bivariate [18] p-boxes are related to coherent and 2-
coherent lower probabilities [23], respectively. They can be used to model the
imprecise information about (univariate or bivariate) cumulative distribution
functions, as we retrieve precise information when F = F = F .

In the bivariate case, a cumulative distribution function F satisfies, in addi-
tion to being component-wise increasing and normalized (F (xn, ym) = 1), the
rectangle inequality

F (xi, yi) + F (xj , yj) ≥ F (xj , yi) + F (xi, yj) (9)

for any xi, xj ∈ X , yi, yj ∈ Y such that xi ≤ xj and yi ≤ yj . Therefore,
a bivariate p-box (F , F ) with F = F may not induce a bivariate cumulative
distribution function because in Definition 3 we do not require F , F to satisfy
Eq. (9). We refer to [18] for more details.

Definition 5. A univariate p-box (F , F ) on X defines a lower probability P on
the domain K1 = {Ax, Acx : x ∈ X}, given by

P (Ax) = F (x) and P (Acx) = 1− F (x) ∀x ∈ X . (10)

This lower probability is coherent [21, 23], and it can be extended to P(X )
by applying the natural extension defined on Eq. (6).

Definition 6. A bivariate p-box (F , F ) defines a lower probability P on the
domain K2 = {Ax,y, Acx,y : (x, y) ∈ X × Y} given by

P (Ax,y) = F (x, y) and P (Acx,y) = 1− F (x, y) ∀(x, y) ∈ X × Y. (11)

Nevertheless, this lower probability defined from a bivariate p-box may not
be coherent. A bivariate p-box will be called coherent when its associated lower
probability given in Eq. (11) is coherent. In such a case, it can be extended to
P(X × Y) by using the natural extension in Eq. (6).

If we consider a univariate or bivariate coherent p-box (F , F ) and its asso-
ciated lower probability P given in Eq. (10) or Eq. (11), its natural extension
to P(X ) or P(X × Y) can be equivalently expressed by:

P (A) = min{P (A) | F ≤ FP ≤ F} ∀A, (12)

5



where FP denotes the cumulative distribution function associated with P . The-
refore, the credal set of P can be expressed as:

M(P ) = {P ∈ P | F ≤ FP ≤ F}, (13)

where again FP is the cumulative distribution function associated with P .
Conversely, any coherent lower probability PX and P , respectively defined

on a sub-domain of P(X ) or P(X × Y), define a univariate p-box

FX(x) = P (Ax) = inf{FP (x) : P ∈M(PX)}; (14)

FX(x) = P (Ax) = sup{FP (x) : P ∈M(PX)}, (15)

and a bivariate p-box

F (x, y) = E(Ax,y) = inf{FP (x, y) : P ∈M(P )}; (16)

F (x, y) = E(Ax,y) = sup{FP (x, y) : P ∈M(P )}; (17)

that are obtained by considering the natural extensions of PX, P to the domains
K1,K2. In general, the lower probabilities P ′X and P ′ induced by these p-boxes
(FX, FX) and (F , F ) through Eq. (6) will only outer-approximate the original
lower probabilities from which the p-boxes have been built (i.e., P ′X(A) ≤ PX(A)
and P ′(A) ≤ P (A) for all A, with the inequality being possibly strict).

2.3. Copulas and Sklar’s Theorem

In probability theory, Sklar’s Theorem shows that we can express a joint cu-
mulative distribution function in terms of the marginals by means of a function
called copula.

Definition 7. [17] A copula is a binary operator C : [0, 1] × [0, 1] → [0, 1]
satisfying the following properties:

1. C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for all x ∈ [0, 1].

2. C(x1, y1) + C(x2, y2) ≥ C(x2, y1) + C(x1, y2) for all x1, x2, y1, y2 ∈ [0, 1]
such that x1 ≤ x2 and y1 ≤ y2.

Theorem 8 (Sklar’s Theorem [20]). Let FX,Y be a joint cumulative distribution
function with marginals FX and FY. Then, there exists a copula C such that

FX,Y(x, y) = C(FX(x), FY(y)) ∀(x, y) ∈ X × Y. (18)

Conversely, given two marginal cumulative distribution functions FX and FY

and a copula C, they define a joint cumulative distribution function FX,Y using
Eq. (18).

The product, minimum and  Lukasiewicz operator are three of the most im-
portant copulas among operators satisfying Definition 7. Indeed, the prod-
uct copula Π(x, y) = x · y applies to independence since FX,Y(x, y) = FX(x) ·
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FY(y). The minimum copula M(x, y) = min(x, y) and the  Lukasiewicz operator
W (x, y) = max(x+ y− 1, 0) correspond to extreme assumptions of positive and
negative dependence, and are commonly called Fréchet-Hoeffding bounds since
any copula satisfies the so-called Fréchet-Hoeffding inequality:

M(x, y) ≤ C(x, y) ≤W (x, y). (19)

In order to explain in more details the dependence assumptions behind the
copulas M and W , we first need the following definition.

Definition 9. A subset S of R2 is increasing (respectively, decreasing) when
for all (x, y), (u, v) ∈ S, x < u (resp. x < u) implies y ≤ v (resp., y ≥ v),
and y < v (resp. y < v) implies x ≤ u (resp., x ≥ u). Similarly, two points
in R2, (x, y) and (u, v), are called increasing (resp., decreasing) when the set
S = {(x, y), (u, v)} is increasing (resp., decreasing). We can then define the
partial orders � and . given by:

(x, y) � (u, v)⇔ x ≤ u, y ≤ v and (x, y) . (u, v)⇔ x ≤ u, y ≥ v, (20)

such that all the elements in increasing or decreasing sets are ordered with respect
to � and ., respectively.

We are now ready to define the notions of comonotonicity and counter-
monotonicity when the probabilities (and associated cumulative distributions)
are precisely known.

Definition 10. Consider a joint probability PX,Y on P(X × Y) with support
Supp(PX,Y) given by:

Supp(PX,Y) = {(x, y) : PX,Y({(x, y)}) > 0}. (21)

PX,Y is called comonotone when any, and hence all, of the following equivalent
conditions are satisfied:

• The copula that links the marginals is the minimum:

FX,Y(x, y) = min(FX(x), FY(y)) for all (x, y) ∈ X × Y. (22)

• The support Supp(PX,Y) of (X,Y ) is an increasing set.

• For all (x, y) ∈ X × Y, either PX,Y({(u, v) : u ≤ x, v > y}) = 0 or
PX,Y({(u, v) : u > x, v ≤ y}) = 0.

PX,Y is called countermonotone when any, and hence all, of the following equiv-
alent conditions are satisfied:

• The copula that links the marginals is the  Lukasiewicz operator:

FX,Y(x, y) = max(FX(x) + FY(y)− 1, 0) for all (x, y) ∈ X × Y. (23)
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• The support Supp(PX,Y) of (X,Y ) is a decreasing set.

• For all (x, y) ∈ X × Y, either PX,Y({(u, v) : u ≤ x, v < y}) = 0 or
PX,Y({(u, v) : u > x, v ≥ y}) = 0.

Remark 11. In practice, any result applying to comonotonicity also applies
to countermonotonicity. To see this, it is sufficient to note that if PX,Y is
comonotone, the probability P ′X,Y given by P ′X,Y(A) = PX,Y(A′), where A′ =
{(x, ym−i+1) : (x, yi) ∈ A}, is countermonotone. In practice, this comes down
to reverse the order on one of the space X or Y. This is why, in the rest of the
paper, we focus solely on the notion of comonotonicity. �

When going from precise to imprecise probabilities, it has been demonstrated
that only a weaker version of Sklar’s theorem [16] holds: combining a pair of
imprecise cumulative distributions (p-boxes) by a convex set of copulas still
results in a bivariate p-box inducing a coherent lower probability, yet there are
bivariate coherent p-boxes that cannot be decomposed as a pair of marginal
p-boxes combined through a set of copulas.

Therefore, it makes sense to wonder to which extent the equivalences of Defi-
nition 10 still hold in an imprecise setting, and if they do not hold anymore, how
can we obtain comonotonic models in practice? The rest of the paper addresses
these two issues, the latter being considered only for specific models (belief
functions) that offer a good compromise between generality and practicality.

3. Comonotone lower probabilities

We first provide a definition of comonotone lower probabilities extending
the one of precise comonotone probabilities, and study what becomes of Defi-
nition 10 in this setting. We then touch upon the tricky question of practically
dealing with comonotone lower probabilities, before focusing on specific models
in Sections 4 and 5.

3.1. Definition and characterization

Definition 10 gives three equivalent ways to define comonotonicity in the
precise framework: by means of the copula linking the marginals, by means of
the increasingness of the support, or by means of the probability of the sets

D
(x,y)
1 = {(u, v) : u > x, v ≤ y} and D

(x,y)
2 = {(u, v) : u ≤ x, v > y}. (24)

Figure 1 provides an illustration of those sets. We now investigate to what
extent these conditions, or similar ones, also hold in the case of comonotone
lower probabilities.

In our framework, we consider a lower probability P defined on the power
set of X × Y, where both X and Y are finite subsets of R. We assume that P
models the imprecise information about a joint probability PX,Y. The question
is: how can we model the additional information that PX,Y is comonotone?
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X

Y

(x, y)

Ax,y D
(x,y)
1

D
(x,y)
2

Figure 1: Illustration of Ax,y , D
(x,y)
1 , D

(x,y)
2 .

{(1, 1)} {(1, 2)} {(2, 2)} {(2, 1)}
P1 α 1− α− β β 0
P2 α 0 1− α 0
P3 1− β 0 β 0

Table 1: Extreme points for Example 13.

If P models the imprecise information about a comonotone probability PX,Y,
we must impose that all the probabilities compatible with P must also be
comonotone.

Definition 12. A lower probability P defined on the power set of the finite set
X × Y is called comonotone when all P ∈M(P ) are comonotone.

Example 13. Consider a lower probability P defined on the power set of X ×
Y = {1, 2} × {1, 2} by:

P ({(1, 1)}) = P ({(1, 1), (1, 2)}) = P ({(1, 1), (2, 1)})
= P ({(1, 1), (1, 2), (2, 1)}) = α ∈ (0, 0.5),

P ({(2, 2)}) = P ({(1, 2), (2, 2)}) = P ({(2, 1), (2, 2)})
= P ({(1, 2), (2, 1), (2, 2)}) = β ∈ (0, 0.5),

P ({(1, 1), (2, 2)}) = P ({(1, 1), (2, 1), (2, 2)}) = α+ β,
P ({(1, 1), (1, 2), (2, 2)}) = P ({1, 2}2) = 1,
P (A) = 0 otherwise.

It can be checked that P is coherent. In fact, the extreme points of M(P ) are
the precise probabilities P1, P2 and P3 given by Table 1. Then, M(P ) is formed
by all the convex combinations of P1, P2 and P3. Consequently, the support of
every P in M(P ) is included in {(1, 1), (1, 2), (2, 2)}, an increasing set, hence
all the probabilities in M(P ) as well as P are comonotone.�

In Example 13, every extreme point of M(P ) is comonotone, as well as
every P ∈ M(P ). Therefore, someone may think that it is sufficient to only
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require comonotonicity of the extreme points of M(P ) to satisfy Definition 12.
However, we only have the next result:

Theorem 14. If a coherent lower probability P defined on the power set of the
finite set X × Y is comonotone, then the extreme points of the set M(P ) are
comonotone.

Proof. Since if P is comonotone, then by definition 12 all precise probabilities
within M(P ) are so, including its extreme points.

Indeed, the comonotonicity of the extreme points in M(P ) does not ensure
the comonotonicity of all the probabilities in M(P ), as next example shows.

Example 15. Consider a lower probability defined on the prower set of X×Y =
{1, 2} × {1, 2} by

P (A) =

{
1 if A ⊇ {(1, 2), (2, 1)}.
0 otherwise.

This lower probability is coherent, and its credal set is given by:

M(P ) = {P ∈ P | P ({(1, 2)}) = α, P ({(2, 1)}) = 1− α, α ∈ [0, 1]}.

The extreme points of M(P ) are P1 and P2 given by P1({(1, 2)}) = 1 and
P2({(2, 1)}) = 1. Both P1 and P2 are comonotone, but any convex combination
of P1 and P2 is not, because for Pα = αP1 + (1− α)P2 (α ∈ (0, 1)), the support
is {(1, 2), (2, 1)}, which is not an increasing set.�

As previous example has shown, it is not sufficient to have every extreme
point comonotone for every P ∈ M(P ) to be comonotone. In fact, in the
previous example the only comonotone probabilities in M(P ) are the extreme
points. For this reason, in Definition 12 we have required all the probabilities
in the credal set to be comonotone.

We now investigate how comonotone coherent lower probabilities can be

equivalently expressed. We first express it by means of the sets D
(x,y)
1 and

D
(x,y)
2 .

Theorem 16. A coherent lower probability P defined on the power set of the
finite set X × Y is comonotone if and only if for all (x, y) ∈ X × Y either

P (D
(x,y)
1 ) = 0 or P (D

(x,y)
2 ) = 0, (25)

where P is the conjugate upper probability of P .

Proof. Only if : consider (x, y) ∈ X ×Y and let us see that one of the equalities
of Eq. (25) holds. Since P is coherent, there are P1, P2 ∈M(P ) such that:

P (D
(x,y)
1 ) = P1(D

(x,y)
1 ) and P (D

(x,y)
2 ) = P2(D

(x,y)
2 ). (26)
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Define P = (P1+P2)
2 , which belongs to M(P ) because M(P ) is convex. P is

comonotone because P is comonotone, and according to Definition 10, one of
the following conditions holds:

P (D
(x,y)
1 ) = 0 or P (D

(x,y)
2 ) = 0.

Assume without loss of generality that the former equality holds. In such a case,

since P = (P1+P2)
2 , it also holds that:

P1(D
(x,y)
1 ) = 0 and P2(D

(x,y)
1 ) = 0.

Therefore:
P (D

(x,y)
1 ) = P1(D

(x,y)
1 ) = 0.

If : assume that at least one of P (D
(x,y)
1 ) or P (D

(x,y)
2 ) is zero. Then, for all

P ∈M(P ):

P (D
(x,y)
1 ) ≤ P (D

(x,y)
1 ) and P (D

(x,y)
2 ) ≤ P (D

(x,y)
2 ).

Then, P is comonotone since one of the previous probabilities is zero.

Theorem 16 shows that Definition 12 can also be expressed by only using
lower and upper probabilities of particular events, meaning that our charac-
terization also makes sense within a subjective interpretation. In particular,
Eq. (25) can be interpreted as constraints on betting rates to impose in order
to guarantee comonotonicity. Now, we are going to see that, if we define the
support Supp(P ) of a lower probability P by:

Supp(P ) =
⋃

P∈M(P )

Supp(P ), (27)

its comonotonicity can also be equivalently expressed in terms of the increas-
ingness of Supp(P ).

Theorem 17. A coherent lower probability P defined on the power set of the
finite set X×Y is comonotone if and only if its support Supp(P ) is an increasing
set.

Proof. Only if : First observe that another way to specify Supp(P ) is

Supp(P ) = {(x, y) ∈ X × Y : P ({(x, y)}) > 0} (28)

since if P ({(x, y)}) > 0, then there is P ∈ M(P ) with P ({(x, y)}) > 0, and if
P ({(x, y)}) = 0, then P ({(x, y)}) = 0 for all P ∈ M(P ). Now, let us consider
for each (x, y) ∈ X × Y a probability P(x,y) ∈M(P ) such that

P(x,y)({(x, y)}) = P ({(x, y)}).

11



Now, we can define

P =
1

|X | · |Y|
∑

(x,y)∈X×Y

P(x,y),

which belongs to M(P ) because M(P ) is convex, hence is comonotone. As P
is positive if and only if P ({(x, y)}) > 0 by construction, we have Supp(P ) =
Supp(P ) and Supp(P ) is increasing (Definition 10).

If : assume that Supp(P ) is increasing. Then, for every probability P ∈
M(P ), its support Supp(P ) is included in Supp(P ), and then it is increasing.
Then, we conclude that all P ∈ M(P ) is comonotone, hence P is comonotone.

Therefore, this second equivalent expression also holds for coherent lower
probabilities. Now, it only remains to check whether or not the comonotonicity
of lower probabilities is related to the copula that links the marginals. The next
result shows one implication.

Theorem 18. Let P be a coherent comonotone lower probability defined on the
power set of X × Y, where X = {x1, . . . , xn} and Y = {y1, . . . , ym}. If (F , F ),
(FX, FX) and (FY, FY) respectively denote the bivariate and the marginal uni-
variate p-boxes induced by P , then for all (x, y) ∈ X × Y:

F (x, y) = min(FX(x), FY(y)) and F (x, y) = min(FX(x), FY(y)). (29)

Proof. Let us prove that F (x, y) = min(FX(x), FY(y)). First of all, using P.1
of Proposition 1, note that

F (x, y) = P (Ax,y) ≤ P (Axn,y) = FY(y) and

F (x, y) = P (Ax,y) ≤ P (Ax,ym) = FX(x)

since P (A) ≤ P (B) whenever A ⊆ B. It follows that

F (x, y) ≤ min(FX(x), FY(y)). (30)

Let us now show the converse inequality. Consider P ∈ M(P ) such that
P (Ax,y) = P (Ax,y) and denote by F, FX and FY the joint and marginal distribu-
tion functions associated with P . Then, since P is comonotone by assumption:

F (x, y) = P (Ax,y) = P (Ax,y) = F (x, y)

= min(FX(x), FY(y)) ≥ min(FX(x), FY(y)). (31)

Using Eqs. (30) and (31), we conclude that F (x, y) = min(FX(x), FY(y)).
Now let us prove the same equality for F (x, y). First consider a probability

P inM(P ) such that P (Ax,y) = P (Ax,y) and let F, FX and FY be its joint and
marginal cumulative distribution functions. Then, since P is comonotone:

F (x, y) = P (Ax,y) = P (Ax,y) = min(FX(x), FY(y)) ≤ min(FX(x), FY(y)).
(32)

12



Let us now show that this inequality is an equality.
Using P.2 of Proposition 1, the notation of Eq. (24) and the fact that Ax,y ∪

D
(x,y)
1 = Axn,y, Ax,y ∩D(x,y)

1 = ∅, it holds that:

FY(y) = P (Axn,y) ≤ P (Ax,y) + P (D
(x,y)
1 ) = F (x, y) + P (D

(x,y)
1 ),

and similarly

FX(x) = P (Ax,ym) ≤ P (Ax,y) + P (D
(x,y)
2 ) = F (x, y) + P (D

(x,y)
2 ).

Since P is comonotone, from Theorem 16 it holds that either P (D
(x,y)
1 ) = 0,

which implies that FY(y) ≤ F (x, y), or P (D
(x,y)
2 ) = 0, which implies that

FX(x) ≤ F (x, y). In both cases it holds that F (x, y) ≥ min{FX(x), FY(y)},
and therefore using Eq. (32) we conclude F (x, y) = min{FX(x), FY(y)}.

The next example shows that, unfortunately, the converse implication does
not hold in general.

Example 19. Consider the joint coherent lower probability P defined on the
power set of the finite set {1, 2}2 by:

P ({(1, 1), (1, 2), (2, 2)}) = α > 0,

P ({(1, 1), (2, 1), (2, 2)}) = 1− α > 0,

P ({1, 2}2) = 1,

P (A) = 0 otherwise.

Then, regardless of α, F = I{(x,y):x,y≥2} and F = I{(x,y):x,y≥1}, with IA the
indicator function of event A. Furthermore:

FX(x) = FY(x) = I{x≥2}(x) and FX(x) = FY(x) = I{x≥1}(x).

Then, for all (x, y) ∈ X ×Y, F and F can be expressed as in Eq. (29). However,
the probability P defined by P ({(1, 2)}) = α and P ({(2, 1)}) = 1− α belongs to
M(P ). Therefore, Supp(P ) is not increasing and neither is Supp(P ), hence P
cannot be comonotone by Theorem 17. �

This means that in an imprecise setting Definition 12 only has two equivalent
characterizations: by means of the increasingness of the support or by means of

the upper probability of the sets D
(x,y)
1 and D

(x,y)
2 . Indeed, the bivariate p-box

of a comonotone lower probability is the minimum of the marginals, but the
minimum of two marginal p-boxes will not necessarily generate a comonotone
lower probability (this is in line with the imprecise Sklar Theorem [16]). Figure 2
summarizes the conditions we have seen along this section.

13



Comonotone lower probabilities

Supp(P ) is an increasing set
∀(x, y), either

P (D
(x,y)
1 ) = 0 or P (D

(x,y)
2 ) = 0.

F (x, y) = min(FX(x), FY(y))
F (x, y) = min(FX(x), FY(y)).

Every P ∈M(P )
is comonotone.

Every extreme point of M(P )
is comonotone.

-�

�
��	

@
@@R

@
@R@

@I
�	
��

Figure 2: Equivalences and implications concerning the comonotonicity of a coherent lower
probability P .

Remark 20. As mentioned in Remark 11, results similar to Theorems 14, 16,
17 and 18 can be obtained in the countermonotone case through a simple change
of variable:

• If P is a countermonotone lower probability, then the extreme points of
M(P ) are also countermonotone, but the converse does not hold in gen-
eral.

• A lower probability P is countermonotone if and only if for all (x, y) ∈ X×
Y, either P ({(u, v) : u ≤ x, v < y}) = 0 or P ({(u, v) : u > x, y ≥ v}) = 0.

• A lower probability P is countermonotone if and only if Supp(P ) is a
decreasing set.

• If P is a countermonotone lower probability, then its associated p-box
(F , F ) can be expressed for all (x, y) ∈ X × Y by:

F (x, y) = max(FX(x) + FY(y)− 1, 0). (33)

F (x, y) = max(FX(x) + FY(y)− 1, 0). (34)

However, the converse does not hold in general.

The proofs are similar to those of comonotonicity.�

3.2. Building comonotone lower probabilities

So far, we have provided different theoretical characterizations of comono-
tone lower probabilities, but have not touch upon more practical questions such
as:

14



• How can we check that a given joint lower probability P is indeed comono-
tone?

• When and how can we build a comonotone lower probability P from
marginals PX, PY?

Regarding the first question, checking all probabilities within M(P ) is not
doable in practice, and Theorem 14 together with Example 15 indicate that
checking the comonotonicity of extreme points of M(P ) is not sufficient, but
only necessary to ensure the comonotonicity of P .

The second question may seem more trivial at first sight, as it can always be
answered positively in the precise framework: it is sufficient to consider the joint
probability induced by the bivariate cumulative distribution FX,Y corresponding
to the minimum of the two marignals FX and FY by Eq. (22). Unfortunately,
the next example shows that, in the imprecise setting, it is not even true that a
comonotone lower probability can be obtained from every pair of marginals.

Example 21. Let PX and PY be two marginal coherent lower probabilities,
defined over X = {1, 2, 3} and Y = {1, 2}, and such that

PX({1, 2}) = 0.7, PX(X ) = 1, PX(A) = 0 otherwise.

PY({1}) = 0.3, PY({2}) = 0.7, PY(Y) = 1.

Let us assume that there is a comonotone joint lower probability P with those
marginals. If this is the case, then using Theorem 18, the bivariate p-box induced
by P is the minimum of the marginals FX, FX and FY, FY. Then:

F (1, 2) = P ({(1, 1), (1, 2)}) = min(FX(1), FY(2)) = 1

and
F (1, 1) = P ({(1, 1)}) = min(FX(1), FY(1)) = 0.3,

meaning that ∃P ∈ M(P ) such that P ({(1, 1)}) + P ({(1, 2)}) = 1 (otherwise
P would not be coherent) and P ({(1, 1)}) ≤ 0.3, hence P ({(1, 2)}) > 0 and
(1, 2) ∈ Supp(P ) ⊆ Supp(P ). Similarly, we have that

F (2, 1) = P ({(1, 1), (2, 1)}) = min(FX(2), FY(1)) = 0.3

and
F (1, 1) = P ({(1, 1)} = min(FX(1), FY(1)) = 0,

meaning that ∃P ∈ M(P ) such that P ({(1, 1)}) + P ({(2, 1)}) ≥ 0.3 and also
P ({(1, 1)}) = 0, hence P ({(2, 1)}) > 0 and (2, 1) ∈ Supp(P ) ⊆ Supp(P ). Since
both (1, 2) and (2, 1) belong to Supp(P), Supp(P) is not an increasing set and
by Theorem 17, P cannot be comonotone, a contradiction. �

In the next sections, we shall investigate these two questions for particular
cases of lower probabilities, namely belief functions and p-boxes, using their
particular features at our advantage to get answers. As we shall see, the condi-
tions to have a comonotone model can already be quite tricky in such contexts,
suggesting that getting general but practically useful conditions in the general
case could be quite difficult.
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4. Comonotone belief functions

In this section, we focus on belief functions, a particular family of lower
probabilities. This family is general enough to include many models used in
practice (possibility distributions, p-boxes, . . . ), but specific enough to offer
some computational and practical advantages. After reminding some basics, we
study first sufficient conditions to ensure that a joint comonotone belief function
can be built from given marginals, and then necessary conditions that a joint
comonotone belief function must satisfy to be comonotone.

4.1. Basic definitions

Belief functions correspond to coherent lower probabilities satisfying the ad-
ditional property of complete monotonicity, as defined below.

Definition 22. A coherent lower probability P on P(Ω) is called n-monotone
if and only if:

P (∪pi=1Ai) ≥
∑

∅6=I⊆{1,...,p}

(−1)|I|+1P (∩i∈IAi) (35)

for all 2 ≤ p ≤ n and all A1, . . . , Ap ∈ P(Ω). A lower probability that is n-
monotone for all n is called a belief function, here denoted Bel, and its conjugate
upper probability is called a plausibility function, here denoted Pl.

A belief function and its conjugate plausibility function are coherent lower
and upper probabilities and satisfy Bel(A) ≤ Pl(A) for all A ⊆ Ω. Using the
so-called Möbius inverse, they define a mass distribution [7] in the following
way:

m(A) =
∑
E⊆A

(−1)|A\E|Bel(E) ∀A ⊆ Ω. (36)

A mass distribution m : P(Ω) → [0, 1] satisfies m(∅) = 0 and
∑
E⊆Ωm(E) =

1. Conversely, any mass distribution defines a pair of belief and plausibility
functions by:

Bel(A) =
∑
E⊆A

m(E) ∀A ⊆ Ω, (37)

Pl(A) =
∑

E∩A 6=∅

m(E) ∀A ⊆ Ω. (38)

Note that the non-negativity of the mass m is characteristic of belief functions,
in the sense that the value of Eq. (36) will be positive if and only if it is applied
to a completely monotone lower probability.

Definition 23. [19] Given a belief function Bel with mass distribution m, the
elements E ⊆ Ω with positive mass, m(E) > 0, are called focal elements of
Bel, and we will denote by F the set of focal elements. The union of all focal
elements is called the core of Bel:

Core(Bel) =
⋃
E∈F

E. (39)
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As previously, we consider belief functions defined on the power set of the
finite set X ×Y ⊆ R2. We will call them joint belief functions. Furthermore, ev-
ery joint belief function Bel with mass distribution m defines two marginal belief
functions BelX and BelY on X ⊆ R and Y ⊆ R, respectively, with associated
mass distributions mX and mY:

mX(A) =
∑

E:E↓X=A

m(E) and mY(B) =
∑

E:E↓Y=B

m(E) (40)

for every A ⊆ X and B ⊆ Y, and where

E↓X = {x ∈ X : ∃y ∈ Y such that (x, y) ∈ E} (41)

(resp., E↓Y) denotes the projection of E on the space X (resp., Y). Two im-
portant models to which we will devote particular attention and that constitute
special cases of belief functions are univariate p-boxes and possibility measures.

From now on we will use the following notation: if E is a finite set of an
ordered space, e and e denote its minimum and maximum, that is

e = minE and e = maxE. (42)

We will also use the term interval to denote a subset containing all elements
between its minimum and maximum, that is E is an interval if e ∈ E for all
e ≤ e ≤ e.

It is known that, starting with a univariate p-box, the lower probability
defined by Eq. (12) is not only coherent but it is also a belief function [5, 13].
This means that the p-box (F , F ) and the belief function Bel defined by Eq. (12)
contain the same probabilistic information. We will therefore associate a p-
box (F , F ) with the belief function given by Eq. (12). Furthermore, we will
use the term focal element of the p-box to refer to the focal elements of its
associated belief function. It is know [5] that the focal elements of a p-box,
named E1, . . . , Ek, are intervals that can be ordered such that ei ≤ ei+1 and
ei ≤ ei+1. This is a characteristic property, in the sense that any set of focal
elements E1, . . . , Ek that are intervals and that can be ordered in this way induce
a belief function that can be obtained from a p-box using Eq. (12) (we refer to
[5, 13] for detailed proofs and algorithms). Figure 3 provides an illustration of
a univariate p-box and its corresponding focal elements. Whenever referring to
focal elements of p-boxes, we will consider that they are indexed according to
this ordering.

Possibility measures are other particular instances of plausibility functions
whose focal sets are nested. Possibility measures are usual tools used in both
Evidence Theory [19] and Fuzzy Set Theory [7, 26].

Definition 24. A possibility measure Π : P(Ω)→ [0, 1] is a supremum-preserving
function: Π(∪i∈IAi) = supi∈I Π(Ai) for all I, Ai ⊆ Ω.

The conjugate of a possibility measure:

N(A) = 1−Π(Ac) ∀A ⊆ Ω, (43)
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Figure 3: P-box (left) and its associated belief function (right), with focal elements E1 =
{x1, x2, x3}, E2 = {x2, x3}, E3 = {x2, x3, x4, x5}, E4 = {x4, x5} and E5 = {x4, x5, x6}.

called necessity measure, is a belief function. Its focal elements are nested: if
E1 and E2 are focal elements of N , then either E1 ⊆ E2 or E2 ⊆ E1. In fact,
since in this work we are dealing with finite sets, there is only a finite number
of focal elements E1, . . . , Ek, and for possibility measures we will consider that
they are indexed such that E1 ⊆ . . . ⊆ Ek.

Since any belief function is a coherent lower probability, the definition of
comonotonicity for belief functions straightforwardly follows.

Definition 25. A belief function Bel defined on P(X × Y) is comonotone if
every P ∈M(Bel) is comonotone. Similarly, a possibility measure Π defined on
P(X × Y) is comonotone if every P ∈M(Π) is comonotone.

In the case of belief functions, it can be easily proven that Supp(Bel) =
Core(Bel). The reason is that if x ∈ Core(Bel), x belongs to some focal set
meaning that the upper probability of x induced by P ∈ M(Bel) is positive
(Pl({x}) > 0), and therefore there exists some probability P ∈ M(Bel) with
P ({x}) > 0. On the other hand, if P ({x}) > 0 for some P ∈ M(Bel), x must
belong to some focal set because then Pl({x}) > 0 and therefore it also belongs
to Core(Bel).

Using this fact, Theorem 17 can be directly adapted to the case of belief
functions.

Corollary 26. A belief function Bel defined on P(X ×Y) is comonotone if and
only if Core(Bel) is an increasing set.

We may think that the converse of Theorem 18 could hold when dealing
with belief functions. However, this is not the case, since the lower prob-
ability given in Example 19 is in fact a belief function with focal elements
E1 = {(1, 1), (1, 2), (2, 2)} and E2 = {(1, 1), (2, 1), (2, 2)} with m(E1) = α and
m(E2) = 1− α, respectively.

4.2. Sufficient conditions: from marginals to joint

First note that Example 21 also applies to belief functions, as the marginals
PX and PY used in this example correspond to belief functions induced by the
mass distributions

mX({1, 2}) = 0.7, mX({1, 2, 3}) = 0.3, mY({1}) = 0.3, mY({2}) = 0.7.
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Hence the question of when and how can we build a comonotone belief function
from given marginals is still relevant.

Sufficient conditions to ensure the existence of some joint comonotone belief
functions are instrumental to build such joint, in particular when those condi-
tions are related to well-known models. This is why we start from conditions
related to such models, i.e., possibility distributions and p-boxes, to finish with
more general conditions.

The first case we investigate is when the marginals are possibility measures.
To show that a joint comonotone can always be defined from such marginals,
we will first build an increasing set, and then we will show that we can define
a joint mass whose focal elements are subsets of this increasing set, and whose
marginals are the imposed ones.

Before that, first recall that we can always transform two mass functions
mX,mY having focal elements A1, . . . , Am and B1, . . . , B` into two equivalent
mass functions m′X,m

′
Y (in terms of induced belief functions, i.e., BelX = Bel′X

and BelY = Bel′Y) having the same number of focal elements C1, . . . , Cn and
D1, . . . , Dn and such that m′X(Ci) = m′Y(Di). m

′
X,m

′
Y are called commensurate

mass functions, and can be obtained by allowing multiple focal elements to be
the same and by splitting the mass of the initial focal elements A1, . . . , Am and
B1, . . . , B`. We refer to [8] for details.

We can therefore assume, without loss of generality, that every two possibil-
ity measures have the same number of focal sets and that their masses coincide.
The next example illustrates this procedure.

Example 27. Consider the possibility measures mX, mY with the following
focal elements:

A1 = {2}, A2 = {1, 2}, A3 = {1, 2, 3}, B1 = {1, 2}, B2 = {1, 2, 3, 4},

with the following masses:

mX(A1) = 0.3, mX(A2) = 0.5, mX(A3) = 0.2, mY(B1) = 0.5, mY(B2) = 0.5.

Now, we rewrite the focal elements in the following way

A1 A2 A2 A3

B1 B1 B2 B2

C1 C2 C3 C4

D1 D2 D3 D4

m 0.3 0.2 0.3 0.2 �

Proposition 28. Let mX and mY be the masses induced by two possibility
measures ΠX,ΠY. Then, there exists a joint comonotone possibility measure Π
inducing a joint mass m, whose marginals are the original possibility measures.

Proof. Assume that the focal elements of mX and mY are given in the following
way:

A1 ⊆ A2 ⊆ . . . ⊆ An,
B1 ⊆ B2 ⊆ . . . ⊆ Bn,
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Figure 4: Graphical representation of the construction of the set Gi, formed by the union of
Gi−1 and Ii.

such that for all i = 1, . . . , n, mX(Ai) = mY(Bi). We will associate to each pair
Ai, Bi a focal element of the joint belief function.

Consider, for i = 2, . . . , n the following increasing set2

Ii ={(x, bi) : x ∈ [ai, ai−1]} ∪ {(ai−1, y) : y ∈ [bi, bi−1]}⋃
{(x, bi−1) : x ∈ [ai−1, ai]} ∪ {(ai, y) : y ∈ [bi−1, bi]}

=(
[
ai, ai−1]× {bi}

)
∪
(
{ai−1} × [bi, bi−1]

)⋃(
[ai−1, ai]× {bi−1}

)
∪
(
{ai} × [bi−1, bi]

)
and the other increasing set3

G1 ={(x, b1) : x ∈ [a1, a1]} ∪ {(a1, y) : y ∈ [b1, b1]}
= ([a1, a1]× {b1}) ∪

(
{a1} × [b1, b1]

)
.

Then, we define iteratively the sets Gi, i = 2, . . . , n as Gi = Ii ∪ Gi−1 which
by construction are increasing. A graphical illustration of this construction is
given in Figure 4.

Now, for all i = 1, . . . , n we define the following set:

Ei = Gi ∩ (Ai × Y) ∩ (X ×Bi).

These sets E1, . . . , En are nested and their union is a subset of Gn, hence they
form an increasing set. By definition, the X -projection E↓Xi of Ei is Ai, and its

2Again, we are using the notation introduced in Eq. (42): if A (resp., B) is a finite set, a,a
(resp. b, b) denote their minimum and maximum elements.

3Similarly, ai, ai and bi, bi denote the minimal and maximal elements of Ai, Bi.
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Y-projection E↓Yi is Bi. Finally, we define the joint mass function

m(Ei) = mX(Ai) = mY(Bi)

that has the desired marginals and which induces, according to Theorem 17,
a comonotone joint belief function since its core Core(Bel) ⊆ Gn is increasing.
Finally, the focal sets of the constructed joint comonotone belief function are
nested, and therefore it is a necessity measure, and the plausibility function is
a possibility measure.

Example 29. Consider the possibility measures of Example 27. Applying the
previous proposition we define the following focal elements for the joint comono-
tone possibility measure:

E1 = {(2, 1), (2, 2)}, E2 = {(1, 1), (2, 1), (2, 2)},
E3 = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4)},
E4 = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)},

and the masses are:

m(E1) = 0.3, m(E2) = 0.2, m(E3) = 0.3, m(E4) = 0.2.�

Let us now look at the case where marginals are p-boxes. Recall that in
this case, the focal elements A1, . . . , Am and B1, . . . , B` of the two p-boxes
(FX, FX) and (FY, FY) are ordered, ai ≤ ai+1, ai ≤ ai+1 and bj ≤ bj+1,

bj ≤ bj+1 for all i = 1, . . . ,m − 1 and j = 1, . . . , ` − 1, and are intervals, in
the sense that every Ai, Bj contains all elements in X and Y between ai, ai and
bj , bj , respectively. Similarly to possibility distributions, we can always build
two equivalent commensurate mass functions with focal elements C1, . . . , Cn
and D1, . . . , Dn such that

ci ≤ ci+1, ci ≤ ci+1, di ≤ di+1 and di ≤ di+1 for all i ∈ {1, . . . , n}. (44)

Again, we will assume without loss of generality that every two p-boxes have
the same number of focal elements, who are intervals ordered according to their
end-points.

Example 30. Consider the belief functions BelX and BelY whose focal elements
are A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 4} and B1 = {1, 2}, B2 = {2, 3}, and
whose masses are

mX(A1) = 0.4, mX(A2) = 0.3, mX(A3) = 0.3, mY(B1) = 0.6, mY(B2) = 0.4.

Then, we can rewrite the focal elements in the following way:

A1 A2 A2 A3

B1 B1 B2 B2

C1 C2 C3 C4

D1 D2 D3 D4

m 0.4 0.2 0.1 0.3 �
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The next proposition shows that we can induce a comonotone joint belief
function from specific p-boxes.

Proposition 31. Consider two marginal belief functions BelX and BelY with
mass distributions mX, mY whose focal elements A = {A1, . . . , An}, B =
{B1, . . . , Bn} are such that Ai and Bi are intervals and mX(Ai) = mY(Bi)
for all i = 1, . . . , n. If A and B satisfy the following constraints:

31.i) ai ≤ ai+1 and ai ≤ ai+1 for every i = 1, . . . , n,

31.ii) bi ≤ bi+1 and bi ≤ bi+1 for every i = 1, . . . , n,

31.iii) If ai < aj, that is if Aj dominates Ai, then bi ≤ bj, that is Bj also
dominates Bi,

31.iv) If bi < bj, that is if Bj dominates Bi, then ai ≤ aj, that is Aj also
dominates Ai,

then, there exists a joint comonotone belief function Bel such that its marginal
masses coincide with mX and mY.

Proof. Like Proposition 28, we will first build an increasing set, and then will
define a joint belief function, having the assumed marginals and whose focal
elements are subsets of the built increasing set. First, let us consider the set

G = {(ai, bi), (ai, bi) : i = 1, . . . , n}

and show that it is increasing. First note that for all i < j, we have ai ≤ aj ,bi ≤
bj on one hand, and ai ≤ aj , bi ≤ bj on the other hand, by constraints 31.i)
and 31.ii). Hence sets of couples of lower and upper bounds respectively form
two increasing sets.

Now let us show by contradiction that their union is also increasing. If G is
not increasing, there is i > j such that (ai, bi) and (aj , bj) are not increasing
points. Then, either aj > ai and bj < bi or aj < ai and bj > bi. Without loss of
generality, assume aj > ai and bj < bi (the reasoning is analogous in the other
situation). Then we would have:

aj ≤ ai < aj ≤ ai (45)

however, since by hypothesis the inequality bj < bi implies (constraints 31.iv))
aj ≤ ai, we have a contradiction with Eq. (45). Hence G is increasing.

Let us now rename by (ck, dk) the re-ordered points of G such that (ck, dk) ≤
(ck+1, dk+1), with an arbitrary indexing for equal points. Clearly, we have
(c1, d1) = (a1, b1) and (c2n, d2n) = (an, bn). Let us now consider, for k =
1, . . . , 2n− 1, the increasing sets

Ik = {(x, dk) : x ∈ [ck, ck+1]} ∪ {(ck+1, y) : y ∈ [dk, dk+1]}.
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Figure 5: Graphical representation of Ei = Ik ∪ Ik+1 and of the increasing set construction
in Proposition 31.

Figure 5 illustrates the situation. Clearly, we have that ∪2n−1
k=1 Ik is increasing.

Now, define the set Ei as

Ei =
⋃

(ai,bi)≤(ck,dk)<(ai,bi)

Ik

whose X -projection E↓Xi and its Y-projection E↓Yi are respectively Ai and Bi,
by definition. Finally, we define the mass function:

m(Ei) = mX(Ai) = mY(Bi).

Then, we have defined a belief function whose core Core(Bel) = ∪2n−1
k=1 Ik is

increasing, and therefore it is comonotone. Moreover, its marginals are BelX
and BelY.

Example 32. Let us continue Example 30. Using the previous proposition, we
build the following focal sets for the joint belief function:

E1 = {(1, 1), ((2, 1), (2, 2)}, E2 = {(2, 1), (2, 2), (3, 2)},
E3 = {(2, 2), (3, 2), (3, 3)}, E4 = {(3, 2), (3, 3), (3, 4)}.

Now, we assign the following masses:

m(E1) = 0.4, m(E2) = 0.2, m(E3) = 0.1, m(E4) = 0.3.

Then, according to the previous proposition, the joint belief function we have
defined is comonotone and its marginals coincide with BelX and BelY. �
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Figure 6: Necessity of Proposition 31 constraints 31.iii) and 31.iv).

Remark 33. As we have already mentioned, a belief function satisfying con-
straints 31.i) and 31.ii) in Proposition 31, together with the fact that focal ele-
ments should be intervals, is equivalent to a univariate p-box, in the sense that
the belief function and its associated p-box contain the same probabilistic in-
formation. Constraints 31.iii) and 31.iv) means that we only look at specific
p-boxes.�

We know that constraints 31.i) to 31.iv) are sufficient (but not necessary)
to ensure the existence of some comonotone joint belief functions, but it would
be tempting to drop constraints 31.iii) and 31.iv), in order to retrieve generic
p-boxes. However, constraints 31.i) and 31.ii) alone are not sufficient, as il-
lustrated in Figure 6, where the points (ai+1, bi+1) and (ai, bi) not satisfying
constraints 31.iii) and 31.iv) are not comonotone.

Similarly, the condition in Proposition 31 that focal elements should be
intervals is also essential, as the next example shows.

Example 34. Consider two mass functions mX and mY with A = {A1, A2}
and B = {B}, where:

A1 = {1, 3}, A2 = {2, 4}, B = {1, 2, . . . , n− 1, n}, n > 3.

A and B satisfy all the conditions of Proposition 31, except for being intervals.
However, there is no joint comonotone belief functions having those marginals.
Indeed, following Proposition 31 proof, such a joint would have two focal el-
ements E1, E2 with projections A1, B and A2, B, respectively, and such that
E1 ∪ E2 is increasing. Now, for all x ∈ {1, 1, . . . , n − 1, n}, E1 ∪ E2 must
contain, at least for one x, one of the pair

• (x, 1) and (x, 2),

• (x, 1) and (x, 4),
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• (x, 3) and (x, 2),

• (x, 3) and (x, 4)

for E1, E2 to have the required projections. If we take every two of those pairs
for two different x < y in {1, 2, . . . , n − 1, n}, then they form a non-increasing
set. For example, take (x, 1), (x, 4) and (y, 3), (y, 4), we have (x, 4) 6� (y, 3).
Hence it is not possible to build a comonotone joint belief from mX and mY. �

The next proposition somehow puts Propositions 28 and 31 together, show-
ing that a sufficient condition is that we can partition focal elements so that one
of the situation (possibility measures or specific p-boxes) is retrieved for each
partition.

Proposition 35. Let BelX and BelY be two marginal belief functions with
masses mX and mY with focal sets in FX,FY. Assume that there exists a parti-
tion of FX,FY into n components Ai = {Ai1, . . . , Aini

} and Bi = {Bi1, . . . , Bini
}

such that Aji ∈ FX, Bji ∈ FY, mX(Aji ) = mY(Bji ) and satisfying the following
constraints:

35.i) For all i 6= j, Ai ∩ Aj = ∅ and Bi ∩ Bj = ∅.

35.ii) Components Ai,Bi can be ordered so that

Ai = max
a∈Ai

j

a ≤ Ai+1 = min
a∈Ai+1

j

a (46)

and
Bi = max

b∈Bi
j

b ≤ Bi+1 = min
b∈Bi+1

j

b. (47)

35.iii) For all i, Ai,Bi satisfy either Ai1 ⊆ . . . ⊆ Aini
and Bi1 ⊆ . . . ⊆ Bini

or
conditions 31.i)-31.iv) of Proposition 31.

Then, there exists a joint comonotone belief function Bel such that its marginal
masses coincide with mX and mY.

Proof. First, note that due to constraint 35.iii), it is possible to build for every
Ai,Bi an increasing set Gi included in

⋃ni

j=1A
j
i ×

⋃ni

j=1B
j
i . For this, we just

have to apply either the procedure of Proposition 28 or 31 to Ai,Bi.
Now, for all i < j, we have that any (a, b) ≤ (c, d) for any (a, b) ∈ Gi and

(c, d) ∈ Gj , since constraint 35.ii) and the definition of Gi tell us that

(a, b) ≤ (Ai,Bi) ≤ (Aj ,Bj) ≤ (c, d).

This is sufficient to show that if sets Gi are increasing, so is ∪ni=1Gi.
Using either the techniques of Proposition 28 or 31 within Gi, we can then

build a focal element Ei,j included in Gi, such that its projections are Aji , B
j
i

and give him the mass

m(Ei,j) = mX(Aji ) = mY(Bji ).

As sets Ei,j are subsets of ∪ni=1Gi, they form an increasing set, and have mX,mY

for marginals.
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Figure 7: Non-uniqueness of joint comonotone belief function.

Although in this subsection we have some situations in which a joint comono-
tone belief function exists with fixed marginals, such joint comonotone belief
function may not be unique, as next example shows.

Example 36. Consider the marginal belief functions BelX and BelY with mass
distributions mX and mY, given by:

mX({1, 2}) = mY({1, 2}) = 1.

In this case, we can define at least three joint belief functions4 that are comono-
tone. If we denote their masses by m, m′ and m′′, they are given by:

m({(1, 1), (2, 2)}) = m′({(1, 1), (2, 2), (1, 2)}) = m′′({(1, 1), (2, 2), (2, 1)}) = 1.

This shows that the joint comonotone belief function is not unique. Figure 7
illustrates the three mentioned solutions. �

4.3. Necessary conditions: from joints to marginals

We now examine the properties satisfied by comonotone belief functions, and
their impacts on the associated marginal belief functions. This will give us nec-
essary conditions that marginals must satisfy if we want to build a comonotone
joint. Of course, all those necessary conditions are satisfied in Propositions 28,
31 and 35. Again, as one of the goal of this section is to offer practical tools
to check comonotonicity, we will start with easier conditions and will proceed
towards more complex ones.

A first condition is given by the following lemma.

Lemma 37. Let Bel be a joint comonotone belief function, and denote by E ⊆ F
an arbitrary subset of its focal elements. Using notations

a = max{x : ∃y s.t. ∃E ∈ E with (x, y) ∈ E},
a = min{x : ∃y s.t. ∃E ∈ E with (x, y) ∈ E},
b = max{y : ∃x s.t. ∃E ∈ E with (x, y) ∈ E},
b = min{y : ∃x s.t. ∃E ∈ E with (x, y) ∈ E},

4There is actually an infinity of possible solutions.
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Figure 8: Illustration of Lemma 37 for one focal element.

then there are two (not-necessarily distinct) focal elements E,E ∈ E such that
(a, b) ∈ E and (a, b) ∈ E.

Proof. Let us proceed by contradiction, and assume that there is no focal set in
E containing the element (a, b). This means that there are two elements x∗ and
y∗ such that

∃E1 ∈ E such that (x∗, b) ∈ E1,

∃E2 ∈ E such that (a, y∗) ∈ E2,

with E1, E2 distinct. By definition, a < x∗ and b < y∗. Yet, if Bel is comono-
tone, (x∗, b), (a, y∗) cannot both belong to Core(Bel) since (a, y∗) 6� (x∗, b) and
(x∗, b) 6� (a, y∗), hence a contradiction.

Analogously, we can prove that there is a focal set in E containing (a, b).

Lemma 37 implies that when E reduces to one single element E, then E
must contain its two “extremal” elements. Hence the need to consider elements
(ai, bi) and (ai, bi) in Section 4.2. In practice, this also gives us an easy mean
to test comonotonicity of a joint belief function Bel: if the extremal points of
its focal elements do not form an increasing set, then Bel is not comonotone.
Figure 8 illustrates the simple situation considering one focal element E.

We now introduce a technical result, useful to prove the next ones.

Lemma 38. Let Bel be a joint belief function whose marginals are mX and mY,
and F , A, B their respective sets of focal elements. Then, it is always possible
to define partitions

• F1, . . . ,Fn of F ,

• A1, . . . ,An of A,

• B1, . . . ,Bn of B,

such that for all i ∈ {1, . . . , n} we have∑
A∈Ai

mX(A) =
∑
B∈Bi

mY(B) =
∑
E∈Fi

m(E). (48)
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Proof. We will first build the partitions on A, B, and then derive from it the
partition on F = {E1, . . . , Em}. Take n = 1 and define A1 = {A1}, B =
{B1}. Now, for every i = 2, . . . ,m, consider the joint focal element Ei and its
projections Ai, Bi on X ,Y sequentially, and apply the following procedure

• if there is 1 ≤ j ≤ n such that Ai ∈ Aj , then add Bi to Bj ,

• if there is 1 ≤ j ≤ n such that Bi ∈ Bj , then add Ai to Aj ,

• else, instantiate An+1 = {Ai}, Bn+1 = {Bi} and increase n by one,

until reaching Em. Indeed, for a given Ei new sets Aj ,Bj are created only if
neither Ai nor Bi can be found in some other sets. Conversely, a set Ei will
have its projections in elements of the partitions A,B having the same index,
by construction. Hence, we can build the partition element Fj such that

Fj = {E ∈ F | E↓X ∈ Aj , E↓Y ∈ Bj}.

Then, these partitions satisfy the following property:∑
A∈Aj

mX(A) =
∑
E∈Fj

m(E) =
∑
B∈Bj

mY(B).

Example 39. Consider the joint belief function whose focal elements are:

E1 = {(1, 1), (2, 2)}, E2 = {(1, 1), (1, 2), (2, 2), (3, 2)}, E3 = {(1, 3), (2, 4)},
E4 = {(3, 4), (4, 5)}, E5 = {(3, 5), (4, 5)}.

Considering the following sets

A1 = {1, 2}, A2 = {1, 2, 3}, A3 = {3, 4},
B1 = {1, 2}, B2 = {3, 4}, B3 = {4, 5}, B4 = {5},

we have that
Focal set X projection Y projection

E1 A1 B1

E2 A2 B1

E3 A1 B2

E4 A3 B3

E5 A3 B4

and A = {A1, A2, A3}, B = {B1, B2, B3, B4} with masses

mX(A1) = m(E1) +m(E3), mX(A2) = m(E2), mX(A3) = m(E4) +m(E5),

mY(B1) = m(E1) +m(E2), mY(B2) = m(E3), mY(B3) = m(E4),

mY(B4) = m(E5).
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Then, applying Lemma 38, we obtain the following partitions of A,B:

A1 = {A1, A2} and B1 = {B1, B2}.
A2 = {A3} and B2 = {B3, B4}.

We can easily verify that

mX(A1) +mX(A2) = m(E1) +m(E3) +m(E2) = mY(B1) +mY(B2).

mY(A3) = m(E4) +m(E5) = mY(B3) +mY(B4).�

Now, we investigate the properties of the partition defined in Lemma 38
when the joint belief function is comonotone.

Proposition 40. Let Bel be a joint belief function with marginals mX and mY.
Using Lemma 38, it is possible to make a partition of their sets of focal sets F ,
A and B: F1, . . . ,Fn, A1, . . . ,An and B1, . . . ,Bn satisfying Eq. (48).

Let us use the following notation:

ai = max{x : ∃y s.t. ∃E ∈ Fi with (x, y) ∈ E} = maxAi.
ai = min{x : ∃y s.t. ∃E ∈ Fi with (x, y) ∈ E} = minAi.
bi = max{y : ∃x s.t. ∃E ∈ Fi with (x, y) ∈ E} = maxBi.
bi = min{y : ∃x s.t. ∃E ∈ Fi with (x, y) ∈ E} = minBi.

Then, when the joint belief function is comonotone, it fulfills the following prop-
erties:

ai < aj ⇒ bi ≤ bj .
ai < aj ⇒ bi ≤ bj .
bi < bj ⇒ ai ≤ aj .
bi < bj ⇒ ai ≤ aj .

Proof. Applying Lemma 37 to Fi and Fj , we know that there are two focal
sets Ei ∈ Fi and Ej ∈ Fj such that (ai, bi) ∈ Ei and (aj , bj) ∈ Ej , therefore
(ai, bi), (aj , bj) are in the core of Bel. Since Bel is comonotone, its core is
increasing, hence ai < aj implies bi ≤ bj . Other implications can be proved
similarly.

The result gives necessary conditions on the marginals to ensure the existence
of a joint comonotonic belief function with fixed marginals. It is at work in both
Propositions 31 and 35. However, this condition is necessary but not sufficient,
as next example shows.

Example 41. Consider two marginal belief functions BelX and BelY whose
mass distributions are defined by:

mX({1, 2}) = 1; mY({1}) = mY({2}) = 0.5.
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Then, we can consider the partitions A1 = {{1, 2}} and B2 = {{1}, {2}} that
satisfy the necessary conditions given so far, including the one of Proposition 40.

If Bel is a joint belief function with marginals BelX and BelY, then both
sets E1 = {1, 2} × {1} and E2 = {1, 2} × {2} are necessarily focal elements.
Then, both (2, 1) and (1, 2) belong to Core(Bel), yet their union do not form an
increasing set, hence Bel is not comonotone.�

Proposition 42. Let Bel be a joint comonotone belief function. For every focal
element B of BelY, consider the set:

AB := {A ∈ A : ∃E ∈ F with projections A,B}. (49)

Then, for every A1, A2 ∈ AB such that A1 ∩A2 = ∅, it holds that:

• [a1, a1] ∩ [a2, a2] 6= ∅,

• or |B| = 1.

Proof. Assume that none of the previous conditions hold. Since |B| > 1, it
satisfies b < b. Without loss of generality, assume that a1 < a2. Then, by
Lemma 37, (a1, b) and (a2, b) belong to Core(Bel). However, this contradicts
the comonotonicity of the joint belief function.

Then, we conclude that at least one of the properties must be satisfied.

The same result holds when exchanging the role of the projections. We omit
the proof as it is analogous to the previous one.

Proposition 43. Let Bel be a joint comonotone belief function. For every focal
element A of BelX, consider the set:

BA := {B ∈ B : ∃E ∈ F with projections A,B}. (50)

Then, for all B1, B2 ∈ BA such that B1 ∩B2 = ∅, it holds that:

• [b1, b1] ∩ [b2, b2] 6= ∅.

• or |A| = 1.

These propositions show that if a joint focal element have identical projec-
tions on a dimension and disjoint ones on the other dimensions, then either
the identical projections should be singleton, or the end-points of the disjoint
projections should be well-ordered. Figure 9 illustrates the situation, showing
that when Proposition 42 is not satisfied, then extreme points of focal elements
are not comonotone.

For the next result, we introduce the notations

A↑X×Y = {E ∈ F : E↓X = A} and B↑X×Y = {E ∈ F : E↓Y = B}. (51)

We then have the following result.
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Figure 9: Illustration of Proposition 42 when |B| > 1.

Proposition 44. Let Bel be a joint comonotone belief function, and consider
the partitions introduced in Lemma 38. Let A1, A2 ∈ Ai, and assume that

a1 < a2 and
(
A↑X×Y1

)↓Y
∩
(
A↑X×Y2

)↓Y
= ∅. Then, for all B1, B2 ∈ B such that

B1 ⊆
(
A↑X×Y1

)↓Y
and all B2 ⊆

(
A↑X×Y2

)↓Y
it holds that b1 ≤ b2.

Proof. Consider B1 ∈
(
A↑X×Y1

)↓Y
and B2 ∈

(
A↑X×Y2

)↓Y
. Then, there are

focal elements E1 and E2 such that E↓X1 = A1, E↓Y1 = B1, E↓X2 = A2 and

E↓Y2 = B2. Now, assume ex-absurdo that b1 > b2. Then, since the joint belief
function is comonotone, both (a1, b1) and (a2, b2) cannot belong to Core(Bel)
at the same time. However, using Lemma 37:

(x, y) = (a1, b1) ∈ E1 ⊆ Core(Bel).

(u, v) = (a2, b2) ∈ E2 ⊆ Core(Bel).

This contradicts comonotonicity.

This necessary condition is imposed in constraints 31.iii) and 31.iv) of Propo-
sition 31. A similar result holds if we reverse the roles of the X and Y projec-
tions.

Proposition 45. Let Bel be a joint comonotone belief function, and consider
the partitions introduced in Lemma 38. Let B1, B2 ∈ Bi, and assume that

b1 < b2 and
(
B↑X×Y1

)↓X
∩
(
B↑X×Y2

)↓X
= ∅. Then, for all A1, A2 ∈ A such

that A1 ∈
(
B↑X×Y1

)↓X
and all A2 ∈

(
B↑X×Y2

)↓X
it holds that a1 ≤ a2.

Figure 10 illustrates the conditions required by Proposition 44. We now
have both sufficient and necessary conditions for comonotonicity to hold when
studying belief functions. However, finding sufficient and necessary conditions
easily expressible appears difficult.
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Figure 10: Illustration of Proposition 44.

5. Comonotone p-boxes

We now study the case of comonotone p-boxes, as p-boxes are the straight-
forward extension of cumulative distributions, for which it is easy to build a
comonotone model from given marginals. We may therefore wonder if the same
holds for p-boxes. We already know from Proposition 31 that it is not always
possible to build a comonotone joint from marginals that are p-boxes, yet we
do not know how joint comonotone p-boxes are characterized. This is what we
study in this section.

Let us consider a bivariate p-box (F , F ) defined on X × Y, where X =
{x1, . . . , xn} and Y = {y1, . . . , ym}. We have already said that a bivariate p-
box induces a lower probability on the set K2 defined on Eq. (11) by:

P (Ax,y) = F (x, y) and P (Acx,y) = 1− F (x, y) (52)

for all (x, y) ∈ X ×Y, and when P is coherent, it can be extended to P(X ×Y)
by using the natural extension as in Eq. (12). From now on, we investigate
under which condition the natural extension of P to P(X × Y) is comonotone.

Definition 46. Let (F , F ) be a coherent bivariate p-box on X ×Y. Denote by P
the lower probability associated with (F , F ) by means of Eq. (12). Then, (F , F )
is called comonotone whenever P is comonotone.

According to the previous definition, (F , F ) is comonotone whenever P is,
or equivalently, if every P ∈M(P ) is comonotone. During this section, and for
the sake of simplicity, we shall assume that n,m > 1, and

P ({xi}) > 0 and P ({yj}) > 0 for all i = 1, . . . , n and j = 1, . . . ,m. (53)

From a practical point of view, this assumption has no important consequences,
as any element x or y having upper probability zero is deemed impossible, hence
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could in principle be removed from X or Y. Using property P.3 of Proposition 1
and the previous equation, we obtain that for any i = 2, . . . , n:

P (Axi,ym) ≥ P ({xi}) + P (Axi−1,ym) > P (Axi−1,ym), (54)

which is equivalent to FX(xi) > FX(xi−1). Similarly, for every j = 2, . . . ,m
FY(yj) > FY(yj−1).

5.1. Characterization of comonotone bivariate p-boxes

Let us now characterize the conditions under which a bivariate p-box is
comonotone. To make the exposition easier, we will gradually introduce sets
of necessary conditions, and will then show that they form together a set of
sufficient conditions.

Given an increasing set S, we will also often use the fact that its elements can
be re-indexed according to the ordering � introduced in Eq. (20) of Definition 9,
that is

S = {(u1, v1), . . . , (uk, vk)} (55)

satisfying u1 ≤ . . . ≤ uk, v1 ≤ . . . ≤ vk.
Let us now investigate the properties satisfied by the support of the lower

probability associated with a comonotone bivariate p-box.

Proposition 47. Let (F , F ) be a comonotone bivariate p-box defined on X ×
Y = {x1, . . . , xn} × {y1, . . . , ym} satisfying Eq. (53). Denote by P the lower
probability associated with (F , F ) by Eq. (12). If we denote by S the increasing
support of P , S satisfies the following properties:

S.1 The X and Y projections of S are X and Y, that is S↓X = X and S↓Y = Y.

S.2 If (ui, vi), (ui+1, vi+1) ∈ S, then F (ui, vi) < F (ui+1, vi+1).

Proof. Let us start proving property S.1. From Eq. (53), for every x ∈ X
P ({x}) > 0, which means that there exists P ∈ M(P ) and y ∈ Y such that
P ({(x, y)}) > 0. Then, (x, y) ∈ Supp(P ) ⊆ Supp(P ). We conclude that S↓X =
X . Similarly, S↓Y = Y.

Let us consider now property S.2. Let (ui, vi), (ui+1, vi+1) ∈ S. Since
(ui+1, vi+1) ∈ S, P ({(ui+1, vi+1)}) > 0, and using P.3 and the monotonicity
property P.1 of Proposition 1:

F (ui, vi) < F (ui, vi) + P ({(ui+1, vi+1)}) = P (Aui,vi) + P ({(ui+1, vi+1)})
≤ P (A(ui,vi) ∪ {(ui+1, vi+1)}) ≤ P (Aui+1,vi+1) = F (ui+1, vi+1).

This proposition also tells us that if (xi, yj) ∈ S, the support of P , then at
least one of the element (xi+1, yj), (xi, yj+1), (xi+1, yj+1) must also be in S. The
reason is that, if neither (xi, yj+1) nor (xi+1, yj) belong to S, then Condition S.1
implies that there exist x∗ ≥ xi+1, y

∗ ≥ yi+1 satisfying (x∗, yj+1), (xi+1, y
∗) ∈ S.
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Therefore, since S is increasing and xi+1 ≤ x∗, it must hold y∗ ≤ yj+1, so we
conclude that y∗ = yj+1 and therefore (xi+1, yj+1) ∈ S.

The next proposal indicates some constraints a comonotone bivariate p-box
must satisfy when (xi, yj) ∈ S but (xi+1, yj) or (xi, yj+1) are not.

Proposition 48. Let (F , F ) be a comonotone bivariate p-box defined on X ×
Y = {x1, . . . , xn} × {y1, . . . , ym} satisfying Eq. (53). Denote by P the lower
probability associated with (F , F ) by Eq. (12). If we denote by S the support of
P , F and F satisfy the following conditions:

S.3 If (xi, yj) ∈ S and (xi+1, yj) /∈ S, then F (xi, yj) = FY(yj) and F (xi, yj) =
FY(yj).

S.4 If (xi, yj) ∈ S and (xi, yj+1) /∈ S, then F (xi, yj) = FX(xi) and F (xi, yj) =
FX(xi).

Proof. We will only prove the necessary condition S.3, as the proof for S.4 is
analogous. Assume that (xi, yj) ∈ S, (xi+1, yj) /∈ S. By S.1 either (xi+1, yj+1) ∈
S or (xi, yj+1) ∈ S.

Let us now prove that S ∩ D(xi,yj)
1 = ∅. On the one hand, by assumption

(xi+1, yj+1) /∈ S. On the other hand, since (xi, yj) ∈ S and S is increasing,
it holds that (xi+1, y1), . . . , (xi+1, yj) /∈ S. Finally, for any (x, y) such that
x > xi, y ≤ j, it holds that y < yj+1 and x ≥ xi+1 > xi. Therefore, nei-
ther (x, y), (xi, yj+1) nor (x, y), (xi+1, yj+1) are comonotone, and no element in

D
(xi,yj)
1 can belong to S.

Hence for every (x, y) ∈ D(xi,yj)
1 , P ({(x, y)}) = 0. Using P.2, we conclude

that:
P
(
D

(xi,yj)
1

)
≤

∑
(x,y)∈D

(xi,yj)

1

P ({(x, y)}) = 0.

Now, let us see that P (D
(xi,yj)
1 ) = 0 implies that F (xi, yj) = FY(yj) and

F (xi, yj) = FY(yj). Using this and P.2 of Proposition 1, we have:

P
(
D

(xi,yj)
1

)
+ P

(
Axi,yj

)
≥ P

(
D

(xi,yj)
1 ∪Axi,yj

)
⇔ F (xi, yj) ≥ FY(yj)

and since F (xn, yj) = FY(yj) ≥ F (xi, yj) by increasing monotonicity of F
(Definition 3), we get the desired equality.

Let us prove now the equality between F (xi, yj) and FY(yj). Since D
(xi,yj)
1 ∩

Axi,yj = ∅ by construction, P.3 of Proposition 1 implies:

P
(
D

(xi,yj)
1

)
+ P (Axi,yj ) ≥ P

(
D

(xi,yj)
1 ∪Axi,yj

)
⇔ F (xi, yj) ≥ FY(yj)

and again, we have F (xn, yj) = FY(yj) ≥ F (xi, yj) since F is increasing mono-
tone.

Note that, as F (xn, yj) = FY(yj) and F (xn, yj) = FY(yj), Proposition 48
also implies that if (xi, yj) ∈ S and (xi+1, yj) /∈ S, then
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• F (xi, yj) = F (xi+1, yj) = . . . = F (xn, yj) and

• F (xi, yj) = F (xi+1, yj) = . . . = F (xn, yj),

due to the increasing monotonicity of the bivariate p-box. The next proposition
shows that when both (xi, yj) and (xi+1, yj+1) ∈ S, then a bivariate p-box has
to be precise on (xi, yj) to be comonotone.

Proposition 49. Let (F , F ) be a comonotone bivariate p-box defined on X ×
Y = {x1, . . . , xn} × {y1, . . . , ym} satisfying Eq. (53). Denote by P the lower
probability associated with (F , F ) by Eq. (12). If we denote by S the support of
P , then F and F satisfy the following condition:

S.5 If (xi, yj) ∈ S and (xi+1, yj+1) ∈ S, then F (xi, yj) = F (xi, yj).

Proof. We will work by contradiction, showing that if F (xi, yj) < F (xi, yj), we
can build a non-comonotone precise probability within the set M(P ) induced
by the bivariate p-box.

First note that if (xi, yj), (xi+1, yj+1) ∈ S, either (xi, yj+1) or (xi+1, yj) do
not belong to S. Assume without loss of generality that (xi+1, yj) /∈ S. By S.3,
it holds that

F (xi, yj) = F (xi+1, yj) and F (xi, yj) = F (xi+1, yj). (56)

Since P (D
(xi,yj)
1 ) = 0 (see proof of Proposition 48), any probability P ∈

M(P ) must have a cumulative distribution FP such that

FP (xn, yj) = . . . = FP (xi+1, yj) = FP (xi, yj). (57)

Since P is coherent, there exist P1, P2 ∈M(P ) satisfying:

P1({(xi+1, yj+1)}) = P ({(xi+1, yj+1)}) > 0 and FP2
(xi, yj) = F (xi, yj).

If we take P = P1+P2

2 ∈M(P ), it holds that:

P ({(xi+1, yj+1)}) ≥ 1

2
P1({(xi+1, yj+1)}) > 0,

If we now assume that F (xi, yj) < F (xi, yj), it also holds that:

FP (xi, yj) =
FP1

(xi, yj) + FP2
(xi, yj)

2
=
FP1

(xi, yj) + F (xi, yj)

2

<
FP1

(xi, yj) + F (xi, yj)

2
≤ F (xi, yj).

Let us now build, from FP , a new cumulative distribution F ∗ such that F ≤
F ∗ ≤ F , and giving a non-null mass to (xi+1, yj). Take ε such that:

0 < ε < min{P ({(xi+1, yj+1)}), F (xi, yj)− FP (xi, yj)}, (58)
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and define F ∗ by

F ∗(x, y) =

{
FP (x, y) + ε if y = yj , x > xi,

FP (x, y) otherwise.

F ∗ satisfies the following properties:

a) F ∗(x, y) ≥ FP (x, y) ≥ F (x, y) and by Eqs. (56), (57) and (58):

F ∗(xi+k, yj) = FP (xi+k, yj)+ε = FP (xi, yj)+ε < F (xi, yj) = F (xi+k, yj),

and therefore F ∗ ≤ F . Then, if we denote by PF∗ the probability associ-
ated with F ∗, it holds that PF∗ ∈M(P ).

b) Let us now compute the probability PF∗ associated with F ∗. For this aim,
note that:

PF∗({(xi, yj)}) = F ∗(xi, yj)+F ∗(xi−1, yj−1)−F ∗(xi−1, yj)−F ∗(xi, yj−1),

where F ∗(xi, y0) = F ∗(x0, yj) = 0.

PF∗({(xi+1, yj+1)})
= F ∗(xi+1, yj+1) + F ∗(xi, yj)− F ∗(xi+1, yj)− F ∗(xi, yj+1)
= FP (xi+1, yj+1) + FP (xi, yj)− FP (xi+1, yj)− (FP (xi, yj+1) + ε)
= P ({(xi+1, yj+1)})− ε.

PF∗({(xi+1, yj)})
= F ∗(xi+1, yj) + F ∗(xi, yj−1)− F ∗(xi+1, yj−1)− F ∗(xi, yj)
= (FP (xi+1, yj) + ε) + FP (xi, yj−1)− FP (xi+1, yj−1)− FP (xi, yj)
= P ({(xi+1, yj)}) + ε.

Note that PF∗({(xi+1, yj+1)}) = P ({(xi+1, yj+1)})− ε > 0 from Eq. (58).
Finally, for any other (x, y) different than (xi+1, yj+1), (xi+1, yj), it can
be easily proven that PF∗({(x, y)}) = P ({(x, y)}).

From Eq. (58) it holds that ε < P ({(xi+1, yj+1)}), hence PF∗({(xi+1, yj)}) > 0
and PF∗({(xi+1, yj+1)}) > 0, thus we reach a contradiction.

Finally, we present the characterization of comonotone bivariate p-boxes.

Theorem 50. Let (F , F ) be a coherent bivariate p-box defined on X × Y =
{x1, . . . , xn} × {y1, . . . , ym} satisfying Eq. (53). Then, it is comonotone if and
only if there is an increasing set S ⊆ X × Y satisfying properties S.1–S.5.

Proof. Only if: Taking S = Supp(P ), S is an increasing set and, by Proposi-
tions 47, 48 and 49, it satisfies properties S.1 to S.5.

If: assume that there exists an increasing set S satisfying the required prop-
erties, and let us prove that (F , F ) is comonotone. To this aim, we shall use the
characterization of Theorem 17, and we will prove that supp(P ) is an increasing
set because supp(P ) ⊆ S by showing that P ({(x, y)}) = 0 for every (x, y) /∈ S.
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Take (xi, yj) /∈ S. Then, using S.1, there exists either x < xi or y < yj such
that (x, yj) ∈ S or (xi, y) ∈ S. Assume that we are in the first case; the second
case follows by analogy. Denote by:

x∗ = max{x ∈ X : (x, yj) ∈ S}.

We know that x∗ 6= xi, and it holds that x∗ < xi. The reason is that, since
(x∗, yj) ∈ S and (xi, yj) /∈ S, from S.1 there exists y∗ > yi such that (xi, y

∗) ∈ S.
However, if x∗ > xi, then (xi, y

∗) and (x∗, yj) would not be increasing, but both
belong to S, a contradiction.

There are two cases:

1. F (x∗, yj) = F (x∗, yj). By the definition of x∗, we can apply Condition
S.3, which implies also that:

F (x∗, yj) = F (x∗, yj) = F (xi, yj) = F (xi, yj) = FY (yj) = FY (yj). (59)

For any P ∈M(P ), it holds that

FP (x∗, yj) = . . . = FP (xi−1, yj) = FP (xi, yj) = . . . = FP (xn, yj), (60)

and this value is also equal to those of Eq. (59). Consequently, since FP
is componentwise increasing and needs to satisfy the rectangle inequal-
ity, we have FP (x∗, yj−1) = FP (xi, yj−1). Indeed, applying the rectangle
inequality to (xn, yj), (x

∗, yj−1), we have5:

FP (xn, yj) + FP (x∗, yj−1)− FP (x∗, yj)− FP (xn, yj−1) ≥ 0,

but since FP (xn, yj) = FP (x∗, yj), we get FP (x∗, yj−1) ≥ FP (xn, yj−1.
However, by monotonicity, we conclude that:

FP (x∗, yj−1) = . . . = FP (xi, yj−1) = . . . = FP (xn, yj−1). (61)

Let us now compute P ({(xi, yj)}), for which we only need to apply the
rectangle inequality to the elements (xi, yj), (xi−1, yj−1) and use Eqs. (60)
and (61):

P ({(xi,yj)}) = FP (xi, yj) + FP (xi−1, yj−1)− FP (xi−1, yj)− FP (xi, yj−1)

=
(
FP (xi, yj)− FP (xi, yj−1)

)
+
(
FP (xi−1, yj−1)− FP (xi−1, yj)

)
= 0.

Since this happens for all P ∈M(P ),

P ({(xi, yj)}) = sup
P∈M(P )

P ({(xi, yj)}) = 0.

5If j = 1, we trivially consider FP (x, y0) = 0 for any x ∈ X , and the similar reasoning can
be applied.
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2. F (x∗, yj) < F (x∗, yj). Since S is increasing and using S.1, there exists
y ∈ Y, satisfying y > yj such that (xi, y) ∈ S. Take:

yl = min{y ∈ Y : (xi, y) ∈ S}. (62)

Note tat yl > yl−1 ≥ yj because (x∗, yj) ∈ S, x∗ < xi and S is increasing.

Also, again using S.1, denote by:

xk = max{x ∈ X : (x, yl−1) ∈ S}. (63)

Let us now prove that x∗ ≤ xk ≤ xi:

• On the one hand, we know that (x∗, yj), (xk, yl−1) ∈ S. Since S is
increasing and yj ≤ yl−1, it must hold x∗ ≤ xk.

• On the other hand, we know that (xk, yl−1), (xi, yl) ∈ S. Since S is
increasing and yl−1 < yl, it must hold xk ≤ xi.

Using the definition of xk in Eq. (63), we have (xk+1, yl−1) 6∈ S. Using
S.5, it holds that F (xk, yl−1) = F (xk, yl−1), and using S.3 it holds that:

F (xk, yl−1) = F (xk, yl−1) = F (xk+1, yl−1)

= F (xk+1, yl−1) = F (xi, yl−1) = F (xi, yl−1). (64)

From this, every P ∈M(P ) satisfies

FP (xk, yl−1) = FP (xk+1, yl−1) = . . . = FP (xi, yl−1)

with values coinciding with those of Eq. (64). Now, let us apply the
rectangle inequality to the elements (xk, yl−2), (xi, yl−1):

0 ≤ FP (xk, yl−2) + FP (xi, yl−1)− FP (xk, yl−1)− FP (xi, yl−2)

= FP (xk, yl−2)− FP (xi, yl−2),

but since xk ≤ xi and FP is monotone, FP (xk, yl−2) = FP (xi, yl−2) holds.
Also, by monotonicity:

FP (xk, yl−2) = FP (xk+1, yl−2) = . . . = FP (xi, yl−2).

Iterating this procedure, we obtain that:

FP (xk, yl−3) = FP (xk+1, yl−3) = . . . = FP (xi, yl−3).
. . .

FP (xk, y2) = FP (xk+1, y2) = . . . = FP (xi, y2).
FP (xk, y1) = FP (xk+1, y1) = . . . = FP (xi, y1).

Finally, we compute PF ({(xi, yj)}):

PF ({(xi,yj)}) = F (xi, yj) + F (xi−1, yj−1)− F (xi−1, yj)− F (xi, yj−1)

=
(
F (xi, yj)− F (xi, yj−1)

)
+
(
F (xi−1, yj−1)− F (xi−1, yj))

= 0.

We conclude that for any P ∈M(P ), P ({(xi, yj)}) = 0, so P ({(xi, yj}) =
0.
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Thus, for any (x, y) /∈ S, P ({(x, y)}) = 0, hence (x, y) /∈ Supp(P ). Therefore,
Supp(P ) ⊆ S, hence Supp(P ) is an increasing set and by Theorem 17, P is
comonotone.

Example 51. Consider the 5-element spaces X and Y and the coherent bivari-
ate p-box (F , F ) given by:

y5 [0.2, 0.3] [0.2, 0.5] [0.5, 0.5] [0.7, 0.7] [1, 1]
y4 [0.2, 0.3] [0.2, 0.5] [0.5, 0.5] [0.7, 0.7] [0.7, 0.9]
y3 [0.2, 0.3] [0.2, 0.5] [0.5, 0.5] [0.6, 0.6] [0.6, 0.6]
y2 [0.2, 0.3] [0.2, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]
y1 [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2]

[F (xi, yj), F (xi, yj)] x1 x2 x3 x4 x5

It can be seen that the set S given by:

S = {(x1, y1), (x1, y2), (x2, y2), (x3, y2), (x4, y3), (x4, y4), (x5, y4), (x5, y5)} (65)

is an increasing set and it satisfies conditions S.1 to S.5, so (F , F ) is a comono-
tone bivariate p-box whose associated lower probability P is comonotone. Indeed,
Supp(P ) = S. �

Using the previous theorem, we can characterize the form of the probabilities
on the credal set of the lower probability associated with a comonotone bivariate
p-box.

Corollary 52. Let (F , F ) be a comonotone bivariate p-box satisfying Eq. (53)
with associated lower probability P , and denote by S the support of P . Then, ev-
ery bivariate cumulative distribution function F ∈ (F , F ) satisfies the following
conditions:

1. If (xi, yj) ∈ S and (xi+1, yj) /∈ S, F (xi+1, yj) = . . . = F (xn, yj).

2. If (xi, yj) ∈ S and (xi, yj+1) /∈ S, F (xi, yj+1) = . . . = F (xi, ym).

Furthermore, the support of P can be expressed by S = {(u1, v1), . . . , (ul, vl)}
such that uk ≤ uk+1, vk ≤ vk+1 for every k = 1, . . . , l − 1, (u1, v1) = (x1, y1)
and (ul, vl) = (xn, ym). It holds that:

M(P ) = {P ∈ P | ∃αk ∈ [F (uk, vk), F (uk, vk)] such that α1 ≤ . . . ≤ αl = 1,

P ({(u1, v1)}) = α1, P ({(uk, vk)}) = αk − αk−1 ∀k = 2, . . . , l}. (66)

Proof. Take F ∈ (F , F ). Then, if (xi, yj) ∈ S, consider the following cases:

1. (xi+1, yj) /∈ S. Since S is increasing, D
(xi,yj)
1 ∩ S = ∅, and therefore

PF (D
(xi,yj)
1 ) = 0. We conclude that

F (xn, yj) = PF (D
(xi,yj)
1 ∪Axi,yj )

= PF (D
(xi,yj)
1 ) + PF (Axi,yj ) = PF (Axi,yj ) = F (xi, yj).
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Therefore, since F is component-wise increasing,

F (xi, yj) = F (xi+1, yj) = . . . = F (xn, yj).

2. (xi, yj+1) /∈ S. With a similar reasoning, it holds that

F (xi, yj) = F (xi, yj+1) = . . . = F (xi, ym).

Now, take αk ∈ [F (uk, vk), F (uk, vk)] for every k = 1, . . . , l such that α1 ≤
. . . ≤ αl = 1, and consider F such that F (uk, vk) = αk for every k = 1, . . . , l.
Using cases 1 and 2, F defines a unique cumulative distribution function on
X × Y. Let us compute its associated probability PF . First of all, it trivially
holds that PF ({(u1, v1)}) = PF ({(x1, y1)}) = α1. For any (uk, vk) = (xi, yj) ∈
S with k ≥ 2, we have the following cases:

• (uk−1, vk−1) = (xi−1, yj−1). From 1 and 2, we know that

αk−1 = F (xi−1, yj−1) = F (xi−1, yj) = F (xi, yj−1).

Therefore:

PF ({(uk,vk)}) = F (xi, yj) + F (xi−1, yj−1)− F (xi−1, yj)− F (xi, yj−1)

= αk + αk−1 − αk−1 − αk−1 = αk − αk−1.

• (uk−1, vk−1) = (xi−1, yj). Since S is increasing, (xi, yj−1) cannot belong to
S. However, by Condition S.1 there exists x ∈ X , that must satisfy x < xi,
such that (x, yj−1) ∈ S. Denote by x∗ = max{x ∈ X | (x, yj−1) ∈ S}, and
denote by α∗ = F (x∗, yj−1). From condition 1 of this corollary, it holds
that:

α∗ = F (x∗, yj−1) = F (xi−1, yj−1) = F (xi, yj−1).

Finally, we compute PF ({(uk, vk)}):

PF ({(uk,vk)}) = F (xi, yj) + F (xi−1, yj−1)− F (xi−1, yj)− F (xi, yj−1)

= αk + α∗ − αk−1 − α∗ = αk − αk−1.

• (uk−1, vk−1) = (xi, yj−1). Following the same steps than in the previous
case, we obtain PF ({(xk, uk}) = αk − αk−1.

We therefore conclude that:

PF ({(u1, v1)}) = α1, PF ({(uk, vk)}) = αk − αk−1 ∀k = 2, . . . , l. (67)

On the other hand, if we take a probability P satisfying Eq. (67), it defines a
cumulative distribution function FP bounded by F and F , so P ∈M(P ).
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Example 53. Let us continue with Example 51. Taking into account the pre-
vious result, any cumulative distribution function F ∈ (F , F ) has the following
form:

y5 β δ 0.5 0.7 1
y4 β δ 0.5 0.7 γ
y3 β δ 0.5 0.6 0.6
y2 β δ 0.5 0.5 0.5
y1 0.2 0.2 0.2 0.2 0.2

F (xi, yj) x1 x2 x3 x4 x5

Where β ∈ [0.2, 0.3], δ ∈ [0.2, 0.5], γ ∈ [0.7, 0.9] and β ≤ δ ≤ γ. Then, the
probabilities P ∈M(P ) are given by:

y5 0 0 0 0 1− γ
y4 0 0 0 0.1 γ − 0.7
y3 0 0 0 0.1 0
y2 β − 0.2 δ − β 0.5− δ 0 0
y1 0.2 0 0 0 0

P ({(xi, yj)}) x1 x2 x3 x4 x5

We can see how Corollary 52 allows us to compute in a very simple way the
probabilities in the credal set of the p-box. �

5.2. Comonotone bivariate p-boxes and belief functions

So far we have characterized the comonotone bivariate p-boxes. We now
investigate the lower probability they induce, proving that it is a belief function.

Theorem 54. Let (F , F ) be a coherent bivariate p-box defined on X × Y.
If (F , F ) is comonotone, then its associated lower probability P by means of
Eq. (12) is a belief function.

Proof. Denote the support of P by S = Supp(P ). Since it is increasing, we
can express it by S = {(u1, v1), . . . , (ul, vl)} such that uk ≤ uk+1, vk ≤ vk+1 for
every k = 1, . . . , l − 1, (u1, v1) = (x1, y1) and (ul, vl) = (xn, ym).

If we use the notation zk = (uk, vk) for k = 1, . . . , l, and using the partial
order defined in Eq. (20) we can define an ordered space (S,�), where S =
{z1, . . . , zl} and z1 � . . . � zl. Also, we can define the (univariate) p-box
(FS , FS) by:

FS(zk) = F (uk, vk), FS(zk) = F (uk, vk) ∀k = 1, . . . , l.

Therefore, (FS , FS) defines a belief function PS using Eq. (12). Let us denote by
E1, . . . , Er ⊆ S the focal sets of PS , and by mS its associated mass distribution.

Now let us see that there is a one-to-one correspondence betweenM(P ) and
M(PS). On the one hand, take P ∈ M(P ), which using Corollary 52 satisfies
P ({(uk, vk)}) = αk − αk−1 for some αk ∈ [F (uk, vk), F (uk, vk)] ∀k = 1, . . . , l,
α1 ≤ . . . ≤ αl and α0 = 0. Thus for any such P , we can define a probability
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PS by PS({zk}) = αk − αk−1 for every k = 1, . . . , l and associate it to P . This
probability satisfies

FPS
(zk) = αk ∈ [F (uk, vk), F (uk, vk)] = [FS(zk), FS(zk)] ∀k = 1, . . . , l.

Hence, PS ∈M(PS).
Conversely, take PS ∈M(PS), which satisfies FPS

(zk) = αk ∈ [FS(zk), FS(zk)]
for every k = 1, . . . , l. Therefore, we can define F by F (uk, vk) = F (zk) = αk for
every k = 1, . . . , l. Using the previous corollary, F is a cumulative distribution
function bounded by (F , F ), so PF ∈M(P ).

Now, take A ∈ X ×Y. This set can be expressed by A = (A∩S)∪ (A∩Sc).
Therefore, using monotonicity P.1 and P.3 of Proposition 1, we have:

P (A ∩ S) ≤ P (A) ≤ P (A ∩ S) + P (A ∩ Sc) ≤ P (A ∩ S) + P (Sc) = P (A ∩ S),

where the last inequality follows because S is the support of P , and therefore
P ({(x, y)}) = 0 for every (x, y) /∈ S. Hence, P (A∩S) = P (A) for any A ⊆ X×Y.

Let us see now that P (A ∩ S) = PS(A) for every A ⊆ X × Y. On the one
hand, since P is coherent, there exists P ∈M(P ) such that P (A∩S) = P (A∩S).
Also, take PS ∈M(PS) the probability associated with P . It holds that:

P (A ∩ S) = P (A ∩ S) = PS(A ∩ S) ≥ PS(A ∩ S).

On the other hand, there exists PS ∈M(PS) such that PS(A∩S) = PS(A∩S).
If we denote by P ∈M(P ) the probability associated with PS , it holds that:

PS(A ∩ S) = PS(A ∩ S) = P (A ∩ S) ≥ P (A ∩ S).

We conclude that P (A ∩ S) = PS(A ∩ S), and therefore P (A) = PS(A ∩ S) for
every A ⊆ X × Y. Finally, for any A ⊆ X × Y, since PS is a belief function, it
holds that:

P (A) = PS(A ∩ S) =
∑

Ek focal of PS
Ek ⊆ A ∩ S

mS(Ek) =
∑

Ek focal of PS
Ek ⊆ A

mS(Ek),

where the last equality follows because every focal set Ek satisfies Ek ⊆ S, so
Ek ⊆ A∩S is equivalent to Ek ⊆ A. Therefore, P is a belief function with focal
sets E1, . . . , Er and mass distribution m such that m(Ek) = mS(Ek).

Example 55. Let us continue with Example 51. From the previous theorem we
know that P is a belief function. Also, following the proof, we can define a totally
ordered univariate space (S,�), where S was given in Eq. (65). Therefore, S
can be expressed as S = {z1, . . . , z8} where z1 ≺ . . . ≺ z8. We can define the
p-box (FS , FS) on S, that is just the restriction of (F , F ) to S, given by:

S z1 z2 z3 z4 z5 z6 z7 z8

FS 0.2 0.2 0.2 0.5 0.6 0.7 0.7 1
FS 0.2 0.3 0.5 0.5 0.6 0.7 0.9 1
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Figure 11: Representation of the p-box (FS , FS) and its focal sets.

The lower probability PS associated with (FS , FS) is a belief function, and its
focal sets are given by:

E1 = {z1}, E2 = {z2, z3, z4}, E3 = {z3, z4}, E4 = {z5},
E5 = {z6}, E6 = {z7, z8}, E7 = {z9},

with masses

Ei E1 E2 E3 E4 E5 E6 E7 E8

m(Ei) 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1

The graphical representation of (FS , FS) and the focal sets of P can be seen in
Figure 11.

According to the proof of the previous theorem, the focal sets of P coincide
with those of FS, but written in terms of (xi, yj):

E1 = {(x1, y1)}, E2 = {(x1, y2), (x2, y2), (x3, y2)}, E3 = {(x2, y2), (x3, y2)},
E4 = {(x4, y3)}, E5 = {(x4, y4)}, E6 = {(x5, y4), (x5, y5)}, E7 = {(x5, y5)},

with masses m(Ei) = mS(Ei). The focal sets are graphically depicted in Fig-
ure 12.�

6. Conclusions

Comonotonicity (and countermonotonicity) are specific dependency assump-
tions that have important practical and theoretical roles when using precise
probabilities. They correspond to lower/upper bounds of any other joint distri-
butions, and can be used for instance in sensitivity analysis.

This paper investigates the notion of comonotonicity for lower probabilities
and sets of probabilities, models that are used when a unique probability cannot
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Figure 12: Core of the belief function defined from the bivariate p-box of Example 51.

be identified (due to limited information, etc). Our results show that most
equivalent characterizations (increasingness of the support, counter-monotonic
events having zero probability) of comonotonicity true in the precise case still
hold in the imprecise one. However, only a weaker form of the characterization
in terms of cumulative distributions holds: the bivariate p-box associated with a
comonotone lower probability can be expressed as the minimum of the marginal
p-boxes, yet the converse does not hold in general (the minimum of marginal
p-boxes does not produce a comonotonic model).

We have also observed that comonotonicity of a joint model is much harder
to obtain and to check in practice when dealing with imprecise probabilities. In
particular, it is not always possible to build a comontonic joint lower probabil-
ity from given marginals, in contrast with the precise setting. For this reason,
we have investigated conditions for which such constructions are possible for
specific yet useful models: belief functions and sub-cases of them (p-boxes, pos-
sibility distributions). Focusing on particular models allowed us to get practical
conditions usable in applications.

In previous works [2, 3] the notion of independence in an imprecise framework
was investigated, not even for events but also for gambles. It remains as an open
problem to study how and to what extend comonotonicity can be expressed for
gambles, and in particular if there is some kind of connection with the Choquet
integral [1].
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