N

N
N

HAL

open science

The Roles of Code in Computational Science

Konrad Hinsen

» To cite this version:

Konrad Hinsen. The Roles of Code in Computational Science. Computing in Science and Engineering,

2017, 19 (1), pp.78 - 82. 10.1109/MCSE.2017.18 . hal-01618279

HAL Id: hal-01618279
https://hal.science/hal-01618279

Submitted on 2 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01618279
https://hal.archives-ouvertes.fr

The roles of code in computational science

It’s a safe bet that most readers of CiSE have written some code during their
professional life. Many of us write code regularly as part of our scientific activity,
perhaps even as a full-time job. But even though we write, and use, more
and more code, we rarely think about the roles that this code will have in our
research, in our publications, and ultimately in the scientific record.

In this article, I will outline some frequent roles of code in computational science.
These roles are not exclusive, and in fact it is common for a piece of code to have
several roles, at the same time or as an evolution over time. Thinking about
these roles, ideally before starting to write the code, is a good habit to develop.

The most obvious role of code is its use as a tool for doing computations. In fact,
it is this role that sets code apart from other types of information. In its tool
role, code is evaluated using criteria such as suitability for a task, robustness,
flexibility, performance, ease of use, etc. Since this role should be familiar to
CiSE readers, I won’t say much more about it and concentrate on the other, less
obvious roles.

Code as a scientific notation

Another important family of roles can be summarized as executable expressions of
scientific information. In these roles, code can be considered a scientific notation.
Criteria such as clarity of expression and exposition are therefore important,
just like for any other form of scientific communication. However, executability
matters as well, otherwise we would stick to more traditional notations such as
plain language or mathematical formulas. Being able to execute the code is a
proof of completeness. In an article, you can forget to define a quantity without
anybody noticing for a long time. In a computer program, such an omission
yields an error message. Executability is also a proof of absence of certain types
of mistakes: the mistakes that a compiler can identify, and the mistakes that
cause a program to fail during its execution.

I call this a family of roles because there are very different kinds of scientific
information that can be expressed by code. Each kind requires its specific style,
both for the code itself and for the documentation that accompanies it. In this
respect, code is not different from traditional scientific writing: a journal article
and a textbook for students have different goals and are therefore written in
very different styles. This analogy between code and scientific writing turns out
to be useful for identifying different types of executable scientific knowledge.

A paper in a scientific journal reports on a scientific study, explaining the
context and motivation, the exact system being studied, and the methods that
were applied. Results are then presented and discussed. The computational
equivalent is a detailed record of all computations that were performed, including
the software, the input data, and the results.



Note that this detailed record is not just code, but code in its scientific context.
This is true in general for the role of code as scientific notation. In fact, it is
true as well for other scientific notations. A mathematical formula, or even a
sentence in plain English, does not convey much meaning on its own. It acquires
meaning only in the context of other formulas and sentences. Similarly, the code
that was run in a computational research project makes sense only in the context
of an overall description of that project.

This insight has led to the development of computational notebooks, pio-
neered by Mathematica (http://www.wolfram.com/mathematica/) and more
recently implemented for several programming languages by the Jupyter project
(http://jupyter.org/). Notebooks have become popular because they make it
possible to combine the computational protocol used in a study with a scientific
narrative into a single document. The reader of such a notebook can not only
read the narrative, but also run the code, inspect intermediate results, and
change parameters to see their impact on the results. This ability to work with
the code makes it easier to understand the scientific narrative and vice versa.

If journal articles were the only type of scientific document, we would have
drowned in the ocean of millions of individual scientific studies long ago. What
makes it possible to keep an overview of progress in a specific field is condensed
summaries, which take the form of review articles. They provide a snapshot
of the state of the art in a field that still undergoes rapid development. In the
world of code, the equivalent of a review article is a library or program package
that implements state-of-the-art algorithms with the goal of making them easily
accessible to other researchers. Like the readers of a review article, the users
of such a library are mainly experienced practitioners who can be expected to
know the ideas behind the algorithms. However, precise and up-to-date technical
documentation is essential: users must be able to figure out easily what exactly
the code does, and in particular what its limitations are.

Beyond review articles, there is a continuous consolidation process of scientific
information whose final stage is textbook knowledge. Knowledge that is presented
in textbooks is information that is well known and well understood by research
practitioners from many specialty fields. The code equivalent of textbook
knowledge is a library or program package that implements well-known and
widely used algorithms in such a way that they can safely be used as black-box
ingredients in research code. This requires particular attention to robustness.
The code should behave reasonably even when used in an unforeseen way.
Documentation must be written with non-expert users in mind, and should
address both technical conditions and appropriate scientific contexts for the use
of the code.

Unfortunately, we have not yet found a good way to present libraries and program
packages to human readers in their scientific context. Ideally, readers should see
the code embedded into a discussion of the methods that are implemented. This
discussion should be illustrated by example applications, and test cases should
point out assumptions about the inputs, the handling of edge cases, and other



subtleties. Literate programming [Knuth1984] goes a long way towards this
goal. Its basic premise is that software should be written as an essay for human
readers, with markup that permits extracting pure code files for execution.

Note that literate programming is more complex than the computational note-
books I mentioned above. A notebook describes a linear sequence of compu-
tational steps with is inputs and outputs alongside a scientific narrative. In
contrast, algorithms and computational methods are not linear, and are designed
to work with a wide range of inputs. That is perhaps one reason why literate
programming hasn’t been adopted yet by computational scientists. Another
reason is the unsatisfactory state of support tools, which are incomplete and
incompatible with each other. But the main reason is that the scientific commu-
nity has only recently acknowledged the importance of the scientific notation
role played by code.

The notation roles that I have discussed up to here deal with scientific models and
methods, which have occupied the central stage of research for a few centuries.
Today, data plays an ever more important role, and datasets are increasingly
recognized as scientific publications in their own right. Most published datasets
are raw or processed observational data, but it can also be of interest to publish
simulation output if re-generating it is particularly costly or difficult. Whatever
the nature of the data, every electronic dataset has been created with the help
of software, and that software’s source code contains valuable information for
interpreting the data. Ideally, the syntax and semantics of datasets should be
well-defined and documented (a topic I have written about earlier [Hinsen2012]),
making it less important to have access to the code that generated the published
files. However, just like descriptions of algorithms in plain language tend to be
incomplete, descriptions of data models are not always sufficient in practice. In
the case of processed data, a detailed record of the processing steps in the form
of the code that was actually run is also very helpful for interpretation. This
role of code overlaps with the role of documenting a scientific study. The main
difference is a focus on the process in one case compared to a focus on the results
in the other case. Another difference is that code documenting datasets should
ideally be attached to the datasets as metadata and not require fetching another
document from a different place.

Code as the shared asset of a scientific community

A final role of code that deserves some discussion is its role in the structuring
of scientific communities. Major program packages or libraries, but also more
widely used infrastructure tools such a programming languages, have often been
the nucleus for the formation of sizable user and developer communities which,
in the case of programming languages and infrastructure libraries, transcend the
traditional scientific disciplines. The social impact of code has been much larger
than for any other technical aspect of doing research.

I see the main reason for this in the enormous complexity of software. Keep in



mind that when you run a 10-line Python script on your computer, you are really
deploying a stack of software items that includes the Python interpreter, the
libraries installed along with it, and an operating system such as Linux. Moreover,
getting this software stack working on your computer has required other software
that you may no longer see, such as a C compiler. The development, maintenance,
and deployment of this enormous amount of code cannot be handled by any
individual, nor even a team of people working in close contact.

Consider a computational scientist working on the development of domain-
specific code. This task requires a good understanding of the level below
in the stack — a programming language, various libraries, and various tools
such as compilers. Acquiring a useful level of competence with all this is an
important effort, so few people can become proficient in more than one or two
such environments. The programming environment thus becomes an important
aspect of one’s work, and discussing this work is much easier with people who
share the same background. Collaborating on code development imposes even
stricter compatibility: all developers must be proficient using almost identical
environments. In comparison, traditional scientific instruments are simple. A
scientist familiar with the principles of electron microscopy can rapidly learn
to use any particular electron microscope, and has no difficulty to talk to or
collanorate with colleagues who use different models. Likewise, a theoretician
can easily read articles written by scientists from a different school that favors
different mathematical notations or uses different definitions.

In practice this means that the choice of a program package or a programming
language implies the choice of a community one will interact with, and maybe
become a part of. But every community also has shared values and attitudes
that are not directly related to its shared technologies. One community may be
conservative, valuing long-term compatibility over progress, whereas another one
may like its code on the bleeding edge. Moving even further away from technical
aspects, communities can be more or less welcoming to newcomers, and more or
less open to new ideas. At the extreme, communities can have sexist, racist, or
elitist attitudes that can be serious obstacles to productive research work.

The social roles of code are likely to gain in importance as code itself is more
and more recognized as important in research. At this time, publishing code has
become common though not yet universal. But unlike journal articles, code is not
reviewed in the publication process. One obstacle to independent code reviewing
is that a potential reviewer must have both the right scientific domain knowledge
and solid technical competence in the development technologies employed by
the code authors. If reviewing code becomes common, this will likely create
social pressure towards standardization of such technologies inside each scientific
domain.



Tensions between the roles

The different roles that a piece of code has are not independent. On the contrary,
they can easily be in conflict, requiring scientific software developers to find a
workable compromise. This is why I recommend to consider the roles of one’s
code before starting to write it. Compromises tend to be better when they are
result of conscious decisions rather than accidents of development.

An often discussed tension is the one between performance in the tool role and
clarity in the notation role. Performance optimization tends to make code less
understandable. In the extreme, for example when parallelizing code at a low
level using MPI, it can become very hard to figure out what the optimized code
does exactly. It is possible that better notations, i.e. new programming languages
designed from the start to act like scientific notations, can alleviate this tension,
but for the moment this is just wishful thinking.

Another important conflict exists between the generality that is desirable for
the tool and social roles on one hand, and the requirement for simplicity in the
notation role on the other hand. Tools applicable to a wide range of problems
are advantageous for their users, who can get away without learning too many
tools. They are also advantageous for their developer communities, because
these communities can recruit members from a wider base and thus share the
development work among more people. However, general tools lead to larger
and more complex code bases that are usually more difficult to understand than
simple code written specifically to solve one problem.

A related tension stems from the reliance on other code, in particular libraries.
It has been discussed in detail by Matt Turk in this department [Turk2015].
From the point of view of the tool role, using existing library code, assuming it
is of good quality, is usually an advantage. In the social role, code with library
dependencies creates asymmetric links between two communities, which has
good and bad sides. From the notation point of view, dependencies on libraries
implementing well-known techniques is an advantage, as readers are likely to be
already familiar with them. But dependencies on new or little known libraries
make understanding the code more difficult for the average reader because there
is more code to read - in fact, this is a special case of the generality dilemma.

Interactions between different categories of code

Another aspect to consider in writing code that fulfills its intended roles well is
that no piece of scientific code exists in isolation. The computational protocol of
a specific study relies on program packages and libraries of varying degrees of
maturity, and each program package and library adds dependencies of its own.

From the tool perspective, the computational protocol has almost no value,
because its work is done. It may serve as an inspiration for the development
of other tools, but it is unlikely to be reused in its entirety. As a consequence,
there is no point in doing any maintenance. In contrast, the domain-specific or



general libraries it depends on will be used by larger communities for a longer
time. They will be maintained and extended, but that also means that they
undergo permanent change.

This poses a problem from the notation perspective, which requires that a
published computational protocol should remain reproducible for as long as the
study itself remains of scientific interest, which can easily be several decades. This
is the core issue of the reproducibility problem, which has come up repeatedly
in CiSE, in particular in two theme issues (January 2009 and July 2012). In the
past, it is the tool perspective that has dominated scientific software, with the
result that individual computational protocols are effectively built on quicksand
foundations consisting of tools that change through continuous improvement.
The increasing emphasis on reproducibility, and the ongoing tendency to publish
scientific software, are thus likely to create pressure towards stability at least in
widely used libraries and program packages.

A final aspect to consider is the evolution of roles in time. From the notation
perspective, it is desirable to write new code as the status of a computational
method advanced from innovative through established to well-known. The
requirements for these respective roles are too different to be assumed by a
single code base. The analogy with scientific writing is useful again: it would be
ludicrous to compose a review article from pasted-together sections of original
research articles. But scientific code is still rarely written with its notation role
in mind. From the tool point of view, reusing working code may well seem
preferable, and that is also the way of least immediate effort.

Readers waiting for a final coherent message from this article will be disappointed:
I cannot offer any simple conclusion. The only advice I can offer is to take all
the issues I have outlined into account when starting a coding project. Consider
why you are writing the code right now, and for how long you expect to use it.
Consider who else might use the code in the foreseeable future, and who might
collaborate with you on its future development. Do you plan to publish it? This
might actually not be a choice for much longer, so better prepare yourself for
answering “yes”.

For any code meant to be published, the notation roles should be explored
carefully. As with any form of scientific communication, you have to write for
your audience. For a code base, that audience consists of the users of the code,
but also of the audience that its users are addressing with their own work. If
you want me to use your code, you have to make it easy for me to explain to my
readers what your code does.

The social role of code is particularly important to consider when building a
community around a software package is your explicit goal. But even if you
write small and specialized software that is unlikely to ever become widely used,
it is worth thinking about how your code will be judged by the user community
of your development and infrastructure tools, if only because in the not too
remote future this judgment might become part of the scientific reviewing process.



Adopting the best practices of this community is the equivalent of making an
effort to write your papers in good English - something that I haven’t heard
anyone argue against yet.

References

o [Knuth1984] Knuth, Donald E. “Literate Programming.” The Computer
Journal 27, no. 2 (1984): 97-111.

o [Hinsen2012] Hinsen, Konrad. “Caring for Your Data.” Computing In
Science & Engineering 14, no. 6 (2012): 70-74.

e [Turk2015] Turk, Matthew. “Vertical Integration.” Computing In Science
& Engineering 17, no. 1 (2015): 64-66.

Konrad Hinsen is a researcher at the Centre de Biophysique Moléculaire in
Orléans (France) and at the Synchrotron Soleil in Saint Aubin (France). His
research interests include protein structure and dynamics and scientific computing.
He has a PhD in theoretical physics from RWTH Aachen University (Germany).
Contact him at konrad.hinsen@cnrs.fr.



	The roles of code in computational science
	Code as a scientific notation
	Code as the shared asset of a scientific community
	Tensions between the roles
	Interactions between different categories of code
	References


