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Abstract

We propose in this paper a construction of a diffusion process on the space P2(R) of
probability measures with a second-order moment. This process was introduced in several
papers by Konarovskyi (see e.g. [Konl7b]) and consists of the limit as N tends to +oo of a
system of N coalescing and mass-carrying particles. It has properties analogous to those of a
standard Euclidean Brownian motion, in a sense that we will precise in this paper. We also
compare it to the Wasserstein diffusion on P2(R) constructed by von Renesse and Sturm
in [vRS09]. We obtain that process by the construction of a system of particles having short-
range interactions and by letting the range of interactions tend to zero. This construction
can be seen as an approximation of the singular process of Konarovskyi by a sequence of
smoother processes.

Keywords: Wasserstein diffusion, interacting particle system, coalescing particles, mod-
ified Arratia flow, Brownian sheet, differential calculus on Wasserstein space, It6 formula for
measure-valued processes.

AMS MSC 2010: Primary 60K35, 60J60, 60B12, Secondary 60G44, 82B21.

Acknowledgment. The author is grateful to an anonymous referee for the important remarks
and the very detailed report.

1 Introduction

This paper introduces a new approach to construct the stochastic diffusion process studied by
Konarovskyi [Kon17b, Konll, KvR15, Konl7a|. It is a close relative to the Wasserstein diffusion,
introduced by von Renesse and Sturm [vRS09]. Our interest is to construct an analogous process
to the Euclidean Brownian motion taking values on the Wasserstein space P2(R), defined as the
set of probability measures on R having a second-order moment.

In [vRS09|, von Renesse and Sturm construct a strong Markov process called Wasserstein
diffusion on Pa(M), for M equal either to the interval [0, 1] or to the circle $!. Two major features
of that process illustrate the analogy with the standard Brownian motion on a Euclidean space.
First, the energy of the martingale part of the Wasserstein diffusion has the same form as that
of a k-dimensional standard Brownian motion, up to replacing the Euclidean norm on R* by the
Lo-Wasserstein distance:

dw (p,v) = inf E [| X — Y|?] 1z ,
where the infimum is taken over all couplings of two random variables X and Y such that X (resp.
Y) has law p (resp. v). It should be noticed that the geometry of Pa(M), equipped with the
Wasserstein distance, for M a Euclidean space, was the subject of fundamental studies conducted
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by Ambrosio, Gigli, Savare, Villani, Lions and many others [AGS08, Vil03, Vil08, Lio, Carl3|,
which led to important improvements in optimal transport theory. Second, the transition costs
of the Wasserstein diffusion are given by a Varadhan formula (see [vRS09]|, Corollary 7.19). The
formula is identical to the Euclidean case, up to the replacement of the Euclidean norm by dyy.

Although the existence of a Wasserstein diffusion was initially proven by von Renesse and
Sturm using Dirichlet processes and the theory of Dirichlet forms (see [FOT10]), it can also be
obtained as a limit of finite-dimensional systems of interacting particles, see [AvR10, Stul4].
Nevertheless, we will focus in this paper on a construction of a system of particles which seems
more natural and simpler and which is due to Konarovskyi in [Konl1, Konl7b].

1.1 Konarovskyi’s model

In [Kon17b], Konarovskyi studies a simple system of N interacting and coalescing particles and
proves its convergence to an infinite-dimensional process which has the features of a diffusion on
the Lo-Wasserstein space of probability measures (see also [Konll, KvR15, Konl7a]). However,
even if it has common properties with the diffusion of von Renesse and Sturm, there are also im-
portant differences between the two processes. An outstanding property of Konarovskyi’s process
is the fact that, for a large family of initial measures, it takes values in the set of measures with
finite support for each time ¢ > 0 (see [Konl7a]), whereas the values of the Wasserstein diffusion
of von Renesse and Sturm are probability measures on [0, 1] with no absolutely continuous part
and no discrete part.

The model introduced by Konarovskyi is a modification of the Arratia flow, also called Coa-
lescing Brownian flow, introduced by Arratia [Arr79] and subject of many interest, among others
in [Pit98, Dor04, NT08, LJRO4]. It consists of Brownian particles starting at discrete points of
the real line and moving independently until they meet another particle: when they meet, they
stick together to form a single Brownian particle.

In his model (see [Konl7bl|), Konarovskyi adds a mass to every particle: at time ¢ = 0,
N particles, denoted by (7x(t))req1,...,n}, start from N points regularly distributed on the unit
interval [0, 1], and each particle has a mass equal to % When two particles stick together, they
form as in the standard Arratia flow a unique particle, but with a mass equal to the sum of the
two incident particles. Furthermore, the quadratic variation process of each particle is assumed
to be inversely proportional to its mass. In other words, the heavier a particle is, the smaller its
fluctuations are.

Konarovskyi constructs an associated process (y™ (u, t))ye(o,1),¢e(0,7] in the set D([0,1],C[0,T7)
of cadlag functions on [0, 1] taking values in C[0,T] by setting:

N
yN(u, t) := Z:L‘k(t)]l{ue[k% ) + :L‘N(t)]l{uzl}.
k=1

L3
"N

In other words, ™V (-, ) is the quantile function associated to the empirical measure % Zivzl O ()
Konarovskyi showed in [Kon17b| that the sequence (y™)y>1 is tight in D(]0, 1],C[0, T]). Hence,
by passing to the limit upon a subsequence, there exists a process (y(u,t))ye[0,1],te[0,7] belonging
to D([0,1],C[0,T]) and satisfying the following four properties:

(i9) for all uw € [0,1], y(u,0) = u;
(73) for all u < v, for all t € [0,T], y(u,t) < y(v,t);

(797) for all w € [0,1], y(u,-) is a square integrable continuous martingale relatively to the
filtration (ft)tE[O,T] = (U(y(v,s),v € [07 1]73 < t))tE[O,T];
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(iv) for all u,u’ € [0,1],

Plr, <s)

((u, ), (e, ) = /0 s,

m(u, s)
where m(u,t) = fol 1 {5s<t: y(u,s)=y(v,s)ydv and 7 = inf{t > 0: y(u,t) = y(u',t)} AT.

By transporting the Lebesgue measure on [0,1] by the map y(-,t), we obtain a measure-
valued process (1i¢)iejo.7] defined by: i := Leb [jg jj0y(-,t)*. In other words, u — y(u, t) is the
quantile functile associated to u;. An important feature of this process is that for each positive
t, ut is an atomic measure with a finite number of atoms, or in other words that y(-,t) is a step
function.

More generally, Konarovskyi proves in [Kon17a| that this construction also holds for a greater
family of initial measures uo. He constructs a process y9 in D(][0, 1],C[0, T) satisfying (i7) — (iv)
and:

(1) for all w € [0,1], y9(u,0) = g(u),

for every non-decreasing cadlag function g from [0, 1] into R such that there exists p > 2 satisfying
fol |g(uw)|Pdu < oo. In other words, he generalizes the construction of a diffusion starting from
any probability measure pg satisfying fR|x|pduo(az) < oo for a certain p > 2, where pg =
Leb [(g,1) © g~ ', which means that g is the quantile function of the initial measure. The property
that y9(-,t) is a step function for each ¢ > 0 remains true for this larger class of functions g.
The process 39 is said to be coalescent: almost surely, for every u,v € [0,1] and for every
t € (Tuw, T), we have y9(u,t) = y9(v,t) (recall that 7,, = inf{t > 0 : y9(u,t) = y9(v,t)} AT).
This property is a consequence of (i7), (7i7) and of the fact that for each t > 0, y9(-,t) is a step
function (see [KvR15, p.12|). Therefore, we can rewrite the formula for the mass as follows:

1 1
WWﬁzéﬂ&@wmyWMMZAﬂwwmmmw

Moreover, we can compare the diffusive properties of the process (Nt)te[O,T} in the Wasserstein
space P2(RR) with the Wasserstein diffusion of von Renesse and Sturm. To that extent and thanks
to Lions’ differential calculus on P2(R) (|Lio, Carl3|), we give in Appendix A an It6 formula on
P2(R) for the process (,Ut)te[o,T} in order to describe the energy of the martingale part of this
diffusion. Appendix A also contains a small introduction to the differentiability on Py(R) in the
sense of Lions.

1.2 Approximation of a Wasserstein diffusion

In this paper, we propose a new method to construct a process y satisfying properties (i)-(iv), by
approaching y by a sequence of smooth processes. Finding smooth approximations of processes
having singularities has already led to interesting results, typically in the case of the Arratia
flow. Piterbarg [Pit98| shows that the Coalescing Brownian flow is the weak limit of isotropic
homeomorphic flows in some space of discontinuous functions, and deduces from the properties
of the limit process a careful description of contraction and expansion regions of homeomorphic
flows. Dorogovtsev’s approximation [Dor04] is based on a representation of the Arratia flow with
a Brownian sheet.

We propose an adaptation of Dorogovtsev’s idea in the case of Wasserstein diffusions. First,
we show that a process y satisfying (7)-(iv) admits a representation in terms of a Brownian sheet;
we refer to the lectures of Walsh [Wal86| for a complete introduction to Brownian sheet and to
Section 2 for the characterization of Brownian sheet which we use in this paper.
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Theorem 1.1. Let g : [0,1] — R be a non-decreasing and cadlag function such that there
exists p > 2 satisfying fol lg(uw)|Pdu < +o0. Let y be a process in Lao([0,1],C[0,T]) that satisfies
conditions (i), (ii), (7ii) and (iv). There exists a Brownian sheet w on [0,1] x [0,T] such that
for allw € [0,1] and t € [0,T]:

o, // ﬂ{yws y(u Lytwormv o} g0 5. (1)

1
where m(u, s) :/ Ly (u,s)=y(v,5)1dv-
0

Remark 1.2. We refer to Appendix A to justify the use of the term "Wasserstein diffusion" for
a process satisfying equation (1). Indeed, we can write an It6 formula for this process for a
smooth function u : Pa(R) — R. As in the case of the standard Euclidean Brownian motion, the
quadratic variation of the martingale term is proportional to the square of the gradient of u, in
the sense of Lions’ differential calculus on P2(RR), which is the same as the differential calculus
on the Wasserstein space (see [CD17, Section 5.4]).

The aim of this paper is to construct a sequence of smooth processes approaching y in the
space Ly([0,1],C[0,T]). Therefore, we use the representation (1) in terms of a Brownian sheet
of y and, given a positive parameter o, we replace in the latter representation the indicator
functions by a smooth function ¢, equal to 1 in the neighbourhood of 0 and whose support is

g

included in the interval [—5, 5] of small diameter 0. Fix ¢ > 0 and € > 0. Given a Brownian

sheet w on [0, 1] x [0, T, we prove the existence of a process y, . satisfying:

oo (1, 1) // Po (Yoe(u, 5) — yas(u’vs))dw(u,’S% @)

€ + Mge(u, s)

where my ¢ (u, 5) fo ©2 (Yo (1, 8) —Yoe(v, 8))dv can be seen as a kind of mass of particle y, - (u)
at time s. Remark that, due to the fact that the support of ¢, is small, only the particles located
at a distance lower than § of particle u at time s are taken into account in the computation of
the mass mq(u, s).

The smooth process (Yo (u, t))uE[O,l],tE[O,T] offers several advantages. First, we are able to
construct a strong solution (ys ¢, w) to equation (2), whereas in equation (1), we do not know if,
given a Brownian sheet w, there exists an adapted solution y. Second, in Konarovskyi’s process,
the question of uniqueness of a solution to (1), even in the weak sense, or equivalently the question
of uniqueness of a process in Lo ([0, 1], C[0, T]) satisfying conditions (¢)-(iv), remains open. Here,
pathwise uniqueness holds for equation (2). Moreover, the measure-valued process (/,Lf’g)te[oj]
associated to the process of quantile functions (Yo (+,?)):c(0,7] does generally no longer consist
of atomic measures. For example, if g(u) = u, (17" )¢ejo.r] is a process of absolutely continuous
measures with respect to the Lebesgue measure.

Let L3[0, 1] be the usual space of square integrable functions from [0, 1] to R, and (-, -)r, the
usual scalar product. We denote by Lg [0, 1] the set of functions f € Lo[0, 1] such that there exists
a non-decreasing and therefore cadlag (i.e. right-continuous with left limits everywhere) element
in the equivalence class of f. Let D((0,1),C[0,T]) be the space of right-continuous C[0, T]-valued
functions with left limits, equipped with the Skorohod metric.

We follow the definition given in [GM11, p.21]:

Definition 1.3. An (F)icpo,rj-adapted process M is an Lg[O, 1]-valued (Ft)sejo,r)-martingale if
M, belongs to Lg[O, 1] for each t € [0, T, if E [|[M¢||,] < oo and if for each h € L2[0, 1], (M, h) L,
is a real-valued (]:t)te[oyT}—martingale. The martingale is said to be square integrable if for each

€ [0,7], E [HMtH%Q] < 400, and continuous if the process t — M, is a continuous function
from [0,T] to L»]0, 1].
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Let us denote by Eg +[0,1] the set of all non-decreasing and cadlag functions g : [0,1] —
R, where R := R U {—o00,+00}, such that there exists p > 2 for which fol lg(uw)[Pdu < +o0.
Let Q+ = QN [0,1]. The following Theorem states the convergence of the mollified sequence
(Yo,e)o>0,e>0 to a limit process satisfying properties (i) — (iv). It uses the framework introduced
by Konarovskyi in [Konl7al:

Theorem 1.4. Let g € E;F[O, 1]. For each positive o and e, there exists a solution Yy to
equation (2) such that (Yoe(u,t))ucio,1),teo,r) belongs to La([0,1],C[0,T]) and almost surely, for
each t € [0,T], yor(-,t) € Lg[o, 1].

Furthermore, up to extracting a subsequence, the sequence (Yo.c)e>0 converges in distribution
in Ly([0,1],C[0,T7]) for every o € Q4 as € tends to 0 to a limit y, and the sequence (Yo)oeq.
converges in distribution in L([0,1],C[0,T]) as o tends to 0 to a limity. Let Y(t) := y(-,t).
Then (Y (t))ejo,r) s @ Lg[O, 1]-valued process such that:

(C1) Y(0) =g;

(C2) (Y(t))tep,) s a square integrable continuous Lg[O, 1]-valued (Fi)iejo,r-martingale, where
Fi=0(Y(s),s <t);

(C3) almost surely, for every t > 0, Y (t) is a step function, i.e. there exist n > 1, 0 = a1 <
ag < -+ < ap < apy1=1and z1 < z9 < -+ < zy, such that for all u € [0, 1]

Y(t)(u) = y(u7 t) = Z Zk]l{ue[ak,ak+1)} =+ Zn]l{uzl};
k=1

(C4) y belongs to D((0,1),C[0,T]) and for every u € (0,1), y(u,-) is a square integrable and
continuous (JF)ieo,r)-martingale and

P [Vu,v € (0,1),Vs € [0,T],y(u, s) = y(v, s) implies Vt > s,y(u,t) = y(v,t)] = 1;

(C5) for each uw and v’ in (0,1),

tlyr, <o)
((u, )y, )y = /0 “mluys) O

m(u, s)

1
where m(u, s) = / Ly u,8)=y(v,s)ydv and 7, = inf{t > 0:y(u,t) = y(u', 1)} AT.
0
Remark 1.5. More precisely, the filtration (F;),c(0,7] is given by:
Fi=0((Y(s),h)r,,s <t h e Ls0,1]).

Remark 1.6. By property (C4), the limit process y is said to be coalescent: if for a certain time ty,
two particles y(u, o) and y(v, tp) coincide, then they move together forever, i.e. y(u,t) = y(v,t)
for every t > tg.

It is interesting to wonder how the coalescence property of the process y translates to its
smooth approximation y,c: two paths (yse(u,?))ico,r) and (Yoe(vst))eepo,7), starting from two
distinct points g(u) and g(v), do not meet, which means that y, (-, t) is non-decreasing for each
fixed t. If ysc(u,-) and yyc(v,-) get close enough, at distance smaller than o, they begin to
interact and to move together, whereas as long as they remain at distance greater than o, they
move "independently": more precisely, the covariation (ysc(u,-),Yse(v,-))¢ is equal to zero for
every time ¢ < 77, := inf{s > 0: |ysc(u, 8) — Yo,c(v,5)| < o} (see figure 1).
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] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0035 006 0.065 007 0.075 0.08 0.085 0.05 0.095 01

Figure 1: Two simulations, based on the same underlying Brownian sheet, for the limit process (1t)eefo, ) (on
top) and for the process (ug’®)iefo,7) With positive o and € (on bottom). The horizontal axis represents time. On
the vertical axis, we put the position of the particles (initially, we took five particles on [0, 1]).

Organisation of the article

We begin in Section 2 by proving Theorem 1.1, which states that a process y satisfying prop-
erties (¢)-(iv) admits a representation in terms of a Brownian sheet. In Section 3, given a
two-dimensional Brownian sheet, we prove the existence of a smooth process in the space
L(]0,1],C[0,T1]) intended to approach Konarovskyi’s process of coalescing particles. This smooth
process can be seen as a cloud of point-particles interacting with all the particles at a distance
smaller than o, and in which two particles have independent trajectories conditionally to the
fact that the distance between them is greater than o. When the distance becomes smaller than
o, both trajectories are correlated, mimicking the coalescence property.

Section 4 is devoted to the proof of convergence when the parameter £ and the range of
interaction o tend to zero, using a tightness criterion in L ([0, 1],C[0,T7]). In Section 5, we study
the stochastic properties of the limit process, including the convergence of the mass process.
The aim of this final part is to prove that the limit process y satisfies properties (C'1)-(C5) of
Theorem 1.4, in other words that our sequence of short-range interaction processes converges in
distribution to the process of coalescing particles.

In Appendix A, we give an It6 formula in the Wasserstein space for the limit process y, after
having recalled some basic definitions and properties of Lions’ differential calculus on Pa(R).
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2 Singular representation of the process y

Let (Q,F,P) be a probability space. Let us consider on (£, F,P) a random process y €
L2((0,1),C[0,T7]) satisfying properties (i)-(iv). We refer to [Konl7a| for a comprehensive con-
struction of y. We will give another one later in this paper.

The aim of this Paragraph is to prove Theorem 1.1. Before that, we recall the definition of a
Brownian sheet given by Walsh in [Wal86, p.269]. Let (E,E,v) be a Euclidean space equipped
with Lebesgue measure. A white noise based on v is a random set function W on the sets A C €
of finite v-measure such that

e W(A)is a N(0,v(A)) random variable,
e if ANB =10, then W(A) and W(B) are independent and W(AN B) = W(A) + W(B).

Let T'> 0. Consider E = [0,1] x [0,7] and v the associated Lebesgue measure. The Brownian
sheet w on [0, 1] x [0, T] associated to the white noise W' is the process (w(u,t))ye0,1)x[0,r] defined
by w(u, 1) = W((0,u] x (0,1)).
Define the filtration (G;);cj0,71 by Gt := o(w(u, s),u € [0,1],s < t). Then in particular,
(i) for each (G;)sejo,m-progressively measurable function f defined on [0, 1] x [0, 7] such that
fOT fol f?(u, s)duds < +oo almost surely, the process (fot fol f(u, s)dw(u, s)) o0 is a local
te

)

martingale (we often write dw(u, s) instead of w(du, ds));

(ii) for each fi and fo satisfying the same conditions as f,

(/0./01 f1(u, s)dw(u, S),/O./Ol fa(u, s)dw(u, s)) = /Ot/ol f1(u, 8) fa(u, s)duds.

By Lévy’s characterization of the Brownian motion, a process w satisfying (i) and (i) is a
Brownian sheet. Let us now prove Theorem 1.1.

Proof (Theorem 1.1). We take a Brownian sheet 7 on [0,1] x [0,T] independent of the pro-
cess y, constructed by possibly extending the probability space (€2, F,P). Then, we define

(w(u,t))uepo,1),te0,r] By w(0,-) =0, w(-,0) = 0 and:

1
w(du,dt) = n(du,dt) + y(u,dt)du — 1/ Lty () =y 0y 0(ded’, dt)du.
m(ua t) 0 7 7

We denote by H; the filtration U((y(ua 5))u€[0,1],s<t7 (77(“7 5))u€[0,1]75<t)'

In order to prove that w is an (Hy)yc[o,7-Brownian sheet on [0, 1] x [0, 77, let us consider two
(Ht)te[07T]—progressively measurable functions f; and fo and compute, using independence of n
and y:

[ nsautes), [ [ psawt =1+ v -1 - Vit v,

where

Vo= ([ [ i), [ [ pesanes = [ [ awsn s

since 7 is an (Ht)te[mT]—Brownian sheet;
. opl - el
Vs = (// fl(u,s)dy(u,s)du,// fa(v, s)dy(v, s)dv)s
0J0 0J0

t r1l pl 1
{y(u,s)=y(v,s)}
= fi(u, s) fa(v, s) ————dudwvds,
R
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using property (iv) of process y;

.opl - el 1
f2(1)78)/ /
= _— ]l — !
( / / fi(u, s)dn(u, s), / /O m(v,s) Jo LuEs=ye sydn(v’, s)dv)
/ / / bt f2 AU UL Lty (v,5)=y(u,s)ydudvds = V5,

since m(u, s) = m(v, s) whenever y(u s) is equal to y(v, s). By similar computations,

= [ f1 s / oot end(a's)du, [ / folw,s)dn(v, ) = Vi

and

1

:ﬁ

. -1
/ ll{y(u s)=y(uv s)}dn ’LL § du?// m /]l{y(v,s)y(v’,s)}dn(vlvs)dv>t
0 0

0
f U’S)fQ(Uvs)
//// m(u, s)m(v, )]l{y(“ )=y(u',5)} L{y(v,)=y(w/ s)}du dudvds
// m(u,  om(u,s)2 / Ly u,s)=y(ur,s)} AU | Ly (u,s)=y(o,s)y dudvds
/// bkl usf2()v,s)]l{y(us) (v,s)}dudUdSzVQ.

To sum up,

i (s s)du(u, ), [ oo, 8)du(v, ) = Vi = [ " Fu(u,5) o, s)duds,

whence w is an (H¢).e[o,r)-Brownian sheet. Finally, we show that w satisfies equation (1):

1]1 u,s us 1]1 ’lLS us
// {y( >y Dywa=v o)} 40 g // )=y} 4 o) (= W)

m(u, s)

1
// {y(us y(u S)}dy( s)du' (=: Wa)
1 1
// {y us)=y(w',s }/ {y(“ 8) Y “)}dn(v,s)du’. (=: W3)
U 8

The result follows from the two below equalities:

M L) =y 9) [
Wy [ [ 20D gy sy = [ aylues) = o) = .0) =yl 0) - gl

0

1]1 ’LLS US ]l v,8
// YW }/ Bl =0 (v, 5)
11 1
{y“ (v} {yus )
// m(u, s)m(v, s) (/ Ly ,0)= (vs)}dU>dnvs // m(u, s) ——————"2dn(v, s),

which implies that W3 = W} and consequently equation (1). O]

Therefore, every solution of the martingale problem (i)-(iv) has a representation in terms of a
Brownian sheet. In the next Section, we will construct, given a Brownian sheet, an approximation
of the process y.
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3 Construction of a process with short-range interactions

Let (©, F,P) be a probability space, on which we define a Brownian sheet w on [0, 1] x [0,7]. We
associate to that process the filtration G; := o(w(u, s),u € [0,1],s < t). Up to completing the
filtration, we assume that Gy contains all the P-null sets of F and that the filtration (Gt).e(o,7)
is right-continuous.

Fix 0 > 0 and € > 0. Let ¢, denote a smooth and even function, bounded by 1, equal to 1
on [0, §] and equal to 0 on [§,+00). Recall that Eg +[0,1] represents the set of non-decreasing
and cadlag functions g : [0,1] — R such that there exists p > 2 satisfying fol lg(uw)|Pdu < +o0.
The aim of this Section is to construct, for each initial quantile function g € Eg +10,1], a square
integrable random variable yJ . taking values in Ly([0,1],C[0,T]) such that almost surely, for
every t € [0, 7], the following equality holds in Ls|0, 1]:

_ Po\Yoe ) yg,f:‘(ulvs)) dw(. s 3
Vel g+/[;e+k¢0%4 9 — el spao Y ¥

Remark 3.1. We add the parameter € to the denominator in order to ensure that it is bounded
by below. We also point out that relation (3) has to be compared with equation (1), where
x +— 1y,—0y is replaced by the function ¢,.

More precisely, we will prove the following Proposition:
Proposition 3.2. Let g € Eg+ [0,1]. There exists an Lg[O, 1]-valued process (Ygg(t))te[oﬂ —
(Y5, t))tefo,r) such that:
(A1) YZ.(0) = g;

(A2) Y& is a square integrable continuous L1[0,1]-valued (F “)iejo,r)-martingale, where F{*° =
o(Yi:(s),s < t);

(A3) for every h,k € Lo[0,1],

(Y2 )y, (YL KL, t_/// h(u)k(u 5+mw?lga)(;ﬁ(;:_za’s(u,’S))dudu’ds,

where mg:‘?(u? ulv S) = f() @U(yg,e(uv 5) - ygﬁ(vv S))Sod(yg,f(ulv 5) - yg,f(vv S))d’U and
1
mgﬁ(uv 5) = fo ng(ygﬁ(uv 5) - yg,E(va 8))(1’[).

3.1 Existence of an approximate solution

Denote by M the set of random variables z € La(£2, C([0, T}, L2(0,1))) such that (z(w, -, t)):ejo,1]
is a (Gt)se(0,7-Progressively measurable process with values in Lz(0,1). We consider the following

norm on M:
1 1/2
lelac=E [sup [ ftunPan]
t<T JO

Throughout this Section, o and ¢ are two fixed positive numbers. To begin, we want to prove
that the map ¢ : M — M, defined below, admits a unique fixed point. Fix g € ,Cg +[0,1] an
initial quantile function. For all z € M, define:

$() @, ut) //w”““szwmmwwma (1)

£+ mey(w,u,s)

where mg(w,u, s) = fo 02 (2(w,u,s) — z(w,v, s))dv. We start by making sure that 1 is well-
defined.



Construction of a Wasserstein diffusion July 2018

Proposition 3.3. For all z € M, 9(z) belongs to M. Furthermore, (¢(2)(-,t))¢cio,r) 15 an
L2(0,1)-valued continuous (Gt).elo,r)-martingale.

Remark 3.4. The definition of an Lg [0, 1]-valued martingale was given in Definition 1.3. Up to
replacing Lg by Lg, the definition of an L(0, 1)-valued martingale is exactly the same.

Proof. We want to prove that (1(2)(-,1)).ejo,r) is an La(0, 1)-valued (Gy)¢e[o,rj-martingale. Since
z belongs to M, the process (2(-,))cjo,r) 18 (Gt)te[o,r)-Progressively measurable. Therefore
(Mo (1) )refo,m 18 also (Gi)iejo,r)-progressively measurable and we deduce that (1(2)(:,t))efo,7)
is (Gt )ie[o,r)-progressively measurable.

Then, we check that for each ¢t € [0,T], ¥(z)(-,t) € L2(0,1) and E[[|¢(2)(-, t)]|1,] < co. We

deduce this statement by recalling that ||g||z, < +00, because g € L’g +[0,1], and by computing:

Lpo(a(s) = 2(9) | Lpolals) — W)

2
e+ (- 5) (u ,s) E [ e+ mo(-S) LJ
' oola(us) — 2 8) [
. + o (. 5) dw(u', s) du]

900 —2(u',s)) /
5+mg m s) dw(u', s)

/ ] e
(5)
[ // <% ) DY i

< o3t
< -2 8—2 < 400

Furthermore, for each h € Ls[0, 1],

((2) (1), )1y = (9, W), / / / (2(u:) = 200 8) 1w, )

e+ my(u,s)

is a (Qt)te[oﬂ—local martingale. Then, we compute the quadratic variation:

L27 (w(z)7h)L2>t]
// // ) h(uiz) 0o (z(ur,s) — 2(u, 8)) o (2(uz, s) — 2(u ’8))du1dquu’ds < ;2||h|’%2-

(e + mg(u1,s))(e + mgy(uz, s))

Since it is finite, the local martingale is actually a martingale.
Moreover, by Doob’s inequality (see Theorem 2.2 in [GM11, p.22])

() = E [gg / 1 |¢<z><u,t>|2du} -

! o (a(,5) — 2(u,5) *ul
< E = dw(u',s)| d
lgllz + §ng> €+ma 05 w(u', ) UI
2 1/2
‘Pcr —z(u, s)) ’
< 9K .
lollzs + ()= 20N gt )| du
The last term is finite by (5). Thus ||[¢)(2)||m is finite and 1(z) belongs to M, which concludes
the proof. 0

10



Construction of a Wasserstein diffusion July 2018

Let us now prove that v has a unique fixed point:

Proposition 3.5. Let 0 > 0 and € > 0. Then the map v : M — M defined by (4) has a unique
fized point in M, denoted by yg.c.

Proof. For all n € IN, denote by " the n-fold composition of v, where 1/° denotes the identity
function of M. We want to prove that )" is a contraction for n large enough.
Let z1 and 29 be two elements of M. We define

B ( {sup/ [0 (21)(u, 8) — Y™ (22)(u, s)[>du .
s<t

Let us remark that h, (T') = ||¢"(21)—¥"(22)||%4 and recall that, by Proposition 3.3, (¢(z1)(-, ¢)—

V(22)(+,1))iejo,r 18 a (Gt)iejo,r-martingale. We denote by mg,1 and m, o the masses associated

respectively to z; and zo. By Doob’s inequality, we have:

[sup/ [(2z1)(u, s) (ZQ)(U,S)|2du:|

s<t

(cpg zi(u,r) —z1(u', 1) po(ze(u,r) — z2(u’,r))> dw (i)

su
P e+ mg1(u,r) e+ mgo(u,r)

s<t

4E[

Furthermore, we compute:

2
du]

_ / _ / 2
po(21(u,s) —21(us8))  wolza(u,s) — 22(u, 5)) du/dsdul
e+ mg1(u,s) €+ mg2(u,s)

‘%(21(%8) —21(W,s)  @sl(z2(u,s) = 2, 5))|?
e+ mq1(u,s) e+ mg2(u,s)

po(21(u,s) = 21(1, ) — o(2a(u, s) — 20(', 5)) |

<2(‘ € +mg1(u,s) ‘
Po(22(u,s) — 22(u', s))

(e +mgi1(u,s))(e+mea(u,s

)

) (mg(u, s) —mga(u,s))
Moreover, we have:
1
Mo (u,s) — moa(u, s)| < / |02 (21(u, ) — 21(v, 8)) — @2 (22(u, 8) — 22(v, 5))|dv
0
1
< Lip(cp?f)/ |(21(u, 8) = 21(v, 8)) — (22(u, 8) — 22(v, 5))|dv
0

1
<Lip(e?) (I1(09) — 2w, 0)| + [ [aa(0ns) = (o, 9)0).

We obtain the following upper bound:

Po(z1(u,s) —21(u', ) wo(22(u,s) — 22(v, 5)) ‘2
e+ mg1(u,s) e+ mg2(u,s)

< (4 (Lips%)Q +4 (Mpe(f?’)>2> <|z1(u7$) — z2(u, 5)[”

1
+ 21 () s) — zo(ud, 5) |2 —I—/ |21 (v, 8) — 22(v, s)2dv>.
0

11
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Finally, we deduce that there is a constant C, . depending only on o and € such that

t ol
hi(t) < CyE [// |z1(u, s) — z2(u, 5)|2duds]
0J0
t 1 t
< Cmg/ E [Sup/ |z1(u, 1) — z2(u, T)|2du] ds = Caﬁ/ ho(s)ds
0 r<s JO 0

Applied to ¢"™(z1) and w”(zg) instead of z; and 29, those computations show that for every
t€[0,T], hpti1(t) < Cope fo s)ds. Using the fact that hg is non-decreasing with respect to t,

it follows that h,(T") < (G TS ET) ho(T'), whence we have:

Co T
7 (e) ~ 672 B < C2 eyl

Thus, for n large enough, the map %™ is a contraction. By completeness of M under the
norm || - [[a¢ (remark that M is a closed subset of Lo(2,C(]0,T], L2(0,1))), it follows that ¢ has
a unique fixed point in M. O

We denote by y7.. the unique fixed point of 1. Remark that it satisfies, by construction,
almost surely and for every t € [0,T], equation (3). In the particular case where g(u) = u, the
process y(i;}s has a continuous modification with respect to the couple of variables (u,t).

Proposition 3.6. There is a modification of y;‘,‘fs belonging to C([0,1] x [0,T7).

Proof. Take uj,u2 € [0,1]. After some computations similar to those of the proof of Proposi-
tion 3.5, we have for every t € [0, T:

E [sup |yi. (u1, s) — g (us, )!2} 2[ur — s +Co€/ [SUP

r<s

. 2
yaa(u17 )—yfs(u%’l“)‘ :| ds.

s<t

By Gronwall’s Lemma, we have:

E [SUP [Yae(u1,t) = yfa(umt)ﬁ] < 2lug — ug|?eCreT,
t<T

By Kolmogorov’s Lemma (see e.g. [LG13, p.19]) in the space C[0,T] equipped with the | - ||oo-

norm, we deduce that there is a modification of yéf}e whose paths are a-Hoélder continuous in
space and continuous in time, for all o € (O, %) In particular, this modification belongs to

c([0,1] x [0,T7). O

Remark 3.7. We need some further assumptions about the regularity of g to extend the result
of Proposition 3.6 to y7.. In order to apply Kolmogorov’s Lemma, g should be (% + n)-Holder
continuous, for some positive 7.

3.2 Non-decreasing property

Define, for each ¢ € [0,T], Y2 (t) := y5:(-,t). So far, by Proposition 3.5, we have established
that (Yé{s(t))te[oﬂ is an Ls[0, 1]-valued process, satisfying property (Al) of Proposition 3.2.
Since Y7 belongs to M, and by Proposition 3.3, (Y7(t))cjo,r] 1 a square integrable continuous
L5[0, 1]-valued martingale, with respect to the filtration (Gi);cor). Therefore, it is also an
(F7%)tejo,r-martingale, where F{* := o(Y7e(s),s < t).

In order to obtain property (A2), it remains to prove the following statement:

12



Construction of a Wasserstein diffusion July 2018

Proposition 3.8. (Y7:(t))ejo.1] s an Lg[O, 1]-valued process.

We will start by proving three Lemmas and then we will conclude the proof of Proposition 3.8.
For every x € R, we consider the following stochastic differential equation:

x — ) yg’e(u/,s)) w. s
V= +//0 E+f0 pa(z )—yia(v,S))dvd o) o

where yJ . is the unique solution of equation (3).

Lemma 3.9. Let x € R. For almost every w € Q), equation (6) has a unique solution in C[0,T],
denoted by (z(w,z,t))iecpo,r]- Moreover, (2(x,t))icio,r] is a real-valued (Gt)ieo,r)-martingale.

Proof. We get existence and uniqueness of the solution by applying a fixed-point argument. The
proof is the same as the proof of Proposition 3.5. We obtain the martingale property by the
same argument as in Proposition 3.3. O

Then, by the same arguments as for Proposition 3.6, we prove that there is Cy . such that
for every x1,z9 € R,

E {sup |z(x1,t) — z(asg,t)]ﬂ < Cpelzr — 1)
t<T

By Kolmogorov’s Lemma, there is a modification z of z in C(R x [0,7]). We define 7. (u,t) :=
Z(g(u),t). In particular, u — g9 .(u,-) is measurable. Furthermore, g . belongs to M. Indeed,

1 1 1
E [sup/ }gg’s(u,t)}Qdu} <E [/ sup}yg6 u, t) } du} :/ [sup‘yg€ u t)‘ } du.
t<T JO 0 t<T 0 t<T

By Lemma 3.9, for every u € [0, 1], (7. (u, t))tefo,7] is a martingale, we have by Doob’s inequality:

[sup ‘yas (u t)‘ ] < CE “ﬂg’s(u,T)ﬂ

t<T
T 1

< 2Cg(u)?* + 2CE //

0 Jo

< 209(u)* + 20622.

900(373,5( s) — yaa(u s))
e+ fy P2(H8:(u,5) — yde(v,5))dv

du'ds

Therefore, [|72-lm < 2C|gl7, + 2CT < +o0. Moreover, (¥ (- t))iep,r is an L»[0, 1]-valued
(Gt)ecfo,r-martingale. Indeed, for every h € Lo[0,1], for every t € [0,T], E[(U5:(- 1), h)L,] is
finite. Fix 0 < s <t < T, and As € Gs. We have:
1 1 1
E [(/ 'gjgs(u,t)h(u)du—/ 'gjgs(u, s)h(u du> 14, ] E yC,E u, t) 'gjgs(u, s))]lAJ h(u)du
0 0 0
0.

Lemma 3.10. We have E [supth fol |7 (u, t) fygys(u,tﬂ?du} = 0. Therefore, U5 = Y3
in M.

13
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Proof. Since (Jgc(-,t) —y5(:,t))iefo,r] is an Ly[0, 1]-valued martingale, then by [GM11, p.21-22]
fol [Ug.c(u,t) — yge(u, #)|? du is a real-valued submartingale. By Doob’s inequality,

[sup/ ‘ygeus) ygeus‘ du] CE[/ ’ygeut) ygsut‘ du]

s<t

< CE (9075@35(% s),u’,s) — 9075(y§,75(u, s),u’, 8))dw(u’, s)

2
du]
1t pl )
< CE [/// }90,5(§g78(u, s),u',s)—ﬁgﬁ(ygﬁ(u, s),u',s)‘ du'dsdu},

0 JoJo
Yo (=Yg, (u',5))

6+fol 02 (x—yd - (v,s))dv’
Proposition 3.5, we have:

[sup/ |99 - (u, s) — yagus‘ du] CUEIE[// 99 (u,s) — yagus‘ dsdu}
s<t

< Coe [ & [sup [ i07) — 8t s
0 r<s JO

By Gronwall’s Lemma, we deduce that E [supsgt fol 195 (u, s) — ygvg(u,s)ﬁdu} = 0 for every
t € [0,7]. This implies the statement of the Lemma. O

where 0, (x,u/,s) = Using the same constant C,. as in the proof of

Lemma 3.11. Almost surely, for every uy,us € Q such that u; < us, we have for every t > 0,
Uoe(ur,t) < goe(uz,t). Furthermore, if g(u1) < g(uz2) (resp. g(u1) = g(uz)), then for every
t >0, Yge(ur,t) < Yoe(u,t) (resp. Yoe(ui,t) = yge(uz,t)).

Proof. Let (uy,us) € Q% such that 0 < uy < us < 1. For u = u1, uz, we have:

7 (1) = // e (8., 8), o, 5)dw (),

o (T—yg,e(u',3))
et [y 92 (2—yd,(v,9))dv

where O, (z,u/,s) = . Therefore, we have (writing 7 instead of g5 and 6

instead of 0, .):

Y(ug, t) — y(uy, t) = g(ug) — g(uy) // y(ua, s u’, s) — 0(y(u, s),u’, s))dw(u’, s)

— g(u) — glu) + /O (Fuz, ) — Glus, 5))dM, (7)

0(y(u2,s),u’,s)—0(y(u1,s),u’,s .
where M; = fo fo L (Guz,)£5(u1,9)} (e 'yv)(u% g ygu(hsl) ) )dw( s). Observe that:

?7(“275)
0(y(uz, s),u’,s) — 0(y(u, s),u’,s) = / 0.0(x,u, s)dz,
?7(“175)
o ehyWs)  pa(a—y(s) [ (92) (z—y(v,s))dv .
and that 0,0(z,v,s) = ey — T i pgi (0.0))d0)? . Therefore, 0,0 is
bounded uniformly in (z,u’,s) € R x [0,1] x [0,T] by Cy . := H%ﬂL‘” + H%”LC"‘Q(%) lice e

deduce that

E[(M [// 1 (G,s) £ un.s }(0 (uz, 2), ', 5) - e@(ul’s)7UI’S)>2du’ds]

u2a ) y(uh S)

EU/ o) du’ds} T(Cp)?,

14
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and thus M is a (G;)yc[o,rj-martingale on [0, T]. We resolve the stochastic differential equation (7):

U9.e(ug, t) — Y3 (ur,t) = (g(ug) — g(ur)) exp (My — 5 (M, M)y). If g(ur) < g(uz) (resp. g(ur) =
g(u2)), then almost surely for every t € [0,T], y5.-(u1,t) < Uge(uz,t) (resp. =). Thus it is true
almost surely for every (u1,uz) € Q2 such that u; < us. O

We complete the proof of Proposition 3.8 by constructing a cadlag modification of 7. (-, ).

Proof (Proposition 3.8). Define, for every u € (0,1) and t € [0, T:

U3 (u,t) ;= liminf 57 _(un,?).
(un)\u,un€Q
Unp>U

Let us prove that almost surely, for every t € [0,T], y9:(-,t) = y%.(-,t) in L2[0, 1], and gg.- (-, t) €

Llo,1].
First, by Lemma 3.11, v € Q ~ 75.-(u,t) is non-decreasing for every t € [0,7], therefore
Uge(u,t) == B (4, )\ €Qum > Uoe(un,t) and u € (0,1) + Pa(u,t) is non-decreasing for

every t € [0,T]. Second, fix t € [0,7] and let us prove that u — g7-(u,t) is cadlag. It is
non-decreasing, so it has left limits everywhere. Fix u € (0,1) and a sequence (u,) \ u, upn > u.
For every n, by monotonicity, §7.c(u,t) < §g.c(un,t). Let & > 0. There is v € Q, u < v such
that |79.c(u,t) — 75.(v,t)] < . There exists N such that for every n > N, u, < v. Thus for
every n = N, U5 -(un,t) < y5:(v,t) < §gc(u,t) + J, whence u + g.(u,t) is right-continuous
and 9. (-,t) € L[0,1].

Moreover, for every u € (0, 1), define the sequence u,, := u,(u) = (%) A 1. We have:

1
[sup/ ‘yge (u,s) — yg6 u, s ‘ du] < [sup/O lim ‘yge U, )—@g’e(u, s)’Zdu]

s<t s<t n——+00

1
< liminf E [sup/ 199 (un,s) — 95 (u, 5)}2 du} . (8)
0

n—-+4oo s<t

by Fatou’s Lemma. Furthermore, using Doob’s inequality,

1 1
E[sup /0 \yz,gwms)—az,gw,s)!?du} < /0 E[supwz,a(un,s)—ﬂz,ew,s)ﬂ du

s<t s<t

C/ ‘yos Un, yas(u t)‘ } du

<0 [ lotun) ~ P+ Coc | [ [ i) = .0 dsc.

Recall that there is p > 2 such that g € Ly[0,1] and that g is a cadlag function. Therefore,
sup,, fol lg(up) — g(u)|Pdu < 400 and for every u € (0,1), g(un) — g(u). Thus fol lg(un) —
(u)|>du — 0. Moreover, for every s € [0, T, J% - (un, s) — 5. (u, s). Furthermore,

1t
E [/ / 199 - (un, 5)|” dsdu]
0Jo

1
< C/ g(up)Pdu + CE [

Sp/2
C/ unpdu—l—C/ds

(9)

P
e (S (u, 1), o', r)dw(u’,r) dsdu}

15
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Therefore, sup,, E [ fol fg 95 < (un, s)|P dsdu} < +o00. Thus, passing to the limit inferior in (9),

inequality (8) becomes:

|:Sup/ ‘yo's u S) yas U, 8 ‘ du:| CO'&‘E |:// ‘yge U S) yae u, S ‘ dsdu}
s<t
<C [ s [l - el au] as
0 r<s JO

Thus, by Gronwall’s inequality, E [Supth fol |99 (u, t) — ;Ayg,g(u,tﬂzdu} = 0. Therefore, 7o =
Uge in M. By Lemma 3.10, we also have 73 . = ya. in M. Therefore, almost surely Y. (¢)
belongs to L}[0,1] for every ¢ € [0, 7). O

In the following Corollary, we precise the properties of 7. From now on, we will always use
this version of the process.

Corollary 3.12. For almost every u € (0,1) and almost every w € Q, we have for every t € [0,T]
Uoe(u,t) = Uoe(u,t). In particular:

e for almost every u € (0,1), (U5e(w,u,t))ico1) 35 a (F{ " )iejo,r)-martingale, and it is con-
tinuous for almost every (u,w) € (0,1) x Q.

e almost surely, for every t € [0,T), u > Yg:(u,t) is cadlag and non-decreasing.

Proof. The second point has already been proved in Proposition 3.8. Furthermore,

1 1
/ E [Sup‘yg€ u,s) — yJE(u 5)| } du :/ E [sup hm }ygg U, )—gjgvs(u, 8)‘2:| du
0 0

s<t s<t Nt

1
< liminf/ E [sup ‘yae Un, 8) — Yo o (u, 5)’2] du
0

n—+oo s<t

1
< CrE [/ / ‘ﬂgﬁ(u, s) — Y5 -(u, 3)‘2 dsdu]
0Jo

t 1
< Cg,g// [sup |99 (u,r) — 52 (u, )| ] duds.
0Jo

r<s

The third inequality has been deduced from inequality (9). Therefore, by Gronwall’s Lemma,
we obtain fol E [Supth 195 (u, t) — 79 (u, t)|2} du = 0. This concludes the proof. O

We complete the proof of Proposition 3.2.

Proof (Proposition 3.2). Thanks to Proposition 3.8, the proof of properties (A1) and (A2) has
been completed. It remains to compute the quadratic variation. Recall that for every u € [0, 1],
(@g,g(u,t))te[o’ﬂ is a (Gt)iejo,r)-martingale and that

Yo (u,) // Ooe (U5, (u, 5), 4, s)dw(u', s).

Therefore, for every u,u’ € [0, 1],

@cgr,a( N yaa )= // 5. (Y yo’g u, s),v,s)dw(v, s) // Oc (7] yae v )0, 8)dw(w, )
= /0/0 90,5(372(];,5(“7S)a%5)90,5(372’5(1/,5),1),s)dvds.
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Therefore, for every h,k € L]0, 1],

mamm,ngﬂ_/// t/a )
- /0 /0 /0 h(u)k(u) /O O e (452, ), 0, )00 (y% (' ), 0, ) duducu’ds

t rl prl1 g /
_ () mmg(u,u,s) dudu/d
/// Wk e s 9)) (e + mia(, 5)) e 0

which completes the proof. O

E(ggﬁ (u,$),v,5)00¢ @gs(ul, s),v, s)dvdudu’ds

We conclude this Section with a property on the quadratic variation of two fixed particles,
which will be useful to obtain lower bounds on the mass in the next Section.

Corollary 3.13. For almost every u,u’ € [0,1],

mic(u, v, s)
e = [ [ ) v (10)

Proof. This statement follows clearly from the proof of Proposition 3.2, from the fact that for
almost every u € (0,1), (§9.(u,t))ico,r] is a continuous martingale, and from the fact that
g _~g

Yo,e = Yg,e in M. O

4 Convergence of the process (ygg)g,ggQ N

From now on, for the sake of simplicity, we fix a function ¢ in E; +[0,1] and y, will denote the
version g starting from g. We denote by p a number such that p > 2 and g € L,(0,1).

We begin by proving the tightness of the sequence (y,.c)o.ccq, in the space Ly([0, 1],C[0,T7)
in Paragraph 4.1. We will then pass to the limit in distribution, first when ¢ — 0 and then when
o — 0 and prove, in Paragraph 4.3, that the limit process is also a martingale.

4.1 Tightness of the collection (y,.)s>0.>0 in Lo([0,1],C[0,T7)

Recall that for all & > 0, the map ¢, is smooth, even, bounded by 1, equal to 1 on [O, %}
and equal to 0 on [%, —|—oo), where 7 is chosen so that < §. Recall that y, . is solution of the
following equation:

'
Yoo (u, 1) // Po (Yo, (U ) = Yoe(U', 5)) dw(u',s).
0 € + f(] (pa yU E(u 3) ya,e(v¢ 8))d1}

We begin by proving that the collection (ys.c)s>0,>0 satisfies a compactness criterion in the
space Lo([0,1],C[0,T]). We recall the following criterion (see [Sim86, Theorem 1, p.71]):

Proposition 4.1. Let K be a subset of La([0,1],C[0,T]).
K is relatively compact in Ls([0,1],C[0,T]) if and only if:

(H1) for every 0 < up < ug < {f“Q flu,)du, f € K} is relatively compact in C[0,T],

(H2) Timy, o= supgere fy " £ (u+hy) = flu, )30 zdu = 0.

By Ascoli’s Theorem, (H1) is satisfied if and only if for every 0 < uy < ug < 1,

17
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- for every t € [0,T], [,? f(u,t)du is uniformly bounded,

- limy, 0+ SUP e g SUP |y, 4y )<

S (f(u, ta) — f(u,tl))du) —0.

In order to prove tightness for the collection (ys.c)o>0,>0, we will prove the following Propo-
sition:

Proposition 4.2. Let § > 0. The following statements hold:
(K1) there exists M > 0 such that for allo >0, e >0, P [fol 1Yo (u, ‘)H(22[0 ndu < M] >1-9,

(K2) for all k > 1, there exists n > 0 such that for all o >0, € > 0,

1
1 0
P[ | s ryg,ew,tz)—ya,e<u,t1>|du<k] >1- 0,
0

[to—t1|<mi
(K3) for all k > 1, there exists hy > 0 such that for all o >0, € > 0,

1ok 1 5
P [Vh € (0, hkz)a/o 1Yoe(w + hy ) = Yo (u, ')||§[0,T]d“ < k‘] >1- ok

Proposition 4.2 will be proved in Paragraph 4.1.2. It implies tightness of (y5¢)o>0e>0 in
L»([0,1],C[0,T7):
Corollary 4.3. For all g € [,g+ 0, 1], the collection (y5.c)o>0>0 is tight in La([0,1],C[0,T7).

Proof (Corollary 4.3). Let 6 > 0. Let M, (hi)r>1, (mk)k>1 be such that the statements of
Proposition 4.2 hold for §.
Denote K5 the closed set of all functions f € La([0, 1],C[0,T7) satisfying:

(L1) / 1, )20 2yl < M.

N

1
(L2) for all k > 1, / sup |f(u,ta) — f(u,ty)|du <
0

[t —t1]<ng

1-h
1
(LS) for all k = 17 Vh € (Oa hk)>/ ||f(u + h7 ) - f( )HC[O T]du k
0
Let 0 < up < ug < 1. We deduce from (L1) that for every ¢ € [0,7], and every f € K,
1/2
szQ f(u,t)du‘ < (fuz f(u t)Qdu) (fo || f(u HC[OTdu) < VM. We deduce from (L2)

that for every k >

1
1
<swp [ s [fut) ~ flut)ldu<
0

feKs [ta—t1|<mk

[t - s

sup  sup
fEKs |ta—t1|<ny

ol

Therefore, by Ascoli’s Theorem, condition (H1) of Proposition 4.1 is satisfied.

Furthermore, by (L3), condition (H2) is also satisfied uniformly for f € K. Therefore, K5
is compact in Ly([0,1],C[0,T]). By Proposition 4.2, for all ¢ >0, e > 0, P [y, € K5| > 1 — 30.
This concludes the proof. O

To prove Proposition 4.2, we will first give in the next Paragraph an estimation of the inverse
of the mass function (see Lemma 4.6). This Lemma is an equivalent in our case of short-range
interacting particles of Lemma 2.16 in [Konl7b|, stated in the case of a system of coalescing
particles.

18
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4.1.1 Estimation of the inverse of mass
Recall that mg . (u,t) = fol 02 (Yo e (U t) — Yoo (v,t))dv. We define a modified mass
(€ + Moe)?
Mo'vs (u7 t) = mava

+ oo otherwise.

(u,t) if mge(u,t) >0,

Clearly, M, c(u,t) = meyc(u,t) for every u € [0,1] and ¢ € [0, T7.

By Corollary 3.12, there exists a (non-random) Borel set A in [0, 1], Leb(.A) = 1, such that
for all u € A, (Yo.c(u,t))iejo,r] is almost surely a continuous (F;*°)yc(o r-martingale. Recall also
that almost surely, for every t € [0,T], u — Yo c(u,t) is cadlag and non-decreasing. Moreover,
we assume that for every u,u’ € A, equality (10) holds.

Lemma 4.4. There exist C > 0 and v € (0,1) such that for each o, > 0, t € (0,T] and for
every u € A and every h > 0 satisfying u — h € (0,1),

h

T
P[/O Laty (o ds > 1] < Clou) — glu— )] /2. (11)

Proof. Fix 0 > 0 and € > 0. Let A > 0 be such that u — h belongs to A. If g(u —h) = g(u), then
for every t € [0, T, yoc(u—h,t) = Yo (u,t). By the non-decreasing and cadlag property, for every
v € (u— h,u), we have Yy (v,t) = Yo (u,t). We deduce that mec(u,t) > [, 02 (Yoe(u,t) —
Yoe(v,t))dv = [, ©2(0)dv = h. Therefore, My (u,t) = h > ~vh for every t € [0,T], and (11) is
satisfied.

Consider now the case where g(u — h) < g(u). Choose k in (%, %) such that v — k € A.

Denote by N and N the two following (]:f’g)te[07T]—martingales:

Nt = yo’,E(uat) - ya,e(u - hat)v
Ny = yU,E(uat) - ya,&(u - kut)'

Denote by G and H; respectively the events {Mg,g(u, s) < 2% and {]\Nfs > UT"M} We want to

prove the existence of a constant C7 independent of h and w such that for all o > 0, € > 0 and
t >0,

T
h
P\ [ tieds 1] < alotw - gtu -]y 7, (12)
0
Decompose this probability in two terms:
T T " T "

where H SE denotes the complement of the event Hy.

e First step: Study of G, N H,.
Fix s € [0,T]. Under G5 N Hy, we have M, -(u, s) < 2% and Ny > % We want to show
that it implies the following inequality:

2Mmge(u, uw — h, s) o 1 (14)
(e 4+ Mmoe(u,s)) (e +mee(u—h,s)) ~ Myc(u,s)3/4 My (u— h,s)1/4
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Suppose, by contradiction, that (14) is false. Using Cauchy-Schwarz inequality, mq . (u, u—
h,s) < Mge(u, ) ?my o (u— h,s)'/2, and we would deduce that:

1 2
< ;
My (u, 8)3/* My o (u — hy, $)YV* = My o (u, $)Y2My o (u — h, s)1/2

and thus M, .(u — h,s) < 2*M, .(u,s). Using the fact that My, > m,., we can deduce
that

Mo e(t,s) +Mee(u—h,s) < Mye(u,s) + Mye(u—nh,s) < (1+ 24)2% < % (15)
We distinguish three cases depending on the value of Ny = y5c(u,s) — Yge(u — h, s).

e Ny <o —mn: For each v € [u— h,u], one of the two terms yo.(u,s) — Yoe(v,s) and
Yo,e(V,8) — Yoe(u — h,s) is lower than “5, which means that one of those terms
belongs to the preimage of 1 by the function ¢,. Hence mgy(u,s) + mgeo(u — h,s) =
1
fo (‘p?r(ytf,&(uv 5) - ?/075(7)7 3)) + (pg(ya,ﬁ(u - h7 S) - yU,E(vﬂ S))) dv > f;—h dv = h.

This is in contradiction with (15). Therefore inequality (14) is satisfied in this case.

o N, € (0 —n,0): Introduce Med := {v : Yoc(u,s) — yoe(v, s) € [ZFL, T3]}, which is a
set of particles more or less at half distance between particle u and particle u — h.
Since n < §, we have Ny > o —n > 237 and thus Med C [u—h, u]. Let v € [u— h,ul.

We distinguish three new cases:
- if Yo e(u, s) — Yo (v, 5) < aTwa then 800(3/0,6(“7 s) — yU,é(Ua s)) = 1.
- if Yo (U, $) = Yoe(v,s) > UTH], and since Ny < 0, Yoe(v, ) — Yoe(u—h, s) is lower
than 0;77 and thus @ (Yoc(u —h,s) — yoe(v,s)) = 1.

- otherwise, v belongs to Med.
It follows that:

h = /:L_h(]l{ya’g(u,s)—ymg(v,s)<02"} + 1{yg7€(u,s)—y075(v,s)>%ﬂl} + ]I{UEMed})dv

N

/ (Yo (n:5) = e (0,5)) + @5 (e (u = By ) = Yoe (0, ) + Lverteay v
< mUva(uv 5) + ma,a(u - h, S) + Leb(Med).

By inequality (15), we deduce that Leb(Med) > % As Med is an interval included

in [u — h,u] and since k € (%, 2) we deduce that u — k € Med, i.e. N, € (252, <41,
which is in contradiction with the hypothesis N, > UT—M Thus inequality (14) is also
true in this case.

® N, > o: In this case, the two particles v and u — h do not have any interaction. In other
words, since the support of ¢, is included in [, §], 05 (Yo,c(U, 8) — Yo,e(v,5)) and
Yo (Yo,e(w—h,s) — Yo (v, s)) can not be simultaneously non-zero, whence we deduce

that mgo(u,u — h,s) = 0. Inequality (14) follows clearly.
Therefore, inequality (14) is proved. By Corollary 3.13, it follows that, on G5 N Hy:

1 1 2m, ,u—h,
i(N,N)s: n 3 Mee(u, u — h, s)
ds Mye(u,s)  Mye(u—nh,s) (e+mee(u,s))(e +mee(u—h,s))

1 1 1

= + —
Mye(u,s)  Mye(u—nh,s)  My.(u,s)3/4 My (u — h,s)1/4
1 3 1 24
>

> = 2 7
AMy e (u, s) + AMye(uw—h,s) = 4Myc(u, s) h
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where we have applied a convexity inequality: Va,b > 0, a?/ b1/t 3}{‘ + g.

To sum up, we showed that G; N Hy implies %(N, N)s > % If ng]I{GsmHs}dS > L we

29
get
Tq T dq 2t (T 23¢
<N, N>T :A £<N, N)Sds Z /0 £<N, N>$]1{G50Hs}d8 Z h/o ]I{GsﬂHs}dS Z T

Hence, since N is a continuous square integrable (F; ’E)te[o’ﬂ—mar‘cingale, there exists a
standard (F;"°),ejo,rj-Brownian motion 3 such that N; = g(u) — g(u — h) — B((N, N)y).
Since N remains positive on [0,7] by Lemma 3.11 (because g(u — h) < g(u)), we deduce
that supg (v ny,] B < 9(u) — g(u — h). Therefore,

T t i
F [/0 Lig,nm,yds > 2] <P [Sgg]ff < g(u) —g(u—h)

[0, %5+
o

=P |\/—supf < g(u) — g(u—h)
VR g

h
< Calgu) —glu— )4/, (16)

where 3 is a rescaled Brownian motion and C5 does not depend on u, h, o, € and t.

e Second step: Study of GgzN HSE

Under this event, we have M, .(u, s) < 2% and N, < UTJ”] In particular, by the assumption

n < %, we have Ny < 0 — 7. We claim that the following inequality holds true:

2Mmee(u,u — k, 5) o 1
(e + moc(u,8))(e+mpe(u—k,s)) My e(u, 8)3/* My o (u — k, s)1/%

To prove it, it is sufficient to imitate the proof of the case Ny < o —n of the previous step.

We should notice that we did not use the hypothesis Ny > U;r” in that case.

Using inequality (17) as in the first step, we show that %(Nf N )s = % Therefore,

P [fOT Lig. Aptyds = %} <P [(N,]Vﬁ > % . There exists a (F{")e[o,r}-Brownian mo-

tion 3 such that Ny = g(u) — g(u — k) — B({(N, N);). Finally, we obtain the existence of a
constant C3 independent of u, h, k, o, € and ¢ such that:

(17)

r t ~ h
P|[ Lo meyds > 5| < sup B <0000~ gl =) < Coloo) =gt = B3
0,2t
< O lo(u) — glu— ) /.
(19)

Putting together inequality (13) and inequalities (16) and (18), we conclude the proof of
inequality (12). Thus inequality (11) is proved for every h such that u —h € A. Let h > 0 be
such that u — h € (0,1). Let hy € (4, h) be such that u — hy € A.

hy

T T
P [/0 H{ngs(u7s)<%}ds = t:| < P |:/O ]l{]\/[g,g(u,s)<'yh1}d3 =1t < C [g(u) - g(u - hl)] 7

h

< Clg(u) —glu =R/ 7
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Up to replacing v by 3, inequality (11) follows for every h > 0 such that v — h € (0, 1). O

Remark 4.5. Similarly, there exist C' > 0 and 7 € (0, 1) such that for each o > 0, > 0, ¢t € (0, 7]
and for every u € A and every h > 0 satisfying u + h € (0, 1),

T
P| [ Lt ctwaeomds > 1] < Clatutm - gty

Thanks to Lemma 4.4 and to the above remark, we obtain the following result, which has to
be compared with Proposition 4.3 in [Konl7a]:

Lemma 4.6. Let g € Ly(0,1). For all 8 € (0, % — %), there is a constant C > 0 depending only
on B and ||g||L, such that for all o,e >0 and 0 < s <t < T, we have the following inequality:

t rl 1
E / / ﬁidudr
sJo Mgo(u,r)

Remark 4.7. Observe that by the assumption p > 2, made at the beginning of Section 4, there
exists some [ > 1 such that (19) holds.

<OVt —s. (19)

Proof. By Fubini-Tonelli Theorem, we have:

t rl 1 +OO
E // ———dudr :/ [// dxdr] du
sJ0 Mgg(u,r) {M" (wr)>a}
§ 2B(t — S) =+ / / ]E |:/ ]l{Mgs(u,T’)<l’l/B}dT:| dxdu
28

<2PVTVE= 5+ / / {/ ]l{M”(u’erl/g}dr] vy~ Pdxdu.
268 ’

Furthermore, we compute:

t t—s t
E [/ ]1{M075(u,r)<71—1/5}d7{| = /0 P |:/ 1{M6,€(u,r)<7x—1/ﬁ}dr > Oé:| da
t—s T
< /0 P {/0 ]1{M07E(u7r)<,yx—1/ﬁ}dr > a} da.

Using Lemma 4.4, we obtain a constant C; independent of ¢ and e such that for all z > 2°:

1 t 1 pt—s L x_l/ﬁ
ﬁ E [/S 1{Ma,s(u,r)<wx—1/5}dr} du < /1 C1 [Q(U) —glu—a" /ﬂ)} - —dodu

2
. Jialot) —gtu — 2=
71/(28)

Vi —s.

Moreover, we have for each z > 27, using Holder’s inequality:

[@W—thwDMZKOWM)ﬂgwameﬁWM

_1
< gz, (22 1/7) . (20)
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Therefore,
Lo [ 4% gl VF—5
[ /2ﬁ 8 . [/ H{M”‘s(u’r)ql/ﬁ}dr} dodu < € /ﬁ 5 38 pl(l—l) dz
5 v s 204P  x2B B P
< Csllgllz, vt —s,
where Cs and Cj are independent of o, €, and t. The last inequality holds because % <% — %) >

We conclude the proof of the Lemma by using a similar argument for u belonging to [0,

aovs =

and using g(u 4+ 2~ #) — g(u) instead of g(u) — g(u — z~1/8).
Corollary 4.8. There is a constant C' such that for every t € [0,T] and for every o,e > 0,
1
E [/ yg’s(u,t)du} < C.
0

Proof. We have:

E [/01 yis(u,t)du] <E [/Olg(u)2du]

Since g belongs to L2(0, 1), the first term of the right hand side is bounded. Furthermore, by
Corollary 3.13 and Fubini-Tonelli Theorem:

5| [ (oelut) ofuyPaul = | E [t ), Yo 1, )] du = / E Ji t Ml(u)d] du
< OV,

by Lemma 4.6. OJ

1/2 1/2 1/2

+|[ el 1) R

4.1.2 Proof of Proposition 4.2

We will now use Lemma 4.6 and its Corollary 4.8 to prove Proposition 4.2. We start by (K1):

Proposition 4.9. Let g € E;r [0,1] and § be positive. Then there exists M > 0 such that for all
0 >0 andz> 0, P |} llyou,) |3 du > M| <o,

Proof. Using again Fubini-Tonelli Theorem,

1 1
E [/ sup |yg75(u,t)2du} = / E [sup Yo e (u, t)|2} du.
0 0

t<T t<T

Moreover, for almost every u € [0,1], Yoc(u,-) is a (F{"")iejo,rj-martingale. Hence by Doob’s
inequality, there is a constant C; independent of u, o and ¢ such that:

E [squ |yg,€<u,t>ﬂ < CE [lyoe(u, T)?].
t<

Therefore, by Corollary 4.8,

1 1
E [/ sup ]y07€(u,t)|2du] < Cl/ E Uymg(u,T)\Q] du < Oy, (21)
0 0

t<T

23



Construction of a Wasserstein diffusion July 2018

where C is independent of o and €. We conclude by Markov’s inequality: there is a constant
C > 0 such that for all o, > 0,

E [fol SUp;< Yo (u, t) [*du
”ya'f:‘ HCOT]du M < m <

For M large enough, that last quantity is smaller than §. OJ

=a

Then, we show criterion (K2):

Proposition 4.10. Let g € L,[0,1] and 6 > 0. Then for all k > 1, there exists ny, > 0 such that
for every o,e > 0,

! 1 )
P [/ sup ’ya,a(uatQ) - ya,e<uvt1>‘du = % < 27
0

[t2—t1]<mp
Proof. By Markov’s inequality, it is sufficient to prove that:

lim sup E
n—=0T 6>0,e>0

1
/ SUp  |Yoe(u,t2) — Yoo (u, t1)|du| = 0. (22)
0 |t27t1‘<n

Fix § >0 and g € (1,3 — %) For every u € (0, 1), define

Ki(u) :=E [Hyo,a(u7 ')”C[O,T]] )

T
Ko(u) :=E [/0 ]\/L,ﬁ:(u,s)d(s] .

Since Yoo is uniformly bounded for ¢ > 0 and € > 0 in Ly([0,1],C[0,T]) (see inequality (21))
and by Lemma 4.6, fo Ki(u)du and fo K3 (u)du are uniformly bounded for o > 0 and € > 0.

Therefore, there exists C' > 0 such that fo Lk, (w>cydu < 6 and fo Tk, w=cydu < 6. We
define:

K= {ue (0,1): Ki(u) < C},
Ky = {u e (0.1) : Ka(u) < CF.

The collection (Yo.e (U, ))o>0.e50,ucKink, is tight in C[0, T']. We use Aldous’ tightness criterion
to prove this claim (see [Bil99, Theorem 16.10]). We prove the two following statements:

- 1My 500 SUPy0 c0ue ki K P [1Woe (s 9)llcpor) = a] = 0.

- for all @ > 0 and r > 0, there is 79 such that for all n € (0,7), for all & > 0,
e > 0and u € Ky N Ky, if 7 is a stopping time for y,(u,-) such that 7 < T, then
P Hya,e(uvT + 77) - y07€(u77)| > T] < .

By Markov’s inequality, for all @ > 0, 0 > 0, € > 0 and u € K1 N Ko,
K1 (u) C

)

1
P[H?JU,E(U,')HC[O,T] = ] - [Hyas( a')HC[O,T]] =

a

N

a a

whence we obtain the first statement. Moreover, for all u € K7 N K5, by Hélder’s inequality,

-

1 1—

ROy,

W=
W=

E [|Yoe (T +1) = Yoe(u, 7)] [/ i ds < Ko(u)?n
O'E
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whence we obtain the second statement.

By Aldous’ tightness criterion, there exists a compact L of the set D[0, T] of cadlag functions
on [0,7] such that for all 0 > 0, e >0 and u € K1 N K, Pysc(u,) € L] > 1 — 6. Since C[0, T
is closed in D[0, T'] with respect to Skorohod’s topology, and y, . (u, ) € C[0,T] almost surely, we
may suppose that L is a compact set of C[0,T].

Back to (22), we have:

1 1
E [/ sup yg,g(u,tg)—yg75(u,t1)|du] :/ E
0 |t27t1‘<7] 0
1
:/ E
0

1
+ / E ]l{ueKlﬂKg,ymE(u,-)eL} sup ‘yG,S(uﬂ tQ) - ya,a(u7 tl)’ du.
0 [ta—t1]<n

Sup  |Yoe(ust2) — Yo (u, t1)|| du
[ta—t1]<n

]l{UEK1ﬂK27ya,e(u,')€L}c it S?IT |y07€(u7t2) - y078(u7t1)|] du
—t1|<
2—l1|<n (23)

The first term on the right hand side of (23) is bounded by:

1 1/2 1 1/2
E|1 du / E su oe(U,to) — Yo o(u,t 21 du .
</0 [ {ueKlmKw”’E(u")eL}c} > ( 0 Lg—tfl)o/'y sl 2) = o) ] )

We have:
1 1
/0 E |:]1{u€K10K27y0’,6(U,')€L}Ci| du < /0 Luekinks} P [Yo,e(u,) ¢ L] du
1 1
+ /0 ]l{Kl(u)>C}du +/O ]l{Kg(u)>C}du
< 36.
Moreover,

1
| =
0
where M is a constant independent of o > 0 and € > 0 by inequality (21).
It remains to handle the second term on the right hand side of (23). Since L is a compact

set of C[0, 77, there exists n > 0 such that for every f € L, w(n) := supjy_qy |f(t) — f(s)] < 4.
Therefore, there exists 7 > 0 such that:

1
sup Yo (u,ta) — yg,e(u,tl)\Q du < 4/ E [sup ]yoﬁs(u,t)\z] du < 4M,
|t2—t1|<77 0 t<T

1
/ E ]l{ueKlﬂKg,yg,E(u,-)eL} Sup ‘yaﬁ(u? t2) - ymé(u7 tl)’ du < é.
0 [ta—t1[<n

Back to equality (23), we have proved that there is > 0 such that for every ¢ > 0 and € > 0:

1
E / SUp Yoo (U, t2) — Yoo (u, t1)|du| < 6+ V126M.
0 |t2—t1|<77
This proves convergence (22) and thus concludes the proof of the Proposition. O

Then, to obtain criterion (K3), we state the following Proposition:
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Proposition 4.11. Let g € [,;r[O, 1] and § > 0. Then for all k > 1, there is hy > 0 such that
for all o,e >0,

1=h 9 11 _ 6
PUL ot ) = v Mg e > | < 51

If fol_hk Yo (u+ hi, ) — Yoe(u, -)||g.[0 mdu < %, we deduce by monotonicity of u — y,c(u,t)
for every t € [0, T that for every h € (0, hy),

1—-h
/0 e+ ) = i1, )3yl

1—hy 1—hyg
< / Hyd,a(u"’_hv ) _yU,S(uv')|’(QZ[O,T]du+/ Hymé(u"’_hk?‘) _ya,a(u+hk - h7')||(2Z[O,T]du
0 1-2hj+h

1—hy 5 9
<2 [ et ) = gl e < ;-

0
Therefore, the latter Proposition implies the following Corollary, which is equivalent to crite-
rion (K3):

Corollary 4.12. Let g € L';r [0,1] and § > 0. Then for all k > 1, there is hy > 0 such that for
all o,e > 0,

4]

1-h 5
P [Vh € (0, hk),/o [Yore (w4 s ) = Yore (u, ) |30 7w < k] z1-q

Proof (Proposition 4.11). Let h € (0,1). By Corollary 3.12, for almost every u € (0,1 — h),
Nut = Yoe(uth,t)—ys(u,t) is a martingale. By Fubini-Tonelli Theorem and Doob’s inequality,
we have:

1-h ) 1-h ) 1-h )
E [ /0 ||Nu,.uqo,ﬂdu} = /0 E IV, 0,7) du < € /0 E[NZr]du.  (24)
Let us split E [ N2 | in two terms B [N2,0 (v, <] + B [N270 (v, o1y

Study of folfh]E [NiTIL{Nu,T@}} du. Let u e (0,1 —h) be such that N,,. is a martingale. By

Lemma 3.11, if g(u+h)—g(u) = 0, then N, 7 = 0 almost surely, thus E [NiT]lNu,Tél} =0.
From now on, we suppose that g(u+ h) — g(u) > 0. N, is a square integrable continuous
martingale, starting from g(u+h)—g(u) > 0 and positive by Lemma 3.11. Therefore, there
exists a standard Brownian motion 3, such that Ny ; = Ny + Bu({(Ny,, Ny.)t). Recall
that N, o = g(u+ h) — g(u) is a deterministic quantity. If N, o > 1, then the inequality

E [N3 rln, T@}] < Ny 0 is obvious. Otherwise, we have

—+00

1
E [NiT]l{Nu,T@}} :/0 P [NZ,T]l{Nu,Tsl} > A] dA </O P[NZp > Al dA

1
SN2+ / P [Nu,T > Al/ﬂ dx. (25)
N2

u,0
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Let us estimate P [N, 7 > &] for a real number £ > N, o. We define the following stopping
times:

On the first hand, we know that almost surely, for all ¢ € [0,T], Ny > 0, hence 7_n, , >
(Nu,., Ny,.)7. On the other hand, if Ny, 7 > &, N, 7 is equal to x by continuity of N, ., hence
(Nu,-, Nu,.)r = TN, - It follows from both inequalities that 7. _n, , < 7_n,,. Therefore,

N,
P[Nuz 2 6] <P [ThonNyo < ToNuo| = %’0, (26)

by a usual martingale equality. Using inequality (25) and N, ¢ < 1, we obtain:

1
Nuo
E [NiT]l{ Nu’TSl}} < NZy+ /N . 3N < NZg + 2Nug < 3Nup.
0

U,

Therefore, we have: folthE |:N’3,T]1{Nu,T<1}:| du < 3f017h Ny,odu.

Study of fol_hIE [Ng,T]l{Nu,T>1}:| du. Recall that g belongs to L,(0,1) for some p > 2. Fix

B e (1, % — %) We compute:

1-h 1-h
/0 E [Ng,Tﬂ{Nu,T>1}] du < 2/0 E |:(Nu,T - Nu,O)Q]l{Nu’T>1}] du

1-h
+2/ E [N2ol g, 51} ] du
0

<2 </01_H§[(Nu,:r - Nu,0)2ﬂ] du)

1-h
+2 N7 odu.
0

1—

=
=

</01_IP};[NU7T > 1] du>

Furthermore, we have P[N, 7 > 1] < N,o: that inequality is obvious if N, ¢ > 1 and
otherwise, it is a consequence of inequality (26).

Then, we want to give an upper bound for E [(N%T — Nu,o)w]. Using Burkholder-Davis-
Gundy inequality, there exists Cg such that E [(NU,T — Nu,o)w] < CBE {(Nu,., Nu>§] We

compute the quadratic variation of the martingale Nyt = Yoo (u + h,t) — Yoe(u, t):
E [<Nu,.,Nu,_>g}

=E

/T < 1 N 1 B 2Mmge(u, uw+ h, s) > ds
0 \Moe(u,s)  My(u+h,s) (e+mge(u,s))(e+mee(u+h,s))

B]
1/2 1/2

By Cauchy-Schwarz inequality mg - (u, u+h, s) < mqs (u, s)mo's (u+h, s), we deduce that
the sum of the three terms in the integral is non-negative and thus that it is bounded by
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I E

/T ds - /T ds
0 M(ﬁg(u,s) 0 Mf,g(u—i—h,s) .

By Lemma 4.6, we deduce that fol_hE {(Nu,Nu%] du is bounded, because 8 < 3 —
Therefore, we can conclude that there is a constant Cr g such that:

1 1 .
Mo (s) + My (uThs) whence we obtain:

1
M, -(u,s) | My(uths)

E [<Nu7.,Nu7.>ﬂ < T 'E

< Cg’T <E

S

1-h 1-h

1= 1-1/8
/ E {NiT]l{ NuT>1}} du < 2074 < Nuo du> +2 [ N2, du
0 ’ 0 ’

0

Conclusion: Putting together the studies of both cases, we have proved that there is a positive
constant C satisfying, for all o, € and h € (0, 1):

1-h 1—h 1-h 1-1/8 1—h
/ E[N;r]du<C Nyo du+C ( Nuo du> +C NZgdu.  (27)
0 0 0 0

Recall that there is p > 2 such that g € L,(0,1). As for inequality (20), we get:

1-h

1—h 1
[ N - /0 (9(u+ h) — g(u))du < [|g|lz, (2)' 7

Furthermore, define o := Z%Q € (0,1). We have

1-h 1-h
N2y du = /0 (g(u+ h) — g(u)(glu+ h) — g(w))>~*du

</01h(g(u +h) — g(u))du>a (/Olh(g(u +h) — g(u)ﬁiidu>

_1\« —a
< (llgllz, @2n)' %) (Cyllgllz,)' ™
2—a

because ;= = p. Therefore
—

0
l—«

N

1—h 1—h p—2
[ g du= /0 (gu+ h) — g(w)du < C gl h"5". (28)

It follows from (27) that there is Cg such that for each o,e > 0,

1-h - - B
/ E (e (u+ 1, T) = o (0, T))?] du < Callglln, (B7 + 15 77 45 ),
0

for every 8 < % — %, i.e. such that 0 < 1 — % < ??T_—Qz' Thus, there is ¢ > 0 depending on p (e.g.
q= % by choosing 1 — % = 2(5%_22)) and a constant C such that for each o, > 0,
1-h
| Blnctut hT) — g, )] du < Cllgls, b (29)

0
Therefore, by (24) and Markov’s inequality, there is C' such that for each o, > 0,

1-h 5 1

P [/0 9o (w+ Ry ) = Yoe(u,llep,mdu = £ | < kCllgllz, b,

whence it is sufficient to choose hy, so that kC||g||z,h} < 2%. O
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4.2 Convergence when ¢ — (

Fix ¢ € Q4. By Prokhorov’s Theorem, it follows from Corollary 4.3 that the collection of
laws of the sequence (yg.)ecq, is relatively compact in P(L2([0,1],C[0,77)). In particular,
up to extracting a subsequence, we may suppose that (y,.)ccq, converges in distribution in
L»([0,1],C[0,T7]) to a limit, denoted by y,-.

For every t € [0,7], let us denote by e/(f) := f(,
Ly(]0,1],C[0,T]) — L2[0,1]. We define Y, (t) := e;(yo)
Proposition 3.2, we obtain:

t) the continuous evaluation function:
= Yo(-,t). Under the same model as

Proposition 4.13. Fiz 0 € Q. Suppose that g € £g+ [0,1]. (Yo (t))eejo,r) s a L1[0,1]-valued
process such that:

(B1) Y5(0) =g;

(B2) (Y5 (t))telo,r) s a square integrable continuous Lg[O, 1]-valued (F{ )iejo,r)-martingale, where
FP =0(Ys(s),s <t);

(B3) for every h,k € L]0, 1],
t pl pl /
Yo )1y (Yo, k)0, ) = hk()— T 8) s,
: : 0J0 JO !

me (u, $)me(u', s)

where mg(u,u', s) = fol Vo (Yo (U, 8) — Yo (v, 8)) o (Yo (U, 8) — Yo (v, s))dv and
Mo (u,5) = [i 2 (Yo (u, 5) — o (v, 5))dv.

Proof. Fix t € [0,T]. We want to prove that Y4(t) belongs to L}[0,1]. For each ¢ € Q,, Yy (t)
belongs with probability 1 to the set K :=

1 u+r 1 uw' 4r
{feLQ(O,l):Vu,u',Vr,r/,ifO<u<u—|—7“<u’<u’+r’<1,then fg// f}
T T w!

u

which is closed in L3(0,1). Recall that the sequence (yo.c)-eq, converges in distribution to y, in
Ly([0,1],C[0,T7]). Therefore, (Y, (t))ccq, converges in distribution to Y,(t) in L2[0, 1]. Because
K is closed, the limit Y, (¢) also belongs to K with probability 1.

Therefore, almost surely, for every t € [0,7] N Q, Y,(t) € K. Let w € €, where Q' is
such that P[] = 1 and for every w € 0, fol Supy<t Yo (v, 8)|*(w)dv < +oo and for every
t € [0,7TNQ, Yr(t)(w) € K. Let t € [0,7] and (¢,) be a sequence in [0,7] N Q tending
to t. For every n € IN and each w,u/,r,r" such that 0 < u < u+7r < v < o' +70 < 1,
%f:ﬂ Yo (v, ty) (w)dv < & v Yo (v, ty)(w)dv. Since y,(w) belongs to Ls([0,1],C[0,T]), and

u
u+r

since [* 7"y, (v, t,)2 (w)dv < fol sup,r Yo (v, )2 (w)dv < +o0, + [“" y,(v,ty)(w)dv tends to
1 fuu—i_r Yo (v,t)(w)dv (and the same is true for «’ and ). Thus almost surely Y, (¢) belongs to K
for every ¢ € [0, T]. It remains to prove that it implies that Y, (¢) belongs to Lg [0, 1].

Let f € K. Define, for each u € (0,1), f(u) = liminfh_>0+%f1§u+h)/\l f(v)dv. First, re-
mark that fA is non-decreasing. Then, since h +— % fu“+h f is non-increasing, we have f(u) =
limy, o+ = & f (uth)AL f(v)dv. Choose a sequence (u,) N\, u. By monotonicity, f(u) < f(un)
Fix § > 0. There exists h > 0 such that u 4+ h < 1 and |f(u) — %f;”rhf] < 6. Since
f € Lo, there exists N such that for all n > N, |+ fu"HL — %ferhf\ < 0. Therefore,
Flun) < %f;ﬂ"Jrh f < F(u)+26 for all n > N. Thus f(un) — f(u). In addition, f has left limits

because of its monotonicity. Hence f is a cadlag function.
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Furthermore, ]? = f almost everywhere. Indeed, for every § > 0, there exists F' € C|[0,1]
such that [[f — F'[|1,0,1) < 0. Define F(u) = limy,_,q+ %féqﬁh)“ F(v)dv. By continuity of F,
F(u) = F(u) for every u € (0,1). Thus we have:

/0 () - Fluldu < /0 () — F(u)|du + / |Fw) — F(u)|du

1 1 [uth)nl
<5+/ lim / F(v) — F(v)|dvdu
0

h—0t+ h

5+hm1nf/ | f(v) v)|dv <

h—0t

where we used Fatou’s Lemma to obtain the last line. Thus fol |f(u) — f(u)|du = 0, whence
f = f almost everywhere. Thus f belongs to Lg[O, 1: Y, is a Lg[O, 1]-valued process.

Property (B1). (Y;:(0)):cq, converges in law to Y,(0) in L2[0, 1]. Therefore, Y;(0) = g.

Property (B2). By inequality (21), E [HYa’g||%2([0’1]’C[0’TD} is bounded uniformly in ¢ € Q4.

We deduce that for every t € [0,7], E {HYO-(t)H%Q([OJ])] < 400, thus the process Y, is square
integrable.

Furthermore, Y, is a continuous Lg[(), 1]-valued process. Indeed, for each sequence (¢,)n>0
converging to a time ¢, ||Y,(t,) — Ycr(t)H%2 = fol (Yo (U, tn) — Yo (u, t))?du — 0 by dominated

convergence Theorem, since for almost every u € (0,1), y,(u,-) is continuous at time ¢, and
(Yo (U, tn) — Yo (u, t))* < 4sup;<r |yo(u, t)|* which is almost surely integrable.
Moreover, we know from property (A2) that for each h € L2(0,1), each i > 1, 0 < 51 < s9 <
. < 51 < s <t and each bounded and continuous function f; : (L2(0, 1))l — R:

1
]E |:/ h(u)(yc,a‘(u)t) - ya,a(% S))du fl(?/ma('y 81)7 .. 7y0'76('7 Sl)):| - 0 (30)
0

1/2
Since ‘ folh(u)b(u,t)du‘ < |IhllL, ( S supjo.zy |b(u,.)|2du) for every b € Ly([0,1],C[0,T]), the

function ¢ : b € Lo([0,1],C[0,T]) — fol h(uw)(b(u,t) — b(u, s))du fi(b(-,s1),...,b(:,s;)) is contin-
uous. Furthermore, we prove that (¢(yo.c))ecq. is bounded in Ls:

1
E [p(yoe)?] < A2 IHIZ,E [ /0 o (1,8) — e (1, s>>2du]
< CIAIZIRIT,,

where C' is independent of € by Corollary 4.8. We deduce that (¢(yo,c))ecq, is uniformly inte-

grable. By continuity of ¢ and since (yoc)-cq, converges in law to y, in Lo([0,1],C[0,T]), we

get: E[o(Yoe)] — E[¢(yo)]. Since by equality (30), E [¢(ys,c)] = 0 for each € € Q4, we have:
e—

1
E [ [ 10 00) = o DY), Vol = 0 (31)
0

Therefore, Y, (+) is a square integrable continuous (¢ )y, 7j-martingale.
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Property (B3). We know, by property (A3), that for every [ > 1, for every 0 < s1 < s2 <
. < 51 < s < t, for every bounded and continuous f; : (L2(0,1))! — R and for every h and k in
Ly(0,1):

L//' (e (1) — () (0 2) — g(u))
_(ya,a(uvs) _g(u))(ya,a(ulvs) ( ))]dUdu fl( 08(51) . Ya,a(sl)>:|

First, we want to obtain the convergence of the left hand side of (32). We proceed in the
same way as for the proof of equality (31); to get a uniform integrability property, we have now
to prove the existence of § > 1 such that

c€Q+

sup E [(/01 () (Yo, (u; t) — g(u))du /01 k(W) (yoe (W) — g(u’))dU’> B] (33)

is finite. Therefore, it is sufficient to prove the existence of 5 > 1 such that

(/01 h(w) (Yo (u, t) — g(u))du> 25]

is finite for every h € Lo[0, 1]. By Cauchy-Schwarz inequality,

E 1h(U)(ya,5(u,t) — g(u))du ; InII7, l(ya,a(u7t) — g(u))*du ﬁ
0 0

1
<1m£E{A<%Aww—gw»wmﬂ. (34)

sup E
c€Q+

We deduce by Burkholder-Davis-Gundy inequality and Fubini’s Theorem that there are some
constants independent of € such that

EM@Mwwmw%ﬂ<af [(ore 01, (1, )7 |

[ Wdrdu]_

By Lemma 4.6, there exists 8 > 1 such that E {fo fo

< CE

drdu} is bounded uniformly for

ur)
€ € Q4. Thus (33) is finite. It is also finite if we replace t by S.
To obtain the convergence of the right hand side of (32), we start by using Skorohod’s

representation Theorem!:

space (€, P) that converges to g, in La([0,1],C[0,T]) almost surely, where Yoe (resp. Yy) has
same distribution as y, . (resp. y,). We denote by m, . (resp. m,) the mass associated to Yy e
(resp. Yo )-

115([0,1],C[0,T]) is a Polish space. Its separability can be proved using the separability of C([0,1] x [0,T])
and the density of C([0,1] x [0,T]) in L2([0,1],C[0,T]).

there exists a sequence (¥y.c)ccq, defined on a common probability
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Furthermore, on the probability space ((AZ x [0, 1], P® Leb l[0,1]), Yoe converges in probability
in the space C[0,7T] to y,. Indeed, for every 6 > 0, we have:

]@@Lebho’u{(w,u) N (Woe — o) (w, U)HCOT] 0} = E [Leb{u |(Yo,e — Yo )(w, U)HC[O T] 2 6}]

E[l/\/ | Toe = Yo ) (ws w) |30 e -

We know that, for every fixed § > 0, 1 A 62 0 ||@U76 - ng)(w,u)Hg[o 7)du converges to 0 almost
surely, and it is bounded by 1, so we deduce that the latter term tends to 0. We deduce from the
convergence in probability that there exists a subsequence (gy,)n, €, — 0, such that for almost

every (Wﬂu) € Q x [07 1]7 H(/y\tfﬁn - @\0)(0‘)7“)”C[0,T] — 0.
We want to prove that,

[// /S 5n+m05nﬁ:i"§?8:/+r;”n(ul’ ))drdudu FiVoen(51),. }A/g,gn(sz))]
— [ / / / mgn;aruni Z)' T)drdudu/ f,(?g(sl),...,?g(sl))] . (35)

On the one hand, almost surely and for almost every u € (0,1), Yo, (u,-) = Ys(u,-) in C[0, 7.
Then for almost every u,u’ € (0,1),

1
ma,an (’LL, ula 70) _/ (pJ(/y\U,&‘n (’LL, T) - f‘/\a,an <U7 7/.))900' (/y\O',En (ula ’f’) - /y\a',é‘n (U, T))d’U ? 7;7\7’0'(u7 U,, T)a
0

1
e e, (7) = 0 + / 2 Fren () — T (0,7))d0 — i (7). (37)
0

n—oo

Therefore, in order to obtain (35), it remains to justify that there exists § > 1 such that:

t Mo e, (u,u',r , P
</o/o o [t e e L) ]

is finite. By Cauchy-Schwarz inequality, Mg, (u, v/, r) < mg/gn (u, r)m}/gn (u',7), so that it is

sufficient to prove that there is 5 > 1 such that

1 p1 , t 1 , B
sup E / / h(u)k(u’) / — — drdudu
neN 0Jo ]\/[1/2 (u, r)Ml/ (u',r)

is finite, and thus that sup, . E [fo IN

sup E
nelN

MB (u r)
as in the proof of (34). By Lemma 4.6, this statement holds. We conclude that we have the
following equality:

drdu] is finite, using Cauchy-Schwarz inequality

[ / / )[(w 1) — g(u)) (02 2) — 9 ()
(o) — 9(w)) (o (o 5) — g(u))]duded f(Yi(s >...,Ya<sl>>]

_IE[ / / / mﬂ”r”ni‘a :L)/’r)drdudu’fl(Ya(sl),...,Yg(sl))}, (38)

whence we obtain property (B3), since fo fo fo m‘m"(#drdudu’ is (F7 )eejo,1)-

(u,r)me (u’,r)
measurable. m
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Property (B3) implies the following Corollary:

Corollary 4.14. Let 1 be a non-negative and bounded map: [0,1] — R. Then for every | €
IN\{0}, 0 < s1 < s2 < ... < 51 < s < t and for every bounded and continuous function
fi: L2[0,1]" = R, we have:

| [ "b(w) ((0mt0:0) = 0" = (o)~ gta)? = [ ——Lar)
f1(Yo(s1)y. 0y Ya(sl))} =0.

Proof. We use the following notations: z(u,-) := ys(u,-) — g(u) and F; = fi(Ys(s1),. .., Ys(s1))-
Let us consider an orthonormal basis (e;);>1 in the Hilbert space Lo(¢(x)dz). We denote by

[, ] Lo () the scalar product of Lo(y(x)dx): [h, k], ) = fo hk+. By Parseval’s formula, we have:
1
" [ /0 P () (e, 1) = #(u, s>2>dqu] -E ;M,t),ei}%w) ~ 2 8). el ) B
=D E[((z( ) et))t, — (2(5), ev))}, ) Fi]

i>1

1 r1
-V E [ / es () (u)ei( / o (U, v r) drdudu’Fl] ,
0Jo M (

urm u , T
1>1 i )

by applying equality (38) with h = k = e;. By definition of m,(u,u’,r), we have:

E[/Olw(u)(z(u,t)2—z(u,s)z)duFl} —E // Z{% Yol _y)”(” r))’e’T dvdrFy

1>1 La(3)

K / / / 25 (Yo an; 7 ry)"(”’r))w(u)dududrﬂ]

_E / / Wdrw(u)duﬂ}

since mg (u,r) = fol 02 (yo (u, ) — yo (v,7))dv. O

We deduce the following estimation, by analogy with Lemma 4.6:

Lemma 4.15. For all § € (0,5 — 5) there is a constant C' > 0 such that for all 0 > 0 and
0<s<t<T, we have the followmg iequality:

t rl 1
E // ﬁidudr
sJo me(u,r)

Proof. We use again the sequence (Ys.c, Jncv Obtained by Skorohod’s representation Theorem,
as in the proof of convergence (35). Therefore, by Fatou’s Lemma,

t rl 1 t rl 1
E / / Tdudr <liminf E / / /\ﬁidudr
sJo mg(u,r) n—00 sJo Mg, (u,r)

where C is obtained thanks to Lemma 4.6. O

< CVt—s.

< CvVt—s,

By Burkholder-Davis-Gundy inequality, we obtain immediately the following Corollary:

1
Corollary 4.16. For each 3 € (0,3 — %), sup supE [/ (Yo (u,t) — g(u))zﬁdu} < +00.
ceQ4 t<T 0
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4.3 Convergence when o — 0

Recall that by Corollary 4.3 and Prokhorov’s Theorem, the collection of laws of the sequence
(Yo,e)occq, is relatively compact in P(Lz ([0, 1],C[0,T7])). By construction, the collection of laws
of the sequence (ys)s,eq, inherits the same property.

Thus, up to extracting a subsequence, we may suppose that (ys),cq, converges in distribu-
tion to a limit, denoted by y, in Ly([0,1],C[0,T]). As before, we define Y (¢) := y(-,t). We state
the first part of Theorem 1.4 in the following Proposition:

Proposition 4.17. Suppose that g € E;_[O, 1. (Y(t))icp1) is a Lg[O, 1]-valued process such
that:

(C1) Y(0) =y;

(C2) (Y(t))iep,r) 18 a square integrable continuous Lg[O, 1]-valued (F)ejo,r)-martingale, where
Fr=0(Y(s),s <t).

Proof. We refer to the proof of Proposition 4.13. O

Remark 4.18. It should be noticed at this point that a new difficulty arises when we want to obtain
a property analogous to (B3). Indeed, whereas it was straightforward to prove (36) and (37),
the convergence of m,(u,t) = fol 02 (Yo (u,t) — yo (v, t))dv to m(u,t) = fol Ty (u,t)=y(v,4)ydv is not
obvious, due to the singularity of the indicator function. It will be the main goal of the next
Section to prove this convergence.

In Section 5, we will study the martingale properties of the limit process Y and compute its
quadratic variation (property (C5) of Theorem 1.4). To obtain this, we will first prove that for
every positive t, Y (t) is a step function (see property (C3)). It implies that y has a version in
D((0,1),C[0,T7]) (see property (C4)) by an argument given in (|[Konl7a, Proposition 2.3]).

5 Properties of the limit process Y

The aim of this Section is to complete the proof of Theorem 1.4. Properties (C3) and (C4) will
be proved in Paragraph 5.1 and property (C5) will be proved in two steps in Paragraph 5.2 and
Paragraph 5.3.

5.1 Coalescence properties and step functions
In this Paragraph, we will prove the following Proposition:
Proposition 5.1. Almost surely, for everyt >0, Y (t) is a step function.

Recall that Y (0) = g is not necessarily a step function, since g can be chosen arbitrarily in
E; +[0,1]. If we denote for each ¢ € [0,T] by p; the measure associated to the quantile function
Y (t), that is y; = Leb|f 1) 0 Y (t)~!, Proposition 5.1 means that for every positive time t, p is a
finite weighted sum of Dirac measures. We begin by the following Lemma. Recall the definition
of the mass: m(u,t) = fol Ly ut)=y(v,0)ydv-

Lemma 5.2. There exists a probability space (Q,P) on which the sequence (Vo )oeq,. converges
almost surely to y in Lo([0,1],C[0,T]) and where, for each o € Q4, Yy (resp. y) has same law
as Yo (resp. y). Furthermore, there is a subsequence (op)pn, 0yn — 0, such that for almost every
(w,u) € Q2 x (0,1) and for every time t € [0,T],

lim sup m,, (u,t) < m(u,t).
n—oo
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Proof. Recall that (ys)scq, converges in distribution in Ly ([0, 1],C[0,T7]) to y. By Skorohod’s
representation Theorem, we deduce that there exists a sequence (¥,)scq, and a random vari-
able ¥ defined on a common probability space (Q, IF’) such that for every o € Q, the laws of 7,
and y, are the same, the laws of y and y are also equal and the sequence (Js)seq, converges
almost surely to y in La(]0,1],C[0,T1).

For every € > 0, we get by Markov’s inequality:

P Leb{(w,u) : || (% — §)(w, w)lcpor) > €} = E [Leb{u: | (§r — 7)(w, v)llepo,17 > €}]

<Eling / |G - D WlZpdu| . (39)

Since (Ys)oecq, converges almost surely to y in Ls([0,1],C[0,77]), the right hand side tends
to 0. Therefore, (ys)seq, converges in probability to y in C[0,7] on the probability space
(€ x [0,1],P ® Leb). Thus there exists a subsequence (o), tending to 0 along which 7y,
converges on an almost sure event of Q x [0,1] to 7 in C[0, T]. Therefore, there is €, P[] = 1,
such that for every w € €, there exists a Borel set A = A(w) in [0, 1], Leb(A) = 1, such that
for all u € A, [|Uo, (u,-) = y(u,-)|lcjo,r] tends to zero. Remark that the extraction (0,), does not
depend on w. From now on, we forget the tildes and the extraction in our notation.

Let w € Q. Fix u € A(w) and t € [0,T]. We set v € A such that y(v,t) # y(u,t). Then
there exist o9 > 0 and § > 0 such that for all o € (0,00) N Q4+, |ys(v,t) — yo(u,t)] > 6. For
all o < min(oy,d), we have |y, (v,t) — yo(u,t)| = o and thus v, (Y, (v,t) — y,(u,t)) = 0. Hence,
limy—0 (1 — @2(yo (v, t) — yo(u,t))) = 1. Thus we have shown that for all v € A,

Liy(ot)Ay(ut)) < hm 1nf (1 — goa(yg(v t) — yo (u, t))) ,

since 1 — @2 is non-negative. By Fatou’s Lemma and since Leb(A) = 1, we deduce that:

1 1
1 —m(u,t) = /0 1y (,t)2y(upydv < lim 1nf/0 (1= 02(yo(v,t) — yo(u, 1)) do,

o—0
whence for all w € A and ¢ € [0, T], imsup,,_, .o Ms, (u,t) < m(u,t). O
We deduce from Lemma 5.2 the following Corollary. Set N(t 0 md;‘ ok By a classical

combinatorial argument, N (¢) is the number of equivalence classes at time ¢ relatively to the
equivalence relation u T = y(u,t) = y(v,t). In other words, if N(t) < oo, Y (t) is a cadlag

step function taking N (t) distinct values: there exist 0 = a1 < a2 < -+ < ayp) < anp)+1 = 1
and y1 < y2 < -+ < yn( such that for all u € [0,1]
N()

Y(6)(uw) = el {uelapani)} + IN@© Lium1}-
=1

Corollary 5.3. For every time t € [0,T], E [f(f N(s } is finite.

Proof. By Lemma 5.2, there is a subsequence (o,) such that almost surely, for every t €0, T] and

for almost every u € [0, 1], limsup,,_,oc M, (u,t) < m(u,t). Therefore, m(u < lim inf

n—oo Mon (“ t)’

By Fatou’s Lemma, we deduce that:

t t prl 1
E /N(s)ds // liminf —————duds| < liminfE // ———duds| < CV4,
0 n—o0 Mg, (u,1) n—ro0 0Jo Ma,(u,s)

by Lemma 4.15. O
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Corollary 5.4. Almost surely, for everyt > 0, N(t) is finite and t — N (t) is non-increasing on
(0,77.

Proof. We begin by proving the coalescence property. Let ui, ue, h € Q be such that 0 <
up < up +h <wug <ug+h < 1. Define y(uy,t) = %f;ﬁh y(v, t)dv = (Y (1), %]l(ul,ulJrh))Lz and
Y (ug, t) = (Y (1), l]l(uz,uﬁh))h. By Proposition 4.17, Z(t) = y"(ua,t) —y"(u1,t) is a continuous
R-valued (F¢)¢e(o,rj-martingale, almost surely non-negative. Asa consequence, Z(t) = 0 for every
t > 19 = inf{s > 0,Z(s) = 0}. In other terms, the following coalescence property holds: for
every ui, uz, h € Q such that 0 < uy < uy +h < ug < ug+h <1, y"(u1, to) = " (uz, to) implies
y"(u1,t) = y"(uz,t) for every t > to almost surely.

On a full event Q' of (Q,P), the latter statement is true and fOT N(s)ds is finite (by Corol-
lary 5.3). Fix w € €. In particular, for almost every ¢ € (0,7"), N(t) is finite. Let to € (0,7)
be such that N(tg) < +o0o. There exist 0 = a1 < ag < -+ < an(y) < Ay = 1 and
21 < 22 < -+ < ZN(), depending on w, such that for all u € [0, 1],

N(to)

Y(to)(w) = > zkl{uciapars)} + 2N(to) Liut)-
k=1

Fix k € {1,...,N(t9)}. By the coalescence property, almost surely, for all uj, ug, h € Q
such that ap < w1 < ug +h < ug < us + h < apy1, since y"(u1,ty) = zx = y"(us,to), we have
y"(u1,t) = y"(ug,t) for every t > to. Fix t > to. By monotonicity of Y (¢), we deduce that Y (¢)
is constant on (uy,ug + h). Thus Y (¢) is constant on (a, ag4+1). Therefore, since Y'(¢) is cadlag,
there exist 21 < z2 < ... < Zy(y,), depending on w, such that for all u € [0, 1],

N(to)
Y(6) (1) = > Zelucfapans )} + Zn00) Lumt)-
=1

We deduce that N(t) < N(tg) < +oo, for every ¢ > to. Therefore, for every w € ', ¢t — N(t) is
finite and non-increasing on (0, 7). This concludes the proof of the Lemma. ]

Therefore, Corollary 5.4 concludes the proof of Proposition 5.1. Then, Proposition 4.17 and
Proposition 5.1 imply the following property, by applying Proposition 2.3 of [Kon17al:

Proposition 5.5. There exists a modification y of y in Lo([0,1],C[0,T]) such that y belongs to
D((0,1),C[0,T7). In particular, for every t € [0,T], y(-,t) and y(-,t) are equal in L2[0,1] almost
surely. Moreover, for every u € (0,1), y(u,-) is a square integrable and continuous (F)iepo,1]-
martingale and

P [Vu,v € (0,1),Vs € [0,T],y(u, s) = y(v, s) implies Vt > s,y(u,t) = y(v,t)] = 1.

From now on, we denote by y (instead of ) the version of the limit process in D((0, 1), C[0,T7).

Remark 5.6. The proof can be found in Appendix B of [Konl7a]. It should be noticed that the
difficult part of the proof relies on the construction of a version y such that for every u € (0, 1),
y(u, ) is continuous at time ¢t = 0.

This concludes the proof of properties (C3) and (C4) of Theorem 1.4. The aim of the next
two Paragraphs is to prove property (C5), in two steps.
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5.2 Quadratic variation of y(u,-)

The following Proposition shows that the quadratic variation of a particle is proportional to the
inverse of its mass:

Proposition 5.7. Let y be the version in D((0,1),C[0,T]) of the limit process given by Propo-
sition 5.5. For every u € (0,1),

() = [ o

where m(u, s) = fol Liy(u,s)=y(v,s)}3d0-

Proof. By Corollary 4.14, for every positive ¢ € L (0,1), we have:
1
| [ 000 1) = 9000 = (1a(:9) ~ 90 2LV 1), Vo)

_E Uol () /St Wdr AT ,Yg(sl))du] - (40)

To obtain the convergence of the left hand side of (40), we proceed in the same way as for the
proof of equality (38). The uniform integrability property follows from Corollary 4.16. Therefore,
the left hand side of (40) converges when o — 0 to

1
E U D()l(y(u,t) — g(w)* = (y(u, s) — g(w))*}filY (s1),...- ,Y(Sz))dU} :
0

We also get a uniform integrability property for the right hand side of (40) by the same
argument as in the proof of property (B3) (see Proposition 4.13). Assume that there exists
a sequence (oy,) of rational numbers tending to 0, a probability space (@,@), a modification
(Mo, s Yo, JneN Of (Me, s Yo, Jnew on L1([0, 1],C[0,T7) x La([0, 1],C[0, T]) and a modification (m, y)
of (m, y) on the same space such that for almost each w € € and almost every (u,t) € [0, 1]x [0, 17,
the sequence (Mg, (W, U, 1), Yo, (W))nen converges to (m(w,u,t),y(w)) in R x La([0,1],C[0,T)).
This will be proved in Lemma 5.8.

It follows that for every ¢ € L (0,1):

B[ [ v [0 - 000 - @) 9 = [ ] T ) T o] =0

By Fubini’s Theorem, we deduce that for almost every u € (0, 1),

e [ (@00~ 90 = @)~ aw)? ~ [ =) P Fs)] <0 ()

We want to prove that (41) holds for every u € (0,1). Let u € (0,1). Choose § > 0 such that

€ (0,1 —6). Let (up)pew be a decreasing sequence in (6,1 — §) converging to u such that for

every p € IN, equality (41) holds at point uy, (Yo, <(up,t))tcpo,7] 1S @ square integrable continuous

(F7™% )iejo,rj-martingale for every n € N and ¢ € Q4 and imsup,, ., Mg, (up,t) < m(up,t)

almost surely for all ¢ € [0,7]. Such a sequence exists by Corollary 3.12 and Lemma 5.2. We
will use these different properties later in this proof.

Almost surely, for every r € (0,77, y(-,r) is right-continuous at point u and is a step function.

Therefore, m( fo L5 =g(v,r)ydv is also right continuous at point u for every positive

37



Construction of a Wasserstein diffusion July 2018

time r. In order to prove (41) at point w, it is thus sufficient to show the following uniform
integrability property: there exists 5 > 1 such that

(( 5ty t) — 9(up))? — @y, ) — gluy))? - / ﬁﬁl))ﬁ

First, by monotonicity, for all p € N, E [g(up)w] < 9(6)?? 4 g(1 — 6)?P. Then, the following
statement holds: there exists 3 > 1 such that for every t € [0, 77, sup e E [g/](up,t)w] < o00.
Indeed, for every p € IN, by monotonicity,

1 [0 1 /!
5 [ a0a < a0 <5 [ o
5 Jo § Jiss

(35/06 a(v,wdv)w (é/if(“’t)d”)m]

< %E [ /0 1 gj(v,t)wdv] , (43)

peN

Therefore, we have:

E [y(up,t)%] <E IE

by Hélder’s inequality. By Fatou’s Lemma

! 1
E [/ /y\(’v,t)%’dv] < liminf E [/ /y\gn(v,t)zﬁdv] :
0 n—00 0

3 1
2= p)

It remains to show that for every ¢ €

which is finite by Corollary 4.16, for a 3 Chosen in (1,
Let us keep the same exponent § € (1,2 — %)

B
0,77, sup,ep E [(fot ﬁ%) ] < +o0. Since limsup,,_,o, Mg, (Up, t) < m(up,t) and by Fatou’s
Lemma,

t B t B t B
</ Adr> <E </ limiandT> < liminf E </ Ad’">
0 m(up,r) 0 "o mﬂn(u%T) n—00 0 man(u%T)
B
< liminf E /A
n—00,e€Q4 Un - Up,

Because (g//\oms(up, ))te[O 7] is a square integrable (F{"%),co,rj-martingale and (Jy,, <(up, -),

Yop,e(Up,+)) fo T 6( =t we obtain by Burkholder-Davis-Gundy inequality:

t dr ’

— ) | < OB (@ oy 1) — 9())*]
0 Mo, (up,7)

We have already seen that E [g(up)w} is uniformly bounded for p € IN. By the same argument

as for inequality (43), E [@Ums(up, t)? ] 2E [ fo Yo (v t)%)dv}, which is uniformly bounded

for n € IN and ¢ € Q4. This concludes the proof of (42).
Therefore, equality (41) holds for every u € (0,1), for every bounded and continuous f; and

for every 0 < s1 < ... < s, < s <t. Thus for every u € (0,1), the process (@(u,t) —g(u))? -

fo i 8)) e is an (ft)te[ovT]-martingale. This concludes the proof of the Proposition. O
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In the proof of Proposition 5.7, we used the following Lemma:

Lemma 5.8. There exists a sequence (oy,) of rational numbers tending to 0, a sequence of
processes (Mg, s Yo, )neN and a process (m,y) defined on the same probability space such that

o for alln € N, (Mo, ,Ys,) and (Ms,,Ys,) (Tesp. (Mm,y) and (m,y)) have same law on
L1(]0,1],€[0,T1]) x La([0,1],C[0, T)).

e for almost each w € ) and for almost every (u,t) in [0, 1]x [0, T], the sequence (M, (w,u,t),
Yo, (W))nen converges to (m(w,u,t),y(w)) in R x La([0,1],C[0,T]).

Remark 5.9. The Borel subset of [0,1] x [0,7] on which we have the convergence can depend
on w.

Before giving the proof of Lemma 5.8, we give the following definition and state the following
Lemma, which will be useful in the proof. Let us define in L;([0, 1] x [0, 1], C[0,T):

t
Co(u1,uz,t) ::/ < L + ! __ 2mo(w, uz, s) )ds.
o \mg(ui,s)  mg(ug,s)  meg(ur, s)me(ug,s)

Lemma 5.10. There exists a sequence (o,,) in Q4 tending to 0 such that (ys, , Co,, )neN converges
in distribution to (y,C) in Lo([0,1],C[0,T]) x L1([0, 1] x [0,1],C[0,T]). For almost every ui,us €
0, 1], the limit process C(uy,u2,-) is the quadratic variation of y(u1,-) — y(use,-) relatively to the
filtration generated by Y and C.

We start by giving the proof of Lemma 5.8 and then we give the proof of Lemma 5.10.

Proof (Lemma 5.8). By Skorohod’s representation Theorem, we deduce from Lemma 5.10 that
there exists a sequence (J,, , Cs, )n and a random variable (7, C) defined on the same probability
space such that

e foralln € N, (y,,Cs,) and (yo,,Cs,) (resp. (,C) and (y,C)) have same law,

e the sequence (Jy,,Cy, )n converges almost surely to (,C) in the space La([0,1],C[0,T]) x
Ll([ov 1] x [Oa 1]70[07 T])

We apply to (¥s, )n the argument in the proof of Lemma 5.2 and we prove that, up to
extracting another subsequence (independent of w), for almost every u € [0, 1] and almost surely,
lim sup,,_, oo Mo, (v, t) < m(u,t) for every t € [0,T].

For each t € [0,T], we may suppose that for each n € IN, g, (-,t) is a cadlag function, so
that for every u € (0, 1),

1 u+: )AL
Mo, (u,t) = / 0z, oo (1) = For, (v, 1))dv = lim p/ ’ / O Fo (U 1) = T, (v, 1)) dvde
0 P00 0

is a measurable function with respect to ¥y, (-,t). We deduce that (m,,, (u,t), Y, ) has the same
law as (mg,, (u,t),y,,) for every u € (0,1).

From now on, we forget the hats in our notation. We may suppose that y is the version in
D((0,1),C[0,T]) given by Proposition 5.5. Let €’ be such that P[Q'] =1 and for all w € ', we
have the following convergences in R:

1
| suplun, (.0) = gl Pl)du — o (44)
0 t<T n—oo
// sup |Cy, (ug,uz,t) — C(uy, ug, t)|(w)durdug — 0. (45)
0 t<T n—00
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Fix w € . Thanks to (44), we already have the convergence of (Yo, (w))n to y(w) in
Ls([0,1],C[0,TY]). It remains to show that for almost every (u,t) € [0,1] x [0,T], (mq,, (w,u,t))n
converges to m(w,u,t) = fol L gy(ut)=y(v,0)} (W)dv. We already know that for every w € €', every
t € [0, 7] and almost every u € (0,1), imsup,,_, .o Mq, (w, u,t) < m(w,u,t).

Proof of inequality: liminf, o ms, (w,u,t) = m(w,u,t).

By the coalescence property given by Proposition 5.5, for every ui, uz and for all ¢ > 7, 4,,
y(ui,t) = y(ug,t). Therefore, since C(u1,us,-) is the quadratic variation of y(u1,-) — y(us,-),
t — C(u1,uz,t) remains constant on (7, y,,7"). Thus we obtain:

1 2my,, (u1,uz,t)

+ _
Tul 'u,2 <m0n (ur, ) mg,(u2,t) Mo, (u1,t)mq, (uz,t)

> dtduidus

(CUn (ulv uz, T) - CGn (ula u2, Tul,u2))du1du2

(CUn (ulv uz, T) - C(ub uz, T) + C(ula u2, Tul,ug) - Con (’LLl, u2, Tul,ug))duldUQ

t<T

// sup |Cy,, (u1, ug, t) — C(u1, ug, t)|durdus.
0

By (45), the latter term tends to 0. We also recall that

1 N 1 _ 2mg, (u1,ug,t)
Mg, (u1,t)  mg, (uz,t)  mg, (u1,t)my, (ug,t)
_ Jo 100, (Yo (u1, t0) = Yo, (v,10)) = 00, (Y, (42, t0) = Y, (v, t0)) | dv
- me,, (ul, to)mgn <UQ, to)

1 + 1 _ 2moy, (u1,u2,l) 1
(ulvt) Mop (u27t) Mop (ulvt)mo'n (u27t) {t27_u1,u2}'

For every w € €, fOT fol fol fo, (t, w1, ug) (w)duydusdt — 0. Therefore, for every € > 0, using
n [e.9]

is non-negative. We define f,, (t,u1, ug) := (ma

Markov’s inequality as in (39), and since f,, > 0:

1
P® — Leb‘OT]®Leb\01 @ Leb |01 {(w, t, w1, u2)  fo, (t, ur,u2)(w) > €}

|:1 A / // fgn t UL, U2 duldqut]

which tends to 0 when n — oo, whence we obtain a convergence in probability with respect to the
probability space Q x [0, 7] x [0,1] x [0,1]. Up to extracting another subsequence (independent
of the choice of w), we deduce the existence of an almost sure event on which (f,, ) converges
to 0.

Let Q”, P[Q"] = 1, be such that for every w € Q" we have f, (t,u1,us2)(w) — 0 for almost
every (t,uy,uz) € [0,7]x[0,1] x[0,1]. Fix w € Q". Let us consider a Borel set B = B(w) in [0, T,
Leb(B) = T, such that for every t € B, fs, (t,u1,u2) — 0 for almost every (u1,ug) € [0,1] x [0, 1].

Let tg € B. Let us consider a Borel set A (depending on w and tg) of measure 1 such that
for all uy,us € A,

fan (t(), ui, ’u,g) njo 0. (46)

Let u € A. We want to prove that liminf,, o me, (u,tg) = m(u,ty). Define ug,p, = sup{v €
[0,1] : y(v,to) = y(u, to)} and uiys the infimum of that set. Since v — y(v, 1) is non-decreasing,
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m(u, to) = Usup — Uint. If m(u,tg) = 0, then we clearly have: liminf, o mg, (u,to) = m(u,to).
Suppose now that m(u,tg) > 0. Choose 6 > 0 such that § < w Let tmax € AN (Usup —
J, Usup); Umin € A N (Uinf, Uing + ) and Umeq € AN (""‘i“g“ma" -0, u"‘i“Jg“ma" + 5). We have:
Umax — Umin = Usup — Winf — 20 = m(u, tg) — 20 and by definition of ugy, and uiyr and since Umax,
Umin and Umeq belongs to (Uin, Usup), We have to = Ty, u, for (ur,u2) = (U, Umax), (U, Umin),
(umaXa umin) and (’LL, umed)~

We deduce from (46) and the fact that u, umax, Umin, Umed belongs to A that there exists N
such that for each n > N, fy, (to,u1,u2) < 9§ for (uy,us) = (U, Umax), (U, Umin), (Umax, Umin) and
(U, Umeq). It implies that for each n > N,

I 10 Yo (1, t0) = Yo (0, 10)) — o (Yo (U2, t0) — Yo (v, t0))]* dv
My, (U1, to) M, (u2,to)

= fo, (to,ur,u2) <. (47)

Since the mass m,,, is bounded by 1, we deduce in particular that for all n > N,

1
A ’<po'n (yUn (U’17 to) - yo'n (U, t[))) - Soo'n (yUn (U’27 to) - yo'n (U, to))|2 d'U < 5 (48)

Inequalities (47) and (48) are satisfied for (u1,u2) = (U, Umax); (U, Umin), (Umax,Umin) and

(’LL, umed)-
Let n > N and d := y,, (Umax, t0) — Yo, (Umin, to) = 0. We distinguish three cases:

® d > o, Recall that ¢, is equal to 0 on [%*, +00). Thus for all v € [0, 1], Yo, (Yo, (Umax, to) —
Yo, (V,t0)) and @e,, (Yo, (Umin, t0) — Yo, (v,t0)) can not be simultaneously different from 0
because d > o,,. Therefore, selecting (u1,u2) = (Umax, Umin), inequality (47) implies:

I 02, (Yo (Umases 0) — Yo (v, 10))d0 + [ 92 (Yo, (tmins t0) — Yory (v, t0))dw

me, (UmaXa tO)mon (uminu tO)

<9,
that is:
1 1
4
me, (umin’ tO) me, (UmaXa tO)

Thus, we obtain ¢ > 2, which is excluded by definition of §.

<4

e d <o, —n: Recall that 7 is chosen so that n < 7. Define the two following sets

Vinax = {U € [umina Umax] Yo, (UmaX7 tO) — Yoo, (U, t()) < Unz—'f]}7
Viin = {U S [Umina Umax] Yoo, (umaXatO) — Yo, (U’tO) > %}

Clearly, we have: Leb(Vinax) + Leb(Vinin) = Umax — Umin = m(u,tg) — 26. Recall that ¢,
is equal to 1 on [0, Z%~1]. Thus, for each v € Vinax, Yo, (Yo, (Umax to) — Yo, (v, t0)) = 1, and
for each v € Viyin, using d < o, — 1, ¥o,, (Yo, (Umin, to) — Yo, (v, to)) = 1. We have

Mg, (UatO) > fvmax ‘Pgn (Yo, (uatO)_yGn (tho))dv+fvmin ‘Pgn (Yo, (w0, t0) = Yo, (v, 10) )dw. (49)
We can deduce from inequality (48) applied to (u1,us) = (u, umax) that:

fvmax [Pon (Yo (Us 20) = Yo, (v, 20)) — Yo, (Yo, (Umax; t0) — Yo, (v, tO))|2 dv <.

By Minkowski’s inequality ||| fillz, — || f2llz.| < ||f1 — f2llz,, we obtain:

1/2
‘ (/ Sogn (yﬂn (u? tO) — Yo (U, to))d’l)) - Leb(vmax)1/2 < \/57

max
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whence

/ wgn(ygn (u,t0) — Yo, (v, t0))dv — Leb(Viax)| < (m},{?(u,to)—i-Leb(VmaX)l/Q)\[d < 2V0.

max

Similarly, applying inequality (48) to («, Umin), We obtain:

[ i 2 W (1 10) = i, (0, £0))dv = Leb(Vinin) | < 25,
Thus, by inequality (49), we conclude:

> Leb(Vinax) + Leb(Vinin) — 4V6
> m(u, ty) — 20 — 4V/6.

e dc (o, —n,0p): We now define three distinct sets
Vinax = {U € [umina Umax] Yo, (UmaX7 tO) — Yoo, (U’ tO) < Cfnz—'f]}7

Vined = {U € [umina Umax] ‘Yo, (umamt[)) — Yoo (U,to) € [Un2_777 Un;ﬂ]}’

0'712"‘77}‘

Vinin = {U S [Umina Umax] Yoy, (umaXa tO) — Yo, (U, tO) >

By definition of those sets, and since d € (o, — 1, 0y,), we have

Yv € Vmax7 Pon (yan (umaxatO) — Yo, (’U,to)) =
Vv € Viin, Poy, (yon (UminatO) — Yo, (’UatO)) =

1,
1.
Moreover, we have Yy, (Umax, t0) — Yo, (Umed; to) € [Z5-1, U"TJ“”]

2
Indeed, if Yo, (Umax; t0) — Yo, (Umed, to) Was greater than U"; 1 we would have, for all v €

[umin, umed]a Lo (yan (umam tO) — Yo, (U, tO)) =0and Lo, (yan (Umina tO) — Yo, (Ua tO)) =1. By
inequality (48) applied to (u1,u2) = (Umax, Umin), Wwe would deduce that:

1
5> / [Con (o, (s 10) — Yo (02 10)) — o (o (tmins o) — i (v 20) 2 0
0

tmed Umax — Umin
> dv:umed_umin>f_5-
U

However, since § < w and Umax — Umin = Usup — Uinf — 20, We have Upax —
Umin > 49, which is in contradiction with the above inequality. Similarly, vy, (4max, to) —
Yo, (Umed, to) can not be smaller than 21, otherwise y,,, (Umed;, t0) = Yo, (Umin, to) would be
greater than U”; 7 and we would obtain the same contradiction. Therefore, ¥, (Umax, to) —

Yo, (Umed, to) € [P, U"TH’], which implies that umeq € Vineqa and in particular that

Vv € Vied, Loy, (yan (UmedvtO) — Yo (v7t0)) =1

As in the previous case, we deduce that

Me, (U, t0) = Leb(Vinax) + Leb(Vined) + Leb(Vinin) — 6V/8
= Umax — Umin — 6\/5
> m(u, ty) — 20 — 6V/6.
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Actually, putting all the cases together, we have proved that for each n > N, m,, (u,tg) >
m(u, to) — 28 — 61/5. Hence, for all § < Zowp tint we have:

lim inf mq, (u, to) = m(u, to) — 26 — 6V/3.

n—oo
By letting § converge to 0, we have for every tg € B, liminf,,_, o m,, (u,tg) = m(u,ty) for every
u € A. Therefore, there exists a subsequence (0,) such that for almost every w, for almost every
t € [0, 7] and almost every u € [0, 1], mqy, (w, U, t) —n—oo m(w, u,t). O

It remains to give the proof of Lemma 5.10.

Proof (Lemma 5.10). The first step will be to prove that the sequence (Yo, Cs)seq, is tight in
Ly([0,1],C[0,T]) x L1([0,1] x [0,1],C[0,T]). We have already proved that (ys)scq, is tight in
Ly([0,1],C[0,T]). We will use a tightness criterion to prove that the sequence (Cy)scq, is tight
in L1([0,1] x [0,1],C[0,T]). The space changed in comparison with Ls([0, 1],C[0,T7]), but the
criterion remains very semilar to the one of Proposition 4.2.

We have, similarly to Proposition 4.2, three criteria to prove. We want to show the following
criterion:

First criterion: Let ¢ > 0. There is M > 0 such that for all o in Q4+, P[||C,|| > M] < 4,
where ||Cy|| :== fol fol supscr |Co (w1, ug, t)|duydus.

That statement follows from Markov’s inequality and the existence of a constant C' indepen-
dent of ¢ such that:

T dtd T dd
[//sup|C w1, U, )\dulduQ} 2K [// ad ] [// 2 } < C.
0 t<T My ul, Mgy uQ7

The existence of C is a consequence of Lemma 4.15.

Then, we prove the following criterion:
Second criterion: Let d > 0. For each k > 1, there exists n; > 0 such that for all o in Q,

1
[// Sup (u17u27t2) - Cg(Ul,U/Q,tl)‘d'UJd'U,Q 2 ]{7] g 27
0

[ta— t1\<mc

The proof is very close to Proposition 4.10. We start by defining for every uy, ug € (0,1):
Ki(uy,ug) := B [||Co(u, uz,)|lcp,r] and Kao(u;) :=E UOT ds] Fix § > 0. There exists
C > 0 such that fo fo Tk, (ur uz)>cydurdug < 6 and fo Ik, (y=cydu < 6. Define the following
set K = {(ul,uQ) Kl(ul,UQ) < C, Kg(ul) C, KQ(UQ) < C}

By Aldous’ tightness criterion, the collection (Cy(u1,u2,"))scq, (u1,us)ek is tight in C[0, T7.
This fact relies on the following inequality, where 17 > 0 and 7 is a stopping time for Cy, (u1, us, ):

|

m (u1,s)

E Hcﬂ(ula U2, T + 77) - CU’(ulv uz, T)H
T+n
_E / 1 n 1 _ 2mg(ur,ug, 8) ds
- me(u1,s)  me(uz,s) me(ur, s)me(usz, s)
T+n 1 1
< 2E / + ds|,
- me(u,s)  me(ug,s)

and the rest of the proof is an adaptation of the proof of Proposition 4.10.

Finally we show the third criterion:
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Third criterion: Let § > 0. For each k > 1, there is H > 0 such that for all o in Q,

P(Vh = (hl,h2)70< hi < HO0< hy < H,

1—hy pl—hgy 1 6
/ / sup |Cy(u1 + hi,ug + ho,t) — Cy(u1, ug, t)|dujdug < z >1——. (50)
t<T

Let A1 > 0 and begin by estimating

1—hy
—E[/ / sup |Co(u1 + hi,ug,t) — Ccr(ulyu27t)‘du1du2:|-
0

t<T

We compute (for the sake of simplicity, we will write from now on y,(u) instead of yq(u,-) if
there is no possibility of confusion):

Co(u1 + hi,uz, t) — Co(ur,u2,t) = (Yo (u1 + h1) — Yo (u2), yo (u1 + h1) — yo(u2))e
— (Yo (u1) — Yo (u2), Yo (u1) — Yo (u2))e
= (Yo (u1 + hl) Yo (u1), Yo (U1 + h1) — yo(u2))s
+ (Yo (u1) = Yo (u2), yo (w1 + h1) — (U1)>t-

Therefore,

sup |Cy(u1 + hi,u2,t) — Co(ur, uz, t)|

t<T
< sup ’<ya(ul + hl) - ya(ul)a ya(ul + hl) - ya(u2)>t|
i<t (51)
+ ?3713 |<yo(u1) - yU(UQ)a ya(ul + hl) - ycr(ul))t"

Then, we use Kunita-Watanabe’s inequality on the first term of the right hand side:

(Yo (u1 + h1) = Yo (u1), Yo (u1 + h1) — Yo (u2))4|
< [(Wo(ur + 1) — Yo (ur), Yo (ur + h1) — ya(U1)>t|é
(o (1 + h1) — o (u2), Yo (ur + 1) — g (u2))e|
< (Yo (ur + h1) = Yo (ur), yo (ur + h1) — yo(ur))7|2
(o (w1 + h) — Y (2), Yo (ur + h1) — o (u)) 2.

=

By doing the same computation on the second term of the right hand side of (51), by Cauchy-
Schwarz inequality and by the substitution of u1 + hq by uq, we obtain:

E, <2E |:/0 /0 <yU(U1 + hl) - ya(Ul),?Jg(ul + hl) — yo(”l))Tduldu2:|
1,1 "
x E [/0 /0 <ya(ul) - ycr(UQ)aycr(ul) — ya(u2)>TdU1du2:|

1—hy 1/2
< 9E [ [ ot ) = ) ) - ya<u1>>TduI] o1,
0
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where C' is the same constant as the one in the first criterion. By Fubini’s Theorem:
1—hy 1/2

By <208 | [ (s . ) = golun )+ g(u) = g + )P

0

1—hy 1/2
<20 [ [ ot ) - y(,(ul,T))?dul]
0
1—h 1/2
1 20"E [ [ ot ) - g<u1>>2du1]
0

We recall inequalities (28) and (29). Therefore, there are « > 0 and C' > 0 such that for each
o € Q4 and each hy > 0,

e < ChY.
We deduce that for each n € IN, by Markov’s inequality,

1—5h 1 na 1\*
=P C Loug,t)—C t)|durdug > -z | <22 C ( —
n [/O /0 fgp)\ o(u1 + 5, u2,t) — Cy(uy, ug, t)|durdus QT] (2n>

3 Q

Since a > 0, Zn>0 pn converges. By Borel- Cantelli’s Lemma, for each k > 1, there is ng > 0

such that, with probability greater than 1 — for all n > ny,

2k7

1_7

1
/ /sup|C’ u1+2n,u2,t) Co(uy,ug,t)|dujdus < .
0 0 t<T 272 2

Furthermore, up to choosmg a greater ng, we can suppose that for all n > ng, we also have:

1
/ / Sup|C ’U,l,’U/Q—i— 2n7 )_Ca(ulau27t)’duldu2 < “na -

t<T 22
We will now extend these estimations to more general perturbations. Let h = (hq, he) be such
that 0 < hy < 2%0, 0< he < 2%0 We decompose:

1—h1 pl—hs
/ / sup |Cy(ug + hy,us + ho, t) — Cy(u1, ug, t)|dudusg
t<T

1—hq
/ /sup|C (u1 + hy,uz,t) — Cy(uy, ug, t)|dusdusg
0

t<T

1—hs
// sup |Cy (u1, ug + ha,t) — Cy(u, ug, t)|duidus. (52)
t<T

Suppose hy > 0. Since hy < 2}10 , there exists a sequence (€5, )n>n, With values in {0, 1} such that
h1 =73 5not1 55+ Moreover, we have for every ¢ > 1:

1—hq
/ / sup [Co (u1 + b1, ug,t) — Co(ur + 32,5001 555 U2, )| durdus
0 t<T

-1

1—hq
/ / fgg |C u + Zn>n0+k o U2, t) Cﬂ(ul + Zn2n0+k+1 %7 U2, t)|dU1dU2

(53)

HH
Q

—1
2"0“‘ 1
/ /0 igﬂ?‘c uy + 2no+kau2at) — Cy(u1, ug,t)|durdug < 1W-

H
=
Il
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We want to let ¢ tend to +o00 in (53). To do that, we prove that:

1-h1
/ /0 §2¥ |C u + Zn>n0+q ZR,UQ,ZL/) Cg(ul,UQ,t)|duldUQ q—>_+>oo 0. (54)

By definition of C,

1—hy
/ / Sup |C ’LL]_ + Zn>n0+q 271 I U2, t) CO' (U]_, ’I,L2, t) |dU]_dU2
0 t<T
1

1—hq
/ / ma up + Zn>n0+q ;Z , 3) a ma(ub 5)

1—h1 1 fT 9
Ty
0 0Jo mg(ug,s)

For each s € [0,T], m,(-, s) is right-continuous. Therefore, mq(u1 43,5, 44 55+ ) converges to
me(u1, s) when ¢ — +o00. Furthermore, there is 5 > 1 such that almost surely,

dsduq

(55)

ma(ul =+ Zn>n0+q %7 u2, 3) _ ma(ula uz, 8) deUldu2

mg(U1 + Zn>n0+q %7 8) mU(ulﬁ S)

1—u 1 B
/ / — dsduy < +o0.
(u1 +u,s)  mg(u,s)
2’"‘07
Indeed,
1—u pT 1 1 B
E sup / / (& ] — ( ] dsduy
mey(up +u, s me(ug, s

1 pT 1
< C3E ———dsd )
’ [/0/0 Mo (ug, )P ST

by Lemma 4.6. Therefore, since Zn>n0+q se<h < 2"0 s——1 for every q > 1,
/1 h1/ 1 B
— dsduy
m(f up + Zn>n0+q on ) mo(uh S)
1= nzng+a 31 [T 1 1 ’
< / / = — dsduy
0 0 mU(ul + Zn>n0+q on S) mg(U1, S)
1—u 1 B
— dsduy,
(u1 +u,s)  mg(u,s)

2"0*

which is almost surely finite. Thus the first term of the right hand side of (55) tends almost
surely to 0 for every hy < 2%0 A similar argument shows that the second term of the right
hand side of (55) also converges to 0. Hence we have justified convergence (54).

When ¢ — oo in inequality (53), we obtain:

1—hy R C
sup |Cy(u1 + hi, ue, Co(u1,uo, t)|durdu aénaa.
[ i s -t < £ e <
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Then, we proceed similarly for the second term of the right hand side of (52) and we finally
obtain, for each h = (hy, h2) such that 0 < h; < 2%0 and 0 < hy < 2%0,

1—hy pl—ho C
/ / sup |Co(u1 + hi,uz2 + ha,t) — Cy(ur, ug, t)|durdug < —a -

t<T 272

Choosing H = such that CH*/2 < ,16, we get (50) for each o in Q.

2"0
Conclusion of the proof. By Simon’s tightness criterion on L;([0,1] x [0,1],C[0,T]), the
collection of laws of (Cy)secq, is relatively compact in P(L1([0,1] x [0,1],C[0,77)). There-
fore the collection of laws of (ys,Cs)seq. is also relatively compact in P(Lo([0,1],C[0,T]) x
Li([0,1] x [0,1],C[0,T7])). Thus there is a subsequence, (Y, ,Cs, )n>1 converges in distribution
in Ly([0,1],C[0,T]) x L1([0, 1] x [0,1],C[0,T]). We denote by (y,C) the limit. We want to prove
that for almost every uy,us € [0,1], C(u1,us,-) is the quadratic variation of y(u1,-) — y(us,-)
relatively to the filtration generated by Y and C.

Let 1 >1,0<5 <s9<... <5 <s<tand fi: (L2(0,1)) x L1([0,1] x [0,1])! — R be a
bounded and continuous function. For every non-negative 11,19 € Ly (0, 1), we have for every
n > 1:

1 rl
B [ o)) (0 0.6) = o, (a2, 0) = gtar) + g02)

= Yo (w1, 8) = Yo, (u2, ) — g(u1) + 9(“2))2 = Co, (u1,u2,t) + Co, (u1, ug, S))duldu2
fl(YUn (81)7 e 7Y0'7L(8l)7 Co'n (81)7 trt CO"!L (Sl))] = 07

since the process (Co, (t))ic0,1) = (Co, (s, 8))ieor) 18 (F7 " )iejo,rj-adapted. By the conver-
gence in distribution, we obtain when n goes to co:

Bl [ e nton) (001.0) ) = o) + )

— (y(u1,s) — ylua, s) — g(ur) + g(uz))® — C(u1,uz, t) + C(uy, ug, 8))du1duz

fl(Y(Sl), e ,Y(Sl), C(Sl), . ,C(Sl)) =0.

By Fubini’s Theorem, we obtain that for almost every uj,us € (0,1), for all rational numbers
($1,...,8,8,t)such that 0 <51 <9< ... < <s< t:

E [((y(m,t) — y(uz,t) — g(ur) + g(u2))® — (y(u1, s) — y(ua, s) — g(ur) + g(uz))?

- Cltnua )+ Clun iz ) Y (s1) Y (3. Clot ) o) | =0

By continuity in time, the latter equality remains true for every 0 < s1 < so < ... < 5 < s < t.
Furthermore, for almost every u1, ug, (Cs, (u1, u2,t))se[o,7) is a non-decreasing bounded variation
process. This remains true for the limit (C'(u1,u2,t))eo,7)- Therefore, we deduce that

Clur,uz,t) = (y(u1) — y(uz), y(u1) — y(u2))r,
for almost every uy,us € (0,1), with respect to the filtration generated by (Y, C). O]
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We conclude this Paragraph by using Fatou’s Lemma to extend the statement of Lemma 4.15
to the limit process:

Proposition 5.11. Let g € L,(0,1). For all 8 € (0, % — %), there is a constant C' > 0 depending
only on 8 and ||g||z, such that for all 0 < s <t < T, we have the following inequality:

E[/:/;Wdudr] < CVit—s.

By Burkholder-Davis-Gundy inequality, we deduce the following estimation:

1
Corollary 5.12. For each 3 € (0,3 — %), supE [/ (y(u,t) — g(u))?Pdu| < 4o0.
t<T 0

5.3 Covariation of y(u,-) and y(v/,-)

In this Paragraph, we want to complete the proof of property (C5) of Theorem 1.4. It remains
to prove the following Proposition:

Proposition 5.13. Let y be the version in D((0,1),C[0,T]) of the limit process given by Propo-
sition 5.5. For every u,u’ € (0,1),

<y(u, ')a y(ulv ')>t/\Tu,u/ =0, (56)
where Ty, = inf{t > 0: y(u,t) = y(u', )} A T.

As in the previous Paragraph, we will need to prove the convergence of the joint law of y,
and a quadratic covariation. More precisely, define:

mey(u, v, s
uut ) ds.
me(u, $)me(u, s)

We state the following result:

Lemma 5.14. For every sequence (oy,)n, of rational numbers tending to 0, we can extract a
subsequence (0p)n such that the sequence (yz,, Kz, )n—soo converges in distribution to (y, K) in
L([0,1],€[0,T]) xL1([0,1] x [0,1],C[0,T7), where

K(uv ulv t) = <y(u7 ')7 y(u/’ )>t

Proof (Lemma 5.14). We follow the same structure as in the proof of Lemma 5.10. First, we
Me,e(u,u’,s)

define Koo = (e (1), ur (0. )i = I3 ey ey s We show that K. satisfies
the three criteria of tightness in L;([0,1] x [0,1],C[0,T]). For the first criterion, we want to

bound
[// sup | Ky« (u, v, t)|dudu’
0 t<T

uniformly for o, € Q. This follows from Kunita-Watanabe’s inequality:

Yorie (1), Yore (W)t Yoo (1), e ()

|KG,E(Uv ', )] = ’<y0,e(u)v yo,s(ul»t’
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and from Cauchy-Schwarz inequality:

[//0 jgg\Kgs u, t)|dudu} <E |:/01<ycr,s(u),yg7€(u)>Tdu:|

5|/ Woew,T) glu)Paul.

which is bounded uniformly for o,e € Q4 by Corollary 4.8.

We refer to the proof of Lemma 5.10 for the second and the third criteria of tightness, and for
the rest of the proof, which follows in the same way. It remains to explain why (K (u,u’,t))icpo,1
is a bounded variation process for almost every u, v’ € (0,1). It follows from Kunita-Watanabe’s
inequality that:

p—1 p—1
Z |KU75(U7 u/7 tht1) — K@S(u? u/7 )| = Z ‘(ym&(u)? ya,a(ul)>tk+1 - <y0,€(u)7 ymf(ul)>tk|
k=0 k=0
p—1 tea1 % tr4+1 , , %
<X ([ et vmetw)) ([ dlometa) vt )
k=0 7tk b
L[t I , ,
< / d<ya€( ) yos( )> + / d<y0,€(u )7yo,€(u )>8
2 Ji, 2 Jio
1 tr ds N 1 [t ds
2 )iy Moc(u,s) 2 ),, Moe(u,s)’
Therefore for every p land 0 < tg <t < ..o < by, S0 | K (u, o typn) — K (u, ', t)] <
% t(]p ) f W (u = By Proposmon 5.11, we know that almost surely and for almost every
ue (0,1) fo mds is finite. Thus for almost every v and «’ in (0,1), K(u,u’,-) is a bounded
variation process. ThlS concludes the proof of the Lemma. O

We use the latter Lemma to prove Proposition 5.13.

Proof (Proposition 5.13). By Lemma 5.14 and Skorohod’s representation Theorem, we may sup-
pose that (y,, Ks)seq, converges almost surely in Lo([0,1],C[0,T]) x L1([0,1] x [0, 1],C[0,T7)
o (y,K). As previously, up to extracting a subsequence, we deduce that for almost every
(w,u,u’) € Qx[0,1] x [0,1],

sup Yo (u, t) — y(u,t)|(w) — 0, (57)
t<T o—0
and
sup | Ky (u, v, t) — K (u,u’, t)|(w) — 0. (58)
t<T o—0

Therefore, there exists a (non-random) subset A of [0,1], such that for every u,u’ € A, (57)
and (58) holds almost surely.

Let u,u’ € A If g(u) = g(u') then 7,,, = 0 almost surely, thus (56) is clear. Up to
exchanging u and v/, assume that g(u) < g(u'). Let § < 2(g(u') —g(u)). Almost surely, by (57),
there exists o such that for all o € (0,00) N Q4,

sup |y0(uv t) - y(ua t)| <
t<T

)

B S | O

sup |y0(ula t) - y(u,a t)| <
t<T
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Sy(u,t)—y(u', )| < S}AT. Therefore, for all t < 7'3#/ and for all o < 0y,

Define 70, := inf{¢
)| . Let 0 < min(09, §). For all t < 7° ,, we have |y, (u, t) —yo (v, t)| =

Yo (u,t) — yo(u',t
and thus m,(u, v, t) = 0, hence K, (u,u’,t) fO %ds 0 for t < . By (58), we
obtain

sup |K(u,u',t)] = 0.

ES A

Thus for every § > 0, for every u,u’ € A and ¢ < uu,, (y(u),y(v'))¢ = 0. Since 70, — Ty
when § — 0, we have for each u,u’ € A:

<y(u)¢ y(”’))t/\Tu’u/ =0. (59)

It remains to show that (59) holds for every (u,u’) € (0,1)2. Let (u,u’) € (0,1)%. As
previously, we may assume that g(u) < g(u’). By continuity of the processes (y(u,t))c(o1]
and (y(u',t))ejo,r], the first time of coalescence 7, is almost surely positive. Fix [ > 1,
0<sp<s2<...<s <s<tandabounded and continuous function f; : (L2(0, 1))l — R.
Suppose that s > 0. We want to prove that:

E [(y(uv tA Tu,u’)y(u/’t A Tu,u’) - y(ua A Tu,u’)y(ulv ERA Tu,u’))fl(y(sl)v s 7Y(5l))] =0. (60)

Let e > 0. For each v € (u,u+¢e)N.Aand v € (v, v +¢)NA (since A is of plain measure
n (0,1), both sets are non-empty), since we have equality (59),

0= E[(y(v,t A Tv,v/)y(v',t A Tyo) —y(v,8 A Tvﬂ,/)y(v', s A Ty ) 1Y (51), ... ,Y(sl))}. (61)

Let to € (0, s). We define
n:=sup{h = 0:y(u+ h,to) = y(u,tp) and y(u' + h,tg) = y(u', o)}

By the coalescence property given by Proposition 5.5, under the event {7, ., > to}, we know that
for every r > tg, for each v € (u,u+n) and v’ € (v, u'+n), y(v,r) = y(u,r) and y(v',r) = y(u',r),
whence 7, v = T,.. Thus, by equality (61), we deduce that for each v € (u,u 4+ ¢) N A and
Ve (Wu +e)NA,

0=E[Lynalir, oy @ut ATyu)y(u', t ATy w)
(5 AT (8 A T )Y (51 Y (50)]
+E[Lipecyuir, <to} (0 A To )y E ATy ) = y(v § AT )YV, 8 A Ty )
AY (s1),.... Y (s0)]. (62)
Let h > 0 be such that (u,u + ¢) and (u/,u + ¢) are contained in (h,1 — h). Thus for every

v € (u,u+¢)NA, for every r € [0,T], by inequality (43) and by Doob’s inequality, we deduce
that:

28 2 ! 283 Cs ! 28 6,8
E |supy(v,r) <EIE ; supy(z,r)“dx <7E ; y(z, T)"dz <7,

r<T r<T

for a B arbitrarily chosen in (1,% — 5) (by Corollary 5.12). Thus, there exists 8 > 1 such that

E [(y(v,t A Ty )y(v', t A Ty r)?] is uniformly bounded for v € (u,u+¢) and v’ € (v, v/ +¢). Let
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a = 1 — L. Therefore, we deduce from (62) that there is a constant C' depending only on u, u’
and « such that:

E[]l{n>s}]l{'ru7u/>to}(y(u7 tA Tu,u’)y(ula tA Tu,u’) - y(U, A Tu,u’)y(ula A Tu,u’))
f(Y (s1),...,Y ()] S C (P <e]™ +P[ryw <to]”). (63)

We divide the left hand side of inequality (63) into two parts by writing Loy lir >t0) =
1=1¢y<eyufr, , <to} and we estimate the second term in the same way as above. We deduce that

there is a constant C’ such that:

E [(y(uv tA Tu,u’)y(ulv tA Tu,u’) - y(u7 SA Tu,u’)y(ulv A Tu,u’))fl(y(81)7 ceey Y(Sl))]
<C (Pl < e+ P [ru < 4]°).

Let § > 0. Since 7,,, > 0 almost surely, we choose ty € (0,s) such that P [Tu’u/ < to]a < 6.
Since to > 0, we know by Proposition 5.1 that y(-,tp) is almost surely a step function, so n > 0
almost surely. Therefore, we can choose € > 0 so that P[n < ¢]* < §. This concludes the proof
of equality (60).

Recall that we suppose that t > s > 0. By continuity of time of y(u,-) and y(v/,-), equal-
ity (60) also holds for s = 0. Therefore, y(u,t A 7y )y(u',t A Tyur) is a (Ft)sefo,r)-martingale
and (y(u), y(u))iar, ., = 0. This concludes the proof of Proposition 5.13. O

A Appendix: Ito’s formula for the Wasserstein diffusion

Let g € L’g . [0,1]. We assume, to simplify the notations, that g(1) is finite, but the proof can be
easily adapted to functions g with g(u) — +oo. Let y be a process in D([0, 1],C[0, T]) satisfying
u—r

(1) — (iv) (see Introduction).

Recall that the process y(-,t);c[0,7] can be considered as the quantile function of (u).e(o,77, by
setting 1y = Leb [jg ] © y(-,t)~1. The latter process has every feature of a Wasserstein diffusion.
We describe in this Paragraph the dynamics of the process (Mt)te[gﬂ, after having introduced a
differential calculus on P2(RR) due to Lions |Lio, Carl3]|. We prove that, for a smooth function U :
Pa(R) — R, the process (U(u))iefo,) is @ semi-martingale with quadratic variation proportional
to the square of the gradient of U (see Theorem A.3). This result is a generalization of the formula
given by Konarovskyi and von Renesse in [KvR15|. We compare it to a similar result obtained
by von Renesse and Sturm [vRS09| for the Wasserstein diffusion on [0, 1] (see Remark A.4).

In order to describe the dynamics of (u)¢cpo, 7], We begin by a discretization in space and by
writing the classical It6 formula for that discretized process. Let introduce pf' := % > keln] 5y( E s

where [n] denotes the set {1,...,n}. Fix U : P2(R) — R a continuous function, with respect to
the Wasserstein distance W5 on Pa(R). Let define U™(x1, ..., 2y) = U(: >_jen) 0z;). Remark
that U(ap) = U™ (y(£,¢),y(2,t),...,y(1,t)). Assuming that U™ belongs to C*(R"), and using
that y(%, -) is a square integrable continuous martingale on [0,7], we have (recall that g(1) is
finite):

Upg) =U"(g(3), -, 9(1) + Z/ WU (y(%,5), - y(1, ) dy(£, )
ke[n] V0
+1 /5§,ZU"(y(,ﬁ,8)7-'-,y(lvs))d(y(ia‘),y(flw)>s- (64)

klen] Y0
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In order to write the derivatives of U™ in terms of derivatives of U, we should introduce a dif-
ferential calculus on P2(R), well-adapted to the differentiation of empirical measures. P.L. Lions
introduces in his lectures at Collége de France (see Section 6.1 of Cardaliaguet’s notes [Carl3])
a differential calculus on P5(R) by using the Hilbertian structure of Ly(€2). We set U(X) :=
U(Law(X)) for all X € Ly(Q).

A function U : Pa(R) — R is said to be L-differentiable (or differentiable in the sense of
Lions) at a point pg € Py(R) if there is a random variable Xy with law po such that U is
Fréchet-differentiable at Xy. The definition does not depend on the choice of the representative
Xy of the law pg, and if Xy and X7 have the same law, then the laws of D(?(Xo) and D(j'(Xl)
are equal (see e.g. [Car13]). Furthermore, if DU : Ly(€2) — Ly(€) is a continuous function, then
for all py € P2(R), there exists a measurable function R — R, denoted by 0,U(uo), such that
for each X € Lo(Q2) with law pg, we have Dﬁ(X) = 0,U(p0)(X) almost surely (see [Carl3]).

In [CD17], Carmona and Delarue prove that the L-differentiability of U : Po(R) — R implies
the differentiability of U™ on R", and that we have for each k € [n]:

1
akUn($17 cee 73371) = Eau«U(% z]e[n] 5IJ)(xk)

Furthermore, assume that U is L-differentiable and that (1, v) € Po(R) xR — 0,U (1) (v) € R
is continuous. Moreover, we assume that for every p € Po(R), the map v € R — 9,U(u)(v) € R
is differentiable on R in the classical sense and that its derivative is given by a jointly continuous
function (u,v) — 0,0,U(1)(v). We also assume that for every v € R, the map p — 9,U (1) (v)
is L-differentiable and its derivative is denoted by (u,v,v’) — 02U(,u)(v, v'). Then, U™ is C? on
R™ and for all k,[ € [n]:

. 1 1
U™ (@1, ) = HBU%U(% > jein) 92;) (@) L=y + ﬁaiU(% > jeln) Oz;) (Th, 21).-

Therefore, we obtain from equation (64):

U@ =V + 3 [ auE s+ 5 S [ 00060
kefn] 0 keln] ”© "

1 " eny g ok l Mok 1
+2n2k%]/0 auU(:us)(y(ﬁa5)73/(5)*9))st. (65)

By property of coalescence, if 7& 1 < s, we have y(%, s) = y(%, s), so that the last term in the

1
n

latter equation is equal to:

t l
s 3 [ BV )k 9) s
ke[n]

Observe that the difference between % Zle[n] ]l{%,

by Z, since the set {u: 7x , < s} is an interval. !

We want to let n tenﬁ to 400 in order to obtain an It6 formula for the limit process. We

start by proving the convergence of a subsequence of ((11f')ic(o,77)n>1 t0 (11t)sc(o,r) With respect
to the Lo-Wasserstein distance.

Proposition A.1. There exists a subsequence ((ﬁf(n))te[07T])n>1 of (11" )eefo,))n=1 such that,

for almost every t € [0,T], the sequence (ﬁf(n))

the Wasserstein distance Ws.

n>1 converges almost surely to py with respect to

52
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Remark A.2. We point out that the extraction function ¢ does not depend on t € [0, 7).

Proof. To obtain the statement of the Proposition, it is sufficient to prove that:
T
E U Wa (i, “t)zdt} — 0.
0

Let V' be a uniform random variable on [0,1], defined on a probability space Q,F, Iﬁ)
Therefore, i is the law of y(V?) and pf the law of >, (., ]].{b<v<5}y(%, t). Hence we have:

2

Wg(ﬁg, /,Lt)2 < ]E Z ]1{%<V<§}y(%vt) - y(V7 t)
ke[n]

/0 S it cyesy (1) — y(u, D)

ke[n]

Therefore, it is sufficient to show that:

// Z]].{k Lyck }|y(n,) y(u, t)|2dudt n_>—+>000. (66)

O keln)
Fixing u € (0,1),t € (0,T), > e ]l{b<ugg}|y(%, t) —y(u, t)|? converges almost surely to 0 by
the right-continuity of y(+,¢) at point u. To prove (66), we have to show a uniform integrability

g
property, i.e. that sup,>,E {(fOT fol > keln] ]l{%<u<§}\y(§,t) — y(u,t)]zdudt) ] < +oo for

some [ > 1.
We compute:

571/28)
// Zﬂ{k eI, 0) = y(u,t)Pdudt
O keln
1/(28)
L
FE| [ [ 3 1 sy lothon) -yl P aua
0 ke
1/(28)
<T7E //O Zn{k | ety Mo dudt
k€n

1/(28)

B-1
+T2 E // Zﬂ{k e by My = My 28 Qudt ,

0 ke(n]

where M; = y(%,¢) — y(u,t). Recall that by property (i) of the process y, My = g(£) — g(u).
We deduce that:

// D Ui yerylg(3) — g(w)PPdudt | < TOHE [/Olg(u)wdu]

0 keln)
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Since g belongs to EL [0,1], there exists p > 2 such that g € L,(0, 1). Therefore, we can choose
B > 1 such that 28 < p. By Burkholder-Davis-Gundy inequality and the martingale property of
M, we have:

E [(Mt - Mo)w] < C4E [(M, M>f] .

By property (iv),

]]'{Tk <s} d
L M), /ms /m /m 1/2 m(u, )1/28
/m /m

so that there is a constant Cg satisfying:

E [(M, M>f] < CatP 'R

/ot m(gfsw i / m(j,ssw] |

To conclude, we use the following statement: provided [ < 5 — =, there is a constant Cg such

that for each ¢ and wu:
1 pt dS
E — —dul| < t. 7
] ] < o (o7

This statement is Proposition 5.11 for the limit process that we constructed in this paper, or
in [Kon17a, Prop. 4.3| for the process constructed by Konarovskyi. This completes the proof. [

By similar arguments of convergence, equation (65) leads to the following It6 formula for
(1t)tefo,r]; by letting n tend to oo. The estimation (67) is the key of the proof of those conver-
gences.

Theorem A.3. Let U : P2(R) — R be smooth enough so that U and its derivatives 0,U, 0,0,U
and 83U exist, are uniformly continuous and bounded. Almost surely, for each t € [0,T], we
have:

ds

Ulin) <Uuo) + | / 0,0 (o 5))dy(u )+ . [ / 0,0, 1) . 5)) =

vy [ U9t asan,

1
where / / 0uU (1) (y(u, 8))dy(u, s)du is a square integrable continuous martingale with a
0o Jo
quadratic variation process equal to t — / / (6/1,U(Ms))2 (y(u, s))dsdu.
00
Remark A.4. Choose in particular U : p — V ([g oadp, ..., [g amdp) = V([ adu), where
V € C?*(R™) and ay,. .., a;,, are bounded C?(R)-functions, with bounded first and second-order

derivatives. In this case, 9,U(u)(v) = >0, 6;V ([ ﬁdu) af(v) for all € P2(R) and v € R.
Computing the second-order derivatives, we show that

U )~ Ulpo) ~ /0 LU (s — /0 £ (j15)ds

o4
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is a martingale with quadratic variation process fg fol( S oV ([ d d,us) ol (y(u, )))Qduds
and an operator £ = L1 + Ly of the form £1U(ps) == Y10 OV ([ @ dus) ! Mdu and

m(u,s)
LU () 1= 0y 02,V ([ @dus) Ji} ol(y(u, )l (y(u, 5))du.

Remark that we have some restrlctlons on the domain of the generator £1. We know that for
measures with finite support, fol % is finite and is equal to the cardinality of the support (see
the Paragraph preceding Corollary 5.3). The fact that the generator of the martingale problem
is not defined on the whole Wasserstein space is related to the fact that the process (Mt)te[O,T]
takes values, for every positive time ¢, on the space of measures with finite support.

We compare this result to Theorem 7.17 in [vRS09]. The generator of the martingale in the
case of von Renesse and Sturm’s Wasserstein diffusion is I = IL; + Ly + B3, with I; = Lo
and IL3 similar to £; up to the lack of the mass function, whereas Lo, which is the part of the
generator considering the gaps of the measure p, does not appear in our model.
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