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Context: impedance boundary condition

Euler equation for isentropic acoustical perturbations p,u ∀x ∈ Ω,

∂ t p + ∇ • u + ∇ • pu = 0 ∂ t u + ∂ t pu + ∇ • u u + ∇ • pu u = -∇p (1) 
Non-linear terms neglected in the spatial discretisation

n Ω Ω z Γ z Time-domain impedance boundary condition (TDIBC) ∀x ∈ Γ z , p (t, x) = [z(•, x) u • n(•, x)] (t) (2) 
Causal and tempered distribution z ∈ D + (R) ∩ S (R) Integro-differential equation between p and u • n Intuition |ẑ| 1 (high impedance) ⇒ u • n = 0 ∂ n p = 0 (rigid wall) Application linear modelling of a locally-reactive propagation medium Ω z Acoustical impedance models 

Ω z is an acoustic liner Γ z perforated plate (p) cavity (c) Impedance models 1 ẑ (s) = ẑp (s) + ẑc (s) (3) ẑp (s) = a 0 + a 1 /2 √ s + a 1 s (4) ẑc (s) = coth b 0 + b 1 /2 √ s + b 1 s (5)

Analysis of acoustical impedance models: oscillatory-diffusive representation

Recast of models (4,5) leads to the definition of ĥp and ĥc ẑp (s) = a 0 + a 1 /2 ĥp (s) s + a 1 s z p u n = a 0 u n + a 1 /2 h p un + a 1 un ẑc (s) = 1 + e -∆t s ĥc (s)

z c u n = u n + h c u n (• -∆t) (6)
Analysis in the complex plane reveals both poles s n and cut

C 0 (s) (s) cut C arg( ĥp ) 0 (s) (s) cut C arg( ĥc ) b 0 = 4, b 1 = 4, b 1/2 = 5b 1 0 (s) (s) cut C arg( ĥc ) poles s n b 0 = 0.1, b 1 = 4, b 1/2 = 5b 1 -π - π 2 0 π 2 π
Oscillatory-diffusive representation [START_REF] Staffans | Well-posedness and stabilizability of a viscoelastic equation in energy space[END_REF][START_REF] Hélie | Diffusive representations for the analysis and simulation of flared acoustic pipes with visco-thermal losses[END_REF][START_REF] Monteghetti | Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models[END_REF] in the time domain

h (t) = n∈Z r n e s n t + ˆC e -ξt dµ (ξ) (7) 
Convolution is then recast into an observer of an infinite-dimensional state-space representation

h u n = n∈Z r n ψ n + ˆC ϕ ξ dµ (ξ) (8) 
where variables ϕ ξ and ψ n follow a first order dynamic

φξ = -ξ ϕ ξ + u n ψn = s n ψ n + u n (9) 
! Time-local realisation of a hereditary operator ! Analysis applicable to a wide class of acoustical models 4

Numerical impedance boundary condition

Numerical TDIBC stems from the discretisation of ( 8 

N ϕ = 2 N ϕ = 6 ξ min ξ max f (kHz) [ ĥp (s)s 
] 0 1 2 3 4 5 6 7 8 9 10 

N ψ = 1 N ψ = 4 N ϕ = 2 f (kHz) [ẑ 2 (s)]

Spatial discretisation

! Discontinuous Galerkin method (high spatial order)

Numerical flux for the TDIBC 5 : centred, with fictive state 

q z n q z Γ z q Ω Ω z f = A i n i q + q z (q) 2 q = p u Additional variables (ψ n , ϕ k ) n,k at each node of Γ z Spatial discretisation leads to the following global formulation Ẋ (t) = A X (t) + C X (t -∆t) (11) on extended state X = p i u i ψ n ϕ k ! TDIBC integrated at the semi-discrete level If C = 0, ( 11 

Validation

Asymptotic stability study of (11) on a monodimensional case ! TDIBC does not impact stability limit as long as ξ max ≤ f DG max

Well-posedness

Admissibility conditions for z: reality, passivity, causality and stability [START_REF] Zemanian | Distribution theory and transform analysis[END_REF] Semigroup theory on extended state 8 p (•, t) u (•, t) ψ n ϕ ξ

  ) DoF: N ψ poles s n and weights rn / N ϕ poles ξ k and weight μk Optimisation of rn and μk in the frequency domain 3 (10) ! Broadband approximation through elementary linear least squares ! No optimisation against experimental data h (jω) h (jω) =

  ) is a delay differential equation (DDE)Time discretisation! High-order time integration with Runge-Kutta method (a ij , b j ) If C = 0, use of a continuous extension 6 (a ij , b i (θ))
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