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Abstract

This work focuses on the well-posedness and stabil-
ity of the linearised Euler equations (1) with imped-
ance boundary condition (2,3). The first part covers
the acoustical case (u0 = 0), where the complex-
ity lies solely in the chosen impedance model. The
existence of an asymptotically stable C0-semigroup
of contractions is shown when the passive imped-
ance admits a dissipative realisation; the only source
of instability is the time-delay τ . The second part
discusses the more challenging aeroacoustical case
(u0 6= 0), which is the subject of ongoing research.
A discontinuous Galerkin discretisation is used to
investigate both cases.
Keywords: impedance boundary condition, diffus-
ive representation, stability, discontinuous Galerkin

Introduction

This work focuses on the (dimensionless) homentropic
linearised Euler equations (LEEs){
∂tp+∇ · u + u0 · ∇p+ γ p∇ · u0 = 0

∂tu+∇p+[u0 ·∇]u+[u·∇]u0+p[u0 ·∇]u0 = 0,
(1)

defined on (0,∞)× Ω, where Ω⊂Rn is a bounded
Lipschitz open subset, p (u) is the acoustical pres-
sure (velocity), u0 ∈ C∞(Ω)n is the (given) base
flow, and γ > 1 is the specific heat ratio. On the
boundary Γ := ∂Ω (with outward normal n), a so-
called acoustical impedance boundary condition is
prescribed :

p(t, x) = [z ?
t
u ·n(·, x)] (t) (x ∈ Γ:=∂Ω), (2)

where the impedance (z ∈ D′
+(R)∩S ′

(R), causal
convolution kernel) models a mono-dimensional me-
dium as a continuous linear time-invariant system.

A recent analysis of acoustical models in the
time domain [6] has shown that a wide range of
sound absorbing materials and ground layers, as-
sumed locally-reacting, can be modelled by kernels
such as (“ ′ ” is the weak derivative, a0,a1 ≥ 0):

z = a0δ + a1δ
′
+D

′
2 +D3(· − τ), (3)

where τ ≥ 0 and Di ∈ L1
loc(0,∞) is a causal

oscillatory-diffusive kernel (Ii ⊂ Z countable, poles
<[sn,i] < 0, rn,i > 0, µi positive Borel measure):

Di(t) =
∑
n∈Ii

rn,ie
sn,it

︸ ︷︷ ︸
oscillatory

+

ˆ ∞
0

e−ξt dµi(ξ)︸ ︷︷ ︸
diffusive

, (4)

which models resonances and visco-thermal losses
(e.g. fractional kernel D2 ∝ t−1/2). A key feature
of such positive real kernels is that they can be real-
ised (in the sense of systems theory) by a diagonal,
dissipative, infinite-dimensional dynamical system.
Note that, if τ > 0 in (3), then (2) is a delayed
boundary condition, which models wave reflections.
The two sources of instability in (1,2) are the base
flow u0 and the impedance z.

1 Acoustical case

The acoustical assumption (u0 = 0) removes hy-
drodynamic instabilities, but leaves room for purely
acoustical ones triggered by the impedance bound-
ary condition (2,3). Below, the delayed (τ = 0)
and undelayed (τ > 0) cases are successively in-
vestigated by recasting the PDE (1,2) into a Cauchy
problem on a Hilbert spaceH:

Ẋ(t) = AX(t), X(0) = X0 ∈ D(A). (5)

To express A, a time-domain realisation of z in a
state-space Θ is needed. The given asymptotic sta-
bility results (see Thms. 3 and 5), crucially rely on
the dissipativity of this realisation.
1.1 Undelayed impedance (τ = 0)

Impedances z of increasing complexity can be con-
sidered, with Θ either finite or infinite-dimensional:
proportional (z = a0δ), for which no realisation is
required; derivative (z = a1δ

′
), for which Θ = C.

For the sake of brevity and clarity, only two simpli-
fied examples (compared with (3)) are given below
before the statement of the general result.

Example 1. Let ẑ(s) be a real rational function,
bounded for <[s] ≥ 0. If <[ẑ(s)] ≥ 0 (passiv-
ity), then it can be realised by a dissipative ODE
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in Θ = RN , with a suitable energy norm (positive
real lemma, see [4, § 3.1]). Eq. (5) is then defined
onH = L2(Ω)× (L2(Ω))n × L2(Γ; Θ).

Example 2. Let z = a0δ+D2 (not D
′
2), and define

the weighted spaces Φα(ξ) = L2(0,∞;α(ξ) dµ2).
The diagonal, dissipative, infinite-dimensional real-
isation of D2 in Θ = Φ1 leads to H = L2(Ω) ×
(L2(Ω))n × L2(Γ; Φ1), and (5) then reads:

AX = A

 p
u
ϕ

 =

 −∇ · u
−∇p

Aϕ+B u · n


V = H1 × (H1(div) ∩ (H1/2)n)× L2(Γ; Φ1+ξ)

D(A)=

{
X ∈ V

∣∣∣∣∣[Aϕ+B u·n]∈L2(Γ; Φ1)

p|Γ =a0u·n+Cϕ (in L2(Γ))

}
,

where, formally, (Aϕ)(x, ξ) = −ξϕ(x, ξ) (state
operator), (B u ·n)(x, ξ) = 1(ξ)u ·n(x) (control),
and (C ϕ)(x) =

´∞
0 ϕ(x, ξ) dµ2(ξ) (observation).

Theorem 3. Assume that τ = 0 in (3). If <[a0]>0,
a1 ≥ 0, <[sn,i] < 0, rn,i > 0 and µi is a positive
Borel measure, then z admits a dissipative realisa-
tion, and (5) has a unique strong solution X , such
that ‖X(t)‖ ≤ ‖X0‖ for t ≥ 0 and ‖X(t)‖ t→

∞
0.

Proof (Sketch). We follow [4]. The dissipativity of
the realisation of z implies that ofA. Well-posedness
follows from the m-dissipativity of A. With the
Fredholm alternative, we show that ρ(A) ⊃ iR∗
(we use that Hs(Ω) ⊂ L

2
(Ω), s > 0, is a compact

embedding). Since 0 /∈ σp(A), asymptotic stability
then follows from the Arendt-Batty theorem.

Remark 4. With an infinite-dimensional realisation
of z, the embedding D(A) ⊂ H may not be com-
pact, hence the need to finely inspect ρ(A), as the
pre-compactness condition of LaSalle’s invariance
principle is not straightforward to verify.

1.2 Delayed impedance (τ > 0)

The delayed case (τ > 0) can also be recast into (5)
using a hyperbolic realisation of the delay through a
transport equation, which leads to an additional ex-
tension: H̃=H×L2(Γ;L2(0, τ ; Θ)). Asymptotic
stability then becomes delay-dependent, which is
typical of time-delayed linear systems (see [5] and
references therein). The energy method of Thm. 3
leads to a sufficient stability condition for the pure
delay case (i.e. D3 = aτδ, not a diffusive kernel).

Theorem 5. Let aτ ∈ C and a1 > 0. If <[a0] >
|aτ |, then the result of theorem 3 extends to the case
z = a0δ + a1δ

′
+D

′
2 + aτδ(· − τ).

Proof (Sketch). Similar to Thm. 3. The energy norm
on the hyperbolic variables, ‖·‖L2(Γ;L2(0,τ ;C)) (here,
Θ = C), is tuned so that A is dissipative. [5]

2 Aeroacoustical case

The aeroacoustical assumption is u0 6= 0 in (1). In
the case of a subsonic base flow (|u0| < 1), and un-
der stringent assumptions on u and u0 (which must
be, in particular, potential), the energy functional of
Cantrell and Hart [1, Eq. (64)] can be used to con-
struct a contraction C0-semigroup. Without these
assumptions, however, there is no energy balance,
and the dissipativity of A is lost: well-posedness
can only be achieved in a space like “e−µtL2(Ω)”,
for some µ > ω0(A) > 0, where ω0(A) is the
growth rate of A. (This constitutes a difficulty of
the LEEs, compared to e.g. the Galbrun equation,
see [1].) Current research focuses on the identifica-
tion of instabilities with (2,3), see e.g. [3].

3 Numerical method

Insights into the stability of (5) can be gained by
a numerical approximation of the temporal growth
rate ω0(A). A nodal discontinuous Galerkin method
[2] is used to formulate Ẋh = AhXh+BhX(·−τ),
with Xh = (ph,uh, ϕh). The time-domain imped-
ance boundary condition (2,3) is enforced through
a centred numerical flux that couples the acoustical
unknowns (ph,uh) with the memory variables ϕh.
If τ > 0, finite-dimensional criteria, which rely on
e.g. linear matrix inequalities (LMIs) or spectral
conditions, are used to assess stability.
Acknowledgment This research is supported jointly
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