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Introduction

This work focuses on the (dimensionless) homentropic linearised Euler equations (LEEs)

∂ t p + ∇ • u + u 0 • ∇p + γ p∇ • u 0 = 0 ∂ t u+∇p+[u 0 •∇]u+[u•∇]u 0 +p[u 0 •∇]u 0 = 0, (1) 
defined on (0, ∞) × Ω, where Ω ⊂ R n is a bounded Lipschitz open subset, p (u) is the acoustical pressure (velocity), u 0 ∈ C ∞ (Ω) n is the (given) base flow, and γ > 1 is the specific heat ratio. On the boundary Γ := ∂Ω (with outward normal n), a socalled acoustical impedance boundary condition is prescribed :

p(t, x) = [z t u • n(•, x)] (t) (x ∈ Γ := ∂Ω), (2)
where the impedance (z ∈ D + (R) ∩ S (R), causal convolution kernel) models a mono-dimensional medium as a continuous linear time-invariant system.

A recent analysis of acoustical models in the time domain [START_REF] Monteghetti | Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models[END_REF] has shown that a wide range of sound absorbing materials and ground layers, assumed locally-reacting, can be modelled by kernels such as (" " is the weak derivative, a 0 ,a 1 ≥ 0):

z = a 0 δ + a 1 δ + D 2 + D 3 (• -τ ), (3) 
where τ ≥ 0 and

D i ∈ L 1 loc (0, ∞) is a causal oscillatory-diffusive kernel (I i ⊂ Z countable, poles [s n,i ] < 0, r n,i > 0, µ i positive Borel measure): D i (t) = n∈I i r n,i e s n,i t oscillatory + ˆ∞ 0 e -ξt dµ i (ξ) diffusive , (4) 
which models resonances and visco-thermal losses (e.g. fractional kernel D 2 ∝ t -1 /2 ). A key feature of such positive real kernels is that they can be realised (in the sense of systems theory) by a diagonal, dissipative, infinite-dimensional dynamical system. Note that, if τ > 0 in (3), then (2) is a delayed boundary condition, which models wave reflections.

The two sources of instability in (1,2) are the base flow u 0 and the impedance z.

Acoustical case

The acoustical assumption (u 0 = 0) removes hydrodynamic instabilities, but leaves room for purely acoustical ones triggered by the impedance boundary condition [START_REF] Hesthaven | Nodal discontinuous Galerkin methods[END_REF][START_REF] Khamis | Acoustic boundary conditions at an impedance lining in inviscid shear flow[END_REF]. Below, the delayed (τ = 0) and undelayed (τ > 0) cases are successively investigated by recasting the PDE (1,2) into a Cauchy problem on a Hilbert space H:

Ẋ(t) = A X(t), X(0) = X 0 ∈ D(A). (5) 
To express A, a time-domain realisation of z in a state-space Θ is needed. The given asymptotic stability results (see Thms. ). Eq. ( 5) is then defined on

H = L 2 (Ω) × (L 2 (Ω)) n × L 2 (Γ; Θ). Example 2. Let z = a 0 δ + D 2 (not D 2 )
, and define the weighted spaces

Φ α(ξ) = L 2 (0, ∞; α(ξ) dµ 2 ). The diagonal, dissipative, infinite-dimensional real- isation of D 2 in Θ = Φ 1 leads to H = L 2 (Ω) × (L 2 (Ω)) n × L 2 (Γ; Φ 1 )
, and (5) then reads:

A X = A   p u ϕ   =   -∇ • u -∇p A ϕ + B u • n   V = H 1 × (H 1 (div) ∩ (H 1 /2 ) n ) × L 2 (Γ; Φ 1+ξ ) D(A)= X ∈ V [A ϕ+B u•n] ∈ L 2 (Γ; Φ 1 ) p |Γ = a 0 u•n+Cϕ (in L 2 (Γ)) ,
where, formally,

(A ϕ)(x, ξ) = -ξϕ(x, ξ) (state operator), (B u • n)(x, ξ) = 1(ξ) u • n(x) (control),
and

(C ϕ)(x) = ´∞ 0 ϕ(x, ξ) dµ 2 (ξ) (observation). Theorem 3. Assume that τ = 0 in (3). If [a 0 ] > 0, a 1 ≥ 0, [s n,i ] < 0, r n,i > 0 and µ i is a positive
Borel measure, then z admits dissipative realisation, and ( 5) has a unique strong solution X, such that X(t) ≤ X 0 for t ≥ 0 and X(t

) t → ∞ 0.
Proof (Sketch). We follow [START_REF] Matignon | Asymptotic stability of Webster-Lokshin equation[END_REF]. The dissipativity of the realisation of z implies that of A. Well-posedness follows from the m-dissipativity of A. With the Fredholm alternative, we show that ρ(A) ⊃ iR * (we use that H s (Ω) ⊂ L 2 (Ω), s > 0, is a compact embedding). Since 0 / ∈ σ p (A), asymptotic stability then follows from the Arendt-Batty theorem.

Remark 4. With an infinite-dimensional realisation of z, the embedding D(A) ⊂ H may not be compact, hence the need to finely inspect ρ(A), as the pre-compactness condition of LaSalle's invariance principle is not straightforward to verify.

Delayed impedance (τ > 0)

The delayed case (τ > 0) can also be recast into (5) using a hyperbolic realisation of the delay through a transport equation, which leads to an additional extension: H = H×L 2 (Γ; L 2 (0, τ ; Θ)). Asymptotic stability then becomes delay-dependent, which is typical of time-delayed linear systems (see [START_REF] Monteghetti | Stability of Linear Fractional Differential Equations with Delays: a coupled Parabolic-Hyperbolic PDEs formulation[END_REF] and references therein). The energy method of Thm. 3 leads to a sufficient stability condition for the pure delay case (i.e. D 3 = a τ δ, not a diffusive kernel). 

= a 0 δ + a 1 δ + D 2 + a τ δ(• -τ ).
Proof (Sketch). Similar to Thm. 3. The energy norm on the hyperbolic variables, • L 2 (Γ;L 2 (0,τ ;C)) (here, Θ = C), is tuned so that A is dissipative. [START_REF] Monteghetti | Stability of Linear Fractional Differential Equations with Delays: a coupled Parabolic-Hyperbolic PDEs formulation[END_REF] 2 Aeroacoustical case The aeroacoustical assumption is u 0 = 0 in (1). In the case of a subsonic base flow (|u 0 | < 1), and under stringent assumptions on u and u 0 (which must be, in particular, potential), the energy functional of Cantrell and Hart [1, Eq. ( 64)] can be used to construct a contraction C 0 -semigroup. Without these assumptions, however, there is no energy balance, and the dissipativity of A is lost: well-posedness can only be achieved in a space like "e -µt L 2 (Ω)", for some µ > ω 0 (A) > 0, where ω 0 (A) is the growth rate of A. (This constitutes a difficulty of the LEEs, compared to e.g. the Galbrun equation, see [START_REF] Brazier | Derivation of an exact energy balance for Galbrun equation in linear acoustics[END_REF].) Current research focuses on the identification of instabilities with (2,3), see e.g. [START_REF] Khamis | Acoustic boundary conditions at an impedance lining in inviscid shear flow[END_REF].

Numerical method

Insights into the stability of ( 5) can be gained by a numerical approximation of the temporal growth rate ω 0 (A). A nodal discontinuous Galerkin method [START_REF] Hesthaven | Nodal discontinuous Galerkin methods[END_REF] is used to formulate Ẋh = A h X h +B h X(•-τ ), with X h = (p h , u h , ϕ h ). The time-domain impedance boundary condition (2,3) is enforced through a centred numerical flux that couples the acoustical unknowns (p h , u h ) with the memory variables ϕ h . If τ > 0, finite-dimensional criteria, which rely on e.g. linear matrix inequalities (LMIs) or spectral conditions, are used to assess stability.

  3 and 5), crucially rely on the dissipativity of this realisation. 1.1 Undelayed impedance (τ = 0) Impedances z of increasing complexity can be considered, with Θ either finite or infinite-dimensional: proportional (z = a 0 δ), for which no realisation is required; derivative (z = a 1 δ ), for which Θ = C. For the sake of brevity and clarity, only two simplified examples (compared with (3)) are given below before the statement of the general result.Example 1. Let ẑ(s) be a real rational function, bounded for [s] ≥ 0. If [ẑ(s)] ≥ 0 (passivity), then it can be realised by a dissipative ODE in Θ = R N , with a suitable energy norm (positive real lemma, see[4, § 3.1]

Theorem 5 .

 5 Let a τ ∈ C and a 1 > 0. If [a 0 ] > |a τ |, then the result of theorem 3 extends to the case z
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