Stability of Linear Fractional Differential Equations with Delays: a coupled Parabolic-Hyperbolic PDEs formulation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Stability of Linear Fractional Differential Equations with Delays: a coupled Parabolic-Hyperbolic PDEs formulation

Résumé

Fractional differential equations with delays are ubiquitous in physical systems, a recent example being time-domain impedance boundary conditions in aeroacoustics. This work focuses on the derivation of delay-independent stability conditions by relying on infinite-dimensional realisations of both the delay (transport equation, hyperbolic) and the fractional derivative (diffusive representation, parabolic). The stability of the coupled parabolic-hyperbolic PDE is studied using straightforward energy methods. The main result applies to the vector-valued case. As a numerical illustration, an eigenvalue approach to the stability of fractional delay systems is presented.
Fichier principal
Vignette du fichier
IFAC-WC-2017.pdf (695.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01618048 , version 1 (17-10-2017)

Identifiants

  • HAL Id : hal-01618048 , version 1

Citer

Florian Monteghetti, G Haine, D Matignon. Stability of Linear Fractional Differential Equations with Delays: a coupled Parabolic-Hyperbolic PDEs formulation. 20th World Congress of the International Federation of Automatic Control (IFAC WC), Jul 2017, Toulouse, France. ⟨hal-01618048⟩

Collections

ONERA TDS-MACS
183 Consultations
288 Téléchargements

Partager

More