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Abstract—Object tracking from time-lapse images or videos is
a well-studied problem. Solutions include parameterized motion
models and optical flow computing. It is necessary though,
in some contexts, to further regularize the resulting tracking
measurements. In this paper, we propose an approach based
on temporal coherence constraints formulated as an inverse
problem. Two formulations of the problem are established. These
formulations are based on the construction of a network of
couples within which the deformation must be coherent in order
to get rid of all the artifacts induced by the measurement process
in natural environments. Evaluation is done on a simulated
dataset of glaciers scenes and experimental results are presented
on time series acquired by ground-based cameras used for the
monitoring of Alpine glaciers. 1

I. INTRODUCTION

In the current scenarios of climate change ambiguity, glacier
shrinkage is recognized as a high-confident climate indicator
as glaciers have been labeled an “Essential Climate Variable“
[?] requiring systematic observation and average annual melt-
ing rate of mountain glaciers appears to have doubled after
the turn of the millennium.

Such rapid environmental changes require that the glacier
monitoring efforts make use of the swiftly developing new
technologies. Modern ice investigation and forecasting are
therefore being done by satellite imaging and increasingly by
optical imaging as it turns out one of the very best applications
of artificial intelligence is computer vision.

An intelligent processing of a glacier scene time-lapse
would be to accurately track an object on the scene indepen-
dently of missing frames, scene obstructions or of any eventual
season or point of view switch during the observation time.

Although over the last ten years the computer vision field
has acquired a significant methodological maturity and has
been used successfully in a wide range of applications, usually
industrial, urban or for laboratory experiments, it is still suffer-
ing from a great dependence on the conditions of acquisition
and observational noise.

Computer vision algorithms, thus, require further constrai-
ness to be applied to the observation of natural environments

1This work was supported by PHOENIX ANR-15-CE23-0012 grant of the
French National Agency of Research.

whose dynamic is less deterministic and whose observational
noise is unpredictable, especially for non-supervised process-
ing.

In this paper, we present the methodology we developed
for change detection and offset tracking over alpine glaciers
by automatic analysis of time-lapses acquired with a ground
based camera.

We briefly introduce all the preprocessing steps applied
to the time lapse: Spatial information is first evaluated to
discard useless data and prepare relevant one. Parametrized
deformation models are then used to compensate camera mo-
tion and compute unbiased optical flow fields of the observed
object between different dates. The last stage of the chain,
the tracking step that regularizes the said motion measures by
constraining them with temporal closure, is the main subject
of this paper.

The temporal closure here is formulated as a linear mapping
from the model space, containing the tracking offsets, to the
data space, containing the measured or observed offsets. Two
formulations of this mapping are proposed and tracking offsets
maximizing the temporal closure constraints are sought by
inversion.

The proposed algorithm is fully automatic and takes as
Input a link to a full time-lapse even if some of the images
were not correctly acquired. It gives as output the selected
and co-registered images, various intermediate scores, images
and indexes, the matching measures and the displacement path
through the time-lapse of a chosen pixel or image region.

These tracking results are useful for our collaboration with
geomorphologists and important for constructing a consistent
time series for future research.

II. PREPROCESSING STEPS

Constructing an accurate image time-series requires to first
select the useful images on valid dates. Images acquired at
the same time on a periodic time scale are first selected by
dint of their meta-data files. The relevant images are the ones
containing most textural information. Textural information is
quantified by means of the amount of spatial gradients that
we flatten onto a score. Considering that these scores follow
a Gaussian distribution, the images to be rejected are those978-1-5386-3327-4/17/$31.00 ©2017 European Union IEEE



whose score constitutes a value considered aberrant, according
to the Chauvenet test.

The most suitable geometrical transformation for modeling
this change of perspective is homography, which models the
perspective projection of a plane in a 3D frame, and thus takes
into account the fact that the camera can also ”lean” contrary
to an affine transformation that would have modeled a change
in perspective, but in the same 2D plane. This co-registration
is done only on the parts of the scene that are supposed to be
static, i.e., the glacier is being masked whenever segmentation
is trivial (some glaciers are the only white objects during hot
seasons) and the mask is roughly propagated to the other
images (by making it cover ∼ 20% more than the glacier
zone).

At this stage, we theoretically got rid of most of the
non-homogeneous bias induced by our measurement system
and we are able to estimate the glacier motion. For this
sake, first, dense correspondences between all the images are
computed [?]. This second ”registration” step assume a local
and non-rigid deformation model and can therefore efficiently
determine dense correspondences in the presence of significant
geometric and photometric changes between images. The
dense matching uses a quad-tree like scheme to compute a
pyramid of hierarchical, multi-layer correlation maps; local
matches are computed assuming a restricted set of feasible
deformations and are then propagated up to the hierarchy,
which progressively discard spurious incorrect matches by
down-sampling, applying a max-pooling and a non-linear
power transform. This way, correlation maps of small patches
(Base of the pyramid) are aggregated to form correlation maps
of bigger patches. This alternation of aggregation between
channels from the previous layer with channel-wise max-
pooling, subsampling and a non-linear rectification makes this
scheme similar to Convolutional Neural Networks but instead
of learning the weights of the convolutions it computes the
correlation pyramid. Retrieval of atomic 4x4 patches is then
done by backtracking the dynamic of increasingly smaller
patches from the top of this pyramid.

This dense matching makes further analysis weakly affected
by lens distortions and shows robustness against repetitive
texture. The parameters are tuned as to restrict the search area
of a match to a known range that cannot be exceeded.

We then use these dense matches to initialize a further
computation of a regularized dense optical flow field [?] ~F that
minimizes an energy functional based on a data term, from the
brightness constancy assumption and the gradient constancy
assumption, and a regularizer, encouraging smoothness of the
flow field.

The parameters of the optical flow computation are tuned as
to favor the gradient constancy assumption over the brightness
constancy assumption. This makes the optical flow computa-
tion more sturdy to brightness, weather and season switch.

To quantify the preprocessing step, various scores and error
measures are computed, including:

• The spatial gradients score;
• The residual homography from the dense matchings using

the Direct Linear Transform algorithm [?];
• A correlation score per couple of images equal to the sum

of all patch similarities along their back-tracking path;
• The average residual displacement in the static regions;
• The mean flow direction on different parts of the glacier

by the means of circular random variables statistics and
their coherence score according to prior knowledge on the
glacier motion (incoherent directions, like retreating);

• The temporal closure error map within a chosen time
range.

III. REGULARIZATION BY INVERSION

A. State of the art

Inversion consists in inferring the manifold of structural
models that could yield some actual observations through a
given transformation induced by a physical theory. It was
first studied for solving the Sturm–Liouville theory in 1929.
Since that time, the algebra tool is used extensively in many
fields like earth observation [?] [?] [?], computer vision [?] or
machine learning to infer data that cannot be directly observed.
The physical theory that our inversion is based on is simply the
consistency of the displacement pattern over time: the temporal
closure constraint.

The temporal mis-closure concept was first introduced in
Interferometric synthetic aperture radar technologies as an
error to minimize for phase unwrapping of interferograms [?]
and further work on the regularization of the temporal clo-
sure constraint has been conducted [?] for earth deformation
monitoring.

In this paper, besides the temporal mis-closure introduced
by the state of the art, we introduce a second formulation based
on the same temporal coherence concept.

B. Initial problem and possible formulations of the temporal
closure constraint

Classic time-lapse analysis usually computes offsets only
between successive dates. The proposed method’s aim to not
limit the time lapse analysis on consecutive dates but to con-
struct a network of homologous date indexes in between which
displacement fields are computed. This scheme enables to
check for and constrain by displacement temporal coherence.

The displacement fields measured between all possible
date index arrangements, backwards and forward, form the
observations. The unknowns to be solved for by inversion, or
in this case reestimate, are the tracking offsets, meaning the
displacements on forward consecutive date indexes. These are
the estimates. Figure 1 schematizes the indexes of the dates
in between which we computed an optical flow field with an
arrow going from master image date index to the slave image
date index.



Fig. 1. TOP: Graph representation of the indexes of the dates in between
which optical flow is estimated. The vertices of the polygon are the date
indexes. The blue arrowed edges form the successive date indexes of the
estimates, or tracking offsets, and the orange arrows are the date indexes of
the observations. We can see that these are double-headed arrows between
all possible indexes meaning flow fields were computed between all possible
arrangements of dates. Images with date indexes 16, 19 and 21 are images
that have been discarded on the preprocessing steps for lack of information.
BOTTOM: Graph for a reduced range system. In this case a = 7.

The a priori information enabling us to establish a relation
between the observations and the estimates can be expressed
in 2 ways:

∀ i in Image Indexes :
a+n−1∑
i=a

~Fi,i+1 − ~Fa,a+n = ~0, (1)

∀(i, j) in Image Indexes : ~Fi,j + ~Fa,i − ~Fa,j = ~0. (2)

~F denotes the optical flow vector in a given pixel, a and
n are respectively the master image index and the temporal
closure range, meaning the number of adjacent optical flow
fields involved in the problem. We solve these equations for the
horizontal and vertical components separately and for every
pixel in parallel.

These linear mappings can be expressed by the means of
linear matricial transformations A × Fest = Fobs where Fobs

are the optical flow components Fx−obs and Fy−obs of the
observations belonging to the Data space D and Fest are those
of the estimates belonging to the model space M.

To illustrate this; for a time series of 28 observations, a full
range of the temporal closure and the master image being the
image with index 0, the obtained linear transformations are
respectively:
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These matrices can be implemented algorithmically as fol-
lows:

Algorithm 1: Constructing the linear transformation constrain-
ing the temporal closure: Formulation 1
Require: d: number of observed (valid) dates, dtot: total range

of dates
A← zeros( d× (d− 1) , dtot − 1) {Initializing matrix}
` ← 0 {Initializing the counter for lines of the matrix}

for (i,j) in arr(dtot,2) do
if i < j then

A[`, i:j] = 1
else

A[`, i:j] = -1
end if
`← `+ 1

end for

Algorithm 2: Constructing the linear transformation constrain-
ing the temporal closure: Formulation 2
Require: d: number of observed (valid) dates, dtot: total range

of dates
A← zeros( d× (d− 1) , dtot − 1) {Initializing matrix}
`← 0 {Initializing the counter for the lines of the matrix}

for (i,j) in arr(dtot,2) do
A[`, i] = −1
A[`, j] = 1
`← `+ 1

end for

Where arr is the function that gives all possible arrange-
ments of index couples (second argument) within the range of
the total number of date indexes (first argument).

We can see that the estimates from inversion of the version
encoding equation 1 and the ones from equation 2 are related
by:



Fest2(t) =

∫
Fest1(t)dt, (5)

C. Resolution

The system of equations expressing the temporal closure
can be a full rank problem or rank deficient depending on the
number of missing dates. The rows of A and Fobs correspond-
ing to a couple of images that has a rejected index are deleted
and hence some columns become linearly dependent reducing
the rank of the, already smaller, matrix.

The problem to be solved is then:

find F̂est | A× F̂est = Fobs (6)

In case of missing frames this problem is either inconsistent
or has an infinite number of solutions; in some cases, A
becomes fat (more columns than rows), the problem be-
comes over-determined and we look for the solution F̂est

that minimizes the squared L2-norm of the error ‖ε‖22 =
‖A×Fest−Fobs‖22. In out case, most of the time, the number of
rejected images is not large enough and the problem becomes
under-determined. In this case, the set of all minimizers is
convex and has a unique element having minimum length.
And we are seeking this min length solution that regularizes
our tracking observations. That is,

F̂est = min{‖Fest‖2}
subject to:
AFest = Fobs,

(7)

or more generally subject to:

ATAFest = ATFobs (8)

where A can have any shape.
This can be solved by computing the solution to equation 8

that gives:
F̂est = (ATA)−1ATFobs, (9)

or

F̂est = AT (AAT )−1Fobs, (10)

for the case of A becoming fat.
A† = (ATA)−1AT or AT (AAT )−1 denotes the well-

known Moore-Penrose pseudo-inverse that can be computed
by means of a Cholesky factorization of either ATA or
AAT . In the over-determined case, this is the least expensive
approach, but it is also the least accurate, especially on ill-
conditioned problems as ATA and AAT are not invertible if
A is not full rank.

Another way to solve for equation 7 is by performing an
orthogonal factorization of A, for example, by SVD decom-
position as follows:

Algorithm 3: Solving A × Fest = Fobs by Singular Value
Decomposition

1: Find the SVD of A = UDV T

2: Set b = UTFobs {The problem becomes minimizing
||Dy − b||}

3: Find the vector y defined by yi = bi/di, where di is the
i-th diagonal entry of D
Return Fest = V y.

This way, for handling rank deficiency (and thus avoid
dividing by 0 singular values di in step 3), yi is set to 0
for i > rank(A) = r. The family of solutions is:

Fest = V y + λr+1vr+1 + ...+ λnvn, (11)

where vr+1...vn are the last n− r columns of V.

D. Weighted and Generalized Least-Squares

Ordinary least-squares minimizes the squared error when
the data are homoskedastic, i.e., when the variance of the
noise term ε | AFest = Fobs + ε is considered constant for
all observations. The problem is considered heteroscedastic
when ε varies around the data space D.

In our case, the magnitude of the noise error ε depends on
Fobsi−j and as errors are accumulated all the way through the
processing chain it strongly depends on the difference between
the two images. Far apart images in time (range of the indexes)
or in similarity, due to meteorological changes, will show more
error through the measurement process.

To tackle heteroskeadasticity we may focus accuracy by
caring strongly about the response for certain values of the
input than others or discount imprecision by using weights that
are inversely proportional to the variances of the observations.

For both cases this is equivalent to preconditioning the
matrix A or to minimize the weighted norm ‖.‖W of ε
where W defines the weights of the inner-product defined by
< a, b >W= b∗Wa = bTWa and thus must be a positive-
definite bilinear preferably symmetric form, but can be non-
symmetric in some cases. As before, we can argue that the
minimum error vector ε must be orthogonal in the inner
product defined by W to the data space D. This leads to the
requirement ATW (AFest−Fobs) = 0 and rearranging it gives
the weighted normal equation:

(ATWA)Fest = ATWFobs (12)

Practically, this can be implemented as follows:

Algorithm 4: Weighted Least-squares
Require: A, Fobs, W

1: AW =W ×A
2: FW = Fobs ×W
3: Fest = ResolveL̃S(AW , FW )

The weights have to be known (or more usually estimated)
up to a proportionality constant.



1) Focusing accuracy: Here the weights are based on the
prior stages for processing the observations. For every optical
flow field Fobsi−j a score must be computed. This can be the
average of a score computed for images i and j or any of the
similarity scores listed in section II.

We chose to rely on the correlation score of the dense
matches as the optical flow computation strongly relies on
them.

In this case W is diagonal and these scores corresponds to
the diagonal elements.

2) Discounting imprecision: To quantify the imprecision of
every measurement one would want to use an estimator that
captures the information about how volatile the entry of Fobs

are.
This estimator can be the inverse of the variance or an-

other measurement uncertainty. Since each weight is inversely
proportional to the error variance, it reflects the quantity of
information in that observation.

In our case, to estimate the error induced by the measure-
ment process we rely on the static regions of our scene where
the estimated offsets should be equal to zero:{

Fobs = AFest + ε
Fest = 0

⇒ Fobs = ε (13)

As already mentioned, these static regions are known by
segmentation, when it’s trivial, or by providing a manual
binary mask of the scene (static / dynamic regions) with the
inputs of the automatic processing chain. The variance is then
computed on a spatial static neighborhood. Assuming that
our optical flow field should be homogeneous, this variance
denotes a measure uncertainty.

Another way is to first compute one or multiple non-
weighted least-squares solutions from which we derive the
residuals, estimate their correlation matrix and inverse it.

The distance εTWε is the Mahalanobis distance. The case
when there exists a correlation between the residuals is the
case when the weight matrix W is no longer diagonal and the
solution is then the Generalized Least-Squares solution.

3) Iterative solving: The problem to inverse involves a large
quantity of data, ATA have a high condition number and
ATWA may be severely ill-conditioned, depending on the
weight matrix.

The obtained solution is thus very sensitive to perturbations
which may stem from observational noise, errors in the data,
round-off errors, discretization errors, etc.

Using an iterative scheme to obtain accurate solutions is a
way to deal with these difficulties.

The used method: Sparse Equations and Least Squares
(LSQR) [?] is an iterative method which is analytically equiv-
alent to performing a Conjugate-Gradient (CG) resolution
scheme for problem 7 on which we added a term for a linear
regularization.

Conjugate-Gradient method: For solving Ax = b, where
A is symmetric and positive-definite, the iterative CG method
looks for a set of mutually-conjugate vectors {p1, · · · , pn} that
form a basis P and computes the coefficient of x, αi | x =

∑n
i αipi, in that basis at each iteration i. The solution is thus

gradually built along the dimensions of the solution space.
According to this scheme, we are minimizing the quadratic

function f : x 7→ 1
2 (Ax, x)− (Fobs, x) which is equivalent to

minimizing the residuals ε as ∇f (x) = Ax− b.
First, an initial guess x0 of the solution is assumed. The

first direction p0 is then the negative gradient of f at x = x0,
which is equal to the residuals p0 = r0 at iteration 0. At each
iteration i, the new direction is the conjugate, according to A,
of the previous direction, that is:

pk = −rk + βkpk−1 (14)

where βk is found by imposing the condition of conjugality
according to A that is:

βk =
rTk rk

rTk−1rk−1

Linear regularization: The linear regularization is done by
introducing a damping parameter λ > 0 so the solution is
”regularized” in the sense that a unique solution always exists,
and ‖x‖ is bounded. The problem becomes minimizing: ‖Ax−
b‖22 + λ2‖x‖22.

To sum up, LSQR consists of applying CG on a damped
version of 8:

(ATA+ λ2I)Fest = ATFobs (15)

Using CG makes LSQR suitable for sparse matrices and the
linear regularization makes the problem solvable even if the
rank of A is not full.

IV. RESULTS

The experimentation is done on a time-lapse of the Ar-
gentiere glacier located in the Mont Blanc massif (France).
The acquisition was carried out between 13/09/2013 and
17/10/2013 at the rate of one image per day. For this acqui-
sition, the camera used is a Panasonic DMC-LX3 packaged
to withstand the extreme climatic conditions of the alpine
environment. It’s powered by a solar panel and programmed
to automatically acquire the time-lapse. The installation is at
an altitude of 2631m and about 500m from the studied glacier.
This way, the observed scene has a surface of about 1 km2.

Fig. 2. Argentiere glacier - Massif of Mont Blanc

Among the computed scores and maps, the temporal clo-
sure error map, between 2 dates chosen by the user of the
processing chain, has proven effective in detecting events that
have occurred in the studied area. The red area in figure



Fig. 3. Error map of the temporal closure constraint

Fig. 4. Pixel tracking example: Observations VS estimated offsets.

3 corresponds to a Serac fall that have occurred during the
chosen period.

We can also see in figure 4 that, apart from making the dis-
placements coherent over time, the regularization extrapolates
values on the missing indexes.

Another card generated for quantifying the glacier defor-
mation is the mean flow over the time-lapse: figure 5. The
mean amplitude and the main direction are encoded on the
color space HSV where the Hue denotes the mean direction,
computed by dint of circular random variables, the value
denotes the amplitude of the flow and the saturation is set
to 100%.

Fig. 5. Optical flow field on the Argentiere glacier - HSV color space.

The validation of the method has been conducted on a
simulated dataset of a glacier scene in which the glacier

deforms as a fluid and the background stays still. The obtained
displacement map is then transformed by adding a random
Gaussian noise on each pixel and on each date index to form
the observations.

Simple, iterative weighted or non-weighted least squares
resolutions are compared in figure 6.

Fig. 6. Resolution parameter λ2 in terms of the Mean Squared Error -
Resolution by SVD: with version 1 and 2 of the temporal closure constraint.

The first formulation 3 is the one that have been validated
because it has proven to be less sensitive to the damping
parameter and to give better results.

We can see in figure 7 that the Least Squares and the
Weighted Least Squares are both robust to outliers (Top) but
that in some cases (Bottom), LS fails to reproduce acceleration
and deceleration.

Fig. 7. Tracking examples - Top: Tracking pixel (0, 50), Bottom: Tracking
pixel (200, 200), Left: Least-squares solution, Right: Weighted Least Squares
solution.

Figure 8 shows the result of the regularization over all
pixels. We can notice that the obtained regularized displace-
ment map is a smoother, denoised version of the simulated
observations. We also can see that the Weighted Least squares
solution gives slightly better result.



Fig. 8. x component of the regularized optical fields on the simulated data -
Top left: Ground-truth, Top right: Noisy optical flow, Bottom left: regularized
optical flow field with LS, Bottom right: Regularized optical flow field with
WLS.

V. CONCLUSIONS AND PERSPECTIVES

This paper describes a technique for investigating surface
deformations via time-lapses. After computing, as much as
possible, unbiased optical flow fields between all the images,
this approach maximizes the consistency of the deformation
pattern over time by cross-checking at each date index on
the consistency of the deformation offsets with respect to
biases; it allows the easy combination of the optical flow fields
computed via standard processing techniques and computes a
regularized, coherent time sequence of the deformation. The
technique we present is applied separately pixel by pixel to
all the image and is robust with respect to possible errors of
the preprocessing and optical flow computing steps. Since it is
based on a simple inversion of a linear model, it is intrinsically
possible to introduce further a priori knowledge about the
temporal behavior of the deformation into the technique.

Even though the applied method is robust to outliers, it
have shown lack of efficiency to regularize consecutive biased
optical flow fields, as we can face, for example, when the
range of the temporal closure constraint is within a hazy
winter climate. In this case a lot of images gets rejected on
the preprocessing step and the remaining optical fields can be
biased.

In order to avoid problems related to images being too far
away in the time-lapse, one would perform inversion on block-
wise smaller systems given a range and a step value: figure 9.

An alternative to using iterative LSQR might be to build
an iterative scheme for refining the mean and variance with
jointly estimating the residuals by inversion and computing the
new variances of the new residuals, thus using each to improve
the other. This can be done by using squared residuals or log
squared residual.

Fig. 9. BLock-wise system where every color is a system to be solved on its
own. In this case a = 6 and the step value = 3.


