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Abstract

The Hoist Schedu ling Problem (HSP) deals with the schedu ling of hoists that move produ cts between tanks in electroplating
facilities that perform chemical surface treatments. In HSP, the gradual effect of soaking times (operation duration in tanks) on the
quality of treatment can be represented by means of fuzzy sets: the satisfaction degree in a fuzzy interval models a quality evaluation
of the chemical treatment. When temporal bou nds are requ ired, an implicit relaxation of these flexible constraints can thu s be
performed so as to meet the due-date. When the objective is rather a minimization of the makespan, a bi-criteria decision problem
has to be dealt with that involves both the quality and the line throughputoptimization. Rather than an aggregation of the two
evaluations under the form of a single criterion, we propose a decision-support approach that quickly converges to a good trade-off
between the two criteria.
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1. Introduction

When batch processing times on workstations are
close to batches travelling times, controlling and
scheduling the movements of the batches becomes
necessary for process performance. This point is crucial
in chemical treatment or electroplating lines, since the
chemical process strongly limits the in-process inven-
tories and consequently the line flexibility and pro-
ductivity. However, electroplating and surface treatment
are widely used in manufacturing processes and, as a
result, are often the cause of a bottleneck.

This situation has resulted in much research work
over the last 20 years on the scheduling problem of
hoists that move products between tanks in automated
electroplating lines, called Hoist Scheduling Problem
(HSP). In this kind of scheduling problem, the duration
of the operations can be chosen in an interval. The

definition of the bounds of this interval results from a
trade-off between two aims:

* ensuring the quality surface treatment by defining a
short interval,

* generating flexibility by fixing a large interval so that
line productivity can be increased.

Usually, this trade-off is defined a priori without
identifying consequences on productivity. Thus, the
HSP consists in controlling the hoist moves in order to
maximize productivity while satisfying given bounds on
workstation processing times.

In this paper we propose a fuzzy approach to the HSP
that allows to handle the gradual effect of soaking times
on the quality of treatment: in fuzzy HSP the duration
of an operation is selected in a fuzzy interval, the
satisfaction degree of which is a quality evaluation of the
chemical treatment. The trade-off between quality and
productivity then clearly results from a bi-criteria
decision process.

Fuzzy approaches have already been adopted in
PERT problems (Chanas and Kamburowski, 1981;
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Lootsma, 1989; Nasution, 1993) and more recently in
project scheduling (Hapke et al., 1994; Hapke and
Slowinski, 1996), in master production scheduling
(Fargier and Thierry, 1999) and in job-shop or flow-
shop scheduling (Dubois, 1989; Kerr and Walker, 1989;
Ishii et al., 1992; Ishibushi et al., 1994a, b; Dubois et al.,
1995; Ptuskin, 1995; Fargier, 1996; Fortemps, 1997).
Fuzzy sets usually represent uncertain time parameters
like due-dates and durations, or preference levels for
parameters. However, these works either consider only
one optimization criterion or make the assumption that
the criteria may be aggregated a priori so as to define
only one final and global decision criterion. The latter
approach becomes tricky when two criteria such as the
quality and the makespan optimization (as is the case in
HSP) are considered. To avoid having to follow this
strong hypothesis, we would rather let the users make
their own trade-off between both criteria: we adopt an
approach oriented toward decision support.

The fuzzy approach will be analyzed in the context of
the dynamic HSP control organization of the line.
However, it should be noted that the fuzzy analysis can
be the same for other kinds of HSP control organiza-
tion. Our conclusions may lead to a reappraisal and
application to classical HSP models and resolution
procedures that would follow the same logic as the ones
presented in this paper.

The paper is organized as follows. Section 2 presents
the various HSPs and more particularly the Local
Problem of dynamic HSP. The fuzzy model of this
particular HSP is described in Section 3. Then, Section 4
introduces resolution procedures for the fuzzy model.
Finally, in Section 5, we propose a decision support
approach that may help the user converge rapidly on a
trade-off between both criteria.

2. Classical HSPs

2.1. Definition of the various HSPs

An electroplating is a chemical treatment that consists
in laying a thin and homogeneous chemical deposit of

materials on a product. Generally, a chemical treatment
line performs different elementary treatments. Each one
requires a series of chemical reactions made in tanks. As
a result, depending on the desired treatment, a product
will have some of the elementary treatments in a fixed
sequence.

In fact, a chemical treatment line is composed of (see
Fig. 1):

* Tanks, each of them containing a chemical agent.
Tanks can contain active reagents such as acids in
order to strip product surfaces or an electroplating
process which deposits a metal layer on the product
surfaces. They can also contain inactive reagents such
as water for cleaning.

* Loading and unloading workstations and buffers. At
the loading workstation, products that will have the
same treatment are secured on a carrier. At the
unloading workstation, products are removed from
the carrier.

* Hoists which move carriers from tank to tank, one by
one, depending on the carrier routing. Collisions
between hoists must be avoided as they move on the
same track. The hoist charge is then composed of:
* loaded hoist movements to move carriers from

tank to tank, the duration of which is specified in
the carrier routing;

* empty hoist movements to go to the next starting
tank or to avoid a collision with another hoist. The
duration of these empty movements depends on the
hoist schedule.

Therefore, the electroplating process results from the
soaking of a carrier in tanks depending on the carrier
routing.

Due to the chemical process, the following specific
constraints must also be considered:

1. Once a carrier finishes its processing in a tank, it must
go to the next one as quickly as possible. This means
that there are no in-process buffers.

2. The soaking time of a given carrier in a tank (i.e. the
time a given carrier needs to complete a chemical
reaction in a tank) is not given precisely. But in

Fig. 1. A chemical treatment line.



classical HSP, a minimum and a maximum soaking
time limit is supposed to be pre-established in the
carrier routing.

These specific constraints over-constrain the schedul-
ing problem of the line. They also imply that one has
to make sure that a carrier can go through the whole
line once it enters the line. So each of the hoists
movements has to be forecast before a carrier enters the
line. The control of the hoist with respect to all these
constraints is known as the Hoist Scheduling Problem
(HSP).

The previous definition of HSP is rather a physical
description of the line. Depending on the control
organization of the line, four different formulations of
HSP have been distinguished, namely CHSP, RHSP,
PHSP and DHSP. A detailed typology and notation of
HSPs can be found in Bloch and Manier (1999).

The Cyclic Hoist Scheduling Problem (CHSP) consists
in finding a cycle of hoist movements that will be
repeated indefinitely. Such research works suppose that
all carrier routings are identical. But then, an optimal
productivity cyclic production is generally found using a
branch and bound algorithm (see, for instance, Phillips
and Unger, 1976; Shapiro and Nuttle, 1988; Armstrong
et al., 1994; Lacoste and Baptiste, 1992; Lei and Wang,
1994; Hanen, 1994; Ng, 1996; Chen et al., 1998).
Interestingly, fuzzy processing times are introduced in
Ptuskin (1995) so as to model the quality level of the
operations, but no trade-off is proposed between the
productivity criterion and the quality: the difficulty is
ruled out through a de-fuzzification of the problem,
namely the choice of a level of quality, before the search
of a cyclic schedule is carried out.

In the Real-time Hoist Scheduling Problem (RHSP),
carriers can have different routings but the maximal
soaking time limit can be moderately exceeded. Thus,
each carrier movement no longer needs to be forecast
because a carrier can remain within a tank as long as
necessary. In this context, the problem consists in
determining in real time what will be the next movement
of the hoist. Then, rule-based systems (Yih, 1990; Sun
et al., 1994; Song et al., 1993) or neural network (Min
et al., 1998) lead to a trade-off between the line
throughput rate and the violation of the limit soaking
time. It is important to note that the trade-off between
productivity and quality cannot be controlled once the
rules or the neural network have been defined. It can
only be evaluated afterwards.

The Predictive Hoist Scheduling Problem (PHSP)
considers that a list of jobs with different routings is
given. The aim consists in determining the sequence of
jobs that get into the line and also the schedule of the
hoist movements in order to minimize the makespan. In
this context, Fleury et al. (1996) introduce a multi-agent
procedure while Caux et al. (1992, 1995) and Norre

(1999) describe the cooperation between a simulated
annealing procedure (that computes the sequence of
entering jobs) and a simulation procedure (that simu-
lates a rule-based RHSP).

The fourth formulation is the Dynamic Hoist Schedul-
ing Problem (DHSP) in which jobs can be different and
arrive at the loading workstation randomly. In fact, it is
considered that job arrival cannot be forecast with
enough precision to allow the use of a PHSP approach.
Consequently, when a new job arrives (randomly), given
the state of the line (in process and in buffer jobs) a new
schedule of all the jobs is computed solving the so-called
Local Problem (see Fig. 2). The global objective of the
DHSP then consists in maximizing the line throughput
after a series of Local Problems. But experience has
shown that optimizing makespan (or looking for small
makespan values) in each Local Problem is a good
strategy to approach the global objective (Lamothe
et al., 1995).

In general, a heuristic algorithm is used in order to
solve a Local Problem. This procedure assumes that the
sequence of the jobs already in process does not change
and just tries to compute a feasible solution rapidly (Yin
and Yih, 1992; Yih, 1994). The line throughput has been
improved by a greedy algorithm which does not make
any assumption (Ge and Yih, 1995). A branch cutting
heuristic in a branch-and-bound procedure has also
increased productivity (Lamothe et al., 1995). From
another point of view, simulated annealing and genetic
procedures that optimize makespan in Local Problems
have been studied (Lim, 1997; Bloch et al., 1996).

2.2. DHSP Local Problem formulation

The model below refers to a classical formulation of a
DHSP Local Problem. The line is supposed to have one
hoist only, and any tank capacity equals one. This
model can easily be generalized to a multi-hoist line
without any change in the model structure: only the
parameter Hði; jÞ=ðk;lÞ would change (see for details
Lamothe et al., 1996).

Fig. 2. Principle of the dynamic HSP.



When a new job (carrier) arrives at the loading
workstation at time t0, the Hoist Pilot (see Fig. 2) gives
the state of the in-process jobs. Then, the Local Problem
consists in finding a new schedule for any in-process or
in-buffers jobs. The following notations are described in
Fig. 3:

* N is the number of jobs.
* t0 the arrival time of the new job.
* Oi; j refers to the operation j of job i ð04j5nb opðiÞÞ.

As there are no in-process buffers, Oi; j refers to both
the soaking operation in a tank and the loaded hoist
move that brings the carrier into this tank. By
convention, the last operation of each job is its up-
loading, which can be identified as a soaking
operation with duration zero.

* initðiÞ is the rank number of the last in-process
operation of job i at time t0ð04initðiÞ5nb opðiÞÞ.

* bi; j is the tank position for the soaking of operation
Oi; j .

* ti; jð14i4N; 14initðiÞ4j4nb opðiÞÞ is the starting
time of operation Oi; j soaking in tank bi; j. It is also
the ending time of the loaded move Oi; j#1 to tank bi; j .

* si; j refers to the soaking time of operation Oi; j in tank
bi; j.

* Si; j is the admissible interval for the soaking time of
operation Oi; j : Si; j ¼ ½mi; j ;Mi; j&:

* ci; j is the loaded hoist travel time when moving job i
from operation Oi; j#1 to operation Oi; j , thus from
position bi; j#1 to position bi; j.

* du;v is the empty hoist travel time from position u to
position v.

* Hði; jÞ=ðk;lÞ is the minimum delay between ti; j and tk;l, if
the hoist movement of operation Oi; j is done just
before the hoist movement of operation Ok;l . It takes
into account an empty hoist movement from position
bi; j to position bk;l#1 plus the loaded hoist travel from
position bk;l#1 to position bk;l (see Fig. 3). Thus
Hði; jÞ=ðk;lÞ ¼ dbi; j ;bk;l#1

þ ck;l .

In the following, we propose a formulation of
the DHSP Local Problem by means of linear inequa-
tions. In order to represent the disjunctive constraints
of the problem, we need binary decision variables
xði; jÞ=ðk;lÞ:

* xði; jÞ=ðk;lÞ is a binary decision variable:
* xði; jÞ=ðk;lÞ ¼ 0 if the loaded movement of operation

Oi; j is made before the loaded hoist movement of
operation Ok;l .

* Otherwise xði; jÞ=ðk;lÞ ¼ 1.
The constraints are expressed below. Note that

i 2 ½0; N # 1&; j 2 ½initðiÞ; nb opðiÞ # 1&;

k 2 ½0; N # 1&; l 2 ½initðkÞ; nb opðkÞ # 1&:

* Logical constraint on the binary variables:

xði; jÞ=ðk;lÞ 2 f0; 1g;

8ði; j; k; lÞ s:t: ði; jÞ 6¼ ðk; lÞ :
xði; jÞ=ðk;lÞ þ xðk;lÞ=ði; jÞ ¼ 1 ð1Þ

(a sequence of loaded moves of the hoist is looked
for: either Oi; j is made before Ok;l, or Ok;l is made
before Oi; j)

xði; jÞ=ði; jÞ ¼ 1;

xði; jÞ=ði; jþ1Þ ¼ 0 ðOi; j is before Oi; jþ1Þ;

xði; jÞ=ðk;lÞ4xði; jþ1Þ=ðk;lÞ

ðif Oi; jþ1 precedes Ok;l ; then so does Oi; jÞ:

* Initialization constraints due to the state of the line at
time t0:

if job i is already in process at

t0 : ti;initðiÞ # t0 is given;

otherwise; ti;initðiÞ # t050:

8

>

<

>

:

ð2Þ

* The capacity of the hoist is 1, i.e. it cannot move two
different jobs simultaneously. Moreover, the shortest
time between two operations is obtained when they
are performed in succession. We thus get the
following disjunctive constraint for any pair of
operations Oi; j and Ok;l:

tk;l # ti; j5ck;l þ dbi;j ;bk;l#1

or

ti; j # tk;l5ci; j þ dbi;j ;bk;l#1
:

This can also be expressed as

tk;l # ti; j5Hði; jÞ=ðk;lÞ or ti; j # tk;l5Hðk;lÞ=ði; jÞ:

Using the binary decision variables xði; jÞ=ðk;lÞ, this
constraint is now expressed as two linearFig. 3. Description of the notations.



inequalities:

tk;l # ti; j5Hði; jÞ=ðk;lÞ # xði; jÞ=ðk;lÞM; ð3aÞ

ti; j # tk;l5Hðk;lÞ=ði; jÞ # xðk;lÞ=ði; jÞM; ð3bÞ

where M is a very high fixed number.
* Capacity of the tanks: A tank cannot carry

out two jobs simultaneously. Considering two opera-
tions Ok;l and Oi; j using the same tank
Tðbi; j ¼ bk;l ¼ TÞ:
* If operation Ok;l follows operation Oi; j into the
tank ðxði; jÞ=ðk;lÞ ¼ 0Þ, carrier i must first have been
moved to its next location ðbi; jþ1Þ by the hoist
before carrier k reaches tank T ðxði; jþ1Þ=ðk;lÞ ¼ 0Þ.
Thus, hoist movements will respect the following
sequence: Oi; j, Oi; jþ1, Ok;l, Ok;lþ1. So we get

xði; jÞ=ðk;lÞ ¼ xði; jþ1Þ=ðk;lÞ ¼ xði; jÞ=ðk;lþ1Þ

¼ xði; jþ1Þ=ðk;lþ1Þ ¼ 0:

* If operation Ok;l precedes operation Oi; j into the
tank ðxði; jÞ=ðk;lÞ ¼ 1Þ, carrier k must first have
been moved to its next location ðbk;lþ1Þ by the
hoist before carrier i reaches tank T
ðxði; jÞ=ðk;lþ1Þ ¼ 1Þ. Thus hoist movements will
respect the following sequence: Ok;l, Ok;lþ1, Oi; j ,
Oi; jþ1. So we get

xði; jÞ=ðk;lÞ ¼ xði; jþ1Þ=ðk;lÞ ¼ xði; jÞ=ðk;lþ1Þ

¼ xði; jþ1Þ=ðk;lþ1Þ ¼ 1:

Hence, for any pair of operations Oi, j and Ok,l such
as bi, j=bk,l we get

xði; jÞ=ðk;lÞ ¼ xði; jþ1Þ=ðk;lÞ ¼ xði; jÞ=ðk;lþ1Þ ¼ xði; jþ1Þ=ðk;lþ1Þ:

ð4Þ

* Chemical specific constraints: As there cannot be any
in-process inventories, the soaking time of operation
Oi; j in the tank bi; j is si; j ¼ ti; jþ1 # ti; j # ci; jþ1. This
soaking time is bounded: si; j 2 Si; j¼½mi; j ;Mi; j&, We
thus get the inequalities

mi; j4ti; jþ1 # ti; j # ci; jþ14Mi; j : ð5Þ

According to this formulation of the constraints, an
admissible solution of a HSP problem is an assignment of
the decision variables ti; j and xði; jÞ=ðk;lÞ that satisfies the
linear inequalities (1)–(5). When the makespan is
considered as discrimination criterion, the optimal
solutions of the problem are the admissible solutions
that minimize the quantity

max
i

ti;nb opðiÞ#1 ð6aÞ

since the last operation of each job is by convention its
unloading.

In some situations, obtaining a good makespan rather
than an optimal one is considered as a reasonable
approach. The idea is thus to introduce the completion
constraint

8i; ti;nb opðiÞ#14B:

When different completion times are required for
different jobs, these temporal constraints can be
expressed as

ti;nb opðiÞ#14Bi; ð6bÞ

where Bi is the completion time of job i.
The inequations (1)–(5), and (6b) define a HSP with

temporal bounds.

3. Fuzzy HSP

3.1. Fuzzy model of preferences on soaking times

In classical HSP, it is considered that the chemist
defining the line gives the process characteristics in order
to ensure the quality of any job treated on this line. As a
result, he defines the possible routings, the minimum
and maximum bounds on soaking times, the in-tank-
reagent life-cycle. This approach is not fully satisfactory
for the following reasons:

* Usually, the chemist defines a reference duration, and
admissible deviations from it, for each tank and each
routing. These admissible deviations may be nego-
tiated in order to enable line throughput optimiza-
tion. This means that all durations are not equivalent
within the admissible interval ½mi; j ;Mi; j&. Some are
better because they ensure a higher efficiency of the
reaction and the stability of quality whatever
unpredictable deviations of the reaction (reagent
pollution, etc.) may occur. Such preferred durations
usually do not correspond to end values of the
admissible intervals which, by definition, depict the
limits of the efficiency of the reaction.

* The chemist usually has tolerances on soaking
durations in order to avoid risks. The minimal value
is often overestimated because it must be reliable. A
gradation of the impact of soaking durations on the
treatment of the quality should help controlling these
margins.

* The more often a tank is used, the less efficient the
reagent is. As a result, the reference duration must be
increased as the reagent becomes older.

* Short breakdowns may occur on the hoist (e.g. when
the hoist jams above a tank, it does not detect a tank,
it does not stop above the desired tank, etc.) or on
tanks (when heating, electrolysis, mixing systems
break down). Then, it can become impossible to find
a schedule that verifies all the chemical constraints (5)
of all the in-process carriers. Then, one would like to



find a schedule that optimizes the treatment quality of
the carriers.

Hence, it appears that the duration of the operation is
subject to gradual preferences: a model that encom-
passes the gradual effect of soaking times on the quality
of treatment is thus necessary. Following Ptuskin (1995)
we propose the definition of a fuzzy domain for the
soaking time of each operation.

Remember1 that a fuzzy subset F of a referential O is
defined by a membership function mF ðvÞ that associates a
membership degree in [0, 1] to each value v in O: the
values that are perfectly part of F receive the degree 1;
the values that do not belong to F receive the degree 0.
In between, the membership is a matter of degree: the
higher mF ðvÞ, the more v belongs to F. Any value that
receives a positive degree of membership belongs to the
support of F, which is the classical set {v 2 O, such that
mF ðvÞ > 0}. The values that perfectly belong to F belong
to the core of F, which is the classical set {v 2 O, such
that mF ðvÞ ¼ 1}. More generally, the a-cut of a fuzzy set
F is the classical set Fa ¼ fv; mF ðvÞ5ag (Fig. 4).

Here, the fuzzy domain Si; j is interpreted as follows:
the values of the soaking time that are not admissible
receive the membership degree 0. The support of Si; j

represents the set of all admissible values and its core is
the optimal range of soaking time for operation Oi; j .
More generally, mSi; j

ðvÞ > mSi; j
ðuÞ, which means that the

soaking duration v is preferred to the duration u for
operation Oi; j.

The shape of the fuzzy domain Si; j represents how the
chosen value will impact on the quality of the chemical
reaction of an operation. Si; j is obviously a fuzzy
interval, i.e. a convex fuzzy set: all its a-cuts are classical
intervals. As shown in Figs. 5 and 6, ½m *

i; j ;M
*
i; j& denote

its cut of level 1 (i.e. its core): m *
i; j (resp. M

*
i; j) is the

lowest (resp. the highest) of the ideal values for the
soaking time of operation Oi; j. In the same way, the
lowest (resp. the highest) of the admissible values will be
denoted by mi; j *

(resp. Mi; j *
). Now, since the shape of

Si; j depends on various factors such as the kinetics of
the chemical reaction, the degradation of the reagents,

etc., it is not necessarily triangular or trapezoidal.
However, shapes like the one depicted in Fig. 5 are
not presently accessible for each soaking operation of
the routings. On the contrary, a trapezoidal approxima-
tion of the function (see Fig. 6) is accessible in practice
and will enable more efficient computations to be
performed. Indeed, it can be easily encoded by the
4-uplet of parameters (mi; j *

,m *
i; j,M

*
i; j,Mi; j *

)}see Sec-
tion 5.

3.2. Satisfaction degree of a fuzzy HSP

Introducing preferences on the soaking time ob-
viously affects the formulation of the DHSP Local
Problem, namely the handling of the flexible chemical
constraints. As in a classical HSP, a solution is an
assignment A of the decision variables ti; j and xði; jÞ=ðk;lÞ.
To be admissible, A must still satisfy the logical
constraints (1), the initialization constraints (2), and
the capacity constraints (3), (4) that remain crisp. But
the satisfaction of the chemical constraints (5) is now a
matter of degree: each of them is now satisfied to a given
degree mSi; j

ðti; jþ1 # ti; j # ci; jþ1Þ. In order to evaluate an
assignment A, we need to define its global satisfaction
degree, SatðAÞ, from these local satisfaction degrees.

Given an assignment, its satisfaction degree is the
aggregation of the satisfaction degrees of the carriers
which result from the aggregation of the satisfaction
degrees of their operations. In our model, the satisfac-
tion degree evaluates the quality of the treatment. And,
in terms of quality, the treatment of a carrier is
considered as non-satisfactory as soon as one soaking
operation has been badly performed: an incomplete
reaction into a tank cannot be counterbalanced by a

Fig. 4. A fuzzy set F and its cut of level a.
Fig. 5. Fuzzy model of an operation soaking time domain.

Fig. 6. Trapezoidal fuzzy model of an operation soaking time domain.

1For more details about fuzzy sets, the reader should refer to Dubois
et al. (1988).



longer reaction in another tank. As a consequence, a
carrier satisfaction degree should be evaluated as the
lowest soaking operation satisfaction degree (this can be
set off with a cost evaluation that would result in a sum
of satisfaction degrees). In the same way, the global
satisfaction degree of a fuzzy HSP assignment is the
lowest carrier satisfaction degree. More formally, the
satisfaction level of an assignment A is defined as

SatðAÞ

¼
0 if a crisp constraint ð1Þ2ð4Þ is violated;
min MinOi; j

mSi; j
ðti; jþ1 # ti; j # ci; jþ1Þ otherwise:

(

ð7Þ

In other words, an assignment satisfying all crisp
constraints satisfies the fuzzy scheduling problem
insofar as it satisfies the least satisfied flexible constraint.
The assignments violating the admissible range of
soaking time for an operation Oi; j (i.e. such that ti; jþ1 #
ti; j #ci; jþ1>M *

i; j or ti; jþ1 # ti; j # ci; jþ15mi; j *
), are not

admissible ðSatðAÞ ¼ 0Þ; whereas the ones that satisfy all
the optimal soaking windows are the best ones
ðSatðAÞ ¼ 1Þ. In between, the assignments more or less
satisfy the preferences expressed on the soaking times:
the less important the relaxation of the optimal soaking
bounds is, the better the solution.2 Sat induces a total
ordering over the solutions of the problem defined by
the capacity, logical and initialization constraints. This
degree can be understood as a degree of membership of
the assignments to the fuzzy set of more or less
admissible solutions of the FHSP.

4. Fuzzy HSP with temporal constraints

When temporal bounds exist, temporal constraints
(6b) are required in addition to constraints (1)–(4); the
admissibility Sat degree of the fuzzy HSP thus becomes

SatðAÞ

¼
0 if a crisp constraint ð1Þ2ð4Þ; ð6bÞ is violated;
minOi; jmSi; j

ðti; jþ1 # ti; j # ci; jþ1Þ otherwise:

(

ð8Þ

Notice that it may happen that no sequence can
perfectly satisfy all the constraints that are partially
conflicting: no sequence supports the satisfaction degree
1. The satisfaction degree of the best solution, i.e. the

degree Cons ¼ maxðA1 ;...;Am Þ SatðA1; . . . ;AmÞ; indicates to
what extent there exists a solution which satisfies all the
constraints. It can be understood as the feasibility
degree of the problem: a degree equal to 1 means that
there is no need to relax chemical constraints to satisfy
the temporal bounds. A Cons degree equal to 0 expresses
a total conflict between the data of the problem: even a
relaxation of the flexible constraints up to the extreme
acceptable soaking time does not provide a solution that
satisfies the completion times. When the constraints are
partially inconsistent, 05Cons51 and a relaxation of
the flexible constraints is implicitly performed, the
higher the Cons is, the less the soaking time can be
relaxed.

4.1. A computation based on a-cuts

A first approach for finding a schedule that maximizes
Sat is to transform the fuzzy problem into a series of
classical HSP. Remember that the a-cut of a fuzzy set F
is the classical set Fa ¼ fv;mF ðvÞ5ag. For any a; b such
that a5b, Fa ( Fb. Moreover, it holds that
mF ðvÞ ¼ sup a; v 2 Faf g. This means that the fuzzy sets
can be reconstructed from their a-cuts: as soon as there
is a Fa such that v 2 Fa, it holds that mF ðvÞ5a;
reciprocally, if v =2 Fa, then mF ðvÞ5a.

Hence

minOi; jmSi; j
ðti; jþ1 # ti; j # ci; jþ1Þ ¼

minOi; j sup a such that ti; jþ1 # ti; j # ci; jþ1 2 ðSi; jÞa
! "

;

sup a such that 8Oi; j ; ti; jþ1 # ti; j # ci; jþ1 2 ðSi; jÞa
! "

:

(

Moreover, when F is a fuzzy interval, Fa is a classical
interval defined as follows:

Fa ¼ ½LðF ; aÞ; UðF ; aÞ&;

where LðF ; aÞ ¼ inf v; mmðvÞ5a
! "

and UðF ; aÞ ¼ sup v;f
mMðvÞ5ag:
For instance, (Si; j)1 is the interval defined by L)

ðSi; j ; 1Þ ¼ m *
i; j and UðSi; j ; 1Þ ¼ M *

i; j: This allows one to
write

min
Oi; j

mSi; j
ðti; jþ1 # ti; j # ci; jþ1Þ ¼

supfa such that 8Oi; j ;

LðSi; j ; aÞ4ti; jþ1 # ti; j # ci; jþ14UðSi; j ; aÞg:

Consider a sequence s satisfying the crisp constraints
(1)–(4), (6b). As soon as there is an a such that s satisfies
the a-cuts of the chemical constraints:

LðSi; j ; aÞ4ti; jþ1 # ti; j # ci; jþ14UðSi; j ; aÞ ð50Þ

then it holds that SatðAÞ5a. Reciprocally, if s violates
one of the constraints (1)–(4), (50), (6b), then SatðAÞ5a.
Hence the following sketch of an algorithm can be used
to find an admissible sequence that maximizes Sat. The
idea is to sequentially solve a-cuts of the fuzzy HSP with
temporal bounds, until a precision bound e is reached.

2 In the trapezoidal model, it should be noticed that the degrees of
satisfaction of the flexible constraints can be interpreted in terms of
safety ranges: mSi; j

ðti; jþ1 # ti; j # ci; jþ1Þ is the fraction of the ranges
m *

i; j#mi; j *
(resp.Mi; j *

#M *
i; j) which is left between the soaking time of

the operation and its minimal (resp. maximal) acceptable soaking time.
The present approach thus looks for a temporally safe schedule: SatðAÞ
represents the minimal fraction of the flexibility ranges which are left
between the soaking time of the operations and their acceptable
soaking time.



The exploration of the cuts follows a principle of
dichotomy.

g:=1.
b:=0.
While (g# b > e) do

a :¼ ðgþ bÞ=2
Update the LðSi; j ; aÞ and the UðSi; j ; aÞ.
Search for a solution of the linear problem that
involves

the logical constraints (1)
the Initialization constraints (2)
the hoist capacity constraints (3)
the capacity constraints of the tanks (4)
the a-cut of the chemical constraints (5c)
the temporal constraint (6b)

If such a solution s exists
then memorize s (it is the best current
sequence)

b :¼ a
else g :¼ a

Example of run: As initialization values, we know that
there is a solution between levels 0 and 1. The resolution
of the cut of level 1/2 is the first run. If the cut of level 1/
2 accepts a solution, then the lower bound b is improved
(we know that Cons 51/2). The algorithm then searches
for a solution at level (1+1/2)/2=3/4. Let us suppose
that the corresponding system of linear inequations is
inconsistent, the upper bound g is improved (we know
that Cons53/4). The problem of level (3/4+1/2)/2=5/8
is then solved. Assume that it is consistent: b is improved
to 5/8. With e ¼ 0:2, we can now stop the search.

4.2. A direct computation of an optimal solution

The previous algorithm is based on several calls to a
linear program representing the a-cuts of the fuzzy HSP.
It results in a nearly optimal solution. Its quality
depends on the precision degree e which has to be set
by the user.

On the other hand, when the shape of the fuzzy
intervals Si; j is trapezoidal, an optimal sequence can be
obtained through a direct computation. Following the
work of Zimmermann (1976) on fuzzy linear program-
ming, when S is a trapezoidal fuzzy set defined by the 4-
uple (m

*
, m * , M * , M

*
), mSðxÞ is the optimal solution of

the program:

maximize v under the constraints

04v41;

v4
x#m

*

m* #m
*

;

v4
x#M

*

M * #M
*

:

Hence the solutions that maximize Sat as defined in (8)
are the solutions of the following mixed integer linear
program:

maximize Sat under
the logical constraints (1)
the initialization constraints (2)
the hoist capacity constraints (3)
the capacity constraints of the tanks (4)
the temporal constraint (6b)
the chemical specific constraint that defines the
degree of satisfaction

04Sat41;

Sat4
ti; jþ1 # ti; j # ci; jþ1 #mi; j *

m*
i; j #mi; j *

;

Sat4
ti; jþ1 # ti; j # ci; jþ1 #Mi; j *

M *
i; j #Mi; j *

: ð9Þ

The inconsistency of DHSP can be due to other
causes than temporal bounds. For instance, when small
breakdowns occur (on the hoist or on the tanks) a Local
Problem is generated in which no new carrier is
considered}but the state of the line has changed:
carriers have remained in the same position longer than
planned. This Local Problem may have no solution so
that all the in-process carriers can get off the line with
respect to the ideal chemical constraints. In such a case,
considering the makespan has no interest and the
problem again consists in finding a schedule that
maximizes the Local Problem satisfaction degree, Sat.
The optimization of Sat in this case is performed so as to
look for a minimal relaxation of the flexible constraints
that enables consistency to be recovered. In practice, any
of the previous methods can solve the problem.

Finally, a due date can be assigned to a new carrier,
for instance because of an emergency. Likewise the
resulting Local Problem can be inconsistent. In such a
situation, the user may either maximize the satisfaction
degree while satisfying the carrier due date, or adopt a
true bi-criteria approach that will be developed in the
next section.

5. Minimization of the makespan in fuzzy HSP

5.1. Fuzzy HSP: a bi-criteria decision problem

The first interest of a fuzzy HSP model appears when
a local problem turns out to be inconsistent. A second
point results from the management of the trade-off
between quality and makespan. Indeed, when the
problem is consistent according to the extreme chemical
constraints, the user has two indices to evaluate the
relevance of an admissible sequence: the satisfaction



degree that estimates its quality or preference and the
makespan. A sequence chosen because it minimizes the
makespan can be a very bad choice in terms of quality,
although there could be another sequence that would
highly enhance this quality with a very slight modifica-
tion of the makespan. Conversely, if the quality is
chosen as the predominant criterion, we can obtain a
very bad makespan although a slight relaxation of some
soaking times in the limit expressed by their flexibility
could lead to a better makespan. We have to face a bi-
criteria decision problem.

In a lot of industrial applications, the user rather
looks for a trade-off between quality and throughput of
the line. A possible solution would be to aggregate the
two criteria, but according to which formula? As soon as
the satisfaction degree and the makespan cannot be
expressed on the same scale (e.g. as a cost), such a
formula cannot be established. Rather than aggregating
of the two evaluations under the form of a single
criterion, we propose to leave the decision to the user,
preferring a decision-support approach rather than an
automated solution to the problem.

Presenting all sequences to the user is obviously
uninteresting. A better solution consists in providing
him with the terms of the trade-off: either compute what
is the shortest makespan that reachable for each level of
satisfaction (see Fig. 7); or determine the highest
satisfaction degree reachable for each bound of the
completion time3 (see Fig. 8). In other terms, only points
which are pareto-optimal will be presented to the user.

Computing all the points in the previous curves may
be very time consuming. This can indeed be equivalent
to listing all admissible sequence and evaluating them in
terms of satisfaction degree and makespan. We will thus
only compute the more relevant points, namely:

(i) The point that corresponds to the best makespan
that can be reached without any relaxation of the
quality (with a satisfaction degree of 1).

(ii) Symmetrically, the point that corresponds to the
highest degree of satisfaction for the shortest
admissible makespan.

These two points are particularly relevant because
they give a first approximation of the range of the trade-
off. Eventually, some intermediate points can be
computed between these two bounds, for instance
according to a precision level determined by the user.
This precision level may pertain either to the satisfaction
level (Fig. 9) or to the makespan (see Fig. 10). The user
can then himself determine how to balance the two
criteria, by selecting one pair (makespan, satisfaction
degree) in the curve, i.e. an admissible sequence.

Fig. 7. Shortest makespan that can be reached for each level of
satisfaction.

Fig. 8. Highest satisfaction degree that can be reached for each
completion time.

Fig. 9. Shortest makespan that can be reached for each level of
satisfaction (discretized).

Fig. 10. Highest satisfaction degree that can be reached for each level
of the makespan limit (discretized).

3 In terms of fuzzy sets, this corresponds to determining the fuzzy set
of optimal makespans.



5.2. Computation of the shortest makespan for a quality
degree of 1

This first boundary point corresponds to the case
where the chemical constraints are required to be
satisfied at their maximal level, i.e. where quality degree
of 1 is required. The soaking time intervals are thus
reduced to their cuts of level 1. The makespan is then
used to discriminate among the different admissible
sequences. We thus come back to a classical HSP local
problem, which in turn comes down to the following
linear program:

minimize maxiti;nb opðiÞ#1 under:
the logical constraints (1)
the initialization constraints (2)
the hoist capacity constraints (3)
the capacity constraints of the tanks (4)
the optimal chemical constraints:

mi; j *4ti; jþ1 # ti; j # ci; jþ14M *
i; j

.Again, this point is the best sequence that may be
obtained if the user has modelled the fuzzy intervals so
that the quality satisfaction degree is sufficient only at
level 1 (no preferences), i.e. if quality was compulsory.
However, this point is generally not satisfactory since
this restrictive model does not take advantage of the
flexibility of the chemical constraints to enhance the
makespan.

5.3. Computation of the maximal quality reachable for
the shortest admissible makespan

For this second boundary point, we are looking for
the maximal satisfaction degree that can be reached
when the makespan is at its minimal admissible value.
This extreme point is computed in two stages.

Stage 1: we look for the value of the minimum
admissible makespan. We thus come back to a classical
HSP local problem. It comes down to the following
linear program:

minimize maxiti;nb opðiÞ#1 under:
the logical constraints (1)
the initialization constraints (2)
the hoist capacity constraints (3)
the capacity constraints of the tanks (4)
the chemical limit constraints:

mi; j *4ti; jþ1 # ti; j # ci; jþ14M *
i; j

.Stage 2: Sat is used to discriminate among the
admissible sequences that led to this makespan, i.e. to
break ties.

Let B denote the minimal makespan obtained at
stage 1. The satisfaction of this optimal temporal
bound is then ensured by the definition of the

following constraint on the completion time:

ti;nb opðiÞ#14B:

We thus obtain a second HSP, namely a flexible HSP
with a temporal bound: it involves the crisp
constraints (1)–(4), a temporal constraint of the form
(6b) and the flexible chemical constraints (5). It can
be solved according to the maximization of Sat using
any of the methods described in Section 4.

5.4. Computation of the shortest makespan with respect
to a sufficient quality

The computation of the Pareto-optimal points defin-
ing the minimal makespan reachable as a function of the
satisfaction degrees can rely on a-cuts in the flexible
problem: for each value a of degree of satisfaction, a-
cuts of all the soaking time domains Si; j are computed.
This results in a sequence of classical HSP:

Compute the minimal admissible makespan and its
satisfaction degree b
For a :¼¼ b to 1 step e

Compute LðSi; j ; aÞ and the UðSi; j ; aÞ.
minimize maxiti;nb opðiÞ#1 under:

the logical constraints (1)
the initialization constraints (2)
the hoist capacity constraints (3)
the capacity constraints of the tanks (4)
the a-cut of the chemical constraints (5b).

This computation based on a-cuts can be applied for
any shape of the fuzzy domains, i.e. not necessarily
trapezoidal.

5.5. Computation of the maximal quality reachable with
respect to a sufficient completion time

The computation of the Pareto-optimal curve defining
the optimal satisfaction degree as a function of the
completion time (see Fig. 10) rather comes down to a
series of HSP problems with temporal bounds. As a
consequence, this computation should be limited to
trapezoidal fuzzy models of the soaking times.

The following sketch or algorithm can be used for
instance:

Compute Bmax, the minimal makespan with a
satisfaction degree of 1
Compute Bmin the minimal admissible makespan and
its satisfaction degree b

For B :¼ Bmin to Bmax step e
maximize Sat under

the logical constraints (1)
the initialization constraints (2)
the hoist capacity constraints (3)
the capacity constraints of the tanks (4)



the temporal constraints: 8i; ti;nb opðiÞ#14B
the specific chemical constraints:

04Sat41:

Sat4
ti; jþ1 # ti; j # ci; jþ1 #mi; j *

m*
i; j #mi; j *

;

Sat4
ti; jþ1 # ti; j # ci; jþ1 #Mi; j *

M *
i; j #Mi; j *

:

The computation of a Pareto-optimal curve appears
to be inappropriate in terms of computation time for an
on-line use: too many sequences must be computed for a
quick decision support. However, it is meaningful if the
user looks for an evaluation of the trade-off between
quality and makespan. It enables such questions to be
answered as ‘‘which soaking time domains have to be
selected in order to reach a desired throughput rate and
what would be the consequences on quality’’. As a
consequence, the curve of Pareto-optimal sequences is a
tool for a line designer.

5.6. Quick bi-criteria trade-off

A more efficient variant of the latter approach can be
proposed in the spirit of the STEM approach of
interactive multi-criteria decision making (Benayoun
et al., 1971). It consists of an iterative and interactive
computation of the points that are the most interesting
for the user (see Fig. 11).

The idea is first to determine the optimal makespan
given a minimal satisfaction degree a. This means
solving the problem involving constraints (1)–(4) plus
the chemical constraint (5c) reduced to an a-cut of the
interval Si; j.

Then, the optimal makespan is known and the user
can himself determine to what extent he accepts to
decrease this shortest makespan so as to increase the
degree of quality. In other words, the quality degree Sat
is then used to discriminate from the admissible
sequences the one that leads to this makespan with a
given tolerance e. From a practical point of view, the

following constraint on the completion time is set:

ti;nb opðiÞ#14Bþ e;

and we obtain a flexible HSP with temporal bounds that
involves the crisp constraints (1)–(4), a temporal
constraint of the form (6b) and the flexible chemical
constraints (5). It can be solved maximixing Sat using
any of the methods described in Section 4. Notice that
the entire procedure reaches a trade-off between
makespan and quality in only two invocations of a
one-criterion-optimization routine.

6. Conclusions

The HSP problem has been studied considering that
processing times on workstations can be chosen within
fuzzy intervals. In practice, the degree of satisfaction of
a fuzzy interval refers to a quality evaluation of the
chemical treatment. Since a reaction of bad quality in a
tank cannot be counterbalanced by a better reaction in
another tank, the satisfaction degree of a carrier is
evaluated as the lowest degree of satisfaction of its
soaking operations. Likewise, we choose to evaluate the
satisfaction degree of the entire fuzzy HSP as the lowest
satisfaction degree of its carriers.4 It should be noticed
that this approach allows the handling of partially
conflicting constraints. Indeed, when temporal bounds
are required, it may happen that no sequence can
perfectly satisfy all the constraints. An implicit relaxa-
tion of the flexible constraints on the soaking time is
performed: the higher the quality degree is, the less the
ideal soaking times are relaxed.

From a practical point of view, the computing tools
that we have proposed rely on a representation of the
problem under the form of a linear program. The
interest of this formulation is its generality, but it does
not take advantage of the particularities of the
problems, e.g. of the heuristics that are specific to
HCSP. A more dedicated algorithm of fuzzy HSP is still
to be developed. Now, the question is: is the computa-
tional cost of handling of flexibility reasonable com-
pared with the cost of classical HSP? From a theoretical
point of view, the answer is obviously affirmative, since
we have shown that a fuzzy HSP is equivalent to a
sequence of classical HSP: the order of magnitude of the
theoretical complexity does not change. As it has
already been seen when introducing soft constraints
into scheduling (see e.g. Fargier, 1996), the information
about the flexibility ranges in duration can in practice
enhance the search for solutions since it can help the

Fig. 11. A quick trade-off between makespan and satisfaction degree
(the points in light grey are not computed in practice.

4More complex aggregations of a carrier might have been
considered such as the number of carriers whose satisfaction degree
is less than a fixed number, a lexicographical classification of
satisfaction degrees,. . . They would have resulted in longer computa-
tion time but would not have jeopardized our approach.



software set the operations in the center of their
windows.

The generic DHSP models that we have proposed
thus lead to a trade-off between two criteria: quality
and the line throughput. Rather than an aggregation
of the two evaluations under the form of a single
criterion, we have proposed to leave the decision to the
user, preferring a decision-support approach. We have
presented different solving processes showing their
relevance in different decision support situations. The
last approach consists of an interactive determination of
the attitude of the decision maker in front of the bi-
criteria decision problem: a good trade-off between
quality satisfaction and makespan can be reached
quickly.
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