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Practical stabilisation of switched affine systems with
dwell-time guarantees

C. Albea Sanchez, G. Garcia, S. Hadjeras, W.P.M.H. Heemels, L. Zaccarian

Abstract—The paper deals with the problem of prac-
tical stabilisation of operating points for switched affine
systems, ensuring a dwell-time associated with an LQR
performance level during the transient response and
an admissible chattering around the operating point.
In this paper we propose a solution to this problem
in which the formal guarantees are established using
recent tools from hybrid dynamical systems theory. We
also include insights on the quadratic performance of
the proposed switching strategies.

I. Introduction

Switched systems [13] are encountered in many applica-
tions including mixing of fluids, DC-DC power conversion,
event-triggered control, viral mutation in HIV treatment,
mobile sensor networks, damping of vibrating structures,
and several others, see [2] for references to these applica-
tions. In particular, the area of switched linear systems
(SLSs) received ample attention. There exist many works
about SLSs guaranteeing asymptotic stabilization of the
operating point, see, e.g., [7, 15, 22], and also [13, Section
3.4] and [21, Chapter 5,6]. and a vast literature exists on
the topic, see [15, 19] for recent overviews.

Interestingly, the class of switched affine systems
(SASs), which we consider in this paper, received less
attention. SASs are given by

ẋ=Aσx+ aσ x(0) = x0

z =Cx,
(1)

where the available input σ : R≥0 → N := {1, 2, ..., N}
is the switching signal, assigning a specific desired mode
among N possible ones at each point in time. Moreover,
in dynamics (1), x ∈ Rn is the state, z ∈ Rp is the
controlled output, and Aσ and aσ have suitable dimen-
sions, σ ∈ N . In [5], the authors provide an appealing
switching strategy guaranteeing asymptotic stability of the
operating point, which is an equilibrium for the average
dynamics. However, that result can induce sliding modes
and generate arbitrarily fast switching. Other solutions,
discussed in the context of peculiar applications of SASs
such as power converters, see [4, 17, 20], aim at ensuring
a dwell-time associated with an admissible chattering
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LAAS, Université de Toulouse, 7 avenue du colonel Roche, F-31400
Toulouse, France shadjeras,calbea,garcia@laas.fr

W.P.M.H. Heemels is with the Control Systems Technology group,
Department of Mechanical Engineering, Eindhoven University of
Technology, The Netherlands m.heemels@tue.nl

L. Zaccarian is with both CNRS, LAAS, Université de Toulouse,
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around the operating point. Another interesting line of
work is discussed in [4], which focuses on the practical
stabilisation of a family of power converters that can be
modelled as SASs with all the affine dynamics in a Hamil-
tonian form, see also [6]. Inspired by the physical insight
coming from power converters, the authors also define the
set of admissible operating points having a similar form in
terms of equilibria of the average dynamics, as used in [5].
Then, asymptotic stability is guaranteed without ensuring
any dwell-time between consecutive switches.

In this paper we are interested in the practical stabi-
lization of operating points for SASs described by (1).
Important features of the proposed control strategy are
the following ones:

1) stabilization of an (arbitrarily small) set around the
operating point is achieved,

2) a positive minimal dwell-time between consecutive
switches is guaranteed during the transient response,
and thus infinitely fast switching (e.g., due to Zeno
behaviour or sliding modes) is avoided to warrant
practical implementability,

3) it is possible to make a design tradeoffs between
the size of the asymptotically stable set around the
desired operating point and a LQR performance level
on the one hand and the minimal dwell-time between
two switches (and thus the switching frequency) on
the other one, and

4) a second mechanism guarantees some dwell-time in
the tail of the response (some pseudo-steady-state)
this obtaining a controlled chattering around the
operating point.

We provide two methods to realise the latter steady-
state property, based on spatial regularisation (linked to
Section 4.2 in [4]) and one based on time regularisation
(enforcing a positive minimal dwell-time). Rigorous proofs
will be given for our statements, using recent tools from
hybrid systems theory [9]. The main tool for proving
stability of a compact set defined in an extended space,
proceeds by an appropriate extension of Lyapunov stabil-
ity theory developed in the context of hybrid dynamical
systems in [9] and [16]. Due to the affine structure of the
modes, a quadratic Lyapunov function (not a common
Lyapunov function) can be selected satisfying a Lyapunov
inequality. To the best of our knowledge, these properties
have not been previously established in the literature for
the general class of SASs. The works closest to the main
results in this paper are [10, 11, 20]. [20] is focused on
a specific converter, namely the DC-DC Boost converter
and the authors provide a constrained switched differential



inclusion derived from the specific model (including all
modes of the converter, not only the steady-state modes).
For this model, a stabilizing hybrid control law is derived
using hybrid systems tools and, by exploiting inherent ro-
bustness properties, a spatial regularisation (not time reg-
ularisation) is applied, thereby removing Zenoness, while
still preserving practical stability properties of the desired
equilibrium. The work in [10] considers general SASs and
based on the assumption that a control Lyapunov function
(CLF) is available for the convexified dynamics, three
strategies are considered that have desirable dwell-time
properties in each mode. The three strategies are the
well-known pulse-width modulation strategy, a steepest
descent strategy based on the mode that makes the CLF
decrease the fastest, and a predictive receding-horizon
strategy minimising the CLF at the end of a fixed horizon
(all with sample time Ts). The authors in [11] consider
an LMI-based design method for practically stabilizing
switching laws for equilibria of the convexified dynamics of
(1) including a stability condition (see also [3, 5]). These
sets of equilibria and conditions are in line with our
assumptions below (see condition (2)). In principle, [11]
has a sampled-data implementation with an upper-bound
on the inter-sample times and using LMI-based conditions
the upper-bound of the inter-sample times can be directly
related to the size of the asymptotic stability set around
the considered equilibrium. Practical stability is obtained
using Lyapunov-Krasovskii functionals. The obtained re-
sults are useful as they allow direct tuning of the maximal
sampling times. The time-regularisation proposed in this
paper imposes a minimal dwell-time instead of a maximal
dwell-time or a sampled-data implementation as in [10,
11], indicating that we use a different time-based switching
regime not limiting the size of the dwell-time from above.
Besides we present a general spatially regularised and
practically stabilising switching laws not considered in [10,
11]. A preliminary version of this paper was presented at
[1], but it did rely on more restrictive assumptions and did
not contain the practical stability results presented here.

The paper is organized as follows. Section II is dedicated
to the problem formulation. We present a hybrid dynam-
ical control that manages a dwell-time in transient-time
with an optimization procedure to tune some parameters
in Section III. Then, some practical stability results that
guarantee a dwell-time in the steady-state are presented in
Section IV. Finally, Section V summarizes the main results
and proposes future work directions.

II. Problem setup

As already mentioned in the introduction, we are in-
terested in the practical stabilisation of a specific set of
operating points, xe ∈ Rn, for SASs as in (1) satisfying
the requirements 1), 2), 3) and 4) using the appropriate
design of a feedback law for the switching signal σ. A
necessary and sufficient condition characterizing the set of
operating points that we are interested in is represented
by the following standard assumption (see [5, 14]).

Assumption 1: There exists λ ∈ Λ such that

N∑
i=1

λi(Aixe + ai) = 0, (2)

where Λ :=
{
λ ∈ [0, 1]N |

∑N
i=1 λi = 1

}
.

Definition 1: The set of admissible operating points
Ωe ⊂ Rn is given by

Ωe := {xe ∈ Rn | ∃λ ∈ Λ s.t. (2) holds

and

N∑
i=1

λiAi is Hurwitz}. (3)

Hence, an operating point is admissible if it is an equilib-
rium point for the averaged dynamics

ẋ =

N∑
i=1

λi(Aix+ ai), λ = [λ1, λ2, ..., λN ]> ∈ Λ

and a stability condition is satisfied on the corresponding
convex dynamics. See also [4, 5, 11, 14] and the discussion
in [1, Remark 1]. Note that the average dynamics can be
perceived as the result of arbitrarily fast switching and
as relaxations in the generalized sense of Krasovskii or
Filippov [8].

The problem considered in this paper can be formulated
as follows: Given the SAS (1), provide a design framework
such that for each xe ∈ Ωe a feedback law is constructed
that determines on-line the switching signal σ that renders
a (arbitrarily small) set around xe globally asymptotically
stable (i.e., practical stabilization of xe) and satisfies the
requirements 2, 3 and 4 discussed in the introduction.

III. Hybrid model and tradeoff between
dwell-time and LQR performance level

A. Proposed architecture

Consider (1) and xe ∈ Ωe and let λe be a corresponding
vector in Λ as in (3). We select now matrices P and Q
satisfying the following property.

Property 1: The matrix P = PT > 0 ∈ Rn×n and the
matrix Q = QT > 0 ∈ Rn×n satisfy(

N∑
i=1

λe,iA
T
i

)
P + P

(
N∑
i=1

λe,iAi

)
+ 2Q ≤ 0. (4)

Clearly due to
∑N
i=1 λe,iAi being Hurwitz such matrices

satisfying Property 1 always exist for xe ∈ Ωe. Note also
that Property 1 imposes less restrictive assumptions than
in our preliminary work [1]. In fact, the assumptions in
[1] correspond to a special case of the general construction
proposed in this paper.

Using these matrices we can formulate a hybrid con-
troller, following the formalism in [9], wherein we find the
evolution (1) in the continuous-time dynamics, and the
discrete-time dynamics captures the instantaneous jump



of the control signal σ from one mode to another. We
represent the overall dynamics as

H :


[
ẋ
σ̇

]
= f(x, σ), (x, σ) ∈ C[

x+

σ+

]
∈ G(x, σ), (x, σ) ∈ D,

(5)

where f represents the flow map and G is a (set-valued)
map capturing the switching logic:

f(x, σ) :=

[
Aσx+ aσ

0

]
G(x, σ) :=

[
x

argmin
i∈N

(x− xe)TP (Aix+ ai)

]
(6)

and where the so-called “flow” and “jump” sets C and
D encompass, respectively, the regions in the (extended)
space (x, σ) where the switching strategy continues with
the current mode σ (set C) or switches to a new mode
(set D). If switching is allowed (namely, if (x, σ) ∈ D)
then σ may switch according to G in (6). For the solution
proposed in this paper, we select the flow and jump sets
associated with the desired equilibrium xe introduced in
Assumption 1 as follows:

C := {(x, σ) : x̃TP (Aσx+ aσ) ≤ −ηx̃TQx̃} (7)

D := {(x, σ) : x̃TP (Aσx+ aσ) ≥ −ηx̃TQx̃}, (8)

where x̃ := x − xe satisfies ˙̃x = (
∑
λe,iAi)x̃ and scalar

η ∈ (0, 1) is a design parameter that will be shown
to be useful for suitably achieving a trade-off between
the transient switching frequency and optimality level, as
characterized later in Theorem 2.

B. Stability results

The next lemma is a fundamental step to prove Theo-
rem 1 below.

Lemma 1: Consider a point xe ∈ Ωe and matrices P ∈
Rn×n and Q ∈ Rn×n, satisfying Property 1. Then, for each
x ∈ Rn, denoting x̃ := x− xe,

min
i∈N

x̃TP (Aix+ ai) ≤ −x̃TQx̃. (9)

�
Proof. First notice that the left hand side of (2) is linear
in the components of λe. Moreover, λe belongs to the

compact set Λ =
{
λn ∈ [0, 1]N |

∑N
i=1 λn,i = 1

}
. Then, the

following minimum is obtained at the extreme points:

min
i∈N

x̃TP (Aix+ ai)

= min
λn∈Λ

x̃TP

(
N∑
i=1

λn,iAix+

N∑
i=1

λn,iai

)

= min
λn∈Λ

x̃TP
N∑
i=1

λn,iAix̃+ x̃TP

(
N∑
i=1

λn,iAixe +
N∑
i=1

λn,iai

)

≤ x̃TP

N∑
i=1

λe,iAix̃+ x̃TP

(
N∑
i=1

λe,iAixe +

N∑
i=1

λe,iai

)
≤ −x̃TQx̃,

where in the last step we used relations (2) and (4) . �
A similar sufficient condition was presented in [7] for a

class of SLSs with N = 2, which is quadratically stabilized
via output feedback if there exists an asymptotically stable
convex combination of the different modes.

The proof of Lemma 1 is relevant in terms of the nature
of the switching signals generated by our solution. In
particular, property (9) combined with (7) shows that
unless x̃ = x̃+ = 0 (which means that we are at the
equilibrium x = xe), the solution always jumps to the
interior of the flow set C. Indeed, x̃ 6= 0 implies

−x̃TQx̃ < −ηx̃TQx̃,

because η < 1. This fact, together with stability (ensuring
boundedness of solutions) and the sector growth condition

| ˙̃x| = |ẋ| ≤ |Aσ(x− xe)|+ |Aσxe + aσ| ≤ κ1|x̃|+ κ2 (10)

with κ1 and κ2 positive constants, coming from the lin-
earity of the flow dynamics (1), implies that there is a
uniform lower bound on the dwell time between each pair
of consecutive resets before solutions approach x = xe.
Clearly, this lower bound shrinks to zero as solutions
approach x = xe because only arbitrarily fast switching
can make xe an equilibrium, in general. As compared to
existing approaches (see e.g., [5]) that essentially rely on a
“sliding-mode” type of paradigm, thereby typically leading
to very fast switching and chattering along a sliding
surface, our solution is instead characterized by relatively
slow switching, where the transient switching frequency
can be adjusted, to a certain extent, using parameter η.

Following up on standard stability theory for hybrid
systems [9], we will establish suitable stability properties
of the point xe in terms of uniform global attractivity
of a bounded (and closed) set in the higher-dimensional
space spanned by (x, σ). In particular, we will establish
properties of the compact attractor

A := {(x, σ) : x = xe, σ ∈ N}, (11)

encompassing the fact that we are interested in uniform
stability and convergence to a set where x = xe and
σ assumes some unspecified value or pattern within the
desired limit set of solutions.

Theorem 1: Consider a point xe and a vector λe satisfy-
ing Assumption 1 and matrices P ∈ Rn×n and Q ∈ Rn×n
satisfying Property 1. Then attractor (11) is uniformly
globally asymptotically stable (UGAS) for hybrid system
(5)–(8).
Proof. Let us take the candidate Lyapunov function

V (x̃) := V (x− xe) :=
1

2
x̃TPx̃ (12)

being x̃ := x − xe. In the flow set, C, using its definition
in (7), we get

〈∇V (x̃), f(x̃, σ)〉 = x̃TP (Aσ(x̃+ xe) + aσ) ≤ −ηx̃TQx̃.
(13)

Across jumps we trivally get:

V (x̃+)− V (x̃) =
1

2

{
x̃TPx̃− x̃TPx̃

}
= 0. (14)



because x̃+ = x+ − xe = x− xe = x̃.

Uniform global asymptotic stability is then shown by[16,
Theorem 1]. In particular, since the distance of x to the
attractor (11) is defined by |x|A = |x̃|, we have that [16,
eq. (6)] holds from the structure of V and from (13) and
(14). [16, Theorem 1] also requires building the restricted
hybrid system Hδ,∆ by intersecting C and D with the set

Sδ,∆ := {(x̃, σ) : |x̃| ≥ δ and |x̃| ≤ ∆} (15)

and then proving (semi-global) practical persistence flow
for Hδ,∆, for each fixed values of (δ,∆). In particular,
practical persistent flow amounts to showing that there
exists γ ∈ K∞ and M ≥ 0, such that, all solutions to Hδ,∆
satisfy

t ≥ γ(j)−M, ∀t ∈
⋃

j∈domj ξ

Ij × {j} (16)

(see [16] for details). To establish (16), notice that after
each jump, from the definition of G in (6) and from
Property (9) (in Lemma 1), we have

x̃T (Aσ+x+Bσ+) ≤ −x̃TQx̃ < −ηx̃TQx̃, (17)

where we used the fact that η < 1 and that (0, σ) /∈ Sδ,∆.
Therefore, if any solution to Hδ,∆ performs a jump from
Sδ,∆, it will remain in Sδ,∆ (because x̃ remains unchanged)
and then, from (8), it jumps to the interior of the flow
set C ∩ Sδ,∆. Moreover, from the strict inequality in (17),
then all non-terminating solutions must flow for some time
and since C ∩ Sδ,∆ is bounded, there is a uniform dwell-
time ρ(δ,∆) between each pair of consecutive jumps. This
dwell-time (δ,∆) clearly implies [16, eq. (4)] with the class
K∞ function γ(j) = ρ(δ,∆)j and M = 1. Then, all the
assumptions of [16, Theorem 1] hold and UGAS of A is
concluded. �

Note that according to Theorem 1 system (5)–(8) may
exhibit a Zeno behaviour when x→ xe, and consequently
an infinitely fast switching may be expected, which is
not acceptable in practice. This is why we propose in
Section IV an additional dwell-time logic to obtain a
temporal-regularisation of the dynamics, thereby weaken-
ing asymptotic convergence into practical convergence.

C. Optimality and parameters tuning

Theorem 1 establishes UGAS of the attractor, which
results in desirable uniform stability and convergence
properties. However, we are interested in further providing
a suitable performance guarantee for our solution, which
follows the same paradigm as the one discussed, in a
continuous-time setting, in [5]. This performance guaran-
tee, may, for example, refer to desirable levels of dissipated
energy, current peak, response time among others.

Within the considered hybrid context, we first recall
that solutions are parametrized by ordinary time t (mea-
suring amount of flow) and discrete-time j (measuring the
number of switches) so that the domain of a solution ξ

(see [9, Ch. 2]) corresponds to a finite or infinite union of
intervals of the following form:

dom ξ =
⋃

j∈domj ξ

Ij × {j}, (18)

with Ij = [tj , tj+1] being a bounded time interval having
the so-called“jump times” tk as extremes, or possibly being
a last unbounded interval open to the right and of the form
Ij = [tj ,+∞). In (18), we use the notation domj ξ :=
{j ∈ Z : (t, j) ∈ dom ξ, for some t ∈ R}, namely domj ξ
includes all j ∈ Z such that Ij is non-empty. Within this
context, we represent a LQ performance metric focusing
on flowing characteristics of the plant state, using the
expression

J(ξ) :=
∑

k∈domj ξ

∫ tk+1

tk

|z̃(τ, k)|2dτ, (19)

where ξ = (x, σ) : dom ξ → Rn×N is a solution to hybrid
system (5)–(8), and z̃(t, j) := Cx̃(t, j) for all (t, j) ∈ dom ξ
is a suitable performance output.

With our hybrid switching solution, we may then give
the following guarantee on the performance cost (19).

Theorem 2: Consider hybrid system (5)–(8) satisfying
Assumption 1 and Property 1. If

CTC ≤ Q, (20)

then the following bound holds along any solution ξ =
(x, σ) of (5)–(8):

J(ξ) ≤ 1

2η
x̃(0, 0)TPx̃(0, 0), (21)

where x̃(t, j) = x(t, j)− xe, for all (t, j) ∈ dom(ξ).
Proof. To prove the optimality property in (21), consider
any solution ξ = (x, σ) to H. Then for each (t, j) ∈ dom ξ
and denoting t = tj+1 to simplify notation, we have from
(13)

V (x̃(t, j))− V (x̃(0, 0)) =

j∑
k=0

V (x̃(tk+1, k))− V (x̃(tk, k))

=

j∑
k=0

∫ tk+1

tk

〈∇V (x̃(τ, k)), f(x(τ, k), u(τ, k))〉dτ

≤
j∑

k=0

∫ tk+1

tk

−ηx̃T (τ, k)Qx̃(τ, k)dτ

≤ −η
j∑

k=0

∫ tk+1

tk

x̃T (τ, k)CTCx̃(τ, k)dτ, (22)

where the last inequality comes from applying (20). Now,
considering z̃(τ, k) = Cx̃(t, k), taking the limit as t +
j → +∞ and using the fact that UGAS established in
Theorem 1 implies limt+j→+∞ V (x̃(t, j)) = 0, we get from
(22)

ηJ(ξ) ≤ V (x̃(0, 0)) =
1

2
x̃(0, 0)TPx̃(0, 0),

as to be proven. �



Remark 1: It should be emphasized that once matrices
P and Q have been fixed compliantly with requirement
(20), the guaranteed performance level for our scheme (in
terms of size of the upper bound for index J in (19) along
solutions) is proportional to the inverse of η ∈ (0, 1) (see
(21)). To this end, large values of η (as close as possible
to 1) are expected to lead to improved LQ performance
along solutions.

On the other hand, one may appreciate by looking at
the flow and jump sets in (7) and (8), that smaller values
of η correspond to strictly smaller jump sets (and larger
flow sets), which reveals that solutions are expected to flow
longer before switches of control input σ are experienced.
Therefore we anticipate that solutions with smaller values
of η exhibit a smaller switching frequency during the
transient response. In other words, one may use parameter
η to find a tradeoff between suitable transient switching
frequency and transient performance along solutions. This
operation clearly affects the level of guaranteed optimality,
according to (21). y

D. Computation of P and Q

The problem addressed next is the computation of
parameters P , Q, following an optimization capturing the
goal of reducing as much as possible the right hand side
in bound (21). To this end, we make the following natural
selection of matrix Q:

Q = CTC + νI, (23)

where ν > 0 is a (typically small) positive constant, which
may be selected equal to zero if CTC > 0. Then it is clear
that selection (23) ensures Q > 0, as required, in addition
to ensuring bound (20).

Once parameter Q is selected, under the assumption
that the convex combination

∑N
i=1 λe,iAi is Hurwitz, the

following convex optimization expressed by linear matrix
inequalities always leads to a feasible solution:

min
P=PT>0

Trace(P ), subject to: (24)

N∑
i=1

λe,iA
T
i P + P

N∑
i=1

λe,iA
T
i ≤ −2Q,

and this optimal solution clearly satisfies Property 1.

IV. Practical global results using space- or
time-regularization

The hybrid control law proposed above can provide
arbitrarily fast switching as the solution approaches xe,
because given an initial condition in A, one sees that the
hybrid dynamics (5)–(8) has at least one solution that
keeps jumping onto A. Infinitely fast switching is not de-
sirable in terms of energy efficiency and reliability, because
every switch dissipates energy and reduces the switch
lifespan. For this reason, we propose a few modifications of
the hybrid law, aiming at reducing the number of switches
when x̃ = x−xe is close to zero. This goal is reasonable for
the proposed law, because it is possible to show that away

from A, during transients, our control law already joins
a desirable property of dwell time between switches, as
long as Assumption 1 and Property 1 hold. The dwell time
induced by the practical modification introduced here can
be denoted, with a slight abuse of notation, steady-state
dwell time property, as it regulates the dwell time during
the controlled chattering enforced (on the “steady-state”
tail of the solution) around xe.

To best formalize this steady-state dwell-time property,
given any xe and P,Q satisfying the above assumptions,
consider system (5)–(8) and denote it by the shortcut
notation H := (f,G, C,D) and then, for a non-negative
scalar ε, define the following restricted jump set:

Dε := D \ {(x, σ) : V (x− xe) < ε}, (25)

where V has been introduced in (12). A useful practical
dwell-time property for H is then established below.

Lemma 2: There exists a positive scalar T ∗ such that for
each T ≤ T ∗, there exist a scalar εT such that all solutions
to H jumping from set DεT flow for at least T ordinary
time after the jump before reaching set D. Moreover, as T
tends to zero, we have that εT tends to zero as well.
Proof. To prove the lemma, it is enough to fix any scalar
ε = ε∗ in (25) and show that there exists T ∗ such that all
solutions starting from Dε∗ flow for at least T ∗ ordinary
time after the jump before reaching set D. The rest of the
lemma follows trivially from the fact that smaller values
of ε < ε∗ are associated with the solutions starting in
Dε∗ (already characterized by T ∗) plus additional solutions
starting in the compact set Dε \ Dε∗ , that enjoy a dwell
time property because any jump from this set maps to
the interior of the flow set (and then one can consider the
minimum flowing time over this compact set of initial con-
ditions). Clearly, the dwell-time T is expected to converge
to zero as ε converges to zero, thereby defining the function
εT discussed in the lemma.

Let us then fix a scalar ε = ε∗ in (25) and first notice
that any solution jumping from Dε∗ at time (tj , j − 1)
satisfies, before and after the jump:

|x̃(tj , j)|2Q := x̃TQx̃ ≥ qm|x̃|2 ≥
qm
pM

V (x̃) ≥ qmε
∗

pM
=: 2εQ,

(26)

where the dependence on (t, j) has been omitted at the
right hand side, and where we denoted by qm and qM
the minimum and maximum eigenvalues of Q, respectively,
and by pM the maximum eigenvalue of P . Define now the
function χ(τ) := 2εQ− |x̃(tj + τ, j)|2Q and notice that (26)
implies χ(0) ≤ 0. Consider now the flow dynamics in (6)
and introduce scalars bσ = Aσxe + aσ to get

˙̃x = Aσx+ aσ = Aσx̃+ bσ, (27)

so that we may characterize the variation of χ as:

χ̇ = −2x̃TQ(Aσx̃+ bσ) ≤ κ1|x̃|2Q + κ2|x̃|Q (28)

where κ1 := 2 qMqm max
σ∈N̄
|Aσ| and κ2 := 2 qM√

qm
max
σ∈N̄
|bσ|. Using

now |x̃|2Q ≤ |χ| + 2εQ, which also gives |x̃|Q ≤
√
|χ| +



√
2εQ, because |χ| and εQ are both non-negative, we get

the bound:

χ̇(τ) ≤ κ1(|χ(τ)|+ 2εQ) + κ2(
√
|χ(τ)|+

√
2εQ) (29)

= κ1|χ(τ)|+ κ2

√
|χ(τ)|+ κ3, ∀τ ≤ tj+1 − tj ,

where κ3 = 2κ1εQ+κ2

√
2εQ > 0. Denote by φ the solution

to the differential equation induced by (29) starting at
zero. This solution is continuous and strictly increasing
because κi > 0 for all i = 1, 2, 3. Then there exists T1 such
that φ(T1) = εQ and from standard comparison theory,
and recalling that χ(0) ≤ 0 (by (26)), we have χ(τ) ≤ εQ
for all τ ≤ T1, which implies

|x̃(tj + τ, j)|2Q ≥ 2εQ − χ(τ) ≥ εQ, ∀τ ≤ T1. (30)

Consider now equation (17) and define the function 1

ς(x̃) :=
x̃T (Aσx̃+ bσ)

|x̃|2Q
+ 1,

which, from (17) clearly satisfies ς(x̃(tj , j)) ≤ 0 after the
jump from Dε∗ . We prove below the existence of T ∗ such
that

ς(x̃(tj + τ, j)) ≤ 1− η, ∀τ < T ∗, (31)

which trivially proves x̃(tj + τ, j)T (Aσx̃(tj + τ, j) + bσ) ≤
−η|x̃(tj + τ, j)|2Q, which in turn implies that the solution
does not belong to D, thus completing the proof of the
lemma.

To prove (31), we proceed again with bounding the
derivative of ς. Straightforward derivations provide, along
flowing solutions according to (6):

ς̇ = −2x̃TP (Aσx̃+ bσ)x̃TQ(Aσx̃+ bσ)

|x̃|4Q

+
x̃T (PAσ +ATσP )Aσx̃+ x̃T (2ATσP + PAσ)bσ + bTσPbσ

|x̃|2Q

≤ ς1 + ς2
1

|x̃|Q
+ ς3

1

|x̃|2Q
,

where ς1, ς2, ς3 are sufficiently large positive scalars (and
where we used |x̃| ≤ 1√

qm
|x̃|Q in several places). Con-

sider now any time τ ≤ T1, and use bound (30) to

obtain ς̇ ≤ ς1 + ς2ε
−1/2
Q + ς3ε

−1
Q , which, together with

ς(x̃(tj , j)) ≤ 0, and integrating ς̇, immediately gives (31)
for T ∗ := min{T1, T2}, where T2 := 1−η

ς1+ς2ε
−1/2
Q +ς3ε

−1
Q

. �

Lemma 2 ensures that some dwell-time is achievable if
solutions remain sufficiently far from A. Then we have two
possibilities to modify our control law to ensure that dwell-
time is enjoyed by solutions. One of them corresponds to
replacing the jump set D by the restricted version in Dε
and forcing solutions to flow in D\Dε (this is called space
regularization and is addressed in Section IV-A), and the
other one corresponds to forcing solutions not to jump
unless some dwell time has expired (this is called time

1To avoid overloading notation, the hybrid time is only specified
on the x̃ component, but the state variable σ should be evaluated at
the same hybrid time in the derivations at the end of the proof of
Lemma 2.

regularization and is addressed in Section IV-B). Both
solutions are associated to desirable properties, that arise
from the result of Lemma 2.

A. Space regularization

Based on Lemma 2, for any value of a positive scalar ε,
let us consider introducing the following space-regularized
version of H = (f,G, C,D) in (5)–(8):

Hε := (f,G, Cε,Dε) (32a)

Cε := C ∪ {(x, σ) : V (x) ≤ ε}, (32b)

where Dε has been introduced in (25). The regularized
dynamics (32), (25) is clearly motivated by the fact that
jumps are forbidden when solutions are ε-close to the
attractor because they are forced to flow. Then it makes
sense to introduce the following ε-inflated version of at-
tractor A:

Aε := {(x̃, σ) : V (x̃) ≤ ε, σ ∈ N̄}, (33)

which evidently reduces to A as ε tends to zero.
Mainly using Lemma 2 the following desirable results

are enjoyed by hybrid system Hε.
Theorem 3: Consider point xe and a vector λe satisfying

Assumption 1 and matrices P ∈ Rn×n and Q ∈ Rn×n
satisfying Property 1. The following holds:

1) for any positive scalar ε, set Aε in (33) is UGAS for
dynamics Hε in (32);

2) set A is globally practically asymptotically stable for
(32), with respect to parameter ε;

3) ∃ a scalar T > 0 such that all solutions to Hε enjoy
a dwell-time property corresponding to T , namely
given any solution ϕ to Hε, all (t, j) ∈ domϕ satisfy
t ≥ j

T − 1;
4) as long as ε is sufficiently large, the scalar T of the

previous item can be made arbitrarily close to T ∗.

Proof. First notice that sets Cε and Dε are both closed.
Indeed, Cε is the union of two closed sets and Dε is the
intersection of two closed sets (D and the complement of
the open set where V (x̃) < ε). Then, due to the properties
of f and G, system Hε satisfies the hybrid basic conditions
of [9, As. 6.5] and we may apply several useful results
pertaining well-posed hybrid systems.

Proof of item 3). This item follows in a straightforward
way from Lemma 2. Indeed, solutions to Hε can only jump
from Dε. Since Dε ⊂ D, any such solution ϕ flows for at
least T time after each jump, before reaching again Dε and
possibly jumping again, which clearly implies t + 1 ≥ j

T
(where the “1” takes care of the initial condition), as to be
proven.

Proof of item 4). Again using Lemma 2 it is possible
to obtain a dwell time T arbitrarily close to (but smaller
than) T ∗, because of the existence of a large enough value
of ε enforcing that type of dwell-time property after all
jumps from the corresponding set Dε.

Proof of item 1). Consider the following Lyapunov func-
tion candidate:

Vε(x̃) = max{V (x̃)− ε, 0}, (34)



which is clearly positive definite with respect to Aε and
radially unbounded. Since outside set Aε the hybrid dy-
namics Hε coincides with the one of H, then equations
(13) and (14) hold for any (x̃, σ) not in Aε, which implies
that

〈∇Vε(x̃), f(x, σ)〉 < 0 ∀x̃ ∈ Cε \ Aε (35)

Vε(x̃
+)− Vε(x̃) = 0, ∀x̃ ∈ Dε \ Aε (36)

Moreover, from the property established in item 3), all
complete solutions to Hε must flow for some time, and
therefore from (35), we have that no solution can keep
Vε constant and non-zero. UGAS of Aε by applying the
nonsmooth invariance principle in [18], also using the well
posedness result established at the beginning of the proof.

Proof of item 2). The proof follows in a straightforward
way from the previous item, after noticing that given any
neighborhood I of A, there exists a small enough ε > 0
such that Aε ⊂ I. �

B. Time regularization

Based on Lemma 2, for any value of T < T ∗, we
may introduce the following additional state variable τ to
dynamics (5):

HT :

{
[ ẋσ̇ ] = f(x, σ),
τ̇ = 1− dz

(
τ
T

)
,

(x, σ) ∈ CT{[
x+

σ+

]
∈ G(x, σ),

τ+ = 0,
(x, σ) ∈ DT ,

(37a)

where the dz denotes the non-negative side of the unit
deadzone function defined as dz(s) := max{0, s − 1}, for
all s ≥ 0 and the jump and flow sets are the following
time-regularized versions of C and D in (5)–(8):

CT := C × [0, 2T ] ∪ {(x, u, τ) : τ ∈ [0, T ]}
DT := D × [T, 2T ].

(37b)

The above regularization is clearly motivated by the fact
that jumps are forbidden when the timer τ is too small,
namely not enough time has elapsed since the last jump.
Then all solutions are forced to flow for at least T ordinary
time after each jump. Note also that the deadzone trick
at the right hand side of equation (37a) allows a solution
to flow forever while ensuring that timer τ remains in a
compact set.

Before proceeding any further, we emphasize that forc-
ing a solution to flow regardless of whether it belongs to
D or not, may lead to an increase of function V . It is
useful to quantify how much increase V can experience
from the set where V (x̃) ≤ εT (where εT is introduced
in Lemma 2). To this end, we exploit the affine nature of
the dynamics and observe that along solutions of (37) we
have V̇ (x̃) ≤ |x̃||P || ˙̃x| = |x̃||P || ˙̃x| ≤ |x̃||P |(κ1|x̃| + κ2) ≤
2αV (x̃) + 2β

√
V (x̃), where α and β are large enough

positive scalars and where we used (10) and the positive
definiteness of P in the expression of V . Proceeding as in

[12, page 203], we obtain along any solution φ satisfying
(t, j) ∈ domφ and (t+ T, j) ∈ domφ,√

V (φ(t+ τ, j)) ≤ eατ
√
V (φ(t, j)) + β

∫ τ

0

eαsds

= eατ
√
V (φ(t, j)) +

β

α
(eατ − 1), ∀τ ∈ [0, T ].

Therefore, assuming that V (φ(t, j)) ≤ εT , we obtain for
all τ ∈ [0, T ],

V (φ(t+ τ, j)) ≤ εV (T ) := eαT εT +
β

α
(eαT − 1). (38)

This bound motivates introducing the following set:

ET := {(x̃, u, τ) : V (x̃) ≤ εV (T ), σ ∈ N̄ , τ ∈ [0, 2T ]},
(39)

which enjoys the nice property of shrinking to A×{0}, as
T converges to zero.

Mainly using Lemma 2 the following desirable results
are enjoyed by hybrid system HT in (37).

Theorem 4: Consider point xe and a vector λe satisfying
Assumption 1 and matrices P ∈ Rn×n and Q ∈ Rn×n
satisfying Property 1. The following holds:

1) all solutions to HT enjoy a dwell-time property
corresponding to T ;

2) for any positive scalar T < T ∗, there exists a
compact set AT ⊂ ET which is UGAS for dynamics
HT in (37);

3) set A × {0} is globally practically asymptotically
stable for (37), with respect to parameter T (namely
as long as T is sufficiently small, the UGAS set
AT characterized in the previous item can be made
arbitrarily close to A× {0}).

Proof. Similiar to the proof of Theorem 3 we start by
noticing that hybrid system (37) enjoys the hybrid basic
conditions of [9, As. 6.5], because sets CT and DT are
both closed and f and G enjoy desirable properties. Then
we may apply several useful results pertaining well-posed
hybrid systems (specifically, in the proof of item 2 below).

Proof of item 1. The dwell-time property of solutions
follows in a straightforward way from the fact that solu-
tions are forced to not jump until the timer variable τ has
reached the value τ . Since τ̇ = 1 for all τ ≤ T , then all
solutions flow for at least T ordinary time after each jump
(because τ+ = 0 across jumps).

Proof of item 2. Consider the two hybrid systems Hε
and HT in (32) and (37), respectively. For any positive
value of T < T ∗, we have shown in the proof of item 4 of
Theorem 3 that it suffices to pick ε = εT (coming from
Lemma 2) to obtain UGAS of the attractor AεT in (33)
and a dwell time of T for all solutions to HεT .

Since the (x, σ) dynamics of HεT and HT coincide,
except for the dwell time restriction on HT , the above
mentioned dwell-time property of solutions to HεT ensures
that (possibly after an initial flow of at most T ordinary
time) the (x, σ) component of each solution to HT re-
maining outside AεT × [0, 2T ], coincides with a solution
to HεT , therefore any such solution to HT must approach



AεT × [0, 2T ], which is a strict subset of ET in (39). Two
things may happen then. Either the solution approaches
AεT × [0, 2T ] without ever reaching it, so it eventually
remains in ET , or it reaches AεT × [0, 2T ] and may then be
forced to flow by the dwell-time logic of HT . However in
this last case we get from bound (38) that such solution
cannot flow outside ET . As a consequence, ET is uniformly
attractive and reached in finite time by all solutions, in
addition to being is strongly forward invariant for HT .

We now use the well-posednesss property established at
the beginning of the proof to exploit a number of regularity
results from [9, Ch. 6 & 7]. Denote by Ω(ET ) the ω-limit set
of ET (see [9, Def. 6.23]) and note that it cannot be empty,
and must satisfy Ω(ET ) ⊂ ET , because ET is bounded
and strongly forward invariant. Then using again strong
forward invariance of ET we get boundedness of all solu-
tions starting from ET and we may apply [9, Prop. 6.26]
to obtain that Ω(ET ) is compact, nonempty, uniformly
attractive from ET , and strongly forward invariant. Since
also ET is uniformly attractive, we may then apply a global
version 2 of [9, Prop. 7.5] applied to the compact attractor
Ω(ET ), to conclude global asymptotic stability of Ω(ET ),
which is equivalent to UGAS from [9, Thm 3.40 & Thm
7.12].

Proof of item 3. Item 3 follows in a straightforwad way
by recalling from Lemma 2 that εT converges to zero as T
goes to zero, and then that also εV (T ) in (38) enjoys the
same property. As a consequence, set ET in (39) shrinks to
A×{0} as T goes to zero, and since we established in item
2 that AT ⊂ ET for all T > 0, we can make AT arbitrarily
close to A× {0} by selecting T sufficiently small. �

V. Conclusions and future work

This article deals with the practical stabilization of
switched affine systems controlled by using a hybrid
dynamical systems paradigm that allows managing the
switching pseudo-frequency during transients and at the
steady state. We showed practical asymptotic stability
results using a space- and time-regularization that allows:
1) stabilising the set where V (x− xe) ≤ ε being ε a suffi-
ciently small tuning parameter enabling the adjustment of
the steady-state switching pseudo-frequency, 2) inducing
a positive minimal dwell-time in each mode, T during
transient operation, whose size can be adjusted by tuning
the parameter η, 3) obtaining a tradeoff between transient
dwell-time on the one hand and an LQR performance
level, tuning the parameter η that, in addition to affecting
the transient dwell time, also affects the LQ optimality
level during the transient responses. Simulations and ex-
perimental results were not included here due to space
constraints and are regarded as future work that will be
published in application-related journals.

2A global version of [9, Prop. 7.5] is trivially obtained by estab-
lishing its hypotheses for any arbitrary positive value of µ.
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