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Abstract—Maximizing the throughput of point-to-point commu-
nication has been the crux of wireless networks. In IEEE 802.11
networks, the first and prominent wireless technology, the model
of point-to-point communication is still applicable today: the
transmissions are between the wireless nodes and the access
point, which usually serves as a gateway to the Internet. But
this model is not well suited to more recent wireless systems
such as Wireless Sensor Networks (WSNs) and Vehicular Ad Hoc
NETworks (VANETs). In such networks, a very significant part
of communication is between one node and its neighbors and
simultaneous transmissions or, in other words spatial reuse, is
required to insure good performance. When we consider commu-
nication from one node to its neighbor,an important metric is the
density of successful simultaneous transmissions. Several studies
such as [1], [2] have shown how this density of transmissions
can be improved in Aloha or in CSMA networks. The aim
of this paper is to show that the use of directional antennas
can greatly improve the performance of the network in our
neighbor-to-neighbor communication model because interference
is greatly reduced. The model we build here allows a quantitative
study of the performance and the improvement obtained with
directional antennas to be be achieved. The study of Aloha
(slotted and non-slotted) is very easy to accomplish and leads
to closed formulas for the density of successful transmissions.
The study of CSMA is more complex. We use a Matern selection
process to mimic the behavior of CSMA in a random pattern of
nodes distributed as a Poisson Point Process (PPP): each node
receives a random mark and the nodes that have the smallest
mark in their neighborhood are elected for transmission. Previous
studies, such as [2], show that in CSMA networks, the density
of successful transmissions is greatly influenced by the carrier
sense detection threshold, which is one of the main parameters
of CSMA. In this study we will assume that the carrier sense
detection threshold is optimized to obtain the best performance
of the CSMA network and our evaluations are performed under
this condition. Our analytical models and our computation show
that using directional antennas can lead to an improvement of
up to more than 100% in the density of throughput compared to
the normal use of unidirectional antennas.
Keywords—VANETs, CSMA, spatial performance, stochastic geom-
etry.

I. INTRODUCTION

Until recently, the throughput of point-to-point communica-
tions was the main criterion for network performance eval-
uation. At the physical layer, optimizing the point-to-point
throughput has always been a major objective in networks
whereas at the MAC layer, minimizing the loss incurred by

sharing the medium has always been a quest. When wireless
networks appeared in the late 80s with the development of
the IEEE 802.11 technology, this model remained partly valid;
wireless nodes sent their packets to the access point and since
IEEE 802.11 uses a CSMA technique, only one packet could
be transmitted at a time and the paradigm of the transmission
with one source and one destination was still present.

Since the birth of the Internet of Things (IoT) and the
emergence of new networks such as Wireless Sensor Networks
(WSNs) and Vehicular Ad hoc NETworks (VANETs), the
spatial aspect of the networks has become prominent and
the network can be deployed over a wide area. Simultaneous
transmissions are mandatory to ensure good network perfor-
mance. In VANETs, safety packets such as Car Awareness
Messages (CAMs) must be sent from each vehicle to the
nodes in their neighborhood. With such an application the
straightforward evaluation metric is the density of successful
transmissions from each node to its neighbors or, in other
words, the number of successful transmissions in the network
per unit of space. In an optimized network it is not sufficient
that one node successfully sends its packets to its neighbors,
it is also important that many other nodes in the network are
able to send their packets to their neighbors within the same
time interval.

Tools from stochastic geometry, such as Poisson Point Pro-
cesses (PPPs), are very suitable to capture the spatial effect of
new networks in the IoT such as VANETs and WSNs and to
provide efficient tools to evaluate the spatial density of given
events in the network (e.g successful transmissions). Moreover,
they can also model random networks. As shown below, it is
easy in PPPs to model the typical neighbors of a given node.
Here, we adopt PPPs to model node locations and we denote
the node density of our network by λ. We use the density of
successful transmissions as the performance metric.

In this paper we study two different access technique : Aloha
and CSMA. We also assume random fading, which simplifies
the computation. Similar evaluations as those presented below
are possible with other fading laws but would involve more
numerical computations. Spatial Aloha networks are quite
easy to model and accurately analyze in PPPs [1] mostly
because the pattern of simultaneous transmissions remains a
random PPP of intensity λp where p is the transmission rate of
Aloha. Thus we easily obtain closed formulas for the density
of successful transmissions. The case of non-slotted Aloha



is slightly more complex, but if we use the results of [3]
we can also obtain closed formulas with a slightly different
PPP. Modeling CSMA networks is much more complex. In
this paper we use the Matern process to mimic the CSMA
selection rule in a random PPP which can . As far as we know,
there is no other technique available to directly model CSMA.
Other techniques are based on simulations. We combine a
classical Signal-to-Interference-and-Noise Ratio (SINR) and
the selection obtained by the Matern process to analytically
compute the density of successful transmissions.
The remainder of this paper is organized as follows. Section II
briefly reviews related work. Section III describes the model
proposed to study Aloha and CSMA. We optimize the density
of successful transmissions versus the transmission probability
for Aloha and versus the carrier sense threshold for CSMA. We
deal with the case of omni-directional and directional antennas
in order to perform the comparison. In Section IV we report
the results of our analytical study and compare the results ob-
tained with omni-directional and directional antennas. Finally,
Section V concludes the paper.

II. RELATED WORK

In 2000, the pioneering article [4] was the first to provide an in-
depth study of the performance of ad hoc networks in terms of
total bandwidth, taking into account the inherent spatial effect
of these networks. The assumptions were a random network
and a simplified model to handle interference. The traffic
model was point-point with random source and destination
nodes.
In the footsteps of the seminal work by Gupta and Kumar,
[5] studies the gain in an ad hoc network when directional
antennas are used. The work focuses on 2D networks and
shows that the bandwidth gain is 2π

α with a directional antenna
at the transmitter (with an emitting angle α) and 4π2

αβ when we
use directional antennas simultaneously in both the receiver
and the transmitter with an emitting angle α and a receiving
angle β.
In the domain of VANETs there are apparently no theoretical
studies like [4], [5] and the present paper appears to be one
of the first (if not the first) contribution. However, there are
numerous papers which study the impact of antenna patterns in
VANETs. In 1985, [6] carried out extensive measurements and
showed that not only the antenna itself, but more so its position
on the car and the existence of sirens and lights on the roof
can significantly modify the radiation pattern of the antenna.
Using ray tracing simulation, [7] studied the effects of antenna
placement on car-to-car communication. The authors found
that the received signal power greatly depends on the antenna
position and causes huge differences in the received power
(up to 30 dB). Using measurements in the 5.9 GHz frequency
band, as used by the IEEE 802.11p standard, [8] investigated
the effect of panoramic glass roofs on the antenna radiation
pattern. The authors noted a significant negative impact due to
reflections inside the glass. This causes a considerably reduced
forward transmission range.
This study is also linked to performance analysis of Aloha and
CSMA. The first studies which attempted to take spatial reuse
into account for Aloha appeared in the 1980s and a model for
slotted Aloha was later introduced in 1988 by Ghez, Verdu
and Schwartz [9]. This study was refined in [1] where the
performance of a network based on this same model was more

accurately evaluated. In particular,fooof the capture probability
and the density of successful transmissions were computed
when the distance between the source and the destination was
known. These evaluations were possible due to the complete
and stateless randomization of the transmitting nodes in Aloha
networks. As for CSMA, the interference issue was raised
in [10] for a linear network of randomly positioned vehicles,
however, the study only considered the nearest interferer case.
The pattern of simultaneous transmissions in CSMA was first
evaluated in [11] using the Matern selection process [12].
Another similar process was used in [13] in order to evaluate
interferences in CSMA, however, the study did not assess
the overall network throughput. The model initially developed
in [11] and subsequently enhanced in [14], is extended in this
current work. More recent studies show the prime importance
of adapting the carrier sense threshold in CSMA networks [2]
and [15] proposes an algorithm to do so.

III. SYSTEM MODEL

In this paper we consider a homogeneous Poisson-Point-
Process (PPP) Φ extended over a 1D infinite line S = R. As
Vehicular Ad-hoc NETworks (VANETs) are generally linear
networks, they are usually modeled by 1D networks. As
previously stated, we denote the intensity of the PPP by λ.
We assume that the power of a transmission over a distance r
is affected by a power-law decay 1/rβ where β varies between
2 and 6 depending on the propagation conditions and a random
fading F . The power received at distance r from the source
node is thus P = P0F

l(r) and we set P0 = 1 with l(r) = rβ .
We also adopt a Rayleigh fading i.e., exponentially distributed
with parameter µ and thus a mean of 1/µ.
We use the well-accepted SIR (Signal-to-Interference-Ratio)
model with a capture threshold T . We omit thermal noise
but it could be easily added, as explained below. An even
more realistic model than the SIR based on a graded SIR
model using Shannon’s law is possible in our framework
though with an increased computational cost. In other words, a
successful transmission occurs when the ratio of the received
signal divided by the interference (i.e., the other concurrent
transmissions) will be greater than T .

A. Model for directional transmission
As we are dealing with vehicles moving along roads, our
vehicular network consists in 1D lines which can be modeled
by R. We assume that the vehicles send their packets such as
CAMs (Car Awareness Messages) or DENMs (Decentralized
Emergency Notification Messages) only in one direction. For
instance, on motorways we can assume that the messages are
only sent downstream. If we assume that the vehicles follow
a one-dimensional Poisson Point Process of rate λ, the conse-
quence of using a directional antenna is that another vehicle
will interfere with the current transmission with probability 0.5
and with the same probability the vehicle will not interfere.
This is true if we assume here that half of the vehicles are
moving in one direction while the other half are moving in
the opposite direction. Thus with omni-directional antenna the
population of interfering vehicles must be selected by the
access scheme in a PPP of rate λ whereas with directional
antennas the population of interfering vehicles must be selected
in a PPP of rate λ/2. In these two populations the Aloha
protocol uses a random selection to select the transmitters



whereas in CSMA the selection relies on the carrier sense
threshold and the backoff timers. This will be explained in the
following sections.

B. Slotted and non-slotted Aloha
In Aloha, the MAC scheme consists in a random selection
of the transmitting nodes. Each node will transmit its packets
with a given transmission probability p. The protocol can be
slotted if we have given time-slots or non-slotted when we
use asynchronous transmissions. We use the results of [1] for
slotted Aloha and [3] for non-slotted Aloha.
Proposition III.1. For slotted Aloha, the density of successful
transmissions for omni-directional antennas is:

λpe
− 2πrλpT

1
β

β sin

(
π
β

)
and the maximum value of this density is:

β sin(π/β)e−1

2πrT
1
β

For directional antennas, the density of successful transmis-
sions is:

λpe
− πrλpT

1
β

β sin

(
π
β

)
and the maximum value of this density is:

2β sin(π/β)e−1

πrT
1
β

The proof of Proposition III.1 can be found in [1] with the
only change being that the computation of the shot-noise is
done in R instead of R2.

Proposition III.2. Here to obtain closed formulas, we use a
slightly different model, the Poisson Rain model, see [3]. This
means that at each transmission the positions of the vehicles
are re-sampled. This model provides very good results even
if we assume that the vehicles’ positions are not re-affected
after each transmission. The advantage of the Poisson Rain
model is that it gives closed and compact formulas. For non-
slotted Aloha, the density of successful transmissions for omni-
directional antennas is:

λpe
− 4πrλpT

1
β

(β+1) sin

(
π
β

)
and the maximum value of this density is:

(β + 1) sin(π/β)e−1

4πrT
1
β

For directional antennas, the density of successful transmis-
sions is:

λpe
− 2πrλpT

1
β

(β+1) sin

(
π
β

)
and the maximum value of this density is:

(β + 1) sin(π/β)e−1

2πrT
1
β

The proof of Proposition III.1 can be found in [3] again with
the only change being that the shot-noise is computed in R

instead of R2. Moreover to obtain this simple formula for non-
slotted Aloha, we have to assume a model of Poisson rain
nodes but this model also seems to be accurate in traditional
Poisson Point Processes, see [3].

C. CSMA
To mimic the CSMA selection process we use a Matern
selection process. In this scheme each node Xi ∈ Φ receives
a random mark mi and the process selects the node with the
lowest mark in its neighborhood. This neighborhood is defined
as follows. We denote by Fi,j the fading for a transmission
between Xi and Xj and we also introduce the carrier sense
threshold Pcs of our CSMA protocol. In our definition the
neighborhood of Xi is V(Xi) = {Xj ∈ Xi Fi,j/l(|Xi −
Xj |) > Pcs}. A node, say Xi will be selected by the Matern
selection process if and only if ∀Xj ∈ V(Xi) mi < mj , i.e
Xi has the lowest mark mi in its neighborhood. It is easy to
verify that a selection process is well defined by this property.
In CSMA networks, the selection process is actually performed
according to the back-off value; this back-off is decremented
by the node during idle periods until the transmission of the
packet. Thus the node with the lowest back-off time in its
neighborhood will be chosen to transmit. The random marks
of the Matern selection process can be interpreted as the back-
off times of the waiting nodes. However, in a real CSMA
network when a node transmits its packet, the other nodes in its
neighborhood have already been eliminated and will no longer
be able to eliminate other nodes. This is not the case in the
Matern selection process, which produces an over-elimination
and thus underestimates the density of transmissions. This
is illustrated in Figure III.1. Following the Matern selection
process, node i has correctly eliminated node k; even so, node
k is still able to eliminate node l. In contrast, in a real CSMA
system, once node i has eliminated node k, node k will no
longer be able to eliminate any other neighbor. We note that
in Figure III.1 we have used directional antennas.
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Fig. III.1. Matern CSMA selection process and an example of over-
elimination.

We note the medium access indicator of node Xi ei =
1I(∀Xj ∈ V(Xi) mi < mj)

Proposition III.3. The mean number of neighbors of a node
is:

N = λ

∫
S

P{F > PCsl(|x|)}dx.



With omni-directional antennas we have :

No =
2λΓ(1/β)

β(Pcsµ)1/β
.

With directional antennas we have :

Nd =
λΓ(1/β)

β(Pcsµ)1/β
.

This result is straightforward. Let F 0
j be the fading between

the transmitting node at the origin Xi and the receiving node
Xj . This is just the application of Slivnyak’s theorem and
Campbell’s formula, see [16], [14]

N{o,d} = E0
[ ∑
Xj∈φ

1I(F 0
j l(|Xj −Xi|) > Pcs

]
= λ{o,d}

∫
S

P{F > Pcsl(|x|)}dx

with λo = λ for omni-directional antennas and λd = λ/2
for directional antennas. An immediate computation yields the
explicit value of N{o,d}.

Proposition III.4. The probability p that a given node X0

transmits i.e., e0 = 1 is:

p = E0[e0] =
1− e−N

N
.

Proof: We compute the probability of a given node at
the origin with the mark m = t being allowed to transmit.
Deconditioning on t provides the result, see [14] for details.
N is either N{o,d} depending on whether we use directional
antenna.

If p is close to 1, then the carrier sense imposes no restriction
on transmission. On the other hand, if p is close to 0, then the
carrier imposes a severe restriction on transmission.

Proposition III.5. The probability that X0 transmits given
that there is another node Xj ∈ Φ at distance r is pr with

pr = p− e−Pcsµl(r)
(1− e−N

N2
− e−N

N

)
Proof: The proof is the same as that of Proposition III.4.

Proposition III.6. Let us suppose that X1 and X2 are two
points in Φ such that |X1 − X2| = r. We suppose that node
X2 is retained by the selection process. The probability of X1

also being retained is:

h{o,d}(r) =

2
b{o,d}(r)−N{o,d}

(
1−e−N{o,d}

N{o,d}
− 1−e−b{o,d}(r)

b{o,d}(r)

)
(1− e−Pcsµl(r))

1−e−N{o,d}

N
− e−Pcsµl(r)

(
1−e−N{o,d}

N2
{o,d}

− e
−N{o,d}

N{o,d}

)
with for omni-directional antennas

bo(r) = 2No − λ
∫ ∞
−∞

e−Pcsµ(l(|x|)+l(|r−x|)dx.

and for directional antennas

bd(r) = 2Nd −
λ

2

∫ ∞
−∞

e−Pcsµ(l(τ)+l(|r−τ |))dτ

Proof: The proof can be found in [14]. The formula is a
simple adaptation of the 2D case to the 1D case and is left
to the reader. Careful attention must be paid to distinguish the
directional antenna and omni-directional antenna cases.

Proposition III.7. Given the transmission of a packet, we de-
note by pc(r, Pcs) the probability this packet being successfully
received at distance r in a CSMA system (modeled by a Matern
selection process with a carrier sense threshold Pcs) and with
a capture threshold T . We have:

p{o,d}c (r, Pcs) ' exp
(
− λ

∫ ∞
−∞

h{o,d}(τ)

1 + l(|r−τ |)
Tl(r)

dτ
)

Proof: Assuming a packet is transmitted, pc(r, Pcs) de-
notes the probability of this packet being successfully received
at distance r in a CSMA system using a Matern selection
process with a carrier sense threshold Pcs and with a capture
threshold T .
The idea is to consider a transmitter at the origin and to
evaluate the probability of successful reception by a receiver
located at distance r. We condition the reception of a packet
by the presence of another transmitting node at distance τ .
According to proposition III.6, the density of such nodes is
λh(τ). We obtain the result by integrating on τ . The details
of the proof can be found in [14] for 2D networks. The 1D
network case is a simple adaptation of the 2D case.

It is easy to add thermal noise W to the model. The expression
of pc(r, Pcs) must then be multiplied by LW (µT l(r)) where
LW (.) is the Laplace Transform of the noise.

Proposition III.8. The spatial density of successful transmis-
sions is thus: λppc(r, Pcs)

pc(r, Pcs) is poc(r, Pcs) for omni-directional antennas and
pdc(r, Pcs) for directional antennas.

Proof: Proposition III.8 is just the exploitation of Propo-
sitions III.4 and III.7.

IV. RESULTS OF THE MODEM AND COMPARISON
DIRECTIONAL/OMNI-DIRECTIONAL ANTENNAS

We study the transmissions for pairs of source-neighbor nodes
We know that the average distance between one node and its
neighbor node is r = 1/λ, thus we adopt the value of r in the
following.
The aim of our adaptive algorithm will be to ensure that Pcs
is tuned so that the spatial density of successful transmissions
as defined in Proposition III.8 is optimized with respect to the
spatial density of nodes λ in the Poisson Point Process.

A. Results with Aloha
In Figure IV.1 we present the density of successful transmis-
sion for slotted Aloha with omni directional and directional
antennas for different of p. We use the following parameters



λ = 0.1, r = 10 and β = 2. The gain when we use a
directional antenna (rather than an omni-directional antenna)
is 2.7 for p = 0.2, 7.5 for p = 0.4 and up 30 to when p = 0.6.
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Fig. IV.1. Density of successful transmissions versus p with T = 10, β = 2
(Slotted Aloha).

In Figure IV.2, we present the density of successful trans-
missions for non-slotted Aloha with omni directional and
directional antennas for different values of p and λ = 0.1,
r = 10 and β = 2. We note again a significant gain if
directional antennas are used. A comparison of Figure IV.1 and
Figure IV.2 allows one to compare the performance of non-
slotted and slotted Aloha. If p is optimized for each scheme,the
gain of slotted Aloha over non-slotted Aloha is around 1.35
for directional antennas and omni-directional antennas.
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In order to make the best use of our MAC protocols, we
optimize Aloha in p with directional and omni-directional
antennas and we present the value of the density of successful
transmissions with this optimization. The results of these
computations are given in Figure IV.3, where we vary the
transmission decay β. The gain of the directional antenna over
the omni-directional antenna is uniformly equal to 2.
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Fig. IV.3. Density of successful transmissions optimized in p with T = 10,
β = 2 .

Figure IV.4 gives the density of successful transmissions for
non-slotted Aloha when we vary the transmission decay β.
The gain of the directional antenna over the omni-directional
antenna is again uniformly equal to 2.
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B. Results with CSMA

We still use the following parameters λ = 0.1, r = 10
and β = 2 if not otherwise specified. In Figure IV.5 we
study the density of successful transmission for CSMA when
we use omni-directional and directional antennas. Using di-
rectional antennas provides better performance than using
omni-directional antennas except when the carrier detection
threshold is high. For Pcs = 0.001, the gain obtained when we
use directional rather than of omni-directional antennas is 1.44
and 1.15 for Pcs = 0.002. For Pcs = 0.0032, directional and
omni-directional antennas have a similar density of successful
transmissions. For Pcs > 0.0032, omni-directional antennas
give better performances than directional antennas.
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for CSMA with omni-directional and directional antennas (λ = 0.1, r = 10,
T = 10 and β = 2).

To obtain the best performance we study the optimization
of CSMA (with directional and omni-directional antennas)
with respect to the carrier sense detection threshold Pcs. The
result of this study is presented in Figure IV.6. The density of
successful transmissions is increased by a factor of 1.94 when
β = 1.5 and by a factor of 1.47 when β = 3.
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Fig. IV.6. Density of successful transmissions when the carrier sense detection
threshold is optimized versus β (λ = 0.1, r = 10, T = 10).

In Figure IV.7, we study the density of successful transmission
(when CSMA is optimized with respect to Pcs) with respect to
the capture threshold T . We observe that the gain when we use
directional antennas rather than of omni-directional antennas
is 1.97 when T = 1 and only 1.68 when T = 10.
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V. CONCLUSION

In this paper, we present a simple stochastic model based
on the Signal-to-Interference Ratio (SIR) to evaluate the gain
when we use directional antennas instead of omni-directional
antennas in a VANET. We assume that the vehicles in our
VANET are located according to a homogeneous Poisson Point
Process of density λ. The decay of the transmission signal
follows a power law and we assume that there is also Rayleigh
fading. We compute the density of successful transmissions
from a given node to a neighbor node at distance r. In our
numerical results r is chosen to be the average distance from
one node to its closest neighbor.
We adopt Aloha (slotted and non-slotted) and CSMA as
access schemes. For Aloha we have obtained simple closed
formulas. We have also obtained explicit formulas for CSMA
but which require more intensive computation. For any given
transmission probability p, Aloha with directional antennas
has a significantly larger density of successful transmissions
than Aloha with omni-directional antennas. When optimized
in p, the gain in density of successful transmission of Aloha
when we use directional instead of omni-directional antennas
is exactly 2. In CSMA, a gain most often occurs when we
use directional rather than omni-directional antennas. This also
true when the carrier sense detection threshold is optimized.
The gain obtained when when use directional antennas belongs
to the interval [1.47, 1.97] depending on the values of the
parameters of the model β and T .
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