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ENERGY SCATTERING FOR A CLASS OF THE DEFOCUSING
INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATION

VAN DUONG DINH

Abstract. In this paper, we consider a class of the defocusing inhomogeneous nonlinear Schrödinger
equation

i∂tu+ ∆u− |x|−b|u|αu = 0, u(0) = u0 ∈ H1,

with b, α > 0. We firstly study the decaying property of global solutions for the equation when
0 < α < α? where α? = 4−2b

d−2 for d ≥ 3. The proof makes use of an argument of Visciglia in [22].
We next use this decay to show the energy scattering for the equation in the case α? < α < α?,
where α? = 4−2b

d
.

1. Introduction

Consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation{
i∂tu+ ∆u+ µ|x|−b|u|αu = 0,

u(0) = u0,
(INLS)

where u : R × Rd → C, u0 : Rd → C, µ = ±1 and α, b > 0. The parameters µ = 1 and µ = −1
correspond to the focusing and defocusing cases respectively. The case b = 0 is the well-known
nonlinear Schrödinger equation which has been studied extensively over the last three decades.
The inhomogeneous nonlinear Schrödinger equation arises naturally in nonlinear optics for the
propagation of laser beams, and it is of a form

i∂tu+ ∆u+K(x)|u|αu = 0. (1.1)

The (INLS) is a particular case of (1.1) with K(x) = |x|−b. The equation (1.1) has been attracted a
lot of interest in a past several years. Bergé in [1] studied formally the stability condition for soliton
solutions of (1.1). Towers-Malomed in [21] observed by means of variational approximation and
direct simulations that a certain type of time-dependent nonlinear medium gives rise to completely
stabe beams. Merle in [16] and Raphaël-Szeftel in [18] studied (1.1) for k1 < K(x) < k2 with
k1, k2 > 0. Fibich-Wang in [10] investigated (1.1) with K(x) := K(ε|x|) where ε > 0 is small and
K ∈ C4(Rd) ∩ L∞(Rd). The case K(x) = |x|b with b > 0 is studied by many authors (see e.g.
[3, 15, 23] and references therein).

In order to review known results for the (INLS), we recall some facts for this equation. We
firstly note that the (INLS) is invariant under the scaling,

uλ(t, x) := λ
2−b
α u(λ2t, λx), λ > 0.

An easy computation shows

‖uλ(0)‖Ḣγ(Rd) = λγ+ 2−b
α −

d
2 ‖u0‖Ḣγ(Rd).
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Thus, the critical Sobolev exponent is given by

γc := d

2 −
2− b
α

. (1.2)

Moreover, the (INLS) has the following conserved quantities:

M(u(t)) :=
∫
Rd
|u(t, x)|2dx = M(u0), (1.3)

E(u(t)) :=
∫
Rd

1
2 |∇u(t, x)|2 − µ

α+ 2 |x|
−b|u(t, x)|α+2dx = E(u0). (1.4)

The well-posedness for the (INLS) was firstly studied by Genoud-Stuart in [11, Appendix] by
using the argument of Cazenave [2] which does not use Strichartz estimates. More precisely, the
authors showed that the focusing (INLS) with 0 < b < min{2, d} is well posed in H1(Rd):

• locally if 0 < α < α?,
• globally for any initial data if 0 < α < α?,
• globally for small initial data if α? ≤ α < α?,

where α? and α? are defined by

α? := 4− 2b
d

, α? :=
{

4−2b
d−2 if d ≥ 3,
∞ if d = 1, 2.

(1.5)

In the case α = α? (L2-critical), Genoud in [12] showed that the focusing (INLS) with 0 < b <
min{2, d} is globally well-posed in H1(Rd) assuming u0 ∈ H1(Rd) and

‖u0‖L2(Rd) < ‖Q‖L2(Rd),

where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state
equation

∆Q−Q+ |x|−b|Q|
4−2b
d Q = 0.

Also, Combet-Genoud in [5] established the classification of minimal mass blow-up solutions for
the focusing L2-critical (INLS).

In the case α? < α < α?, Farah in [7] showed that the focusing (INLS) with 0 < b < min{2, d}
is globally well-posedness in H1(Rd), d ≥ 3 assuming u0 ∈ H1(Rd) and

E(u0)γcM(u0)1−γc < E(Q)γcM(Q)1−γc , (1.6)

‖∇u0‖γc
L2(Rd)‖u0‖1−γc

L2(Rd) < ‖∇Q‖
γc
L2(Rd)‖Q‖

1−γc
L2(Rd),

where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state
equation

∆Q−Q+ |x|−b|Q|αQ = 0.
He also proved that if u0 ∈ H1(Rd) ∩ L2(Rd, |x|2dx) =: Σ satisfies (1.6) and

‖∇u0‖γc
L2(Rd)‖u0‖1−γc

L2(Rd) > ‖∇Q‖
γc
L2(Rd)‖Q‖

1−γc
L2(Rd), (1.7)

then the blow-up in H1(Rd) must occur. Afterwards, Farah-Guzman in [8, 9] proved that the
above global solution is scattering under the radial condition of the initial data.

Recently, Guzman in [14] used Strichartz estimates and the contraction mapping argument to
establish the well-posedness for the (INLS) in Sobolev space. Precisely, he showed that:

• if 0 < α < α? and 0 < b < min{2, d}, then the (INLS) is locally well-posed in L2(Rd). It
is then globally well-posed in L2(Rd) by mass conservation.
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• if 0 < α < α̃, 0 < b < b̃ and max{0, γc} < γ ≤ min
{
d
2 , 1
}

where

α̃ :=
{

4−2b
d−2γ if γ < d

2 ,

∞ if γ = d
2

and b̃ :=
{

d
3 if d = 1, 2, 3,
2 if d ≥ 4,

(1.8)

then the (INLS) is locally well-posed in Hγ(Rd).
• if α? < α < α̃, 0 < b < b̃ and γc < γ ≤ min

{
d
2 , 1
}

, then the (INLS) is globally well-posed
in Hγ(Rd) for small initial data.

In particular, Guzman proved the following local well-posedness in the energy space for the (INLS).

Theorem 1.1 ([14]). Let d ≥ 2, 0 < b < b̃ and 0 < α < α?. Then the (INLS) is locally well-
posed in H1(Rd). Moreover, the local solutions satisfy u ∈ Lploc(R, Lq(Rd)) for any Schrödinger
admissible pair (p, q).

Recently, the author in [6] improved the range of b in Theorem 1.1 in the two and three dimen-
sional spatial spaces. More precisely, he proved the following:

Theorem 1.2 ([6]). Let
d ≥ 4, 0 < b < 2, 0 < α < α?,

or
d = 3, 0 < b < 1, 0 < α < α?,

or
d = 3, 1 ≤ b < 3

2 , 0 < α <
6− 4b
2b− 1 ,

or
d = 2, 0 < b < 1, 0 < α < α?.

Then the (INLS) is locally well-posed in H1(Rd). Moreover, the solutions satisfy u ∈ Lploc(R, Lq(Rd))
for any Schrödinger admissible pair (p, q).

Note that the results of Guzman [14] and Dinh [6] about the local well-posedness of (INLS) in
H1(Rd) are a bit weaker than the one of Genoud-Stuart [11]. Precisely, they do not treat the case
d = 1, and there is a restriction on the validity of b when d = 2 or 3. Note also that the author in
[6] pointed out that one cannot expect a similar result as Theorem 1.1 or Theorem 1.2 holds in the
one dimensional case by using Strichartz estimates. Although the result showed by Genoud-Stuart
is strong, but one does not know whether the local solutions belong to Lploc(R, Lq(Rd)) for any
Schrödinger admissible pair (p, q). This property plays an important role in proving the scattering
for the defocusing (INLS).

Note that the local well-posedness (which is also available for the defocusing case) of Genoud-
Stuart in [11] and the conservations of mass and energy immediately give the global well-posedness
in H1(Rd) for the defocusing (INLS). In [6], the author used the pseudo-conformal conservation
law to show the decaying property of global solutions by assuming the initial data in Σ (see before
(1.7)). In particular, he showed that in the case α ∈ [α?, α?), global solutions have the same
decay as the solutions of the linear Schrödinger equation, that is for 2 ≤ q ≤ 2d

d−2 when d ≥ 3 or
2 ≤ q <∞ when d = 2 or 2 ≤ q ≤ ∞ when d = 1,

‖u(t)‖Lq(Rd) . |t|−d(
1
2−

1
q ), ∀t 6= 0.

This allows the author proved the scattering in Σ for a certain class of the defocusing (INLS). We
refer the reader to [6] for more details.

The main purpose of this paper is to show the energy scattering property for the defocusing
(INLS). Before stating our resuts, let us recall some known techniques to prove the energy scattering
for the nonlinear Schrödinger equation (NLS). To our knowledge, there are two methods to prove
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the energy scattering for the (NLS). The first one is to use the classical Morawetz inequality to
derive the decay of global solutions, and then use it to prove the global Strichartz bound of solutions
(see e.g. [13, 17] or [2]). The second one is to use the interaction Morawetz inequality to derive
directly the global Strichartz bound for solutions (see e.g. [20], [4] and references therein). With
the global Strichartz bound at hand, the energy scattering follows easily. Note also that Visciglia
in [22] used the interaction Morawetz inequality to show the decay of global solutions. This allows
the author to show the decaying property for the (NLS) in any dimensions. This approach is a
complement to [13] where the classical Morawetz inequality only allowed to prove the decaying
property in spatial dimensions greater than or equal to three. It is worth noticing that the (INLS)
does not enjoy the conservation of momentum which is crucial to prove the interaction Morawetz-
type inequality (see e.g. [4]). We thus do not attempt to show the interaction Morawetz-type
inequality for the defocusing (INLS). It is also not clear to us that the techniques of [13, 17] can
be applied for the defocusing (INLS). Fortunately, we are able to use the classical Morawetz-type
inequality and the technique of [22] to show the decay of global solutions for the defocusing (INLS).
More precisely, we have the following decay of global solutions to the defocusing(INLS).

Theorem 1.3. Let d ≥ 3, 0 < b < 2 and 0 < α < α?. Let u0 ∈ H1(Rd) and u ∈ C(R, H1(Rd)) be
the unique global solution to the defocusing (INLS). Then,

lim
t→±∞

‖u(t)‖Lq(Rd) = 0, (1.9)

for every q ∈ (2, 2?), where 2? := 2d
d−2 .

The proof of this result is based on the classical Morawetz-type inequality and an argument of
Visciglia in [22]. The classical Morawetz-type inequality related to the defocusing (INLS) is derived
by using the same argument of that for the classical (NLS). This inequality is enough to prove
the decaying property for global solutions of the defocusing (INLS) by following the technique of
[22]. Note that in [22], the author used the interaction Morawetz inequality to show the decay of
solutions for the defocusing (NLS) in any dimensions. We expect that the decay (1.9) still holds
in dimensions 1 and 2. But it is not clear to us how to prove it at the moment.

Using the decaying property given in Theorem 1.3, we are able to show the energy scattering
for the defocusing (INLS). Due to the singularity of |x|−b, the scattering result does not cover the
full range of exponents as in Theorem 1.2. Our main result is the following:

Theorem 1.4. Let
d ≥ 4, 0 < b < 2, α? < α < α?,

or
d = 3, 0 < b <

5
4 , α? < α < 3− 2b.

Let u0 ∈ H1(Rd) and u be the unique global solution to the defocusing (INLS). Then there exists
u±0 ∈ H1(Rd) such that

lim
t→±∞

‖u(t)− eit∆u±0 ‖H1(Rd) = 0.

The proof of this result is based on a standard argument as for the nonlinear Schrödinger
equation (see e.g. [2, Chapter 7]). Because of the singularity |x|−b, one needs to be careful in
order to control the nonlinearity in terms of decay norms and Strichartz norms. The singularity
also leads to a restriction on the ranges of b and α compared to those in Theorem 1.3. We expect
that the same result still holds true in the two dimensional case. This expectation will be possible
if one can show the same decay as in Theorem 1.3 in 2D.

The plan of this paper is as follows. In Section 2, we introduce some notations and give
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some preliminary results related to our problem. In Section 3, we derive classical Morawetz-
type inequalities for the defocusing (INLS). The proof of the decaying property of Theorem 1.3 is
given in Section 4. Section 5 is devoted to the proof of the scattering result of Theorem 1.4.

2. Preliminaries

In the sequel, the notation A . B denotes an estimate of the form A ≤ CB for some constant
C > 0. The constant C may change from line to line.

2.1. Nonlinearity. Let F (x, z) := |x|−bf(z) with b > 0 and f(z) := |z|αz. The complex deriva-
tives of f are

∂zf(z) = α+ 2
2 |z|α, ∂zf(z) = α

2 |z|
α−2z2.

We have for z, w ∈ C,

f(z)− f(w) =
∫ 1

0

(
∂zf(w + θ(z − w))(z − w) + ∂zf(w + θ(z − w))z − w

)
dθ.

Thus,
|F (x, z)− F (x,w)| . |x|−b(|z|α + |w|α)|z − w|. (2.1)

To deal with the singularity |x|−b, we have the following remark.

Remark 2.1 ([14]). Let B := B(0, 1) = {x ∈ Rd : |x| < 1} and Bc := Rd\B. Then

‖|x|−b‖Lγ(B) <∞ if d

γ
> b,

and
‖|x|−b‖Lγ(Bc) <∞ if d

γ
< b.

2.2. Strichartz estimates. Let J ⊂ R and p, q ∈ [1,∞]. We define the mixed norm

‖u‖Lpt (J,Lqx) :=
(∫

J

(∫
Rd
|u(t, x)|qdx

) 1
q
) 1
p

with a usual modification when either p or q are infinity. When there is no risk of confusion, we
may write LptLqx instead of Lpt (J, Lqx). We also use Lpt,x when p = q.

Definition 2.2. A pair (p, q) is said to be Schrödinger admissible, for short (p, q) ∈ S, if

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
= d

2 .

We denote for any spacetime slab J × Rd,
‖u‖S(L2,J) := sup

(p,q)∈S
‖u‖Lpt (J,Lqx), ‖v‖S′(L2,J) := inf

(p,q)∈S
‖v‖

Lp
′
t (J,Lq

′
x ). (2.2)

We next recall well-known Strichartz estimates for the linear Schrödinger equation. We refer the
reader to [2, 19] for more details.

Proposition 2.3. Let u be a solution to the linear Schrödinger equation, namely

u(t) = eit∆u0 +
∫ t

0
ei(t−s)∆F (s)ds,

for some data u0, F . Then,
‖u‖S(L2,R) . ‖u0‖L2

x
+ ‖F‖S′(L2,R). (2.3)
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3. Classical Morawetz-type inequality

In this section, we will derive interaction Morawetz inequalities for the defocusing (INLS) by
following the technique of [20]. Given a smooth real valued function a, we define the Morawetz
action by

Ma(t) := 2
∫
Rd
∇a(x) · Im (u(t, x)∇u(t, x))dx. (3.1)

By a direct computation, we have the following result.

Lemma 3.1 ([20]). If u is a smooth-in-time and Schwartz-in-space solution to
i∂tu+ ∆u = N(u),

with N(u) satisfying Im (N(u)u) = 0, then we have

d

dt
Ma(t) = −

∫
∆2a(x)|u(t, x)|2dx+ 4

d∑
j,k=1

∫
∂2
jka(x)Re (∂ku(t, x)∂ju(t, x))dx

+ 2
∫
∇a(x) · {N(u), u}p(t, x)dx,

(3.2)

where {f, g}p := Re (f∇g − g∇f) is the momentum bracket.

We refer the reader to [20, Lemma 5.3] for the proof of this result. Note that if N(u) = F (x, u) =
|x|−b|u|αu, then we have 1

{N(u), u}p = − α

α+ 2∇(|x|−b|u|α+2)− 2
α+ 2∇(|x|−b)|u|α+2. (3.3)

In particular, we have the following consequence.

Corollary 3.2. If u is a smooth-in-time and Schwartz-in-space solution to the defocusing (INLS),
then we have
d

dt
Ma(t) = −

∫
∆2a(x)|u(t, x)|2dx+ 4

d∑
j,k=1

∫
∂2
jka(x)Re (∂ku(t, x)∂ju(t, x))dx

+ 2α
α+ 2

∫
∆a(x)|x|−b|u(t, x)|α+2dx− 4

α+ 2

∫
∇a(x) · ∇(|x|−b)|u(t, x)|α+2dx.

(3.4)

With the help of Lemma 3.1, we obtain the following classical Morawetz-type inequalities for
the defocusing (INLS).

Proposition 3.3. Let d ≥ 3, 0 < b < 2 and u be a solution to the defocusing (INLS) on the
spacetime slab J × Rd. Then ∫

J

∫
Rd
|x|−b−1|u(t, x)|α+2dxdt <∞. (3.5)

Proof. We consider a(x) = |x|. An easy computation shows

∂ja(x) = xj
|x|
, ∂2

jka(x) = 1
|x|

(
δjk −

xjxk
|x|2

)
,

for j, k = 1, · · · , d. This implies

∇a(x) = x

|x|
, ∆a(x) = d− 1

|x|
,

1See the Appendix for the proof.
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and

−∆2a(x) = −(d− 1)∆
( 1
|x|

)
=
{

4π(d− 1)δ0 if d = 3,
(d−1)(d−3)
|x|3 if d ≥ 4,

where δ0 is the Dirac delta function. Since a is a convex function, it is well-known that
d∑

j,k=1
∂2
jkaRe (∂ku∂ju) ≥ 0.

Therefore, applying (3.4) with a(x) = |x|, we get
d

dt
M|x|(t) ≥

2α(d− 1) + 4b
α+ 2

∫
|x|−b−1|u(t, x)|α+2dx.

Thus, ∫
J

∫
Rd
|x|−b−1|u(t, x)|α+2dxdt . sup

t∈J
|M|x|(t)| . ‖u(t)‖L∞t (J,L2

x)‖∇u(t)‖L∞t (J,L2
x) <∞.

The last estimate follows from the conservations of mass and energy. �

Remark 3.4. The above method breaks down for d ≤ 2 since the distribution −∆2(|x|) is not
positive anymore. In this case, one can adapt an argument of Nakanishi in [17] to show∫

J

∫
Rd

t2

(t2 + |x|2) 3
2
|x|−b|u(t, x)|α+2dxdt <∞. (3.6)

However, we do not know whether the estimate (3.6) is sufficient to prove the decay of global
solutions to the defocusing (INLS).

4. Decay of global solutions

In this section, we will give the proof of Theorem 1.3. To do so, we follow the argument of
Visciglia in [22]. Let us start with the following:

Lemma 4.1. Let d ≥ 3, 0 < b < 2 and 0 < α < α?. Let χ ∈ C∞0 be a cutoff function and ψn ∈ H1
x

be a sequence such that
sup
n∈N
‖ψn‖H1

x
<∞, and ψn ⇀ ψ weakly in H1

x.

Let vn and v ∈ C(R, H1
x) be the corresponding solutions to the defocusing (INLS) with initial data

ψn and ψ respectively. Then for every ε > 0, there exists T (ε) > 0 and n(ε) ∈ N such that
sup

t∈(0,T (ε))
‖χ(vn(t)− v(t))‖L2

x
≤ ε, ∀n > n(ε). (4.1)

Proof. By the conservations of mass and energy,
sup

t∈R,n∈N

{
‖vn(t)‖H1

x
, ‖v(t)‖H1

x

}
<∞. (4.2)

By Rellich’s compactness lemma, up to a subsequence,
lim
n→∞

‖χ(ψn − ψ)‖L2
x

= 0. (4.3)

Now let wn(t, x) := χ(x)vn(t, x) and w(t, x) := χ(x)v(t, x). It is easy to see that
i∂twn = −∆wn + 2∇χ · ∇vn + vn∆χ+ χ|x|−b|vn|αvn, wn(0) = χψn,

and
i∂tw = −∆w + 2∇χ · ∇v + v∆χ+ χ|x|−b|v|αv, w(0) = χψ.
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Thus, by Duhamel formula,

wn(t)− w(t) = eit∆(χ(ψn − ψ))− i
∫ t

0
ei(t−s)∆

(
2∇χ · ∇(vn(s)− v(s)) + (vn(s)− v(s))∆χ

)
ds

−i
∫ t

0
ei(t−s)∆

(
χ|x|−b(|vn(s)|αvn(s)− |v(s)|αv(s))

)
ds. (4.4)

Due to the singularity of |x|−b, we need to consider two cases:
Case 1: The support of χ does not contain the origin. In this case, the proof follows as

in [22, Lemma 1.1]. For reader’s convenience, we recall some details. Denote J = (0, T ). Let us
introduce the following Schrödinger admissible pair (p, q), where

p = 8
(d− 2)α, q = 4d

2d− (d− 2)α.

Using Strichartz estimates, we get
‖wn − w‖Lpt (J,Lqx) . ‖χ(ψn − ψ)‖L2

x
+ ‖∇χ · ∇(vn − v)‖L1

t (J,L2
x)

+‖(vn − v)∆χ‖L1
t (J,L2

x) + ‖χ|x|−b(|vn|αvn − |v|αv)‖
Lp
′
t (J,Lq

′
x ). (4.5)

We use (4.2), Hölder’s inequality and the Sobolev embedding H1
x ⊂ L

2d
d−2
x to get

‖wn − w‖Lpt (J,Lqx) . ‖χ(ψn − ψ)‖L2
x

+ |J |+ ‖χ(vn − v)‖
Lp
′
t (J,Lqx) sup

t∈J

(
‖vn(t)‖α

L
2d
d−2
x

+ ‖v(t)‖α
L

2d
d−2
x

)
. ‖χ(ψn − ψ)‖L2

x
+ |J |+ |J |1−

2
p ‖vn − v‖Lpt (J,Lqx).

We learn from the above estimate and (4.3) that for every ε > 0, there exists n(ε) ∈ N and T (ε) > 0
such that

‖wn − w‖Lpt (I(ε),Lqx) ≤ ε, (4.6)

for all n > n(ε), where I(ε) = (0, T (ε)). By applying again Strichartz estimate and arguing as
above, we obtain

‖wn − w‖L∞t (I(ε),L2
x) . ‖χ(ψn − ψ)‖L2

x
+ C|I(ε)|+ |I(ε)|1−

2
p ‖wn − w‖Lpt (I(ε),Lqx).

Combining this estimate with (4.2) and (4.6), we prove (4.1).
Case 2: The support of χ contains the origin. Without loss of generality, we assume that

supp(χ) ⊂ B, where B is the ball centered at the origin and of radius 1. Since we are considering
0 < α < 4−2b

d−2 , there exists δ ∈
(

0, 2−b
2(d−2)

)
such that α = 4−2b

d−2 − 4δ. Let us choose a Schrödinger
admissible pair (p, q) with

p = 4
2− (d− 2)δ , q = 2d

(d− 2)(1 + δ) .

In the view of (4.5), it suffices to bound ‖χ|x|−b(|vn|αvn − |v|αv)‖
Lp
′
t (J,Lq

′
x ). To do this, we use

Hölder’s inequality, Sobolev embedding and (4.2) to get

‖χ|x|−b(|vn|αvn − |v|αv)‖
Lp
′
t (J,Lq

′
x ) ≤ ‖|x|

−b(|vn|αvn − |v|αv)‖
Lp
′
t (J,Lq

′
x (B))

. ‖|x|−b‖Lγx(B)‖|vn|αvn − |v|αv‖Lp′t (J,Lrx)

. ‖vn − v‖Lp′t (J,Lqx) sup
t∈I

(
‖vn(t)‖α

L
2d
d−2
x

+ ‖v(t)‖α
L

2d
d−2
x

)
. |J |

(d−2)δ
2 ‖vn − v‖Lpt (J,Lqx), (4.7)
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where
γ = d

(d− 2)δ + b
, r = 2d

4− 2b+ (d− 2)(1− 3δ) .

By Remark 2.1, ‖|x|−b‖Lγx(B) <∞ provided d
γ > b, and it is easy to check that

d

γ
= (d− 2)δ + b > b.

With (4.7) at hand, we argue as in Case 1 to have (4.1). �

Remark 4.2. It is not hard to check that Lemma 4.1 still holds true for any d ≥ 1, 0 < b <
min{2, d} and 0 < α < α?.

We are now able to prove the decay of global solutions to the defocusing (INLS).
Proof of Theorem 1.3. We only consider the case t→ +∞, the case t→ −∞ is treated similarly.
We firstly note that by interpolating between L2

x-norm, L2?
x -norm and Lqx with 2 < q < 2?, it suffices

to prove (1.9) for q = 2 + 4
d . We next recall the following localized Gagliardo-Nirenberg inequality

for d ≥ 3, that is

‖ϕ‖2+ 4
d

L
2+ 4

d
x

≤ C
(

sup
x∈Rd

‖ϕ‖L2(Q1(x))

) 4
d ‖ϕ‖2H1

x
, (4.8)

where Qr(x) is the cubic in Rd centered at x whose edge has length r. Let u be the global solution
to the defocusing (INLS). The conservations of mass and energy show that

sup
t∈R
‖u(t)‖H1

x
<∞.

Assume by the absurd that there is a sequence tn →∞ such that
‖u(tn)‖

L
2+ 4

d
x

≥ ε0 > 0, (4.9)

for all n ∈ N. By applying (4.8) with ϕ ≡ u(tn, x), we see from (4.9) that there exists a sequence
(xn)n∈N of Rd such that

‖u(tn)‖L2(Q1(xn)) ≥ ε1 > 0, (4.10)

for all n ∈ N. We now set ψn(t, x) := u(tn, x+ xn). By the conservations of mass and energy,
sup
n∈N
‖ψn‖H1

x
<∞.

Thus, up to a subsequence, there exists ψ ∈ H1 such that ψn ⇀ ψ weakly in H1
x. By Rellich’s

compactness lemma, up to a subsequence, we have
lim
n→∞

‖ψn − ψ‖L2(Q1(0)) = 0. (4.11)

We also have from (4.10) that ‖ψn‖L2(Q1(0)) ≥ ε1. Thus, (4.11) ensures that there exists a positive
real number still denoted by ε1 such that

‖ψ‖L2(Q1(0)) ≥ ε1. (4.12)

Let us now introduce vn(t, x) and v(t, x) as the solutions to{
i∂tvn + ∆vn − |x− xn|−b|vn|αvn = 0,

vn(0) = ψn,

and {
i∂tv + ∆v − |x− xn|−b|v|αv = 0,

v(0) = ψ,
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Let χ be any cutoff function supported in Q2(0) such that χ ≡ 1 on Q1(0). We have from (4.12)
and a continuity argument that there exists T1 > 0 such that

inf
t∈(0,T1)

‖χv(t)‖L2
x
≥ ε1

2 .

Next, applying Lemma 4.1, there exists T2 > 0 and N ∈ N such that

sup
t∈(0,T2)

‖χ(vn(t)− v(t)‖L2
x
≤ ε1

4 ,

for all n > N . Thus, we get for all t ∈ (0, T0) with T0 = min{T1, T2} and all n > N ,

‖χvn(t)‖L2
x
≥ ‖χv(t)‖L2

x
− ‖χ(vn(t)− v(t)‖L2

x
≥ ε1

4 .

By the choice of χ, we have for all t ∈ (0, T0) and all n > N ,

‖vn(t)‖L2(Q2(0)) ≥
ε1
4 . (4.13)

By the uniqueness of local solution to the (INLS),
vn(t, x) = u(t+ tn, x+ xn).

Thus, for all t ∈ (tn, tn + T0) and all n > N ,

‖u(t)‖L2(Q2(xn)) ≥
ε1
4 . (4.14)

Moreover, as limn→∞ tn = +∞, we can suppose 2 that tn+1 − tn > T0 for n > N . By Hölder’s
inequality,

‖u(t)‖Lα+2(Q2(xn)) & ‖u(t)‖L2(Q2(xn)) ≥
ε1
4 , (4.15)

for all t ∈ (tn, tn + T0) and all n > N .
The classical Morawetz inequality (3.5) combined with (4.15) imply

∞ >

∫ +∞

0

∫
Rd
|x|−b−1|u(t, x)|α+2dxdt

&
∑
n>N

∫ tn+T0

tn

∫
Q2(xn)

|u(t, x)|α+2dxdt

&
∑
n>N

(ε1
4

)α+2
T0 =∞.

This is impossible, and the proof is complete. �

5. Scattering property

In this section, we will give the proof of the scattering property given in Theorem 1.4. To do
this, we use Strichartz estimates and the decay property given in Theorem 1.3 to obtain a global
bound on the solution. The scattering property follows easily from the standard argument.

Lemma 5.1. Let d, b and α be as in Theorem 1.4. Let u be a solution to the defocusing (INLS)
on a spacetime slab J × Rd and t0 ∈ J . Then there exists θ1, θ2 ∈ (0, α) and q1, q2 ∈ (2, 2?) such
that

‖u− eit∆u(t0)‖S(J) . ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
1+θ1
S(J) + ‖u‖α−θ2

L∞t (J,Lq2
x )‖u‖

1+θ2
S(J) ,

where ‖u‖S(J) := ‖ 〈∇〉u‖S(L2,J).
2One can reduce the value of T0 and increase the value of N if necessary.
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Proof. By Duhamel’s formula, the solution to the defocusing (INLS) can be writen as

u(t) = eit∆u(t0)− i
∫ t

t0

ei(t−s)∆|x|−b|u(s)|αu(s)ds.

The Strichartz estimate (2.3) implies
‖u− eit∆u(t0)‖S(J) . ‖|x|−b|u|αu‖S′(L2,J) + ‖∇(|x|−b|u|αu)‖S′(L2,J).

We next bound
‖|x|−b|u|αu‖S′(L2,J) ≤ ‖|x|−b|u|αu‖S′(L2(B),J) + ‖|x|−b|u|αu‖S′(L2(Bc),J) =: A1 +A2,

‖∇(|x|−b|u|αu)‖S′(L2,J) ≤ ‖∇(|x|−b|u|αu)‖S′(L2(B),J) + ‖∇(|x|−b|u|αu)‖S′(L2(Bc),J) =: B1 +B2.

On B. By Hölder’s inequality and Remark 2.1,
A1 ≤ ‖|x|−b|u|αu‖

L
p′1
t (J,L

q′1
x (B))

. ‖|x|−b‖Lγ1
x (B)‖|u|αu‖

L
p′1
t (J,Lυ1

x )

. ‖‖u‖α+1
L
q1
x
‖
L
p′1
t (J)

. ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
1+θ1
L
p1
t (J,Lq1

x ),

provided that (p1, q1) ∈ S and
1
q′1

= 1
γ1

+ 1
υ1
,

d

γ1
> b,

1
υ1

= α+ 1
q1

, θ ∈ (0, α), 1
p′1

= 1 + θ1

p1
.

This implies
d

γ1
= d− d(α+ 2)

q1
> b, p1 = θ1 + 2 ∈ (2, α+ 2). (5.1)

The first condition in (5.1) is equivalent to q1 >
d(α+2)
d−b . Let us choose

q1 = d(α+ 2)
d− b

+ ε, (5.2)

for some 0 < ε� 1 to be chosen later. Since α? < α < α?, by taking ε > 0 sufficiently small, it is
easy to see that q1 ∈ (2, 2?). It remains to check p1 < α+ 2. Since (p1, q1) ∈ S, we need to show

2
p1

= d

2 −
d

q1
>

2
α+ 2 or d

q1
<
d(α+ 2)− 4

2(α+ 2) .

It is in turn equivalent to
d(α+ 2)(dα− 4 + 2b) + ε(d− b)[d(α+ 2)− 4] > 0.

Since α > α? = 4−2b
d , the above inequality holds true by taking ε > 0 small enough. We thus

obtain
A1 . ‖u‖α−θ1

L∞t (J,Lq1
x )‖u‖

1+θ1
L
p1
t (J,Lq1

x ) . ‖u‖
α−θ1
L∞t (J,Lq1

x )‖u‖
1+θ1
S(J) . (5.3)

We next bound
B1 ≤ ‖|x|−b∇(|u|αu)‖S′(L2(B),J) + ‖|x|−b−1|u|αu‖S′(L2(B),J) =: B11 +B12.

By the fractional chain rule, we estimate
B11 ≤ ‖|x|−b∇(|u|αu)‖

L
p′1
t (J,L

q′1
x (B))

. ‖|x|−b‖Lγ1
x (B)‖∇(|u|αu)‖

L
p′1
t (J,Lυ1

x )

. ‖‖u‖αLq1
x
‖∇u‖Lq1

x
‖
L
p′1
t (J)

. ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
θ1
L
p1
t (J,Lq1

x )‖∇u‖Lp1
t (J,Lq1

x ),
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provided that (p1, q1) ∈ S and
1
q′1

= 1
γ1

+ 1
υ1
,

d

γ1
> b,

1
υ1

= α+ 1
q1

,
1
p′1

= 1 + θ1

q1
, θ1 ∈ (0, α).

This implies
d

γ1
= d− d(α+ 2)

q1
> b, p1 = θ1 + 2 ∈ (2, α+ 2).

This condition is exactly (5.1). Therefore, we choose q1 as in (5.2) and get

B11 . ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
θ1
L
p1
t (J,Lq1

x )‖∇u‖Lp1
t (J,Lq1

x ) . ‖u‖
α−θ1
L∞t (J,Lq1

x )‖u‖
1+θ1
S(J) . (5.4)

We next bound

B12 ≤ ‖|x|−b−1|u|αu‖
L
p′1
t (J,L

q′1
x (B))

. ‖|x|−b‖Lγ1
x (B)‖|u|αu‖

L
p′1
t (J,Lυ1

x )

. ‖‖u‖αLq1
x
‖u‖Ln1

x
‖
L
p′1
t (J)

. ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
θ1
L
p1
t (J,Lq1

x )‖u‖Lp1
t (J,Ln1

x ).

When d ≥ 4, we use the homogeneous Sobolev embedding ‖u‖Ln1
x
. ‖∇u‖Lq1

x
to have

B12 . ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
θ1
L
p1
t (J,Lq1

x )‖∇u‖Lp1
t (J,Lq1

x ).

The above estimates hold true provided that (p1, q1) ∈ S and
1
q′1

= 1
γ1

+ 1
υ1
,

d

γ1
> b+ 1, 1

υ1
= α

q1
+ 1
n1
,

1
p′1

= 1 + θ1

p1
, θ1 ∈ (0, α),

and
q1 < d,

1
n1

= 1
q1
− 1
d
.

Note that the last condition allows us to use the homogeneous Sobolev embedding. The above
requirements imply

d

γ1
= d− d(α+ 2)

q1
+ 1 > b+ 1, p1 = θ1 + 2 ∈ (2, α+ 2).

This is exactly (5.1). We thus choose q1 as in (5.2). Note that by taking ε > 0 small enough, the
requirement q1 < d is satisfied if

d(α+ 2)
d− b

< d or α < d− b− 2. (5.5)

Since d ≥ 4, it is easy to check that α? = 4−2b
d−2 ≤ d− b− 2. We thus get for d ≥ 4, 0 < b < 2 and

α? < α < α?,

B12 . ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
1+θ1
S(J) . (5.6)

When d = 3, we firstly note that (5.5) does not hold true. We use instead the inhomogeneous
Sobolev embedding ‖u‖Ln1

x
. ‖ 〈∇〉u‖Lq1

x
to have

B12 . ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
θ1
L
p1
t (J,Lq1

x )‖ 〈∇〉u‖Lp1
t (J,Lq1

x ).

The above estimate holds true provided that (p1, q1) ∈ S and
1
q′1

= 1
γ1

+ 1
υ1
,

3
γ1

> b+ 1, 1
υ1

= α

q1
+ 1
n1
,

1
p′1

= 1 + θ1

p1
, θ1 ∈ (0, α),
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and
3 < q1, n1 ∈ (q1,∞) or 1

n1
= τ

q1
, τ ∈ (0, 1).

Here the last condition ensures the inhomogeneous Sobolev embedding. The above requirements
imply

3
γ1

= 3− 3(α+ 1 + τ)
q1

> b− 1 or 3(α+ 1 + τ)
q1

< 2− b.

Let us choose

q1 = 3(α+ 1 + τ)
2− b + ε,

for some 0 < ε� 1 to be chosen later. It remains to check

q1 ∈ (3, 6), p1 ∈ (2, α+ 2).

By taking ε > 0 small enough, the condition q1 ∈ (3, 6) implies

1− b− τ < α < 3− 2b− τ. (5.7)

Since (p1, q1) ∈ S, the condition 3 p1 < α+ 2 is equivalent to
3
2 −

3
q1

= 2
p1

>
2

α+ 2 .

The above condition is then equivalent to

3[3α2 + (1 + 2b)α+ 4b− 6 + τ(3α+ 2)] + ε(2− b)(3α+ 2) > 0.

By taking ε > 0 sufficiently small, the above inequality holds true provided that

3α2 + (1 + 2b)α+ 4b− 6 + τ(3α+ 2) > 0. (5.8)

Now, if we take τ closed to 0, (5.7) and (5.8) imply

1− b < α < 3− 2b, α >
−1− 2b+

√
4b2 − 44b+ 73
6 .

Combining this with the assumption 4−2b
3 = α? < α < α? = 4− 2b, we have

4− 2b
3 < α < 3− 2b, 0 < b <

5
4 . (5.9)

We thus obtain for d = 3 and α, b as in (5.9),

B12 . ‖u‖α−θ1
L∞t (J,Lq1

x )‖u‖
1+θ1
S(J) . (5.10)

On Bc. By Hölder’s inequality and Remark 2.1,

A2 ≤ ‖|x|−b|u|αu‖
L
p′2
t (J,L

q′2
x (Bc))

. ‖|x|−b‖Lγ2
x (Bc)‖|u|αu‖

L
p′2
t (J,Lυ2

x )

. ‖‖u‖α+1
L
q2
x
‖
L
p′2
t (J)

. ‖u‖α−θ2
L∞t (J,Lq2

x )‖u‖
1+θ2
L
p2
t (J,Lq2

x ),

provided that (p2, q2) ∈ S and
1
q′2

= 1
γ2

+ 1
υ2
,

d

γ2
< b,

1
υ2

= α+ 1
q2

,
1
p′2

= 1 + θ2

p2
, θ2 ∈ (0, α).

3Note that q1 < 6 implies p1 > 2.
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This implies
d

γ2
= d− d(α+ 2)

q2
< b, p2 = θ2 + 2 ∈ (2, α+ 2). (5.11)

The first condition in (5.11) implies q2 <
d(α+2)
d−b . Let us choose

q2 = d(α+ 2)
d− b

− ε, (5.12)

for some 0 < ε� 1 to be chosen later. By taking ε > 0 small enough, the assumption α? < α < α?

ensures q2 ∈ (2, 2?). It remains to check p2 < α+ 2. Since (p2, q2) ∈ S, it is equivalent to
d

2 −
d

q2
= 2
p2

>
2

α+ 2 or d

q2
<
d(α+ 2)− 4

2(α+ 2) .

A direct computation shows that the above condition is equivalent to
d(α+ 2)(dα− 4 + 2b)− ε(d− b)[d(α+ 2)− 4] > 0.

Since α > 4−2b
d , the above inequality holds true by taking ε > 0 small enough. We thus get

A2 . ‖u‖α−θ2
L∞t (J,Lq2

x )‖u‖
1+θ2
L
p2
t (J,Lq2

x ) . ‖u‖
α−θ2
L∞t (J,Lq2

x )‖u‖
1+θ2
S(J) . (5.13)

We next bound
B2 ≤ ‖|x|−b∇(|u|αu)‖S′(L2(Bc),J) + ‖|x|−b−1|u|αu‖S′(L2(Bc),J) =: B21 +B22.

By the fractional chain rule, Hölder’s inequality and Remark 2.1,
B21 ≤ ‖|x|−b∇(|u|αu)‖

L
p′2
t (J,L

q′2
x (Bc))

. ‖|x|−b‖Lγ2
x (Bc)‖∇(|u|αu)‖

L
p′2
t (J,Lυ2

x )

. ‖‖u‖αLq2
x
‖∇u‖Lq2

x
‖
L
p′2
t (J)

. ‖u‖α−θ2
L∞t (J,Lq2

x )‖u‖
θ2
L
p2
t (J,Lq2

x )‖∇u‖Lp2
t (J,Lq2

x ),

provided that (p2, q2) ∈ S and
1
q′2

= 1
γ2

+ 1
υ2
,

d

γ2
< b,

1
υ2

= α+ 1
q2

,
1
p′2

= 1 + θ2

p2
, θ2 ∈ (0, α).

These conditions are exactly those for A2. We thus choose q2 as in (5.12) and obtain

B21 . ‖u‖α−θ2
L∞t (J,Lq2

x )‖u‖
θ2
L
p2
t (J,Lq2

x )‖∇u‖Lp2
t (J,Lq2

x ) . ‖u‖
α−θ2
L∞t (J,Lq2

x )‖u‖
1+θ2
S(J) . (5.14)

It remains to treat B22. By Hölder’s inequality and Remark 2.1,
B22 ≤ ‖|x|−b−1|u|αu‖

L
p′2
t (J,L

q′2
x (Bc))

. ‖|x|−b−1‖Lγ2
x (Bc)‖|u|αu‖

L
p′2
t (J,Lυ2

x )

. ‖‖u‖αLq2
x
‖u‖Ln2

x
‖
L
p′2
t (J)

. ‖u‖α−θ2
L∞t (J,Lq2

x )‖u‖
θ2
L
p2
t (J,Lq2

x )‖u‖Lp2
t (J,Ln2

x ),

provided that
1
q′2

= 1
γ2

+ 1
υ2
,

d

γ2
< b+ 1, 1

υ2
= α

q2
+ 1
n2
,

1
p′2

= 1 + θ2

p2
, θ2 ∈ (0, α). (5.15)

As for B12, we separate two cases: d ≥ 4 and d = 3.
When d ≥ 4, we use the homogeneous Sobolev embedding ‖u‖Ln2

x
. ‖∇u‖Lq1

x
provided that

q2 < d,
1
n2

= 1
q2
− 1
d
.
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Thus, (5.15) implies
d

γ2
= d− d(α+ 2)

q2
+ 1 < b+ 1 or d− d(α+ 2)

q2
< b, p2 = θ2 + 2 ∈ (2, α+ 2).

This condition is exactly (5.11). We thus choose q2 as in (5.12). Note that by taking ε > 0 small
enough, this condition holds true if we have

d(α+ 2)
d− b

< d or α < d− b− 2.

Since d ≥ 4, we always have 4−2b
d−2 < d − b − 2. Therefore, the last estimate holds true for

α? < α < α?. We obtain for d ≥ 4, 0 < b < 2 and α? < α < α?,
B22 . ‖u‖α−θ2

L∞t (J,Lq2
x )‖u‖

θ2
L
p2
t (J,Lq2

x )‖∇u‖Lp2
t (J,Lq2

x ) . ‖u‖
α−θ2
L∞t (J,Lq2

x )‖u‖
1+θ2
S(J) . (5.16)

When d = 3, we use the inhomogeneous Sobolev embedding ‖u‖Ln2
x
. ‖ 〈∇〉u‖Lq2

x
provided that

q2 > 3, n2 ∈ (q2,∞) or 1
n2

= τ

q2
, τ ∈ (0, 1).

Thus, (5.15) implies
3
γ2

= 3− 3(α+ 1 + τ)
q2

< b+ 1 or 3(α+ 1 + τ)
q2

> 2− b.

Let us choose
q2 = 3(α+ 1 + τ)

2− b − ε,

for some 0 < ε� 1 to be chosen later. We need to check q2 ∈ (3, 6) and p2 ∈ (2, α+ 2). By taking
ε > 0 sufficiently small, these conditions hold true if we have

1− b− τ < α < 3− 2b− τ, 3α2 + (1 + 2b)α+ 4b− 6 + τ(3α+ 2) > 0.
Taking τ closed to 0, we have

1− b < α < 3− 2b, α >
−1− 2b+

√
4b2 − 44b+ 73
6 .

By the assumption 4−2b
3 < α < 4 − 2b, we see that b and α satisfy (5.9). Therefore, we get for

d = 3 and b, α as in (5.9),

B22 . ‖u‖α−θ2
L∞t (J,Lq2

x )‖u‖
θ2
L
p2
t (J,Lq2

x )‖ 〈∇〉u‖Lp2
t (J,Lq2

x ) . ‖u‖
α−θ2
L∞t (J,Lq2

x )‖u‖
1+θ2
S(J) . (5.17)

Collecting (5.3), (5.4), (5.6), (5.10), (5.13), (5.14), (5.16) and (5.17), we complete the proof. �

Corollary 5.2. Let d, b and α be as in Theorem 1.4. Let u0 ∈ H1(Rd) and u be the unique global
solution to the defocusing (INLS). Then

u ∈ Lpt (R,W 1,q
x ),

for any Schrödinger admissible pair (p, q).

Proof. By applying Lemma 5.1 with J = (T, t) and using the decay property given in Theorem
1.3, we see that there exist θ1, θ2 ∈ (0, α) such that

‖u‖S((T,t)) . ‖u(T )‖H1
x

+ ε1(T )‖u‖1+θ1
S((T,t)) + ε2(T )‖u‖1+θ2

S((T,t)),

where ε1(T ), ε2(T ) → 0 as T → +∞. By the conservations law and the continuity argument (see
e.g. [2, Lemma 7.7.4] or [19, Section 1.3]), we learn that for T large enough,

‖u‖S((T,t)) ≤ C,
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for some C > 0 independent of t. We thus get u ∈ Lpt ((T,+∞),W 1,q
x ) for any (p, q) ∈ S. Similarly,

we prove as well that u ∈ Lpt ((−∞,−T ),W 1,q
x ) for any (p, q) ∈ S. Combining these facts and

the local well-posedness given in Theorem 1.2, we obtain u ∈ Lpt (R,W 1,q
x ) for any Schrödinger

admissible pair (p, q). �

We are now able to prove Theorem 1.4. The proof is based on a standard argument (see e.g.
[2, Section 8.3] or [19, Section 3.6]).
Proof of Theorem 1.4. Let u be the global solution to the defocusing (INLS). By Duhamel’s
formula,

u(t) = eit∆u0 − i
∫ t

0
ei(t−s)∆|x|−b|u(s)|αu(s)ds. (5.18)

As in the proof of Lemma 5.1, we see that there exists θ1, θ2 ∈ (0, α) and q1, q2 ∈ (2, 2?) such that

‖ 〈∇〉 (|x|−b|u|αu)‖S′(L2,R) . ‖u‖α−θ1
L∞t (R,Lq1

x )‖u‖
1+θ1
S(R) + ‖u‖α−θ2

L∞t (R,Lq2
x )‖u‖

1+θ2
S(R) .

Thus, Theorem 1.3 and Corollary 5.2 imply

‖ 〈∇〉 (|x|−b|u|αu)‖S′(L2,R) <∞. (5.19)

Let 0 < t1 < t2 < +∞. By Strichartz estimates and (5.19), we have

‖e−it2∆u(t2)− e−it1∆u(t1)‖H1
x
. ‖ 〈∇〉 (|x|−b|u|αu)‖S′(L2,(t1,t2)) → 0,

as t1, t2 → +∞. This implies that the limit

u+
0 := lim

t→+∞
e−it∆u(t)

exists in H1
x. Moreover,

u(t)− eit∆u+
0 = −i

∫ +∞

t

ei(t−s)∆|x|−b|u(s)|αu(s)ds.

Applying again Strichartz estimates, we get

lim
t→+∞

‖u(t)− eit∆u+
0 ‖H1

x
= 0.

This gives the result for positive time, the one for negative time is treated similarly. The proof is
complete. �

Appendix

In this Appendix, we will give the proof of (3.3). Let N(u) = F (x, u) = |x|−b|u|αu. We compute

∇(|x|−b|u|α+2) = ∇(|x|−b)|u|α+2 + |x|−b∇(|u|α+2)
= ∇(|x|−b)|u|α+2 + (α+ 2)|x|−b|u|αRe (∇uu)
= ∇(|x|−b)|u|α+2 + (α+ 2)|x|−b|u|αRe (u∇u).

Similarly,
∇(|x|−b|u|α+2) = ∇(|x|−b|u|αuu) = ∇(|x|−b|u|αu)u+ |x|−b|u|αu∇u,

or
∇(|x|−b|u|αu)u = ∇(|x|−b|u|α+2)− |x|−b|u|αu∇u.
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Therefore,

{N(u), u}p = Re (|x|−b|u|αu∇u− u∇(|x|−b|u|αu))
= 2Re (|x|−b|u|αu∇u)−∇(|x|−b|u|α+2)

= 2
α+ 2

(
∇(|x|−b|u|α+2)−∇(|x|−b)|u|α+2)−∇(|x|−b|u|α+2)

= − α

α+ 2∇(|x|−b|u|α+2)− 2
α+ 2∇(|x|−b)|u|α+2.
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