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Abstract Edge-aware filtering is an important pre-pro

cessing step in many computer vision applications. In

literature, there exist several versions of collaborative

edge-aware filters based on spanning trees and short-

est path heuristics which work well in practice. For

instance, Tree Filter (TF) which is recently proposed

based on a minimum spanning tree (MST) heuristic

yields promising results in many filtering applications.

However, links between the tree-based filters and short-

est path-based filters are faintly explored. In this article,

we introduce an edge-aware generalization of the TF,

termed as UMST filter based on the union of all MSTs.

The major contribution of this paper is establishing

theoretical links between filters based on MSTs and fil-

ters based on geodesics via power watershed framework.

More precisely, we show that Union of Minimum Span-
ning Trees (UMST) filter can be obtained as the limit

of Shortest Path Filters (SPFs). Intuitively, TF can be

viewed as an approximate limit of the SPFs. We pro-

pose and provide a detailed analysis of two different

implementations of the UMST filter based on shortest

paths. Further, we establish empirically with the help

of denoising experiments that TF is an approximate
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limit by showing that TF and one of our approxima-

tions yield similar results.
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1 Introduction

Image filtering has been a fundamental problem in com-

puter vision for several years. Edge-preserving filtering

is a crucial step in many low-level vision problems such

as image denoising [31], image abstraction [31], texture

removal [31], texture editing [31], scene simplification

[31], stereo matching [31], optical flow [31] etc. These

applications are similar in nature and the desired prop-

erties of a filter can thus be explained using a denoising
application: real world images often contain noise and

irrelevant information such as texture along with the

object boundaries (which are the major image struc-

tures). Hence the goal of an image filtering algorithm

is to preserve the object boundaries while getting rid of

the redundant information.

In the literature, there exist several edge-aware smoo

thing filters such as bilateral filter (BF) [32], guided

filter (GF) [23], weighted least squares filter (WLS)

[19], L0 smoothing [36], propagated image filter [10],

morphological amoebas or adaptive kernel based fil-

ters [24], tree filter (TF) [5] and relative total variation

filter (RTV) [37] etc. Specifically, collaborative edge-

aware filters based on spanning tree heuristics [30,5]

and shortest path heuristics [24] work well in practice

but their links are not explored.

In this article, we study the recent edge-aware Tree

Filter (TF) [5] which is based on a Minimum Spanning

Tree (MST) heuristic. TF admits a linear time algo-

rithm [39] and yields promising results in applications
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(a) (b) (c) (d)

Fig. 1 (a) Original image (b) Bilateral filter (σ color = 100,
σ space = 10) (c) Tree filter (σ = 10) + Bilateral filter (σ
color = 100, σ space = 10) (d) Power Tree Filter (σ = 10, N
= 100) + Bilateral filter (σ color = 100, σ space = 10).

such as denoising, texture removal, stereo matching and

scene simplification. However it exhibits a leak problem

at some of the object boundaries. This problem occurs

due to the presence of some object boundary edges in

the MST and cannot be avoided as any spanning tree

connects all the nodes in a connected graph. Although,

the authors in [5] tried to negate the leak effect using

a bilateral filter as a post-processing step, the problem

still persists (see Fig 1(c)). Also, the filtering results

vary with the choice of MST which is undesirable.

This motivated us to explore the links between the

TF and the other edge-aware filtering methods. Fur-

ther, such links might provide a possibility to design

novel edge-aware filters. For example, one can use these

links to construct edge-aware features to design super-

vised edge-aware filters. The main theme of this article

is to identify such links and we establish a bridge be-

tween filters based on shortest paths and those based

on minimum spanning trees. This paper is an extended

version of the conference paper [16], our contributions

are the following:

1. We introduce an edge-aware filter based on the union

of all MSTs of the image graph, UMST filter, a gen-

eralization of the TF which is an established filtering

tool.

2. We show that the UMST filter (see Sec 4 for details)

is the limit of SPFs. Intuitively, TF can be visualised

as an approximate limit of the SPFs.

3. We propose two different implementations of the

UMST filter that serve as alternatives to the TF

(see Sec 5 for details) with a detailed analysis of

their merits and demerits relative to TF.

4. We establish empirically with the help of denois-

ing experiments that TF is an approximate limit

by showing that TF and one of our approximations

yield similar results.

The rest of the paper is organized as follows: In Sec

2, we briefly recall the notions of TF, power watershed

(PW) framework and justify the need for a filter based

on Union of all Minimum Spanning Trees (UMST). In

Sec 3, we develop SPFs as edge-aware filters starting

from Gaussian-like filters and discuss their properties,

links with other geodesic based methods. In Sec 4, we

show that the UMST filter is the limit of the SPFs in the

PW framework. In Sec 5, we discuss approximations of

UMST filter i.e. TF and propose two approximations

based on shortest paths. We provide a detailed anal-

ysis of each of these implementations and empirically

establish with the help of denoising experiments that

TF and one of our approximations yield similar results.

In Sec 7, the conclusions follow and we speculate some

possible directions to extend the ideas in the paper.

2 From Tree Filter to Union Minimum

Spanning Tree Filter

In this section, we briefly recall the Tree Filter (TF) and

provide our motivation on why one should consider us-

ing a filter based on Union of Minimum Spanning Trees

(UMST). We then briefly discuss the PW framework

and mention some of it’s recent applications.

2.1 Tree Filter

Suppose I is a given image which possibly contains

noise, we let Ii denote the color or intensity of the pixel

i in the image I. Let S denote the tree filtered im-

age. The authors in [5] construct a 4-adjacency edge-

weighted graph, with the weights between adjacent pix-

els reflecting the color or intensity dissimilarity. More

formally, if i and j are 4-adjacent pixels, they use wij
defined by

wij = ||Ii − Ij || (1)

One can construct a MST on this edge-weighted graph,

IMST . Since a spanning tree connects every pair of pix-

els and does not contain cycles, there exists a unique

path between every pair of pixels. Let D(i, j) denote

the number of edges on the path between i and j on

IMST . For each pair i and j, the collaborative weights

ti(j) are given by:

ti(j) =
exp(−D(i,j)

σ )∑
q exp(

−D(i,q)
σ )

(2)

where σ controls the falling rate and the summation

over q is over all the pixels in the graph.

The tree filtered value at pixel i is given by

TF i =
∑
j

ti(j)Ij (3)

Here the summation over j is over all the pixels in the

graph.
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It is reasonable to assume that the pixel color or

intensities vary vastly across objects and are similar

within objects. In other words, the higher weight edges

mostly correspond to object boundaries and lower weight

edges mostly correspond to object interiors. We shall

work under this assumption in the rest of the arti-

cle. The TF works on the following intuition: most of

the higher weight edges do not appear while the lower

weight edges mostly do appear in any MST. The col-

laboration across object boundaries is thus low while

smoothing within objects is achieved well.

2.2 Why UMST filter?

The edges in the image graph that do not belong to

object boundaries induce a disconnected subgraph. On

the other hand, a MST of a graph is connected, hence

any MST contains one or more object boundary edges.

These edges cause a leak effect in the tree filtered im-

age (see Fig 1(c)). Also, the filtering results vary with

the MST used, making the choice of an arbitrary MST

debatable. On the other hand, a filter based on UMST

would ensure the following:

1. The filtering results would not depend on arbitrary

MST computations.

2. There would be a significant reduction in the leak

effect when compared to the TF (see Fig 1(d) for an

illustration).

The first property is a direct consequence of the fact

that UMST filter uses all the MSTs of the image graph.

The second property can be explained intuitively as fol-

lows: The edges in the UMST is a superset of the edges

of an arbitrary MST. Now, among the edges that be-

long to UMST but not the MST are mostly object in-

terior edges (compare Fig 2(c) with Fig 2(b)). These

object interior edges dominate the collaborative effect

of the object boundary edges to ensure a reduction in

the leakage. Fig 2 illustrates the above properties on a

synthetic image.

Extending the idea of TF, one can use an exponen-

tial falling weight similar to Eq 2 for computing col-

laborative weights. However, we observe that there are

possibly multiple paths between a given pair of pixels

i and j in the UMST unlike in a MST. In order to de-

fine the collaborative weights of the UMST filter, we

need a criterion to choose a path among all the paths

between i and j in the UMST. Among all paths be-

tween i and j in the UMST, loosely speaking, a crite-

rion is to discard paths with ‘bad’ histograms of the

edge weights. More precisely, let w1 < · · · < wk be

the distinct weights in the graph and let P and Q be
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Fig. 2 (a) 4-adjacency graph of a synthetic image contain-
ing two objects coloured in red and green. The pixels in this
image are indexed from 1 to 30 and the weights on the edges
denote the intensity dissimilarities. The edges corresponding
to object boundaries are represented by dotted lines, (b) A
MST obtained from (a), and (c) UMST obtained from (a). In
order to illustrate that UMST filter yields better results, it
should perform at least as good as TF for - removing noise at
pixel numbered 28 and reducing the leak at object boundaries
say at pixel numbered 13 and 14. Consider pixel numbered
28. One can see that both the edges of weights 100 incident
on this pixel are present in the UMST, the noise removal is
enhanced due to higher collaboration with the neighbouring
pixels when compared to that of tree filter where MST had
only one of the edges with weight 100. Now consider the pixel
numbered 13. We see that although an extra boundary edge
(edge 13−18) appears in the UMST, the presence of an addi-
tional interior edge incident on 13 in the UMST ensures that
the effect of the boundary edge collaboration is reduced sig-
nificantly. At pixel numbered 14, the UMST filter performs
better than tree filter due the presence of the additional inte-
rior edge 13−14. Similar arguments hold for pixels numbered
18 and 19.
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paths between i and j in the UMST with P having m1

edges of weight w1, · · · , mk edges of weight wk and Q

having n1 edges of weight w1, · · · , nk edges of weight

wk. We compare the histograms of the edge-weights i.e.

(m1, · · · ,mk) and (n1, · · · , nk) as follows: if mk > nk
or if mr = nr, l < r ≤ k along with ml > nl, then we

discard path P . Essentially, we pick a path that is intu-

itively consistent with the assumption that pixel color

or intensities vary vastly across objects and are similar

within objects. The reader may refer to Sec 4 for formal

definitions and properties.

Now, we shall recall notions of the power watershed

framework and a few of it’s recent applications.

2.3 Power Watershed Framework and Related Work

The study of asymptotic behaviour of minimizers has

been useful in many computer vision applications es-

pecially the ones that are based on total variation for-

mulation. The most popular approach is to use the no-

tion of Γ -convergence [7] where one computes the limit

of minimizers of simpler minimization problems to ap-

proximate the solution to a complex minimization prob-

lem under a sufficient set of conditions. There are nu-

merous applications in computer vision that fall in this

category. However, there are other similar notions of

investigating limits of solutions to minimization prob-

lems that have been proved to be useful. For instance,

in [27,2], the elementary mathematical morphological

(MM) operators have been formulated as limits of vari-

ational problems; and in [33], the authors view the local

min-max filters as a limit of normalized power-weighted

averaging filter.

Power Watershed (PW) framework which is a closely

related notion to Γ -convergence investigates limits of

minimizers on finite edge-weighted graphs by letting

the powers of edge-weights tend to ∞. Some useful

applications include total variation and spectral clus-

tering: In [12], the power watershed framework unifies

and extends a common framework of semi-supervised or

seeded graph-based image segmentation methods namely

graph cuts [6], random walker [21], geodesics [1,4,15,

18,29] and watershed cuts [13,14]; In [9], the authors

propose a fast alternative to spectral clustering meth-

ods [35,40] by computing their limit. More recently, [26]

generalizes the power watershed framework for a larger

class of cost functions (Eqns. 1 and 2 in [26]) and for-

malizes the notion of scale for investigating minimizers.

In simple words, [26] develops theory and algorithms to

combine data reduction and optimization techniques.

As edge-preserving image filtering and image segmen-

tation are closely related problems, one can anticipate

to establish links between existing filtering methods us-

ing the PW framework [12,26].

In this article, we model the images with finite edge-

weighted graphs and show that UMST filter is the limit

of SPFs by letting the powers of the edge-weights tend

to ∞. This result implies that one can view the UMST

filter and the shortest path filters in an optimization

framework. Although both [26] and this article involve

the computation of limit of minimizers of parametrized

cost functions, it is important to note that the cost func-

tions used in this article do not fall in the framework

of Eqns. 1 and 2 in [26]. The reader may refer to Sec 4

for a proof of the main result.

3 Shortest Path Filters and Related Methods

In this section, we shall review the shortest path filters

in detail. In particular, we develop them as a natural

edge-aware extension of Gaussian-like filters. The rest

of the section is dedicated to the discussions on their

links with other related geodesic methods.

Before formally defining the SPF, we need some no-

tions of graphs specific to modelling images:

3.1 Basic Notions

Definition 1 An edge-weighted graph G = (V,E,W )

consists of a finite set V of nodes, and set of unordered

pairs of elements of V i.e. {{x, y} ⊂ V : x 6= y}, called

the edge set E, a positive real-valued function W on

the set E. We denote wij or W (eij) as the weight of

the edge joining pixels i and j.

Definition 2 For p ∈ Z+, G(p) = (V,E,W (p)) is the

graph that contains the same set of nodes and edges as

of G and W (p)(eij) = (W (eij))
p for each edge eij ∈ E

and we call G(p) as an exponentiated graph of G.

Definition 3 A path P (i, j) between nodes i and j is

a finite ordered sequence of nodes of G such that there is

an edge incident on every adjacent pair of nodes in the

sequence. We say that a path from i to j is a simple

path if all the nodes in the sequence are distinct.

Definition 4 Assume that the distinct weights in G
are given by 0 < w1 < w2 < · · · < wk. Given a path

P (i, j) in G, one can assign a k-tuple (n1, · · · , nk) to the

path, where nr denotes the number of edges of weight

wr on the path P (i, j). This k-tuple is referred to as

the edge-weight distribution of the path P (i, j).

In simple words, edge-weight distribution is a histogram

of the edge-weights present in the path. We remark that



Some Theoretical Links Between Shortest Path Filters and Minimum Spanning Tree Filters 5

the k-tuples associated with a path P (i, j) in graph G
and its exponentiated graph G(p) are identical by the

virtue of it’s definition. However it is important to note

that: corresponding to each of the coordinates in the

edge-weight distributions, the weights are different.

Definition 5 Assume that the distinct weights in G
are given by 0 < w1 < w2 < · · · < wk. Suppose P (i, j)

is a path between pixels i and j in G. P (i, j) is said

to be a shortest path between the pixels i and j in

G if for every path Q(i, j) between i and j in G, we

have
∑k
r=1 nrwr ≤

∑k
r=1mrwr where (n1, · · · , nk) and

(m1, · · · ,mk) denote the edge-weight distributions of

P (i, j) and Q(i, j) respectively.

We remark that a shortest path is always a simple

path since all the weights in the edge-weighted graphs

are strictly positive.

We shall now build an edge-aware filter from scratch:

Let i and j be two pixels in G(p). Consider the simplest

weighted-average filter whose collaborative weights are

given by

gi(j) =
exp

(
− ||i−j||1σ

)
∑
k exp

(
− ||i−k||1)σ

) (4)

where ||i− j||1 : l1 norm between the pixels i and j

and σ is the parameter controlling the level of smooth-

ing. The summation over k is over all pixels.

so that the Gaussian-like filter denoted by GF at

pixel i is given by:

GF i =
∑
j

gi(j)Ij (5)

The summation over j is over all pixels.

We observe that the collaborative weights purely

depend on the spatial distance between pixels i and j

and hence the name Gaussian-like filter. More specifi-

cally, collaborative weights between pixels separated by

same distance is indifferent w.r.t. existence of an ob-

ject boundary between them. Hence, one has to find a

way to ensure that the collaborative weights are lesser

across boundaries. A natural way to extend the idea of

a Gaussian-like filter is: given a pair of pixels i and j,

consider the number of edges on a path with smallest

sum of weights between them.

Let Π(P (i, j)) denote the number of edges on a path

P (i, j). Define

Θ(p)(i, j) = inf
P (i,j)

{Π(P (i, j))} (6)
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Fig. 3 (a) and (b) 4-adjacency graph of a synthetic image
containing two objects coloured in blue and yellow. The pixels
in this image are indexed from 1 to 20 and the weights on the
edges denote the intensity dissimilarities. The collaborative
weight for the pair of pixels 8 and 13 (which crosses an object
boundary) given by Gaussian-like filter would consider the
edge highlighted in red in (a) and yields a high value. On
the other hand, the SPF considers the path < 8, 7, 12, 13 >
highlighted in red in (b) for computing the corresponding
collaborative weight. This illustrates that SPF respects the
object boundaries.

where P (i, j) is a shortest path in G(p) and the edge

weights are given by:

wij = ||Ii − Ij ||+ 1 (7)

The SPF at pixel i is defined as:

SPF
(p)
i =

∑
j

exp
(
−Θ

(p)(i,j)
σ

)
∑
k exp

(
−Θ

(p)(i,k)
σ

)Ij , (8)

where σ controls the falling rate and the summations

are over all pixels in the image.

Note that the weights in Eq 7 are different from

the ones in Eq 1 to ensure that the weights are strictly

positive. We use the edge weights as per Eq 7 in the

rest of the paper. Since, we use an increasing trans-

formation on edge weights, MSTs are invariant to the
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modification. This assumption is needed to ensure that

the converse part in Lemma 1 holds.

We remark that in the special case of all pixel val-

ues being equal in the image, SPF is exactly Gaussian-

like filter. Also, in practice, the shortest path distances

between a pair of pixels within the objects are close

to the spatial distances and are larger than the spa-

tial distances across object boundaries. Fig 3 illustrates

on a synthetic image that the SPF is a natural edge-

preserving extension of the Gaussian-like filter.

Further, one can see that the SPF value at pixel i

is a solution of the following optimization problem:

Consider the cost function

Q
(p)
i (x) =

∑
j

exp

(
−Θ

(p)(i, j)

σ

)
(x− Ij)2 (9)

where σ controls the falling rate and the summation

is over all pixels. The shortest path filtered value at

pixel i is given by the minimizer of Q
(p)
i (x) i.e.

SPF
(p)
i = arg min

x
Q

(p)
i (x)

SPFs are not completely new and there exist in lit-

erature, several edge-preserving filters using geodesics

such as the ones discussed in [22], the adaptive kernel

filter such as morphological amoebas [24].

3.2 Relation to Morphological Amoebas

SPFs are also closely related to Morphological Amoebas

[24]. Morphological Amoebas are adaptive structuring

elements based on shortest path distances used to build

edge-aware filters. These kernels work on the assump-

tion that the gradients are low within the objects and

high across the object boundaries. In order to ensure

that the kernels do not cross the object boundaries,

the amoeba distance defined below is used to compute

them:

κ(i, j) = min
P (i,j)

Lλ(P (i, j)) (10)

where P (i, j) is a path between pixels i and j, < i =

x0, x1, · · · , xn = j > and λ ≥ 0 is a user input.

Lλ(P (i, j)) =

n−1∑
t=0

(
1 + λ‖Ixt+1 − Ixt‖

)
(11)

The closed ball at pixel i given by {j : κ(i, j) ≤
r} is the kernel used for edge-aware smoothing. The

cardinality or the size of the kernel depends on r and

is chosen as per the level of smoothing desired.

Proposition 1 Θ(1)(i, j) is a constrained minima of

the amoeba kernel path length given by

Θ(1)(i, j) = minL0(P (i, j)) subject to

P (i, j) ∈ argminL1(P (i, j)) (12)

Further, the family of parameters Θ(p)(i, j) are given

by:

Θ(p)(i, j) = minLp0(P (i, j)) subject to

P (i, j) ∈ argminLp1(P (i, j)) (13)

where

Lpλ(P (i, j)) =

n−1∑
t=0

(
1 + λ‖Ixt+1

− Ixt‖
)p

(14)

Proof It readily follows from Eq 6, Eq 7, Eq 11 and Eq

14

Note that the morphological amoeba lengths are a spe-

cial case of the lengths given by Eq 14. We can hence

view the SPF as a generalization of the notion of mor-

phological amoeba lengths.

4 UMST Filter as a Limit of Shortest Path

Filters

In this section, we shall prove that the UMST filter

is the limit of SPFs. As the weights of the graphs of

the shortest path filters are powers of natural numbers

(see 3), we use the term Power Tree Filter to denote

the limit of Shortest Path Filters. We shall need some

definitions before we prove this result.

4.1 Formal Notion of UMST Filter

Definition 6 Assume that graph G has k distinct weigh

ts given by 0 < w1 < · · · < wk. Let (n1, · · · , nk) and

(m1, · · · ,mk) denote the edge-weight distributions of

paths P and Q in G respectively. Let l = sup(A) where

A = {r : 1 ≤ r ≤ k, nr 6= mr} We define reverse

dictionary ordering or reverse lexicographic or-

dering on the set of paths in G as follows:

P ≥ Q⇔ A = ∅ or nl > ml (15)

See Fig 4 for an illustration on reverse dictionary

ordering. Note that reverse dictionary ordering yields

a complete ordering on the set of paths in G and the

ordering remains same in each of the exponentiated

graphs G(p).
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Fig. 4 (a) and (b) synthetic images to illustrating the reverse
lexicographic ordering of paths. The reverse lexicographic or-
der of path in blue is lesser than that of the one in green

Definition 7 Suppose P (i, j) is a path between pixels

i and j in G. P (i, j) is said to be a smallest path

w.r.t. reverse dictionary order between the pixels

i and j in G if for every path Q(i, j) between i and j in

G, we have Q(i, j) ≥ P (i, j).

Note that every smallest path w.r.t. reverse dictio-

nary order between pixels i and j in G has the same

edge-weight distribution. In particular, the number of

edges on a smallest path w.r.t. reverse dictionary order

between i and j denoted by Π(i, j) is well-defined.

Any MST in G(p) is a MST in G and vice-versa. This

follows directly from the fact that MST is invariant to

any strictly increasing transformation on the weights of

a connected graph. The notions of smallest paths w.r.t.

reverse dictionary order and that of MSTs in G(p) are

hence independent of p.

Definition 8 Let η(i, j) denote the number of edges on

a path with smallest reverse dictionary order between

i and j on GUMST where GUMST is the UMST of the

image graph G with 4-adjacency, edge weights given by

Eq 7. For each pair i and j, the collaborative weights

t̂i(j) are given by:

t̂i(j) =
exp(−η(i,j)σ )∑
q exp(

−η(i,q)
σ )

(16)

where σ controls the falling rate and the summation

over q is over all the pixels in the graph.

The UMST filtered value at pixel i is given by

UMST i =
∑
j

t̂i(j)Ij (17)

Here the summation over j is over all the pixels in the

graph and Ij denotes the intensity of the pixel j in the

original image. This is a natural way to generalize the

TF since: (a) the lesser the reverse lexicographic order

of a path, the lesser the chance of the path crossing an

object boundary, (b) in the special case of the graph

having a unique MST, this filter is exactly the same as

TF.

4.2 Characterizing Limit of Shortest Path Filters

In this subsection, we characterize the Power Tree Filter

or limit of Shortest Path Filters. Firstly, we have the

following result:

Lemma 1 Let G = (V,E,W ). For every pair of pixels

i and j in V , there exists p0 ≥ 1 such that, a path

P (i, j) is a shortest path between i and j in G(p) for all

p ≥ p0 if and only if P (i, j) is a smallest path w.r.t.

reverse dictionary order between i and j in G. Further,

p0 is independent of i and j.

Proof Let G = (V,E,W ) and let the distinct weights in

G be given by w1 < · · · < wk.

Firstly, we shall show that for a given pair of pixels

i and j, if P (i, j) is a smallest path w.r.t. reverse dic-

tionary order between i and j in G then there exists a

constant p0 such that for each p ≥ p0, P (i, j) is a short-

est path between i and j in G(p). Let P (i, j) be a smallest

path w.r.t. reverse dictionary order between i and j in

G. Let Q(i, j) be an arbitrary simple path between i and

j. Let (n1, · · · , nk) and (m1, · · · ,mk) denote the edge-

weight distributions of paths P (i, j) and Q(i, j) respec-

tively. Let A(P,Q) = {1 ≤ r ≤ k : nr 6= mr}. Suppose

A(P,Q) = ∅ then
∑k
r=1 nrw

p
r ≤

∑k
r=1mrw

p
r ∀p ≥ 1.

If A(P,Q) 6= ∅ then let l = sup(A(P,Q)). We have

ml > nl by choice of P (i, j). Also, the difference of the

total weights i.e.
∑k
r=1mrw

p
r −

∑k
r=1 nrw

p
r = Θ(wpl )

with a positive leading coefficient. Hence ∃pQ(i,j) ≥ 1

such that
∑k
r=1 nrw

p
r ≤

∑k
r=1mrw

p
r ∀p ≥ pQ(i,j). Now,

let Sij denote the set of all simple paths from i to j.

Then |Sij | < ∞. Set pij = sup{pQ(i,j) : Q(i, j) ∈
Sij} < ∞. We note that given any path which is not

simple, one can drop the redundant edges to construct

a simple path with strictly smaller total weight. It is

hence enough to show that the total weight of P (i, j) is

lesser than or equal to every simple path between i and

j in G(p) for sufficiently large p. As V is finite, setting

p0 = sup{pij : i, j ∈ V } completes the argument.

Conversely, suppose P (i, j) is NOT a smallest path

w.r.t. reverse dictionary ordering between i and j, we

shall construct a sequence (pn)n≥1 converging to∞ such

that P (i, j) is not a shortest path between i and j in

G(pn) for each n ≥ 1. Since P (i, j) is not a smallest path

w.r.t. reverse dictionary ordering between i and j, ∃ a

path T (i, j) between i and j such that P (i, j) ≥ T (i, j)

holds but T (i, j) ≥ P (i, j) does not hold. Equivalently,

if the edge weight distributions of P (i, j) and T (i, j) are

given by (n1, · · · , nk) and (t1, · · · , tk) respectively then

A(P, T ) 6= ∅ and tl < nl where l = sup(A(P, T )) and

A(P, T ) = {1 ≤ r ≤ k : nr 6= tr}. The difference of

the total weights i.e.
∑k
r=1 trw

p
r −

∑k
r=1 nrw

p
r = Θ(wpl )
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and has a negative leading coefficient. Thus, ∃ a con-

stant ρij ≥ 1 such that for each p ≥ ρij, P (i, j) is

not a shortest path between i and j. We set (pn)n≥1 by

pn = ρij + n− 1 to complete the proof.

Loosely speaking, for a large enough power p, on

G(p), between every pair of pixels, a shortest path is a

smallest path w.r.t. reverse dictionary order and vice-

versa. In short, we have the following corollary:

Corollary 1 Let ∆(i, j) denote the number of edges on

a smallest path w.r.t. dictionary order between pixels i

and j in G. As p→∞, we have Θ(p)(i, j)→ ∆(i, j) for

each pair i and j.

4.3 Optimization Framework for UMST Filter

Recall the definition of UMST filter: Let G denote the

given image, let GUMST denote the UMST on the edge-

weighted graph constructed from G. Let η(i, j) denote

the number of edges on a smallest path w.r.t. reverse

dictionary order between pixels i and j in GUMST . Now

consider the cost function given by:

Q̂i(x) =
∑
j

exp

(
−η(i, j)

σ

)
(x− Ij)2 (18)

where σ controls the falling rate and the summation

is over all pixels, the UMST filtered value at pixel i is

given by the minimizer of Q̂i(x).

UMST i = arg min Q̂i(x) =
∑
j

exp
(
−η(i,j)σ

)
∑
k exp

(
−η(i,k)σ

)Ij ,
(19)

where UMST denotes the UMST filtered image.

Firstly, we need the following:

Lemma 2 (Cut Property) For any cut C of a con-

nected graph G = (V,E,W ), if the weight of an edge

e in the cut-set C is not larger than the weights of all

other edges in C, then this edge belongs to a MST of

the graph G = (V,E,W ).

Lemma 3 (Cycle Property) For any cycle C in the

graph G = (V,E,W ), if the weight of an edge e of C is

larger than the individual weights of all other edges of

C, then this edge cannot belong to a MST.

Before we prove the main result of the paper, we

need Lemma 4 which is a modified version of a result

stated in [26].

Lemma 4 Let G = (V,E,W ) be an edge-weighted graph.

Let G<w denote the induced subgraph of G with the ver-

tex set V and all the edges eij ∈ E whose weight wij <

w. Let GUMST denote the UMST of G. Then an edge

e with weight w(e) belongs to the GUMST if and only if

the edge e joins two connected components in G<w(e).

Proof The proof directly follows from Lemma 2 and

Lemma 3.

In simple words, an edge e is in some MST if and

only if it connects two different components of the in-

duced subgraph generated by edges of weights lower

than that of e.

Proposition 2 Every smallest path w.r.t. reverse dic-

tionary order between any two arbitrary nodes in G =

(V,E,W ) lies on a MST of G and hence on the union

of MSTs of G.

Proof Let i and j be two arbitrary nodes in G. Let

P (i, j) be a smallest path w.r.t. reverse dictionary order

between i and j. It is now enough to show that every

edge in the path P (i, j) satisfies the characterization

given in Lemma 4. Suppose if possible, let e ∈ P (i, j)

be of smallest possible weight such that e is incident on

nodes in a same connected component of G<w(e). Adding

e thus forms a cycle C and the other edges in C have

weights strictly less than w(e).

Now, consider the subgraph generated by edges in

P (i, j)∪C \ {e}. This subgraph is connected and hence

there exists a path Q(i, j) (say) between i and j. It is

easy to see that Q(i, j) has smaller reverse dictionary

order compared to P (i, j): number of edges of weight

greater than w(e) in Q(i, j) cannot exceed to that in

P (i, j) since C has edges of weight strictly less than

w(e); number of edges of weight w(e) in Q(i, j) is at

least one less than that of P (i, j). This contradicts the

fact that P (i, j) is a smallest path w.r.t. reverse dictio-

nary order between i and j.

Corollary 2 For every pair i and j in G, we have

η(i, j) = ∆(i, j)

The main result is formally stated as follows:

Theorem 1 As p→∞, we have the following:

SPF
(p)
i −→ UMST i (20)

In other words, the shortest path filters converge to the

UMST filter as p→∞ i.e.

Proof The proof follows readily from Proposition 2 and

Lemma 1.
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A key takeaway of the above result is one can exploit

these links to build novel algorithms for edge-aware

and attribute-specific filtering. For instance, the adap-

tive spanning trees (that we shall shortly introduce in

Proposition 3 of Sec 5) can be used to learn features for

supervised edge-aware filtering.

5 Implementation

In this section, we discuss several possible implemen-

tations of UMST filter. We utilize ideas from shortest

paths and spanning trees to obtain two novel approxi-

mation algorithms to compute UMST filter. We provide

detailed analyses of our implementations along with the

TF which is yet another approximation of the UMST

filter.

5.1 Exact Algorithms

Thanks to UMST characterization given by Lemma 4,

we can compute the UMST of a graph in O(|E|) which

in the case of 4-adjacency graphs would be O(|V |). Also

one can hope to reduce at least significant number of

edges when compared to G in practice.

A naive approach is to adapt the Floyd-Warshall

[20] algorithm to calculate η(i, j) for each pair and the

computation of UMST filter takes O(|V |3) time and

O(|V |2) space. This is very expensive in terms of both

memory and space and is hence not practical. In order

to reduce the complexity, one needs to exploit the prop-

erties of lexicographic ordering and that of the UMST

graph structure. One approach is by borrowing ideas

from Image Foresting Transform (IFT) [18].

Image Foresting Transform is a unified framework

for several image processing operators that are based on

shortest paths. Some of these operators include fuzzy-

connected segmentation [11,28] and distance transforms

[25,17]. In simple words, IFT is a generalization of Di-

jkstra’s algorithm where an image (with a specified ad-

jacency relation), a set of seeds and a path cost func-

tion are specified and one needs to assign to every non-

seeded pixel, a seed label to which it admits a path with

smallest cost. The path costs are usually application-

specific and are not necessarily given by sum of the

weights of the edges on the path. Hence, a modified Di-

jkstra’s algorithm is used to handle a general class of

path cost functions that arise in computer vision appli-

cations. We briefly describe the IFT framework below

as in [18] and then discuss the relations with the SPF’s:

The IFT takes as an input, an image I, an adjacency

relation A (usually given by 4-adjacency in case of 2D

images), a cost function C for all paths and outputs an

optimum spanning forest. Note that the seeds can be

specified implicitly by the cost function by assigning a

fixed cost for every path that starts at a certain pixel

(finite for seed pixels and infinite for non-seed pixels).

Although there are no restrictions on the dimension of

the image and the adjacency relation, the path costs are

restricted and the following are sufficient conditions for

the optimal IFT algorithm [18] to be applicable:

For any pixel t, there is an optimum path π ending

at t which is either trivial or is of the form τ · < s, t >,

where

– C(τ) ≤ C(π),

– τ is an optimum path ending at s,

– C(τ ′· < s, t >) = C(π) if τ ′ is an optimum path

ending at s

Using a single seed, the optimum-path forest ob-

tained (which is a tree rooted at the seed) can be used to

compute the shortest path filtering collaborative weights

(see Eq 6). By varying the seed s, the SPF can be com-

puted for the whole image. However, such an imple-

mentation would still take O(|V |2) time. To the best

of our knowledge, we do not have any linear-time ex-

act algorithms for computing the UMST filter. Thus, it

calls a need to develop at least a quasi-linear algorithm

approximation algorithm.

5.2 Approximation Algorithms

Single tree-based approximation: As we have developed

the UMST filter by generalizing the notion of TF, we

can view TF as a heuristic approximation of the UMST

filter. Note that TF uses only one MST and hence can

be computed dynamically in linear time by doing an up-

ward aggregation followed by a downward aggregation

on the tree (see [39] for details). However, the usage

of an arbitrary MST makes it difficult to analyse the

degree of approximation quantitatively.

Multiple tree-based approximations: One can also

uses multiple spanning trees adaptively for filtering dif-

ferent pixels. In fact, one can find upper bounds on the

approximation factors as a consequence of Proposition

3.

Proposition 3 For every pixel i in the image I, there

exists a spanning tree Ti (termed as adaptive spanning

tree), such that Ti contains a smallest path with respect

to reverse dictionary ordering between pixels i and any

other pixel j in I.

Proof Let i be an arbitrary pixel in I. We shall con-

struct an adaptive spanning tree Ti, such that Ti con-

tains a smallest path with respect to reverse dictionary
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Fig. 5 (a) A synthetic image with the edge-weights reflecting
the intensity dissimilarities, (b) and (c) Adaptive spanning
trees of the pixels circled in red and blue respectively.

Algorithm 1 Generic Algorithm to Compute UMST

Filter
Input: A 4-adjacency graph G of an image I, Adaptive Span-

ning Trees Ti for each i ∈ V
Output: Filtered image S.
1: for all pixels i ∈ V do
2: Starting from i on Ti, use Sp = Ip +∑

q∈children of p exp(
−1
σ

)Sq recursively to com-
pute Si

3: end for

ordering between pixels i and any other pixel j in I. The

construction is a special case of IFT (see [18]) with the

following as the inputs: I is the image with 4-adjacency.

The path costs are given by: f(π) = ∞ for every path

π that does not start at i. All paths πl that start at i

are completely ordered in the order of decreasing reverse

lexicographic ordering using their edge-weight distribu-

tions. The path costs are determined by the order statis-

tics of the path i.e. if π1 ≥ π2 ≥ · · · > πl are all the

paths starting from i ordered w.r.t. reverse lexicographic

ordering then the path cost f is given by f(πt) = l−t+1

where 1 ≤ t ≤ l. We remark that the this path cost is

monotonic incremental (see [18]). The IFT algorithm

applied thus yields Ti, an adaptive spanning tree of i

with the required properties.

Proposition 3 essentially implies that one can de-

compose the UMST into possibly different spanning

trees Ti for each i ∈ V . Using each of the trees inde-

pendently (see Fig 5 for an illustration on a synthetic

image), one can obtain the exact UMST filter (see Al-

gorithm 1). The exact computation takes O(|V |2) and

Algorithm 2 To compute a depth-truncated adaptive

spanning tree
Input: UMST of the graph, depth d and pixel i
Output: Depth-Truncated Adaptive Spanning Tree Ti,d
1: Set X = {i} and Ti,d = (i, ∅)
2: while True do
3: break = true
4: for e in shortest edges from X to Xc do
5: if dist(e, i, Ti,d) < d then
6: Add e to the edge-set of Ti,d
7: break = false
8: end if
9: end for

10: if break = true then
11: return Ti,d.
12: end if
13: end while

O(|V |) time and space complexities respectively. How-

ever, by truncating each of these trees in Algorithm 1,

one can obtain fast approximate solutions. We present

two ways to truncate the adaptive trees to obtain ap-

proximate UMST filter.

Depth-based truncation: For each i ∈ V , we truncate

the adaptive spanning tree Ti to Ti,d such that it con-

tains only the pixels j that are at most d (user-defined

parameter) edges away from i on Ti (see Fig 6(b) for

an illustration and Algorithm 2 for computing it)

We rewrite Eq 19 as:

UMST i =
1

C

∑
l

exp(− l
σ

)
∑

j:η(i,j)=l

Ij , (21)

where C is the normalizing constant. In Eq 21, we ob-

serve that the exponential term rapidly converges to 0

and hence one can approximate the above expression

by

UMST i ≈ UMST i,d =
1

C

d∑
l=1

exp(− l
σ

)
∑

j:η(i,j)=l

Ij ,

(22)

where d is a parameter indicating a fixed depth. This

simplification reduces the calculation for each pixel dras-

tically and hence Algorithm 2 is practically O(|V |).
We shall now analyse Eq 22 in more detail. Also

as a consequence of Proposition 3, any two pixels are

separated by at most |V | − 1 edges on a spanning tree

Ti i.e. η(i, j) ≤ |V | − 1. Also, if η(i, j) = l > 0 then

for each 0 ≤ l′ ≤ l, there exists at least one pixel j′

such that η(i, j′) = l′. Assume that the intensities sat-

isfy 1 ≤ Ij ≤ 255 then we have the following (here we

denote UMST by U and UMST i by Ui to simplify the

notation):



Some Theoretical Links Between Shortest Path Filters and Minimum Spanning Tree Filters 11

1 2
1

6

2

3
2

4
1

8

2

5
2

9

2

11

2

7
1

13

2

10
1

14

2

12
2

15
1

19

10

16

21

1

17 18
2

23

1

20
2

24

2

22
1

26

1

1

27

2

2

28

100

25
2

29

2

30

2

(a)

1 2
1

3
2

4
1

5
2

9

2

6 7
2

11

2

8
1

13

2

10
1

14

2

12
2 2

15
1

19

10

16

21

1

17 18
2 2

23

1

20
2

24

2

22
1

26

1

1

27

2

28

100

25
2

29

2

30

2

(b)

Fig. 6 (a) TF of pixel numbered 14 in Fig 2, here the pixels
with significant collaboration (distance ≤ 2) are highlighted
in grey (b) Depth-based truncation of UMST filter at pixel
numbered 14 in Fig 2, here the pixels with significant collab-
oration (depth ≤ 2) are highlighted in grey. Observe that the
collaboration within the object is higher due to the usage of
adaptive spanning tree instead of an arbitrary MST.

Ui − Ui,d
Ui

=

∑|V |−1
l=d+1 exp(−

l
σ )
∑
j:η(i,j)=l Ij∑|V |−1

l=0 exp(− l
σ )
∑
j:η(i,j)=l Ij

(23)

≤
exp(−d+1

σ )
∑
j:η(i,j)≥d+1 Ij

Ii +
∑d
l=1 exp(−

l
σ )
∑
j:η(i,j)=l Ij

(24)

≤
exp(−d+1

σ )
∑
j:η(i,j)≥d+1 Ij

1 +
∑d
l=1 exp(−

l
σ )

(25)

=
exp(−d+1

σ )

1 +
∑d
l=1 exp(−

l
σ )

∑
j:η(i,j)≥d+1

Ij (26)

=
exp(−d+1

σ )

1− exp(−d+1
σ )

(1− exp(− 1

σ
))

∑
j:η(i,j)≥d+1

Ij (27)

For an image with 106 pixels, setting σ = 0.1, the

expression in Eq 27 is bounded above by 1
100 whenever

d ≥ 220. However, the empirical results illustrated by

Fig 7 indicate that the filtered value of the pixel as a
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Fig. 7 From a color image, many pixels have been chosen
randomly and each curve in a sub figure represents a pixel.
The RGB bands are separately processed and plotted in three
sub figures. In each of the sub figures, a curve denotes the
first difference of the depth-truncated approximate UMST
filtered values as a function of depth. Note that the differences
stabilize to 0 at a depth of 15 indicating that Eq 22 yields
good approximation to UMST filter.

function of depth, d, stabilizes beyond a depth of 15 for

σ = 0.1.

In what follows, we view a rooted spanning tree T as

a directed spanning tree: for every pixel j, a path P ∗(j)

recursively as < j > if parent of j i.e. Parent(j) = nil,

and P ∗(j) = P ∗(s)· < s, j > if Parent(j) = s 6= null

(notations are borrowed from [18]).

Order-based truncation: For each i ∈ V , we trun-

cate the adaptive spanning tree Ti to T̂i,N such that it

contains only the pixels j among the closest N (user-

defined parameter) pixels w.r.t. the lexicographic order-

ing from i on Ti. (see Fig 8(b) for an illustration and

Algorithm 3 for computing it)

The order-based truncation of the adaptive span-

ning tree would precisely compute the limit of the mor-

phological amoeba filters with λ = 1 in Eq 10. More

formally, we have the following result:

Proposition 4 As p→∞, we have

SPF
(p)
i,N −→ ˆUMST i,N (28)

where SPF
(p)
i,N is the morphological amoeba filter at pixel

i (with λ = 1 and kernel size N) and ˆUMST i,N is the

collaborative filter using the closest N pixels to i w.r.t.

the reverse lexicographic ordering on the adaptive span-

ning tree Ti.

Proof The proof follows directly from Lemma 1.
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Algorithm 3 To compute an order-truncated adaptive

spanning tree
Input: UMST of the graph with vertex set I and edge set E,

kernel size N and pixel i, path cost function f as defined
in the proof of Proposition 3

Output: Order-Truncated Adaptive Spanning Tree T̂i,N
1: Set T̂i,N = ∅, Q = I, Parent(j) = null for each j ∈ I

and count = 0
2: while Q 6= ∅ and count < N do
3: Remove from Q a pixel j such that f(P∗(j)) is mini-

mum and add it to T̂i,N
4: count+ = 1
5: for each pixel k such that (j, k) ∈ E do
6: if f(P∗(j)· < j, k >) < f(P∗(k)) then
7: set Parent(k) = j
8: end if
9: end for

10: end while
11: Return T̂i,N

We remark that the choice of the kernel size N deter-

mines the trade-off between the level of smoothing and

the computational cost. In practice, using N ≈ 100,

one can obtain a good edge-aware filter. As the kernel

size is fixed and small, Algorithm 3 runs practically in

O(|V |) time. We shall see the comparison of the perfor-

mance of our approximations with that of tree filter in

the experiments section.

6 Experiments

In this section, we demonstrate that our approxima-

tions of the UMST filter perform similar to the TF (in

fact marginally better) at an additional computational

cost. To process 1000 pixels, it takes about 0.29 sec-

onds, 37 seconds and 738 seconds for TF, order-based

and depth-based approximations respectively. Conse-

quently, we provide an empirical evidence that TF is a

fast approximation to the limit of the SPFs. For all our

experiments, we have used identical σ (= 10) parameter

for computing the TF, depth-based (with depth = 15)

and order-based (with N = 100) multi-tree approxima-

tions of UMSTF. The experiments are performed on

Intel (R) Xeon(R) CPU W3565 at 3.20GHz with RAM

size of 6 GigaBytes.

Firstly, Fig 9 shows a qualitative comparison of BF,

TF, depth-based and order-based multi-tree approxi-

mations on some natural images. We observe that BF

yields blurry images and erases some object boundaries

as expected. On the other hand, TF and our approxi-

mations yield similar results. However, on a closer look,

one can observe that the boundaries are marginally bet-

ter preserved in our approximations (compare green

patches in Fig 9 second column, snake’s eye in Fig 9

fourth column).
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Fig. 8 (a) TF of pixel numbered 14 in Fig 2, here the pix-
els that contribute the highest to pixel numbered 14 (top
12 including itself) are highlighted in grey (b) Order-based
truncation of PTF at pixel numbered 14 in Fig 2, here the
pixels that are closest w.r.t. lexicographic order from 14 (top
12 including itself) are highlighted in grey. Observe that the
collaboration in the PTF within the object is very high due
to the usage of power spanning tree instead of an arbitrary
MST.

For a quantitative comparison of these filters, we

have computed the PSNR and structural similarity in-

dex (SSIM) [8] on images corrupted with synthetic noises.

In general, higher PSNR values and higher SSIM (SSIM

equal to 1 implies identical structures) indicate that the

image structures are better preserved. However, SSIM

is a superior measure when compared to PSNR as the

latter estimates absolute errors while the former takes

structural information into consideration. To see this,

observe that the mean PSNR values of BF in Table 1

is higher than that of other two filters over three itera-

tions of random salt and pepper noise. However, a visual

comparison of these filters (see Fig 10) suggests that

noise is better eliminated by TF and our approxima-

tion. The mean SSIM values however (see Table 2) are

in-line with the visual results and indicate that order-

based approximation of UMST filter performs better

than TF in presence of salt and pepper noise. Further,
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Fig. 9 A visual comparison of the subtle differences in the
performance of TF and our multi-tree approximations of UM-
STF on BSDS500 [3] images are illustrated. (a), (b), (c), (d)
original images (e), (f), (g), (h) Bilateral Filter (σ color =
100, σ space = 10) (i), (j), (k), (l) Tree Filter (σ = 10)
(m), (n), (o), (p) Depth-based multi-tree truncation (σ = 10,
depth = 15) (q), (r) , (s), (t) Order-based multi-tree trunca-
tion (σ = 10, N = 100). In the second and fourth columns,
observe the green patches and the snake’s eye respectively.
The leaks are more prominent in TF when compared to our
approximations. These comparisons are meant for a qualita-
tive comparison only.

the scatter plot (see Fig 11) of the SSIM values of TF

and order-based approximation of UMST filter on three

iterations of random Poisson, salt and pepper, Gaussian

and speckle noises on these images (House, Barbara,

Lena and Pepper) indicate that our approximation is

slightly better than TF irrespective of the type of noise.

Although our approximations yield marginally bet-

ter results than that of TF, they are computationally

expensive. However, it is important to note that our

approximations can be implemented in parallel as each

pixel is processed independently of the other. Also we

note that one has to choose an appropriate filter de-

pending on the type of noise. For instance, BF out-

performs the tree-based filters in presence of Gaussian

noise (see Table 3 and Table 4). To summarize, we have

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10 Visual illustration of edge-preserving filters on im-
ages contaminated with salt and pepper noise. BF erases
some object boundaries and does not eliminate the noise
completely while TF and order-based approximation elimi-
nate noise and yield similar results. (a), (b), (c), (d) Salt
and pepper noisy images (e), (f), (g), (h) Bilateral Filter
(σ color = 100, σ space = 10) (i), (j), (k), (l) Tree Filter
(σ = 10) (m), (n), (o), (p) Order-based multi-tree truncation
(σ = 10, N = 100)
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Fig. 11 Scatter plot of SSIM values of TF versus Order-
based approximation of UMST filter on three iterations of
random Poisson, Salt and Pepper, Gaussian and Speckle
noises on House, Barbara, Lena and Pepper images.
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Table 1 Peak Signal to Noise Ratios (PSNR) measured in
db on filtered images corrupted by salt and pepper noise. A
higher value indicates a better filter. Here BF, TF and PTF
indicate bilateral filter, tree filter and order-based truncation
of UMST filter respectively.

Mean PSNR on Salt Pepper Noise
BF TF PTF

House 24.71 25.04 24.67
Barbara 24.08 22.19 22.47
Lena 22.58 22.59 22.64
Pepper 21.70 21.96 20.59
Mean 23.27 22.95 22.59

Table 2 Structural Similarity Indices (SSIM) on filtered im-
ages corrupted by salt and pepper noise. A higher value indi-
cates a better filter and a value close to 1 indicates an ideal
filter. Here BF, TF and PTF indicate bilateral filter, tree
filter and order-based truncation of UMST filter respectively.

Mean SSIM on Salt Pepper Noise
BF TF PTF

House 0.69 0.80 0.83
Barbara 0.72 0.66 0.72
Lena 0.69 0.75 0.79
Pepper 0.62 0.74 0.74
Mean 0.68 0.74 0.77

demonstrated that TF is a fast approximation of the

limit of SPFs.

Table 3 Peak Signal to Noise Ratios (PSNR) measured in
db on filtered images corrupted by Gaussian noise. A higher
value indicates a better filter. Here BF, TF and PTF indicate
bilateral filter, tree filter and order-based truncation of UMST
filter respectively.

Mean PSNR on Gaussian Noise
BF TF PTF

House 25.12 23.76 23.97
Barbara 24.14 21.18 21.58
Lena 22.67 21.47 21.78
Pepper 22.15 21.09 20.93
Mean 23.52 21.88 22.07

7 Conclusions

In this paper, we have analysed the edge-aware filters

from scratch by developing shortest path filters as a nat-

ural extension of Gaussian-like filters. Using the power

watershed framework, we have provided a common op-

timization set-up for the well-known filters based on

shortest paths and the ones based on minimum span-

ning trees. We have thus established a link to the tree

filter by showing that it can be visualized as an approx-

imate limit of shortest path filters. Further, we have

proposed two different approximation algorithms of the

Table 4 Structural Similarity Indices (SSIM) on filtered im-
ages corrupted by Gaussian noise. A higher value indicates
a better filter and a value close to 1 indicates an ideal filter.
Here BF, TF and PTF indicate bilateral filter, tree filter and
order-based truncation of UMST filter respectively.

Mean SSIM on Gaussian Noise
BF TF PTF

House 0.79 0.73 0.75
Barbara 0.77 0.57 0.62
Lena 0.76 0.66 0.69
Pepper 0.75 0.67 0.68
Mean 0.77 0.66 0.69

UMST filter by leveraging ideas from shortest paths and

minimum spanning trees.

Establishing methods based on principles and/or

heuristics as limits of solutions of optimization prob-

lems would enable to design novel algorithms. For ex-

ample, based on these theoretical foundations one may

use the UMST adaptive spanning trees introduced in

this paper to perform attribute filtering on tree of shapes

[38] i.e. preserving specific shapes of interest while get-

ting rid of the rest.

We believe that faster implementations can be de-

veloped using efficient GPU-based parallel algorithms

[34] based on the ideas from our paper. Further, we be-

lieve that accuracy can be improved with supervised

techniques by learning edge-aware features from the

UMST adaptive spanning trees.

Ultimately, we aim to show that PW framework

serves as a powerful tool in applications beyond image

segmentation and filtering.
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