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Exploring the Links Between Edge-Preserving Collaborative Filters via Power1

Watershed Framework∗2

Sravan Danda† , Aditya Challa† , B.S.Daya Sagar† , and Laurent Najman‡3

4

Abstract. Edge-aware filtering is an important pre-processing step in many computer vision applications. In5
literature, there exist collaborative edge-aware filters that work well in practice but are based only6
on heuristics and/or principles. For instance, Tree Filter (TF) which is proposed recently based on7
a minimum spanning tree (MST) heuristic yields promising results in many filtering applications.8
However the usage of an arbitrary MST for filtering is theoretically not justified. In this article, we9
introduce an edge-aware generalization of the TF, termed as UMST filter based on all MSTs. The10
major contribution of this paper is establishing theoretical links between filters based on MSTs and11
filters based on geodesics via power watershed framework. More precisely, we compute the Γ-limit12
of Shortest Path Filters (SPFs) and show that it is the same as UMST filter. Consequently, TF13
can be viewed as an approximate Γ-limit of the SPFs, thereby providing a theoretical basis to it’s14
working. Also, we propose and provide a detailed analysis of two different implementations of the15
UMST filter based on shortest paths. Further, we establish empirically with the help of denoising16
experiments that TF is an approximate Γ-limit by showing that TF and one of our approximations17
yield similar results.18

Key words. Optimization, Image Filtering, Γ-convergence, MST, Shortest Paths19
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1. Introduction. Image filtering has been a fundamental problem in computer vision for21

several years. Edge-preserving filtering is a crucial step in many low-level vision problems such22

as image abstraction [34], texture removal [34], texture editing [34], scene simplification [34],23

stereo matching [34], optical flow [34] etc. Real world images often contain noise and irrelevant24

information such as texture along with the object boundaries (which are the major image25

structures). The goal of an image filtering algorithm is thus to preserve the image structures26

while getting rid of the redundant information. Hence for several of the applications, it is27

important for any filtering algorithm to preserve object boundaries.28

In the literature, there exist several edge-aware smoothing filters such as bilateral filter29

(BF) [35], guided filter (GF) [26], weighted least squares filter (WLS) [22], L0 smoothing [37],30

propagated image filter [11], morphological amoebas or adaptive kernel based filters [27], tree31

filter (TF) [6] and relative total variation filter (RTV) [38] etc. Although these filters work32

well in practice, some of them are not extensively studied from a theoretical perspective. In33
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Signal and Image Processing, Springer, 2017, pp 199-210.
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(a) (b) (c) (d)

Figure 1. (a) Original image (b) Bilateral filter (c) Tree filter + Bilateral filter (d) Power Tree Filter +
Bilateral filter.

this article, we study the recent state-of-art edge-aware Tree Filter (TF) which is based on a34

Minimum Spanning Tree (MST) heuristic. TF admits a linear time algorithm [39] and yields35

promising results in applications such as denoising, texture removal, stereo matching and scene36

simplification. However it exhibits a leak problem at some of the object boundaries. This37

problem occurs due to the presence of some object boundary edges in the MST and cannot38

be avoided as any spanning tree connects all the nodes in a connected graph. Although, the39

authors in [6] tried to negate the leak effect using a bilateral filter as a post-processing step,40

the problem still persists (see Figure 1(c)). Also, the filtering results vary with the choice of41

MST which is undesirable.42

This motivated us to explore the theoretical foundations of the TF for a deeper under-43

standing on how it works. Further, the links between the TF and the other edge-aware filtering44

methods might provide a possibility to design novel edge-aware filters. The main theme of this45

article is to answer this question and we establish a bridge between filters based on shortest46

paths and those based on minimum spanning trees. This paper is an extended version of the47

conference paper [18], our contributions are the following:48

1. We introduce an edge-aware filter based on the union of all MSTs of the image graph49

namely UMST filter, a generalization of the TF which is an established filtering tool.50

2. We compute the Γ-limit of the SPFs i.e. the Power Tree Filter (PTF) and show that51

it is precisely given by the UMST filter (see section 4 for details). Consequently, we52

provide a theoretical basis for the TF as it can be visualised as an approximate Γ-limit53

of the SPFs.54

3. We propose two different implementations of the Γ-limit which serve as an alternative55

to the TF (see section 5 for details) with a detailed analysis on how they work.56

4. We establish empirically with the help of denoising experiments that TF is an ap-57

proximate Γ-limit by showing that TF and one of our approximations yield similar58

results.59

The rest of the paper is organized as follows: In section 2, we briefly recall the notions60

of TF, Γ-convergence, power watershed framework and introduce UMST filter. In section 3,61

we develop SPFs as edge-aware filters starting from Gaussian-like filters and discuss their62

properties, links with other geodesic based methods. In section 4, we compute the Γ-limit of63
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the SPFs and show that it is precisely the UMST filter. In section 5, we discuss approximations64

of UMST filter i.e. TF and propose two approximations based on shortest paths. We provide65

a detailed analysis of each of these implementations and empirically establish with the help66

of denoising experiments that TF and one of our approximations yield similar results. In67

section 6, the conclusions follow and we speculate some possible directions to extend the ideas68

in the paper.69

2. Union Minimum Spanning Tree Filter. In this section, we briefly recall the Tree Filter70

(TF) and provide our motivation on why one should consider using a filter based on union of71

all the MSTs (UMST).72

2.1. Tree Filter. Suppose I is a given image which possibly contains noise, we let Ii73

denote the color or intensity of the pixel i in the image I. Let S denote the tree filtered74

image. The authors in [6] construct a 4-adjacency edge-weighted graph, with the weights75

between adjacent pixels reflecting the color or intensity dissimilarity. More formally, if i and76

j are 4-adjacent pixels, they use wij defined by77

(1) wij = ||Ii − Ij ||78

One can construct a MST on this edge-weighted graph, IMST . Since a spanning tree connects79

every pair of pixels and does not contain cycles, there exists a unique path between every pair80

of pixels. Let D(i, j) denote the number of edges on the path between i and j on IMST . For81

each pair i and j, the collaborative weights ti(j) are given by:82

(2) ti(j) =
exp(−D(i,j)

σ )∑
q exp(

−D(i,q)
σ )

83

where σ controls the falling rate and the summation over q is over all the pixels in the graph.84

The tree filtered value at pixel i is given by85

(3) Si =
∑
j

ti(j)Ij86

Here the summation over j is over all the pixels in the graph.87

It is reasonable to assume that the pixel color or intensities vary vastly across objects88

and are similar within objects. In other words, the higher weight edges mostly correspond89

to object boundaries and lower weight edges mostly correspond to object interiors. We shall90

work under this assumption in the rest of the article. The TF works on the following intuition:91

most of the higher weight edges do not appear while the lower weight edges mostly do appear92

in any MST. The collaboration across object boundaries is thus low while smoothing within93

objects is achieved well.94

2.2. Why UMST filter?. The edges in the image graph that do not belong to object95

boundaries induce a disconnected subgraph. On the other hand, a MST of a graph is con-96

nected, hence any MST contains one or more object boundary edges. These edges cause a97

leak effect in the tree filtered image (see Figure 1(c)). Also, the filtering results vary with the98
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Figure 2. (a) 4-adjacency graph of a synthetic image containing two objects coloured in red and green. The
pixels in this image are indexed from 1 to 30 and the weights on the edges denote the intensity dissimilarities.
The edges corresponding to object boundaries are represented by dotted lines, (b) A MST obtained from (a),
and (c) UMST obtained from (a). In order to illustrate that UMST filter yields better results, it should perform
at least as good as TF for - removing noise at pixel numbered 28 and reducing the leak at object boundaries
say at pixel numbered 13 and 14. Consider pixel numbered 28. One can see that both the edges of weights 100
incident on this pixel are present in the UMST, the noise removal is enhanced due to higher collaboration with
the neighbouring pixels when compared to that of tree filter where MST had only one of the edges with weight
100. Now consider the pixel numbered 13. We see that although an extra boundary edge (edge 13− 18) appears
in the UMST, the presence of an additional interior edge incident on 13 in the UMST nullifies the effect of
the boundary edge collaboration. At pixel numbered 14, the UMST filter performs better than tree filter due the
presence of the additional interior edge 13 − 14.

MST used, making the choice of an arbitrary MST debatable. On the other hand, a filter99

based on UMST would ensure the following:100

1. The filtering results would not depend on arbitrary MST computations.101

2. There would be a significant reduction in the leak effect when compared to the TF102

(see Figure 1(d)).103

The first property is a direct consequence of the fact that UMST filter uses all the MSTs104

of the image graph. The second property can be explained intuitively as follows: The edges105

in the UMST is a superset of the edges of an arbitrary MST. Now, among the edges that106

belong to UMST but not the MST are mostly object interior edges. These object interior107

edges dominate the collaborative effect of the object boundary edges to ensure a reduction in108

the leakage. Figure 2 illustrates the above properties on a synthetic image.109

Extending the idea of TF, we use an exponential falling weight similar to (2) for computing110

collaborative weights. However, we observe that there are possibly multiple paths between111

a given pair of pixels i and j in the UMST. In order to define the collaborative weights of112

the UMST filter, we need a criterion to choose a path among all the paths between i and j.113

We consider η(i, j), the number of edges on a path with smallest dictionary or lexicographic114

order of edge weights (see Definition 3.4 and Definition 4.1) replacing D(i, j) in (2). This is115

a natural way to generalize the TF since: (a) the lesser the lexicographic order of a path, the116
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lesser the chance of the path crossing an object boundary, (b) in the special case of the graph117

having a unique MST, this filter is exactly the same as TF.118

2.3. Lexicographic Ordering and Pass Values. Lexicographic order of a path is related119

very closely to the notion of pass values used in segmentation. Pass value [16] or the minimax120

distance [21] between a pair of nodes is the minimum of the l∞ norm over all the paths121

between them. To the best of our knowledge, this feature was first used in image filtering122

in [33]. Pass values between different minima of a gradient image is a measure of contrast123

difference between objects in watershed segmentation [30]. One can observe that any image124

transformation on the gradient image that keeps the object boundaries intact preserves the125

contrast difference between objects. It is hence a desired condition for a segmentation method126

to preserve the contrast difference (topological watersheds [14] for instance).127

Observe that given pixels i and j, a path with smallest lexicographic order of the edge-128

weights would be a special case of a path with smallest l∞ norm. In simpler words, the smallest129

lexicographic order path is a critical path that determines the contrast difference between a130

pair of pixels. In practice, a path with smallest lexicographic order would be unique. This131

serves as a tie-breaker on choosing a critical path among the smallest l∞ norm paths thus132

reducing the ambiguity.133

Now, we shall recall notions of Γ-convergence and the power watershed framework before134

we state the main result of the paper.135

2.4. Γ-convergence, Power Watershed Framework and UMST Filter. Γ-convergence136

[8] is the study of asymptotic behaviour of a sequence of minimization problems. Suppose137

for each n ∈ N, Fn : Rl → R is a cost function such that arg minx∈Rl(Fn(x)) 6= ∅, what138

does limn→∞ xn minimize (assuming the limit exists) where xn ∈ arg minx∈Rl(Fn(x))? In139

other words, in what sense do Fn converge to F where F : Rl → R so that limn→∞ xn ∈140

arg minx∈Rl(F (x)). In general, the usual notions of pointwise and uniform convergence do141

not convey information about the limiting behaviour of minimizers of functionals and Γ-142

convergence is a more appropriate mode of convergence. In simple words, it provides sufficient143

conditions under which one can approximate a minimizer of F using the minimizers of Fn.144

We refer the interested reader to [8] for a comprehensive study of Γ-convergence.145

Γ-convergence has been proved to be very useful in many computer vision applications146

especially the ones based on variational formulations. Classically, Γ-convergence is used in the147

cases where it is known that a sequence of functions Fn gamma converge to F and it is difficult148

to compute the minimizer of F directly. For example, the Ambrosio-Tortorelli approximation149

[2] of the Mumford-Shah functional by a sequence of smooth phase field functionals is one150

such instance. In such cases, one typically picks a large n and investigates if the minimizers151

of Fn exhibit the desired properties of the minimizer of F .152

However, studying the Γ-limit of minimizers on finite graphs [19] have been useful in recent153

times. In some cases, an explicit computation of a Γ-limit is possible and provides useful154

insights. The following are a few such instances : In [13], the power watershed framework155

unifies and extends a common framework of semi-supervised or seeded graph-based image156

segmentation methods namely graph cuts [7], random walker [24], geodesics [1, 5, 17, 21]157

and watershed cuts [15, 16]; More recently, [29] generalizes the power watershed framework158

for a larger class of cost functions (Eqns. 1 and 2 in [29]) and formalizes the notion of159
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scale for investigating minimizers. In simple words, [29] develops theory and algorithms to160

combine data reduction and optimization techniques; In [31, 3], the elementary mathematical161

morphological (MM) operators have been formulated as limits of variational problems; and162

in [36], the authors view the local min-max filters as a limit of normalized power-weighted163

averaging filter; In [10], the authors propose a fast alternative to spectral clustering methods164

by considering their Γ-limit.165

As edge-preserving image filtering and image segmentation are closely related problems,166

one can anticipate to establish links between existing filtering methods using the power wa-167

tershed framework [13, 29]. In fact, we prove the following theorem which is the main result168

of the paper: UMST filter is the Γ-limit of shortest path edge-aware filters. Although both169

[29] and this article involve the computation of Γ-limit of parametrized cost functions, it is170

important to note that the cost functions used in this article do not fall in the framework171

of Eqns. 1 and 2 in [29]. See section 3 for a formal definition of shortest path filters and172

section 4 for a proof. This result implies that one can view the UMST filter and the shortest173

path filters in an optimization framework.174

3. Shortest Path Filters and Related Methods. In this section, we shall review the175

shortest path filters in detail. In particular, we develop them as a natural edge-aware extension176

of Gaussian-like filters. The rest of the section is dedicated to the discussions on their links177

with other related geodesic methods.178

Before formally defining the SPF, we need some notions of graphs that we define below.179

3.1. Basic Notions.180

Definition 3.1. An edge-weighted graph G = (V,E,W ) consists of a finite set V of nodes,181

and set of unordered pairs of elements of V i.e. {{x, y} ⊂ V : x 6= y}, called the edge set E,182

a positive real-valued function W on the set E. We denote wij or W (eij) as the weight of the183

edge joining pixels i and j.184

Definition 3.2. For p ∈ Z+, we denote by G(p) = (V,E,W (p)), the graph that contains the185

same set of nodes and edges as of G and W (p)(eij) = (W (eij))
p for each edge eij ∈ E and we186

call G(p) as an exponentiated graph of G.187

Definition 3.3. A path P (i, j) between nodes i and j is a finite ordered sequence of nodes188

of G such that there is an edge incident on every adjacent pair of nodes in the sequence. We189

say that a path from i to j is a simple path if all the nodes in the sequence are distinct.190

Definition 3.4. Assume that the distinct weights in G are given by 0 < w1 < w2 < · · · < wk.191

Given a path P (i, j) in G, one can assign a k-tuple (n1, · · · , nk) to the path, where nr denotes192

the number of edges of weight wr on the path P (i, j). This k-tuple is referred to as the edge-193

weight distribution of the path P (i, j).194

We remark that the k-tuples associated with a path P (i, j) in graph G and its exponentiated195

graph G(p) are identical by the virtue of it’s definition. However it is important to note that:196

corresponding to each of the coordinates, the weights in the edge-weight distributions are197

different.198

Definition 3.5. Assume that the distinct weights in G are given by 0 < w1 < w2 < · · · <199

wk. Suppose P (i, j) is a path between pixels i and j in G. P (i, j) is said to be a shortest200
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Figure 3. (a) and (b) 4-adjacency graph of a synthetic image containing two objects coloured in blue and
yellow. The pixels in this image are indexed from 1 to 20 and the weights on the edges denote the intensity
dissimilarities. The collaborative weight for the pair of pixels 8 and 13 (which crosses an object boundary) given
by Gaussian-like filter would consider the edge highlighted in red in (a) and yields a high value. On the other
hand, the SPF considers the path < 8, 7, 12, 13 > highlighted in red in (b) for computing the corresponding
collaborative weight. This illustrates that SPF respects the object boundaries.

path between the pixels i and j in G if for every path Q(i, j) between i and j in G, we201

have
∑k

r=1 nrwr ≤
∑k

r=1mrwr where (n1, · · · , nk) and (m1, · · · ,mk) denote the edge-weight202

distributions of P (i, j) and Q(i, j) respectively.203

We remark that a shortest path is always a simple path since all the weights in the edge-204

weighted graphs are strictly positive.205

We shall now build an edge-aware filter from scratch: Let i and j be two pixels in G(p).206

Consider the simplest weighted-average filter whose collaborative weights are given by207

(4) gi(j) =
exp

(
− ||i−j||σ

)
∑

k exp
(
− ||i−k||)σ

)208

where ||i− j|| : l1 norm between the pixels i and j and σ is the parameter controlling the209

level of smoothing.210

We observe that this is a Gaussian-like filter and collaborative weights purely depend on211

the spatial distance between pixels i and j. More specifically, collaborative weights between212

pixels separated by same distance is indifferent w.r.t. existence of an object boundary between213

them. Hence, one has to find a way to ensure that the collaborative weights are lesser across214

boundaries. A natural way to extend the idea of a Gaussian-like filter is: given a pair of pixels215

i and j, consider the number of edges on a path with smallest sum of weights between them.216

Let Π(P (i, j)) denote the number of edges on a path P (i, j). Define217

(5) Θ(p)(i, j) = inf{Π(P (i, j)) where P (i, j) is a shortest path in G(p)}218
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8 SRAVAN DANDA, ADITYA CHALLA, B.S.DAYA SAGAR AND LAURENT NAJMAN

where the edge weights are given by:219

(6) wij = ||Ii − Ij ||+ 1220

The SPF at pixel i is defined as:221

(7) S
(p)
i =

∑
j

exp
(
−Θ(p)(i,j)

σ

)
∑

k exp
(
−Θ(p)(i,k)

σ

)Ij ,222

where σ controls the falling rate and the summations are over all pixels in the image.223

Note that the weights in Eq. (6) are different from the ones in Eq. (1) to ensure that224

the weights are strictly positive. We use the edge weights as per (6) in the rest of the paper.225

Since, we use an increasing transformation on edge weights, shortest paths and MSTs are226

invariant to the modification. This assumption is needed to ensure that the converse part in227

Lemma 4.3 holds.228

We remark that in the special case of all pixel values being equal in the image, SPF is229

exactly Gaussian-like filter. Also, in practice, the shortest path distances between a pair of230

pixels within the objects are close to the spatial distances and are larger than the spatial231

distances across object boundaries. Figure 3 illustrates on a synthetic image that the SPF is232

a natural edge-preserving extension of the Gaussian-like filter.233

234

Further, one can see that the SPF value at pixel i is a solution of the following optimization235

problem:236

Consider the cost function237

(8) Q
(p)
i (x) =

∑
j

exp

(
−Θ(p)(i, j)

σ

)
(x− Ij)2

238

where σ controls the falling rate and the summation is over all pixels. The shortest path239

filtered value at pixel i is given by the minimizer of Q
(p)
i (x) i.e.240

S
(p)
i = arg min

x
Q

(p)
i (x)241

SPFs are not completely new and there exist in literature, several edge-preserving filters242

using geodesics such as the ones discussed in [25], the adaptive kernel filter such as morpho-243

logical amoebas [27].244

3.2. Relation to Morphological Amoebas. SPFs are also closely related to Morphological245

Amoebas. Morphological Amoebas are adaptive structuring elements based on shortest path246

distances used to build edge-aware filters. These kernels work on the assumption that the247

gradients are low within the objects and high across the object boundaries. In order to ensure248
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that the kernels do not cross the object boundaries, the amoeba distance defined below is used249

to compute them:250

(9) κ(i, j) = min
P (i,j)

Lλ(P (i, j))251

where P (i, j) is a path between pixels i and j, < i = x0, x1, · · · , xn = j > and λ ≥ 0 is a252

user input.253

(10) Lλ(P (i, j)) =

n−1∑
t=0

(
1 + λ‖Ixt+1 − Ixt‖

)
254

The closed ball at pixel i given by {j : κ(i, j) ≤ r} is the kernel used for edge-aware255

smoothing. The cardinality or the size of the kernel depends on r and is chosen as per the256

level of smoothing desired.257

Proposition 3.6. Θ(1)(i, j) is a constrained minima of the amoeba kernel path length given258

by259

(11) Θ(1)(i, j) = minL0(P (i, j)) subject to P (i, j) ∈ arg minL1(P (i, j))260

Further, the family of parameters Θ(p)(i, j) are given by:261

(12) Θ(p)(i, j) = minLp0(P (i, j)) subject to P (i, j) ∈ arg minLp1(P (i, j))262

where263

(13) Lpλ(P (i, j)) =
n−1∑
t=0

(
1 + λ‖Ixt+1 − Ixt‖

)p
264

265

Proof. It readily follows from (5), (6), (10) and (13)266

Note that the morphological amoeba lengths are a special case of the lengths given by (13).267

We can hence view the SPF as a generalization of the notion of morphological amoeba lengths.268

4. UMST Filter: Gamma Limit of Shortest Path Filters. In this section, we shall prove269

that the UMST filter is the Γ-limit of SPFs. As the weights of the graphs of the shortest path270

filters are powers of natural numbers (see section 3), we use the term Power Tree Filter to271

denote the Γ-limit of Shortest Path Filters. We shall need some definitions before we prove272

this result.273
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Figure 4. (a) and (b) synthetic images to illustrating the lexicographic ordering of paths. The lexicographic
order of path in blue is lesser than that of the one in green

4.1. Some Definitions.274

Definition 4.1. Assume that graph G has k distinct weights given by w1 < · · · < wk. Let275

(n1, · · · , nk) and (m1, · · · ,mk) denote the edge-weight distributions of paths P and Q in G276

respectively. Let l = sup(A) where A = {r : 1 ≤ r ≤ k, nr 6= mr} We define dictionary277

ordering or lexicographic ordering on the set of paths in G as follows:278

(14) P ≥ Q⇔ A = ∅ or nl > ml279

See Figure 4 for an illustration on dictionary ordering. Note that dictionary ordering280

yields a complete ordering on the set of paths in G and the ordering remains same in each of281

the exponentiated graphs G(p).282

Definition 4.2. Suppose P (i, j) is a path between pixels i and j in G. P (i, j) is said to be283

a smallest path w.r.t. dictionary order between the pixels i and j in G if for every path284

Q(i, j) between i and j in G, we have Q(i, j) ≥ P (i, j).285

Note that every smallest path w.r.t. dictionary order between pixels i and j in G has the286

same edge-weight distribution. In particular, the number of edges on a smallest path w.r.t.287

dictionary order between i and j denoted by Π(i, j) is well-defined.288

Any MST in G(p) is a MST in G and vice-versa. This follows directly from the fact that289

MST is invariant to any strictly increasing transformation on the weights of a connected290

graph. The notions of smallest paths w.r.t. dictionary order and that of MSTs in G(p) are291

hence independent of p.292

4.2. Gamma Limit of Shortest Path Filters. In this subsection, we characterize the293

Power Tree Filter or Γ-limit of Shortest Path Filters. Firstly, we have the following result:294

Lemma 4.3. Let G = (V,E,W ). For every pair of pixels i and j in V , there exists p0 ≥ 1295

such that, a path P (i, j) is a shortest path between i and j in G(p) for all p ≥ p0 if and only296

if P (i, j) is a smallest path w.r.t. dictionary order between i and j in G. Further, p0 is297

independent of i and j.298

Proof. Let G = (V,E,W ) and let the distinct weights in G be given by w1 < · · · < wk.299

Firstly, we shall show that for a given pair of pixels i and j, if P (i, j) is a smallest path300

w.r.t. dictionary order between i and j in G then there exists a constant p0 such that for301

each p ≥ p0, P (i, j) is a shortest path between i and j in G(p). Let P (i, j) be a small-302

est path w.r.t. dictionary order between i and j in G. Let Q(i, j) be an arbitrary simple303
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path between i and j. Let (n1, · · · , nk) and (m1, · · · ,mk) denote the edge-weight distribu-304

tions of paths P (i, j) and Q(i, j) respectively. Let A(P,Q) = {1 ≤ r ≤ k : nr 6= mr}.305

Suppose A(P,Q) = ∅ then
∑k

r=1 nrw
p
r ≤

∑k
r=1mrw

p
r ∀p ≥ 1. If A(P,Q) 6= ∅ then let306

l = sup(A(P,Q)). We have ml > nl by choice of P (i, j). Also, the difference of the total307

weights i.e.
∑k

r=1mrw
p
r −

∑k
r=1 nrw

p
r = Θ(wpl ) with a positive leading coefficient. Hence308

∃pQ(i,j) ≥ 1 such that
∑k

r=1 nrw
p
r ≤

∑k
r=1mrw

p
r ∀p ≥ pQ(i,j). Now, let Sij denote the set of309

all simple paths from i to j. Then |Sij | < ∞. Set pij = sup{pQ(i,j) : Q(i, j) ∈ Sij} < ∞. We310

note that given any path which is not simple, one can drop the redundant edges to construct a311

simple path with strictly smaller total weight. It is hence enough to show that the total weight312

of P (i, j) is lesser than or equal to every simple path between i and j in G(p) for sufficiently313

large p. As V is finite, setting p0 = sup{pij : i, j ∈ V } completes the argument.314

Conversely, suppose P (i, j) is NOT a smallest path w.r.t. dictionary ordering between315

i and j, we shall construct a sequence (pn)n≥1 converging to ∞ such that P (i, j) is not316

a shortest path between i and j in G(pn) for each n ≥ 1. Since P (i, j) is not a smallest317

path w.r.t. dictionary ordering between i and j, ∃ a path T (i, j) between i and j such that318

P (i, j) ≥ T (i, j) holds but T (i, j) ≥ P (i, j) does not hold. Equivalently, if the edge weight319

distributions of P (i, j) and T (i, j) are given by (n1, · · · , nk) and (t1, · · · , tk) respectively then320

A(P, T ) 6= ∅ and tl < nl where l = sup(A(P, T )) and A(P, T ) = {1 ≤ r ≤ k : nr 6= tr}.321

The difference of the total weights i.e.
∑k

r=1 trw
p
r −

∑k
r=1 nrw

p
r = Θ(wpl ) and has a negative322

leading coefficient. Thus, ∃ a constant ρij ≥ 1 such that for each p ≥ ρij , P (i, j) is not a323

shortest path between i and j. We set (pn)n≥1 by pn = ρij + n− 1 to complete the proof.324

Loosely speaking, for a large enough power p, on G(p), between every pair of pixels, a325

shortest path is a smallest path w.r.t. dictionary order and vice-versa. In short, we have the326

following corollary:327

Corollary 4.4. Let ∆(i, j) denote the number of edges on a smallest path w.r.t. dictionary328

order between pixels i and j in G. As p→∞, we have Θ(p)(i, j)→ ∆(i, j) for each pair i and329

j.330

4.3. Optimization Framework for UMST Filter. Recall the definition of UMST filter331

from section 2. Let G denote the given image, let GUMST denote the UMST on the edge-332

weighted graph constructed from G. Let η(i, j) denote the number of edges on a smallest path333

w.r.t. dictionary order between pixels i and j in GUMST . Now consider the cost function given334

by:335

(15) Q̂i(x) =
∑
j

exp

(
−η(i, j)

σ

)
(x− Ij)2

336

where σ controls the falling rate and the summation is over all pixels, the UMST filtered337

value at pixel i is given by the minimizer of Q̂i(x).338

(16) Ui = arg min Q̂i(x) =
∑
j

exp
(
−η(i,j)

σ

)
∑

k exp
(
−η(i,k)

σ

)Ij ,339
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where U denotes the UMST filtered image.340

Firstly, we need the following:341

Lemma 4.5. (Cut Property) For any cut C of a connected graph G = (V,E,W ), if the342

weight of an edge e in the cut-set C is not larger than the weights of all other edges in C, then343

this edge belongs to a MST of the graph G = (V,E,W ).344

Lemma 4.6. (Cycle Property) For any cycle C in the graph G = (V,E,W ), if the weight345

of an edge e of C is larger than the individual weights of all other edges of C, then this edge346

cannot belong to a MST.347

Before we prove the main result of the paper, we need Lemma 4.7 which is a modified348

version of a result stated in [29].349

Lemma 4.7. Let G = (V,E,W ) be an edge-weighted graph. Let G<w denote the induced350

subgraph of G with the vertex set V and all the edges eij ∈ E whose weight wij < w. Let351

GUMST denote the UMST of G. Then an edge e with weight w(e) belongs to the GUMST if and352

only if the edge e joins two connected components in G<w(e).353

Proof. The proof directly follows from Lemma 4.5 and Lemma 4.6.354

In simple words, an edge e is in some MST if and only if it connects two different compo-355

nents of the induced subgraph generated by edges of weights lower than that of e.356

Proposition 4.8. Every smallest path w.r.t. dictionary order between any two arbitrary357

nodes in G = (V,E,W ) lies on a MST of G and hence on the union of MSTs of G.358

Proof. Let i and j be two arbitrary nodes in G. Let P (i, j) be a smallest path w.r.t.359

dictionary order between i and j. It is now enough to show that every edge in the path P (i, j)360

satisfies the characterization given in Lemma 4.7. Suppose if possible, let e ∈ P (i, j) be of361

smallest possible weight such that e is incident on nodes in a same connected component of362

G<w(e). Adding e thus forms a cycle C and the other edges in C have weights strictly less363

than w(e).364

Now, consider the subgraph generated by edges in P (i, j) ∪ C \ {e}. This subgraph is365

connected and hence there exists a path Q(i, j) (say) between i and j. It is easy to see that366

Q(i, j) has smaller dictionary order compared to P (i, j): number of edges of weight greater367

than w(e) in Q(i, j) cannot exceed to that in P (i, j) since C has edges of weight strictly less368

than w(e); number of edges of weight w(e) in Q(i, j) is at least one less than that of P (i, j).369

This contradicts the fact that P (i, j) is a smallest path w.r.t. dictionary order between i and370

j.371

Corollary 4.9. For every pair i and j in G, we have η(i, j) = ∆(i, j)372

The main result is formally stated as follows:373

Theorem 4.10. As p→∞, we have the following:374

(17) Q
(p)
i (x)

Γ−→ Q̂i(x)375

In other words, the shortest path filters converge to the UMST filter as p→∞ i.e.376

(18) S
(p)
i −→ Ui377
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378

Proof. The proof follows readily from Proposition 4.8 and Lemma 4.3.379

The fact that UMST filter is a Γ-limit of shortest path filters is useful: The state-of-art380

algorithms in shortest paths and MSTs can be jointly exploited to obtain novel algorithms to381

compute UMST filter.382

5. Implementation. In this section, we discuss several possible implementations of UMST383

filter. We utilize ideas from shortest paths and spanning trees to obtain two novel approxima-384

tion algorithms to compute UMST filter. We provide detailed analyses of our implementations385

along with the TF which is yet another approximation of the UMST filter.386

5.1. Exact Algorithms. Thanks to UMST characterization given by Lemma 4.7, we can387

compute the UMST of a graph in O(|E|) which in the case of 4-adjacency graphs would be388

O(|V |). Also one can hope to reduce at least significant number of edges when compared to389

G in practice.390

A naive approach is to adapt the Floyd-Warshall [23] algorithm to calculate η(i, j) for each391

pair and the computation of UMST filter takes O(|V |3) time and O(|V |2) space. This is very392

expensive in terms of both memory and space and is hence not practical. In order to reduce393

the complexity, one needs to exploit the properties of lexicographic ordering and that of the394

UMST graph structure. One approach is by borrowing ideas from Image Foresting Transform395

(IFT) [21].396

Image Foresting Transform is a unified framework for several image processing operators397

that are based on shortest paths. Some of these operators include fuzzy-connected segmen-398

tation [12, 32] and distance transforms [28, 20]. In simple words, IFT is a generalization of399

Dijkstra’s algorithm where an image (with a specified adjacency relation), a set of seeds and400

a path cost function are specified and one needs to assign to every non-seeded pixel, a seed401

label to which it admits a path with smallest cost. The path costs are usually application-402

specific and are not necessarily given by sum of the weights of the edges on the path. Hence,403

a modified Dijkstra’s algorithm is used to handle a general class of path cost functions that404

arise in computer vision applications. We briefly describe the IFT framework below as in [21]405

and then discuss the relations with the SPF’s:406

The IFT takes as an input, an image I, an adjacency relation A (usually given by 4-407

adjacency in case of 2D images), a cost function C for all paths and outputs an optimum408

spanning forest. Note that the seeds can be specified implicitly by the cost function by409

assigning a fixed cost for every path that starts at a certain pixel (finite for seed pixels and410

infinite for non-seed pixels). Although there are no restrictions on the dimension of the411

image and the adjacency relation, the path costs are restricted and the following are sufficient412

conditions for the optimal IFT algorithm [21] to be applicable:413

For any pixel t, there is an optimum path π ending at t which is either trivial or is of the414

form τ · < s, t >, where415

• C(τ) ≤ C(π),416

• τ is an optimum path ending at s,417

• C(τ ′· < s, t >) = C(π) if τ ′ is an optimum path ending at s418

Using a single seed, the optimum-path forest obtained (which is a tree rooted at the seed)419
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Algorithm 1 Generic Algorithm to Compute UMST Filter

Input: A 4-adjacency graph G of an image I, Adaptive Spanning Trees Ti for each i ∈ V
Output: Filtered image S.

1: for all pixels i ∈ V do
2: Starting from i on Ti, use Sp = Ip +

∑
q∈children of p exp(

−1
σ )Sq recursively to compute

Si
3: end for

can be used to compute the shortest path filtering collaborative weights (see (5)). By varying420

the seed s, the SPF can be computed for the whole image. However, such an implementation421

would still take O(|V |2) time. To the best of our knowledge, we do not have any linear-time422

exact algorithms for computing the UMST filter. Thus, it calls a need to develop at least a423

quasi-linear algorithm approximation algorithm.424

5.2. Approximation Algorithms. Single tree-based approximation: As we have developed425

the UMST filter by generalizing the notion of TF in section 2, we can view TF as a heuristic426

approximation of the UMST filter. Note that TF uses only one MST and hence can be427

computed dynamically in linear time by doing an upward aggregation followed by a downward428

aggregation on the tree (see [39] for details). However, the usage of an arbitrary MST makes429

it difficult to analyse the degree of approximation quantitatively.430

Multiple tree-based approximations: One can also uses multiple spanning trees adaptively431

for filtering different pixels. In fact, one can find upper bounds on the approximation factors432

as a consequence of Proposition 5.1.433

Proposition 5.1. For every pixel i in the image I, there exists a spanning tree Ti (termed434

as adaptive spanning tree), such that Ti contains a smallest path with respect to dictionary435

ordering between pixels i and any other pixel j in I.436

Proof. Let i be an arbitrary pixel in I. We shall construct an adaptive spanning tree Ti,437

such that Ti contains a smallest path with respect to dictionary ordering between pixels i and438

any other pixel j in I. The construction is a special case of IFT (see [21]) with the following439

as the inputs: I is the image with 4-adjacency. The path costs are given by: f(π) = ∞ for440

every path π that does not start at i. All paths πl that start at i are completely ordered in441

the order of decreasing lexicographic ordering using their edge-weight distributions. The path442

costs are determined by the order statistics of the path i.e. if π1 ≥ π2 ≥ · · · > πl are all the443

paths starting from i ordered w.r.t. lexicographic ordering then the path cost f is given by444

f(πt) = l− t+1 where 1 ≤ t ≤ l. We remark that the this path cost is monotonic incremental445

(see [21]). The IFT algorithm applied thus yields Ti, an adaptive spanning tree of i with the446

required properties.447

Proposition 5.1 essentially implies that one can decompose the UMST into possibly differ-448

ent spanning trees Ti for each i ∈ V . Using each of the trees independently (see Figure 5 for449

an illustration on a synthetic image), one can obtain the exact UMST filter (see Algorithm 1).450

The exact computation takes O(|V |2) and O(|V |) time and space complexities respectively.451

However, by truncating each of these trees in Algorithm 1, one can obtain fast approximate452

solutions. We present two ways to truncate the adaptive trees to obtain approximate UMST453
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Figure 5. (a) A synthetic image with the edge-weights reflecting the intensity dissimilarities, (b) and (c)
Adaptive spanning trees of the pixels circled in red and blue respectively.

Algorithm 2 To compute a depth-truncated adaptive spanning tree

Input: UMST of the graph, depth d and pixel i
Output: Depth-Truncated Adaptive Spanning Tree Ti,d

1: Set X = {i} and Ti,d = (i, ∅)
2: while True do
3: break = true
4: for e in shortest edges from X to Xc do
5: if dist(e, i, Ti,d) < d then
6: Ti,d ∪ e
7: break = false
8: end if
9: end for

10: if break = true then
11: return Ti,d.
12: end if
13: end while

filter.454

455

Depth-based truncation: For each i ∈ V , we truncate the adaptive spanning tree Ti to Ti,d456

such that it contains only the pixels j that are at most d (user-defined parameter) edges away457

from i on Ti (see Figure 6(b) for an illustration and Algorithm 2 for computing it)458

We rewrite (16) as:459

(19) Ui =
1

C

∑
l

exp(− l
σ

)
∑

j:η(i,j)=l

Ij ,460

where C is the normalizing constant. In (19), we observe that the exponential term rapidly461
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Figure 6. (a) TF of pixel numbered 14 in Figure 2, here the pixels with significant collaboration (distance
≤ 2) are highlighted in grey (b) Depth-based truncation of UMST filter at pixel numbered 14 in Figure 2, here
the pixels with significant collaboration (depth ≤ 2) are highlighted in grey. Observe that the collaboration within
the object is higher due to the usage of adaptive spanning tree instead of an arbitrary MST.

converges to 0 and hence one can approximate the above expression by462

(20) Ui ≈ Ui,d =
1

C

d∑
l=1

exp(− l
σ

)
∑

j:η(i,j)=l

Ij ,463

where d is a parameter indicating a fixed depth. This simplification reduces the calculation464

for each pixel drastically and hence Algorithm 2 is practically O(|V |).465

We shall now analyse (20) in more detail. Also as a consequence of Proposition 5.1, any466

two pixels are separated by at most |V | − 1 edges on a spanning tree Ti i.e. η(i, j) ≤ |V | − 1.467

Also, if η(i, j) = l > 0 then for each 0 ≤ l′ ≤ l, there exists at least one pixel j′ such that468

η(i, j′) = l′. Assume that the intensities satisfy 1 ≤ Ij ≤ 255 then we have the following:469
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Figure 7. From a color image, many pixels have been chosen randomly and each curve in a sub figure
represents a pixel. The RGB bands are separately processed and plotted in three sub figures. In each of the
sub figures, a curve denotes the first difference of the depth-truncated approximate UMST filtered values as
a function of depth. Note that the differences stabilize to 0 at a depth of 15 indicating that (20) yields good
approximation to UMST filter.

Ui − Ui,d
Ui

=

∑|V |−1
l=d+1 exp(−

l
σ )
∑

j:η(i,j)=l Ij∑|V |−1
l=0 exp(− l

σ )
∑

j:η(i,j)=l Ij
(21)470

≤
exp(−d+1

σ )
∑

j:η(i,j)≥d+1 Ij

Ii +
∑d

l=1 exp(−
l
σ )
∑

j:η(i,j)=l Ij
(22)471

≤
exp(−d+1

σ )
∑

j:η(i,j)≥d+1 Ij

1 +
∑d

l=1 exp(−
l
σ )

(23)472

=
exp(−d+1

σ )

1 +
∑d

l=1 exp(−
l
σ )

∑
j:η(i,j)≥d+1

Ij(24)473

=
exp(−d+1

σ )

1− exp(−d+1
σ )

(1− exp(− 1

σ
))

∑
j:η(i,j)≥d+1

Ij(25)474

For an image with 106 pixels, setting σ = 0.1, the expression in (25) is bounded above by475
1

100 whenever d ≥ 220. However, the empirical results illustrated by Figure 7 indicate that476

the filtered value of the pixel as a function of depth, d, stabilizes beyond a depth of 15 for477

σ = 0.1.478

In what follows, we view a rooted spanning tree T as a directed spanning tree: for every479

pixel j, a path P ∗(j) recursively as < j > if parent of j i.e. Parent(j) = nil, and P ∗(j) =480

P ∗(s)· < s, j > if Parent(j) = s 6= null (notations are borrowed from [21]).481

Order-based truncation: For each i ∈ V , we truncate the adaptive spanning tree Ti to T̂i,N482

such that it contains only the pixels j among the closest N (user-defined parameter) pixels483

w.r.t. the lexicographic ordering from i on Ti. (see Figure 8(b) for an illustration Algorithm 3484

for an computing it)485

The order-based truncation of the adaptive spanning tree would precisely compute the486

Γ-limit of the morphological amoeba filters with λ = 1 in (9). More formally, we have the487
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Algorithm 3 To compute an order-truncated adaptive spanning tree

Input: UMST of the graph with vertex set I and edge set E, kernel size N and pixel i, path
cost function f as defined in the proof of Proposition 5.1

Output: Order-Truncated Adaptive Spanning Tree T̂i,N
1: Set T̂i,N = ∅, Q = I, Parent(j) = null for each j ∈ I and count = 0
2: while Q 6= ∅ and count < N do
3: Remove from Q a pixel j such that f(P ∗(j)) is minimum and add it to T̂i,N
4: count+ = 1
5: for each pixel k such that (j, k) ∈ E do
6: if f(P ∗(j)· < j, k >) < f(P ∗(k)) then
7: set Parent(k) = j
8: end if
9: end for

10: end while
11: Return T̂i,N

following result:488

Proposition 5.2. As p→∞, we have489

(26) S
(p)
i,N −→ Ûi,N490

where S
(p)
i,N is the morphological amoeba filter at pixel i (with λ = 1 and kernel size N) and491

Ûi,N is the collaborative filter using the closest N pixels to i w.r.t. the lexicographic ordering492

on the adaptive spanning tree Ti.493

Proof. The proof follows directly from Lemma 4.3.494

We remark that the choice of the kernel size N determines the trade-off between the level of495

smoothing and the computational cost. In practice, using N ≈ 100, one can obtain a good496

edge-aware filter. As the kernel size is fixed and small, Algorithm 3 runs practically in O(|V |)497

time. We shall see the comparison of the performance of our approximations with that of tree498

filter in the experiments section.499

5.3. Experiments. In this section, we demonstrate that our approximations of the Γ-500

limit perform similar to the TF (in fact marginally better) at an additional computational501

cost. To process 1000 pixels, it takes about 0.29 seconds, 37 seconds and 738 seconds for502

TF, order-based and depth-based approximations respectively. Consequently, we provide an503

empirical evidence that TF is a fast approximation to the Γ-limit of the SPFs. For all our504

experiments, we have used identical σ (= 10) parameter for computing the TF, depth-based505

(with depth = 15) and order-based (with N = 100) multi-tree approximations of UMSTF.506

The experiments are performed on Intel (R) Xeon(R) CPU W3565 at 3.20GHz with RAM507

size of 6 GigaBytes.508

Firstly, Figure 9 shows a qualitative comparison of BF, TF, depth-based and order-based509

multi-tree approximations on some natural images. We observe that BF yields blurry images510
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Figure 8. (a) TF of pixel numbered 14 in Figure 2 (b) Order-based truncation of PTF at pixel numbered
14 in Figure 2, here the pixels that are closest w.r.t. lexicographic order from 14 (top 10 including itself) are
highlighted in grey. Observe that the collaboration in the PTF within the object is very high due to the usage of
power spanning tree instead of an arbitrary MST.

and erases some object boundaries as expected. On the other hand, TF and our approxima-511

tions yield similar results. However, on a closer look, one can observe that the boundaries are512

marginally better preserved in our approximations (compare green patches in Figure 9 second513

column, snake’s eye in Figure 9 fourth column).514

For a quantitative comparison of these filters, we have computed the PSNR and structural515

similarity index (SSIM) [9] on images corrupted with synthetic noises. In general, higher PSNR516

values and higher SSIM (SSIM equal to 1 implies identical structures) indicate that the image517

structures are better preserved. However, SSIM is a superior measure when compared to518

PSNR as the latter estimates absolute errors while the former takes structural information519

into consideration. To see this, observe that the mean PSNR values of BF in Table 1 is520

higher than that of other two filters over three iterations of random salt and pepper noise.521

However, a visual comparison of these filters (see Figure 10) suggests that noise is better522

eliminated by TF and our approximation. The mean SSIM values however (see Table 2) are523

in-line with the visual results and indicate that order-based approximation of UMST filter524

performs better than TF in presence of salt and pepper noise. Further, the scatter plot (see525

Figure 11) of the SSIM values of TF and order-based approximation of UMST filter on three526

iterations of random Poisson, salt and pepper, Gaussian and speckle noises on these images527

(House, Barbara, Lena and Pepper) indicate that our approximation is slightly better than528

TF irrespective of the type of noise.529

Although our approximations yield marginally better results than that of TF, they are530

This manuscript is for review purposes only.



20 SRAVAN DANDA, ADITYA CHALLA, B.S.DAYA SAGAR AND LAURENT NAJMAN

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 9. A visual comparison of the subtle differences in the performance of TF and our multi-tree
approximations of UMSTF on BSDS500 [4] images are illustrated. (a), (b), (c), (d) original images (e), (f),
(g), (h) Bilateral Filter (σ color = 100, σ space = 10) (i), (j), (k), (l) Tree Filter (σ = 10) (m), (n), (o),
(p) Depth-based multi-tree truncation (σ = 10, depth = 15) (q), (r) , (s), (t) Order-based multi-tree truncation
(σ = 10, N = 100). In the second and fourth columns, observe the green patches and the snake’s eye respectively.
The leaks are more prominent in TF when compared to our approximations. These comparisons are meant for
a qualitative comparison only.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 10. Visual illustration of edge-preserving filters on images contaminated with salt and pepper noise.
BF erases some object boundaries and does not eliminate the noise completely while TF and order-based ap-
proximation eliminate noise and yield similar results. (a), (b), (c), (d) Salt and pepper noisy images (e), (f),
(g), (h) Bilateral Filter (σ color = 100, σ space = 10) (i), (j), (k), (l) Tree Filter (σ = 10) (m), (n), (o), (p)
Order-based multi-tree truncation (σ = 10, N = 100)
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Table 1
Peak Signal to Noise Ratios (PSNR) measured in db on filtered images corrupted by salt and pepper noise.

A higher value indicates a better filter

Mean PSNR values obtained on Salt Pepper Noise

Bilateral Filter Tree Filter PTF Order-based

House 24.71 25.04 24.67

Barbara 24.08 22.19 22.47

Lena 22.58 22.59 22.64

Pepper 21.70 21.96 20.59

Mean 23.27 22.95 22.59

Table 2
Structural Similarity Indices (SSIM) on filtered images corrupted by salt and pepper noise. A higher value

indicates a better filter and a value close to 1 indicates an ideal filter

Mean SSIM values obtained on Salt Pepper Noise

Bilateral Filter Tree Filter PTF Order-based

House 0.69 0.80 0.83

Barbara 0.72 0.66 0.72

Lena 0.69 0.75 0.79

Pepper 0.62 0.74 0.74

Mean 0.68 0.74 0.77

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Tree Filter
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Figure 11. Scatter plot of SSIM values of TF versus Order-based approximation of UMST filter on three
iterations of random Poisson, Salt and Pepper, Gaussian and Speckle noises on House, Barbara, Lena and
Pepper images.
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computationally expensive. However, it is important to note that our approximations can be531

implemented in parallel as each pixel is processed independently of the other. Also we note532

that one has to choose an appropriate filter depending on the type of noise. For instance, BF533

outperforms the tree-based filters in presence of Gaussian noise (see Table 3 and Table 4). To534

summarize, we have demonstrated that TF is a fast approximation of the Γ-limit of SPFs.535

Table 3
Peak Signal to Noise Ratios (PSNR) measured in db on filtered images corrupted by Gaussian noise. A

higher value indicates a better filter

Mean PSNR values obtained on Gaussian Noise

Bilateral Filter Tree Filter PTF Order-based

House 25.12 23.76 23.97

Barbara 24.14 21.18 21.58

Lena 22.67 21.47 21.78

Pepper 22.15 21.09 20.93

Mean 23.52 21.88 22.07

Table 4
Structural Similarity Indices (SSIM) on filtered images corrupted by Gaussian noise. A higher value indi-

cates a better filter and a value close to 1 indicates an ideal filter

Mean SSIM values obtained on Gaussian Noise

Bilateral Filter Tree Filter PTF Order-based

House 0.79 0.73 0.75

Barbara 0.77 0.57 0.62

Lena 0.76 0.66 0.69

Pepper 0.75 0.67 0.68

Mean 0.77 0.66 0.69

6. Conclusions. In this paper, we have analysed the edge-aware filters from scratch by de-536

veloping shortest path filters as a natural extension of Gaussian-like filters. We have provided537

a common optimization framework for the well-known filters based on shortest paths and the538

ones based on minimum spanning trees in the power watershed framework. We have thus539

established a theoretical justification of the MST heuristic based tree filter by proving that540

the tree filter is an approximate Γ-limit of shortest path filters. Further, we have proposed541

two different approximation algorithms of the Γ-limit by leveraging ideas from shortest paths542

and minimum spanning trees.543

Establishing methods based on principles and/or heuristics as limits of solutions of opti-544

mization problems would enable us to design efficient algorithms. We believe that extending545

the ideas from our paper, one can obtain efficient parallel algorithms for practical applica-546

tions. Further, we believe that one could design novel edge-aware image filters based on these547

theoretical foundations. In this line of research, ultimately we aim to show that Γ-convergence548

serves as a powerful tool in applications beyond image segmentation and filtering.549
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[27] R. Lerallut, É. Decencière, and F. Meyer, Image filtering using morphological amoebas, Image and614

Vision Computing, 25 (2007), pp. 395–404.615
[28] R. d. A. Lotufo, A. A. Falcão, and F. A. Zampirolli, Fast euclidean distance transform using a616

graph-search algorithm, in Computer Graphics and Image Processing, 2000. Proceedings XIII Brazilian617
Symposium on, IEEE, 2000, pp. 269–275.618

[29] L. Najman, Extending the PowerWatershed framework thanks to Γ-convergence, SIAM Journal on619
Imaging Sciences, 10 (2017), pp. 2275–2292, https://doi.org/10.1137/17M1118580, https://hal.620
archives-ouvertes.fr/hal-01428875.621

[30] L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics, and the emergence paradigm, Dis-622
crete Applied Mathematics, 147 (2005), pp. 301–324.623

[31] L. Najman, J.-C. Pesquet, and H. Talbot, When convex analysis meets mathematical morphology on624
graphs, in International Symposium on Mathematical Morphology and Its Applications to Signal and625
Image Processing, Springer, 2015, pp. 473–484.626

[32] P. K. Saha and J. K. Udupa, Relative fuzzy connectedness among multiple objects: theory, algorithms,627
and applications in image segmentation, Computer Vision and Image Understanding, 82 (2001),628
pp. 42–56.629

[33] J. Stawiaski and F. Meyer, Minimum spanning tree adaptive image filtering, in 2009 16th IEEE ICIP,630
IEEE, 2009, pp. 2245–2248.631

[34] R. Szeliski, Computer vision: algorithms and applications, Springer Science & Business Media, 2010.632
[35] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Sixth International633

Conference on Computer Vision, 1998. ICCV 1998, IEEE, 1998, pp. 839–846.634
[36] L. J. Van Vliet, Robust local max-min filters by normalized power-weighted filtering, in Pattern Recog-635

nition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol. 1, IEEE, 2004,636
pp. 696–699.637

[37] L. Xu, C. Lu, Y. Xu, and J. Jia, Image smoothing via L0 gradient minimization, in ACM Transactions638
on Graphics (TOG), vol. 30, ACM, 2011, p. 174.639

[38] L. Xu, Q. Yan, Y. Xia, and J. Jia, Structure extraction from texture via relative total variation, ACM640
Transactions on Graphics (TOG), 31 (2012), p. 139.641

[39] Q. Yang, Stereo matching using tree filtering, IEEE PAMI, 37 (2015), pp. 834–846.642

This manuscript is for review purposes only.

https://doi.org/10.1137/17M1118580
https://hal.archives-ouvertes.fr/hal-01428875
https://hal.archives-ouvertes.fr/hal-01428875
https://hal.archives-ouvertes.fr/hal-01428875

	Introduction
	Union Minimum Spanning Tree Filter
	Tree Filter
	Why UMST filter?
	Lexicographic Ordering and Pass Values
	-convergence, Power Watershed Framework and UMST Filter

	Shortest Path Filters and Related Methods
	Basic Notions
	Relation to Morphological Amoebas

	UMST Filter: Gamma Limit of Shortest Path Filters
	Some Definitions
	Gamma Limit of Shortest Path Filters
	Optimization Framework for UMST Filter

	Implementation
	Exact Algorithms
	Approximation Algorithms
	Experiments

	Conclusions

