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Exploring the Links Between Edge-Preserving Collaborative Filters via Gamma1

Convergence∗2

Sravan Danda† , Aditya Challa† , B.S.Daya Sagar† , and Laurent Najman‡3

4

Abstract. Edge-aware filtering is an important pre-processing step in many computer vision applications. In5
literature, there exist collaborative edge-aware filters that work well in practice but are based only6
on heuristics and/or principles. For instance, Tree Filter (TF) which is proposed recently based7
on a minimum spanning tree (MST) heuristic yields promising results. However the usage of an8
arbitrary MST for filtering is theoretically not justified. In this article, we introduce an edge-aware9
generalization of the TF, termed as UMST filter based on all MSTs. The major contribution of this10
paper is establishing theoretical links between filters based on MSTs and filters based on geodesics via11
the notion of Γ-convergence. More precisely, we compute the Γ-limit of Shortest Path Filters (SPFs)12
and show that it is the same as UMST filter. Consequently, TF can be viewed as an approximate13
Γ-limit of the SPFs, thereby providing a theoretical basis to it’s working. Further, we propose and14
provide a detailed analysis of two different implementations of the UMST filter based on shortest15
paths.16

Key words. Optimization, Image Filtering, Γ-convergence, MST, Shortest Paths17
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1. Introduction. Image filtering has been a fundamental problem in computer vision for19

several years. Edge-preserving filtering is a crucial step in many low-level vision problems such20

as image abstraction [32], texture removal [32], texture editing [32], scene simplification [32],21

stereo matching [32], optical flow [32] etc. Real world images often contain noise and irrelevant22

information such as texture along with the object boundaries (which are the major image23

structures). The goal of an image filtering algorithm is thus to preserve the image structures24

while getting rid of the redundant information. Hence for several of the applications, it is25

important for any filtering algorithm to preserve object boundaries.26

In the literature, there exist several edge-aware smoothing filters such as bilateral filter27

(BF) [33], guided filter (GF) [24], weighted least squares filter (WLS) [20], L0 smoothing [36],28

propagated image filter [10], morphological amoebas or adaptive kernel based filters [25], tree29

filter (TF) [5] and relative total variation filter (RTV) [37] etc. Although these filters work30

well in practice, some of them are not extensively studied from a theoretical perspective. In31

this article, we study the recent state-of-art edge-aware Tree Filter (TF) which is based on32

a Minimum Spanning Tree (MST) heuristic. TF admits a linear time algorithm [38] and33

yields promising results in applications such as texture removal, stereo matching and scene34

simplification. However it exhibits a leak problem at some of the object boundaries. This35
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(a) (b) (c) (d)

Figure 1. (a) Original image (b) Bilateral filter (c) Tree filter + Bilateral filter (d) Power Tree Filter +
Bilateral filter.

problem occurs due to the presence of some object boundary edges in the MST and cannot36

be avoided as any spanning tree connects all the nodes in a connected graph. Although, the37

authors in [5] tried to negate the leak effect using a bilateral filter as a post-processing step,38

the problem still persists (see Figure 1(c)). Also, the filtering results vary with the choice of39

MST which is undesirable.40

This motivated us to explore the theoretical foundations of the TF for a deeper under-41

standing on how it works. Further, the links between the TF and the other edge-aware filtering42

methods might provide a possibility to design novel edge-aware filters. This article aims to43

answer this question and is an extended version of the conference paper [17], our contributions44

are the following:45

1. We introduce an edge-aware filter based on the union of all MSTs of the image graph46

namely UMST filter, a generalization of the TF .47

2. We compute the Γ-limit of the SPFs i.e. the Power Tree Filter (PTF) and show that48

it is precisely given by the UMST filter (see section 4 for details). Consequently, we49

provide a theoretical basis for the TF as it can be seen as an approximation of the50

Γ-limit of the SPFs.51

3. We propose two different implementations of the Γ-limit which serve as an alternative52

to the TF (see section 5 for details) with a detailed analysis on how they work.53

The rest of the paper is organized as follows: In section 2, we briefly recall the notions54

of TF, Γ-convergence and introduce UMST filter. In section 3, we develop SPFs as edge-55

aware filters starting from Gaussian-like filters and discuss their properties, links with other56

geodesic based methods. In section 4, we compute the Γ-limit of the SPFs and show that it57

is precisely the UMST filter. In section 5, we discuss approximations of UMST filter i.e. TF58

and propose two approximations based on shortest paths. We provide a detailed analysis of59

each of these implementations. In section 6, the conclusions follow and we speculate some60

possible directions to extend the ideas in the paper.61

2. Union Minimum Spanning Tree Filter. In this section, we briefly recall the Tree Filter62

(TF) and provide our motivation on why one should consider using a filter based on union of63

all the MSTs (UMST).64
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2.1. Tree Filter. Suppose I is a given image which possibly contains noise, we let Ii65

denote the color or intensity of the pixel i in the image I. let S denote the tree filtered image.66

The authors in [5] construct a 4-adjacency edge-weighted graph, with the weights between67

adjacent pixels reflecting the color or intensity dissimilarity. More formally, if i and j are68

4-adjacent pixels, they use wij defined by69

(1) wij = ||Ii − Ij ||70

One can construct a MST on this edge-weighted graph, IMST . Since a spanning tree connects71

every pair of pixels and does not contain cycles, there exists a unique path between every pair72

of pixels. Let D(i, j) denote the number of edges on the path between i and j on IMST . For73

each pair i and j, the collaborative weights ti(j) are given by:74

(2) ti(j) =
exp(−D(i,j)

σ )∑
q exp(

−D(i,q)
σ )

75

where σ controls the falling rate and the summation over q is over all the pixels in the graph.76

The tree filtered value at pixel i is given by77

(3) Si =
∑
j

ti(j)Ij78

Here the summation over j is over all the pixels in the graph.79

It is reasonable to assume that the pixel color or intensities vary vastly across objects80

and are similar within objects. In other words, the higher weight edges mostly correspond81

to object boundaries and lower weight edges mostly correspond to object interiors. We shall82

work under this assumption in the rest of the article. The TF works on the following intuition:83

most of the higher weight edges do not appear while the lower weight edges mostly do appear84

in any MST. The collaboration across object boundaries is thus low while smoothing within85

objects is achieved well.86

2.2. Why UMST filter?. The edges in the image graph that do not belong to object87

boundaries induce a disconnected subgraph. On the other hand, a MST of a graph is con-88

nected, hence any MST contains one or more object boundary edges. These edges cause a89

leak effect in the tree filtered image (see Figure 1(c)). Also, the filtering results vary with the90

MST used, making the choice of an arbitrary MST debatable. On the other hand, a filter91

based on UMST would ensure the following:92

1. The filtering results would not depend on arbitrary MST computations.93

2. There would be a significant reduction in the leak effect when compared to the TF94

(see Figure 1(d)).95

The first property is a direct consequence of the fact that UMST filter uses all the MSTs96

of the image graph. The second property can be explained intuitively as follows: The edges97

in the UMST is a superset of the edges of an arbitrary MST. Now, among the edges that98

belong to UMST but not the MST are mostly object interior edges. These object interior99
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Figure 2. (a) 4-adjacency graph of a synthetic image containing two objects coloured in red and green. The
pixels in this image are indexed from 1 to 30 and the weights on the edges denote the intensity dissimilarities.
The edges corresponding to object boundaries are represented by dotted lines, (b) A MST obtained from (a),
and (c) UMST obtained from (a). In order to illustrate that UMST filter yields better results, it should perform
at least as good as TF for - removing noise at pixel numbered 28 and reducing the leak at object boundaries
say at pixel numbered 13 and 14. Consider pixel numbered 28. One can see that both the edges of weights 100
incident on this pixel are present in the UMST, the noise removal is enhanced due to higher collaboration with
the neighbouring pixels when compared to that of tree filter where MST had only one of the edges with weight
100. Now consider the pixel numbered 13. We see that although an extra boundary edge (edge 13− 18) appears
in the UMST, the presence of an additional interior edge incident on 13 in the UMST nullifies the effect of
the boundary edge collaboration. At pixel numbered 14, the UMST filter performs better than tree filter due the
presence of the additional interior edge 13 − 14.

edges dominate the collaborative effect of the object boundary edges to ensure a reduction in100

the leakage. Figure 2 illustrates the above properties on a synthetic image.101

Extending the idea of TF, we use an exponential falling weight similar to (2) for computing102

collaborative weights. However, we observe that there are possibly multiple paths between103

a given pair of pixels i and j in the UMST. In order to define the collaborative weights of104

the UMST filter, we need a criterion to choose a path among all the paths between i and j.105

We consider η(i, j), the number of edges on a path with smallest dictionary or lexicographic106

order of edge weights (see Definition 3.4 and Definition 4.1) replacing D(i, j) in (2). This is107

a natural way to generalize the TF since: (a) the lesser the lexicographic order of a path, the108

lesser the chance of the path crossing an object boundary, (b) in the special case of the graph109

having a unique MST, this filter is exactly the same as TF.110

2.3. Lexicographic Ordering and Pass Values. Lexicographic order of a path is related111

very closely to the notion of pass values used in segmentation. Pass value [15] or the minimax112

distance [19] between a pair of nodes is the minimum of the l∞ norm over all the paths113

between them. To the best of our knowledge, this feature was first used in image filtering114

in [31]. Pass values between different minima of a gradient image is a measure of contrast115

difference between objects in watershed segmentation [28]. One can observe that any image116
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transformation on the gradient image that keeps the object boundaries intact preserves the117

contrast difference between objects. It is hence a desired condition for a segmentation method118

to preserve the contrast difference (topological watersheds [13] for instance).119

Observe that given pixels i and j, a path with smallest lexicographic order of the edge-120

weights would be a special case of a path with smallest l∞ norm. In simpler words, the smallest121

lexicographic order path is a critical path that determines the contrast difference between a122

pair of pixels. In practice, a path with smallest lexicographic order would be unique. This123

serves as a tie-breaker on choosing a critical path among the smallest l∞ norm paths thus124

reducing the ambiguity.125

Now, we shall recall notions of Γ-convergence before we state the main result of the paper.126

2.4. UMST filter and Γ-convergence. Γ-convergence [8] is the study of asymptotic be-127

haviour of a sequence of minimization problems. Suppose for each n ∈ N, Fn : Rl → R is a128

cost function such that arg minx∈Rl(Fn(x)) 6= ∅, what does limn→∞ xn minimize (assuming the129

limit exists) where xn ∈ arg minx∈Rl(Fn(x))? In other words, in what sense do Fn converge130

to F where F : Rl → R so that limn→∞ xn ∈ arg minx∈Rl(F (x)).131

The usual notions of point wise and uniform convergence do not make sense when working132

with functionals and we need the following:133

Definition 2.1. We say that Fn
Γ−→ F (read as Fn gamma converges to F ) if: (1) for every134

x ∈ Rl and every sequence (xn)n∈N, such that xn → x, we have F (x) ≤ lim infn→∞ Fn(xn),135

and (2) for every x ∈ Rl there exists a sequence (xn)n∈N, such that xn → x, and F (x) ≥136

lim supn→∞ Fn(xn).137

Theorem 2.2. (Fundamental Theorem of Γ-Convergence) If Fn
Γ−→ F and xn minimizes Fn138

for each n ∈ N, then every limit point of the sequence (xn)n∈N is a minimizer of F .139

Proof. Refer to [8]140

In simple words, one can approximate a minimizer of F using the minimizers of Fn. Defini-141

tion 2.1 is a simplified version of the general definition and suffices for our purposes. For a142

comprehensive study of Γ-convergence, we refer the interested reader to [8].143

Γ-convergence has been proved to be very useful in many computer vision applications144

especially the ones based on variational formulations. The following are a few instances:145

In [12], the authors unified and extended a common framework of semi-supervised or seeded146

graph-based image segmentation methods namely graph cuts [7], random walker [22], geodesics147

[1, 4, 16, 19] and watershed cuts [14, 15]; In [29, 2], the elementary mathematical morphological148

(MM) operators have been formulated as limits of variational problems; and in [34], the authors149

view the local min-max filters as a limit of normalized power-weighted averaging filter.150

As edge-preserving image filtering and image segmentation are closely related problems,151

one can anticipate to establish links between existing filtering methods using Γ-convergence152

(in the similar lines as the unified seeded-segmentation framework in [12]). In fact we prove153

the following theorem which is the main result of the paper: UMST filter is the Γ-limit of154

shortest path edge-aware filters . See section 3 for a formal definition of shortest path filters155

and section 4 for a proof. This result implies that one can view the UMST filter and the156

shortest path filters in an optimization framework.157
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3. Shortest Path Filters and Related Methods. In this section, we shall review the158

shortest path filters in detail. In particular, we develop them as a natural edge-aware extension159

of Gaussian-like filters. The rest of the section is dedicated to the discussions on their links160

with other related geodesic methods.161

Before formally defining the SPF, we need some notions of graphs that we define below.162

3.1. Basic Notions.163

Definition 3.1. An edge-weighted graph G = (V,E,W ) consists of a finite set V of nodes,164

and set of unordered pairs of elements of V i.e. {{x, y} ⊂ V : x 6= y}, called the edge set E,165

a positive real-valued function W on the set E. We denote wij or W (eij) as the weight of the166

edge joining pixels i and j.167

Definition 3.2. For p ∈ Z+, we denote by G(p) = (V,E,W (p)), the graph that contains the168

same set of nodes and edges as of G and W (p)(eij) = (W (eij))
p for each edge eij ∈ E and we169

call G(p) as an exponentiated graph of G.170

Definition 3.3. A path P (i, j) between nodes i and j is a finite ordered sequence of nodes171

of G such that there is an edge incident on every adjacent pair of nodes in the sequence. We172

say that a path from i to j is a simple path if all the nodes in the sequence are distinct.173

Definition 3.4. Assume that the distinct weights in G are given by 0 < w1 < w2 < · · · < wk.174

Given a path P (i, j) in G, one can assign a k-tuple (n1, · · · , nk) to the path, where nr denotes175

the number of edges of weight wr on the path P (i, j). This k-tuple is referred to as the edge-176

weight distribution of the path P (i, j).177

We remark that the k-tuples associated with a path P (i, j) in graph G and its exponentiated178

graph G(p) are identical by the virtue of it’s definition. However it is important to note that:179

corresponding to each of the coordinates, the weights in the edge-weight distributions are180

different.181

Definition 3.5. Assume that the distinct weights in G are given by 0 < w1 < w2 < · · · <182

wk. Suppose P (i, j) is a path between pixels i and j in G. P (i, j) is said to be a shortest183

path between the pixels i and j in G if for every path Q(i, j) between i and j in G, we184

have
∑k

r=1 nrwr ≤
∑k

r=1mrwr where (n1, · · · , nk) and (m1, · · · ,mk) denote the edge-weight185

distributions of P (i, j) and Q(i, j) respectively.186

We remark that a shortest path is always a simple path since all the weights in the edge-187

weighted graphs are strictly positive.188

We shall now build an edge-aware filter from scratch: Let i and j be two pixels in G(p).189

Consider the simplest weighted-average filter whose collaborative weights are given by190

(4) gi(j) =
exp

(
− ||i−j||σ

)
∑

k exp
(
− ||i−k||)σ

)191

where ||i− j|| : l1 norm between the pixels i and j and σ is the parameter controlling the192

level of smoothing.193
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Figure 3. (a) and (b) 4-adjacency graph of a synthetic image containing two objects coloured in blue and
yellow. The pixels in this image are indexed from 1 to 20 and the weights on the edges denote the intensity
dissimilarities. The collaborative weight for the pair of pixels 8 and 13 (which crosses an object boundary) given
by Gaussian-like filter would consider the edge highlighted in red in (a) and yields a high value. On the other
hand, the SPF considers the path < 8, 7, 12, 13 > highlighted in red in (b) for computing the corresponding
collaborative weight. This illustrates that SPF respects the object boundaries.

We observe that this is a Gaussian-like filter and collaborative weights purely depend on194

the spatial distance between pixels i and j. More specifically, collaborative weights between195

pixels separated by same distance is indifferent w.r.t. existence of an object boundary between196

them. Hence, one has to find a way to ensure that the collaborative weights are lesser across197

boundaries. A natural way to extend the idea of a Gaussian-like filter is: given a pair of pixels198

i and j, consider the number of edges on a path with smallest sum of weights between them.199

Let Π(P (i, j)) denote the number of edges on a path P (i, j). Define200

(5) Θ(p)(i, j) = inf{Π(P (i, j)) where P (i, j) is a shortest path in G(p)}201

where the edge weights are given by:202

(6) wij = ||Ii − Ij ||+ 1203

The SPF at pixel i is defined as:204

(7) S
(p)
i =

∑
j

exp
(
−Θ(p)(i,j)

σ

)
∑

k exp
(
−Θ(p)(i,k)

σ

)Ij ,205

where σ controls the falling rate and the summations are over all pixels in the image.206

Note that the weights in Eq. (6) are different from the ones in Eq. (1) to ensure that207

the weights are strictly positive. We use the edge weights as per (6) in the rest of the paper.208

Since, we use an increasing transformation on edge weights, shortest paths and MSTs are209
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invariant to the modification. This assumption is needed to ensure that the converse part in210

Lemma 4.3 holds.211

We remark that in the special case of all pixel values being equal in the image, SPF is212

exactly Gaussian-like filter. Also, in practice, the shortest path distances between a pair of213

pixels within the objects are close to the spatial distances and are larger than the spatial214

distances across object boundaries. Figure 3 illustrates on a synthetic image that the SPF is215

a natural edge-preserving extension of the Gaussian-like filter.216

217

Further, one can see that the SPF value at pixel i is a solution of the following optimization218

problem:219

Consider the cost function220

(8) Q
(p)
i (x) =

∑
j

exp

(
−Θ(p)(i, j)

σ

)
(x− Ij)2

221

where σ controls the falling rate and the summation is over all pixels. The shortest path222

filtered value at pixel i is given by the minimizer of Q
(p)
i (x) i.e.223

S
(p)
i = arg min

x
Q

(p)
i (x)224

SPFs are not completely new and there exist in literature, several edge-preserving filters225

using geodesics such as the ones discussed in [23], the adaptive kernel filter such as morpho-226

logical amoebas [25].227

3.2. Relation to Morphological Amoebas. SPFs are also closely related to Morphological228

Amoebas. Morphological Amoebas are adaptive structuring elements based on shortest path229

distances used to build edge-aware filters. These kernels work on the assumption that the230

gradients are low within the objects and high across the object boundaries. In order to ensure231

that the kernels do not cross the object boundaries, the amoeba distance defined below is used232

to compute them:233

(9) κ(i, j) = min
P (i,j)

Lλ(P (i, j))234

where P (i, j) is a path between pixels i and j, < i = x0, x1, · · · , xn = j > and λ ≥ 0 is a235

user input.236

(10) Lλ(P (i, j)) =

n−1∑
t=0

(
1 + λ‖Ixt+1 − Ixt‖

)
237

The closed ball at pixel i given by {j : κ(i, j) ≤ r} is the kernel used for edge-aware238

smoothing. The cardinality or the size of the kernel depends on r and is chosen as per the239

level of smoothing desired.240
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Figure 4. (a) and (b) synthetic images to illustrating the lexicographic ordering of paths. The lexicographic
order of path in blue is lesser than that of the one in green

Proposition 3.6. Θ(1)(i, j) is a constrained minima of the amoeba kernel path length given241

by242

(11) Θ(1)(i, j) = minL0(P (i, j)) subject to P (i, j) ∈ arg minL1(P (i, j))243

Further, the family of parameters Θ(p)(i, j) are given by:244

(12) Θ(p)(i, j) = minLp0(P (i, j)) subject to P (i, j) ∈ arg minLp1(P (i, j))245

where246

(13) Lpλ(P (i, j)) =
n−1∑
t=0

(
1 + λ‖Ixt+1 − Ixt‖

)p
247

248

Proof. The proofs readily follow from (5), (6), (10) and (13)249

Note that the morphological amoeba lengths are a special case of the lengths given by (13).250

We can hence view the SPF as a generalization of the notion of morphological amoeba lengths.251

4. UMST Filter: Gamma Limit of Shortest Path Filters. In this section, we shall prove252

that the UMST filter is the Γ-limit of SPFs. As the weights of the graphs of the shortest path253

filters are powers of natural numbers (see section 3), we use the term Power Tree Filter to254

denote the Γ-limit of Shortest Path Filters. We shall need some definitions before we prove255

this result.256

4.1. Some Definitions.257

Definition 4.1. Assume that graph G has k distinct weights given by w1 < · · · < wk. Let258

(n1, · · · , nk) and (m1, · · · ,mk) denote the edge-weight distributions of paths P and Q in G259

respectively. Let l = sup(A) where A = {r : 1 ≤ r ≤ k, nr 6= mr} We define dictionary260

ordering or lexicographic ordering on the set of paths in G as follows:261

(14) P ≥ Q⇔ A = ∅ or nl > ml262
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See Figure 4 for an illustration on dictionary ordering. Note that dictionary ordering263

yields a complete ordering on the set of paths in G and the ordering remains same in each of264

the exponentiated graphs G(p).265

Definition 4.2. Suppose P (i, j) is a path between pixels i and j in G. P (i, j) is said to be266

a smallest path w.r.t. dictionary order between the pixels i and j in G if for every path267

Q(i, j) between i and j in G, we have Q(i, j) ≥ P (i, j).268

Note that every smallest path w.r.t. dictionary order between pixels i and j in G has the269

same edge-weight distribution. In particular, the number of edges on a smallest path w.r.t.270

dictionary order between i and j denoted by Π(i, j) is well-defined.271

Any MST in G(p) is a MST in G and vice-versa. This follows directly from the fact that272

MST is invariant to any strictly increasing transformation on the weights of a connected273

graph. The notions of smallest paths w.r.t. dictionary order and that of MSTs in G(p) are274

hence independent of p.275

4.2. Gamma Limit of Shortest Path Filters. In this subsection, we characterize the276

Power Tree Filter or Γ-limit of Shortest Path Filters. Firstly, we have the following result:277

Lemma 4.3. Let G = (V,E,W ). For every pair of pixels i and j in V , there exists p0 ≥ 1278

such that, a path P (i, j) is a shortest path between i and j in G(p) for all p ≥ p0 if and only279

if P (i, j) is a smallest path w.r.t. dictionary order between i and j in G. Further, p0 is280

independent of i and j.281

Proof. Let G = (V,E,W ) and let the distinct weights in G be given by w1 < · · · < wk.282

Firstly, we shall show that for a given pair of pixels i and j, if P (i, j) is a smallest path283

w.r.t. dictionary order between i and j in G then there exists a constant p0 such that for284

each p ≥ p0, P (i, j) is a shortest path between i and j in G(p). Let P (i, j) be a small-285

est path w.r.t. dictionary order between i and j in G. Let Q(i, j) be an arbitrary simple286

path between i and j. Let (n1, · · · , nk) and (m1, · · · ,mk) denote the edge-weight distribu-287

tions of paths P (i, j) and Q(i, j) respectively. Let A(P,Q) = {1 ≤ r ≤ k : nr 6= mr}.288

Suppose A(P,Q) = ∅ then
∑k

r=1 nrw
p
r ≤

∑k
r=1mrw

p
r ∀p ≥ 1. If A(P,Q) 6= ∅ then let289

l = sup(A(P,Q)). We have ml > nl by choice of P (i, j). Also, the difference of the total290

weights i.e.
∑k

r=1mrw
p
r −

∑k
r=1 nrw

p
r = Θ(wpl ) with a positive leading coefficient. Hence291

∃pQ(i,j) ≥ 1 such that
∑k

r=1 nrw
p
r ≤

∑k
r=1mrw

p
r ∀p ≥ pQ(i,j). Now, let Sij denote the set of292

all simple paths from i to j. Then |Sij | < ∞. Set pij = sup{pQ(i,j) : Q(i, j) ∈ Sij} < ∞. We293

note that given any path which is not simple, one can drop the redundant edges to construct a294

simple path with strictly smaller total weight. It is hence enough to show that the total weight295

of P (i, j) is lesser than or equal to every simple path between i and j in G(p) for sufficiently296

large p. As V is finite, setting p0 = sup{pij : i, j ∈ V } completes the argument.297

Conversely, suppose P (i, j) is NOT a smallest path w.r.t. dictionary ordering between298

i and j, we shall construct a sequence (pn)n≥1 converging to ∞ such that P (i, j) is not299

a shortest path between i and j in G(pn) for each n ≥ 1. Since P (i, j) is not a smallest300

path w.r.t. dictionary ordering between i and j, ∃ a path T (i, j) between i and j such that301

P (i, j) ≥ T (i, j) holds but T (i, j) ≥ P (i, j) does not hold. Equivalently, if the edge weight302

distributions of P (i, j) and T (i, j) are given by (n1, · · · , nk) and (t1, · · · , tk) respectively then303

A(P, T ) 6= ∅ and tl < nl where l = sup(A(P, T )) and A(P, T ) = {1 ≤ r ≤ k : nr 6= tr}.304
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The difference of the total weights i.e.
∑k

r=1 trw
p
r −

∑k
r=1 nrw

p
r = Θ(wpl ) and has a negative305

leading coefficient. Thus, ∃ a constant ρij ≥ 1 such that for each p ≥ ρij , P (i, j) is not a306

shortest path between i and j. We set (pn)n≥1 by pn = ρij + n− 1 to complete the proof.307

Loosely speaking, for a large enough power p, on G(p), between every pair of pixels, a308

shortest path is a smallest path w.r.t. dictionary order and vice-versa. In short, we have the309

following corollary:310

Corollary 4.4. Let ∆(i, j) denote the number of edges on a smallest path w.r.t. dictionary311

order between pixels i and j in G. As p→∞, we have Θ(p)(i, j)→ ∆(i, j) for each pair i and312

j.313

4.3. Optimization Framework for UMST Filter. Recall the definition of UMST filter314

from section 2. Let G denote the given image, let GUMST denote the UMST on the edge-315

weighted graph constructed from G. Let η(i, j) denote the number of edges on a smallest path316

w.r.t. dictionary order between pixels i and j in GUMST . Now consider the cost function given317

by:318

(15) Q̂i(x) =
∑
j

exp

(
−η(i, j)

σ

)
(x− Ij)2

319

where σ controls the falling rate and the summation is over all pixels, the UMST filtered320

value at pixel i is given by the minimizer of Q̂i(x).321

(16) Ui = arg min Q̂i(x) =
∑
j

exp
(
−η(i,j)

σ

)
∑

k exp
(
−η(i,k)

σ

)Ij ,322

where U denotes the UMST filtered image.323

Firstly, we need the following standard results:324

Lemma 4.5. (Cut Property) For any cut C of a connected graph G = (V,E,W ), if the325

weight of an edge e in the cut-set C is not larger than the weights of all other edges in C, then326

this edge belongs to a MST of the graph G = (V,E,W ).327

Lemma 4.6. (Cycle Property) For any cycle C in the graph G = (V,E,W ), if the weight328

of an edge e of C is larger than the individual weights of all other edges of C, then this edge329

cannot belong to a MST.330

Before we prove the main result of the paper, we need Lemma 4.7 which is a modified331

version of a result stated in [27] (need to update this reference).332

Lemma 4.7. Let G = (V,E,W ) be an edge-weighted graph. Let G<w denote the induced333

subgraph of G with the vertex set V and all the edges eij ∈ E whose weight wij < w. Let334

GUMST denote the UMST of G. Then an edge e with weight w(e) belongs to the GUMST if and335

only if the edge e joins two connected components in G<w(e).336

Proof. The proof directly follows from Lemma 4.5 and Lemma 4.6.337
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In simple words, an edge e is in some MST if and only if it connects two different compo-338

nents of the induced subgraph generated by edges of weights lower than that of e.339

Proposition 4.8. Every smallest path w.r.t. dictionary order between any two arbitrary340

nodes in G = (V,E,W ) lies on a MST of G and hence on the union of MSTs of G.341

Proof. Let i and j be two arbitrary nodes in G. Let P (i, j) be a smallest path w.r.t.342

dictionary order between i and j. It is now enough to show that every edge in the path P (i, j)343

satisfies the characterization given in Lemma 4.7. Suppose if possible, let e ∈ P (i, j) be of344

smallest possible weight such that e is incident on nodes in a same connected component of345

G<w(e). Adding e thus forms a cycle C and the other edges in C have weights strictly less346

than w(e).347

Now, consider the subgraph generated by edges in P (i, j) ∪ C \ {e}. This subgraph is348

connected and hence there exists a path Q(i, j) (say) between i and j. It is easy to see that349

Q(i, j) has smaller dictionary order compared to P (i, j): number of edges of weight greater350

than w(e) in Q(i, j) cannot exceed to that in P (i, j) since C has edges of weight strictly less351

than w(e); number of edges of weight w(e) in Q(i, j) is at least one less than that of P (i, j).352

This contradicts the fact that P (i, j) is a smallest path w.r.t. dictionary order between i and353

j.354

Corollary 4.9. For every pair i and j in G, we have η(i, j) = ∆(i, j)355

The main result is formally stated as follows:356

Theorem 4.10. As p→∞, we have the following:357

(17) Q
(p)
i (x)

Γ−→ Q̂i(x)358

In other words, the shortest path filters converge to the UMST filter as p→∞ i.e.359

(18) S
(p)
i −→ Ui360

361

Proof. The proof follows readily from Proposition 4.8 and Lemma 4.3.362

The fact that UMST filter is a Γ-limit of shortest path filters is useful: The state-of-art363

algorithms in shortest paths and MSTs can be jointly exploited to obtain novel algorithms to364

compute UMST filter.365

5. Implementation. In this section, we discuss several possible implementations of UMST366

filter. We utilize ideas from shortest paths and spanning trees to obtain two novel approxima-367

tion algorithms to compute UMST filter. We provide detailed analyses of our implementations368

along with the TF which is yet another approximation of the UMST filter.369

5.1. Exact Algorithms. Thanks to UMST characterization given by Lemma 4.7, we can370

compute the UMST of a graph in O(|E|) which in the case of 4-adjacency graphs would be371

O(|V |). Also one can hope to reduce at least significant number of edges when compared to372

G in practice.373
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A naive approach is to adapt the Floyd-Warshall [21] algorithm to calculate η(i, j) for374

each pair and the computation of UMST filter takes O(|V |3) time and O(|V |2) space. This375

is very expensive in terms of both memory and space even on a 500 × 500 image and is376

hence not practical. In order to reduce the complexity, one needs to exploit the properties of377

lexicographic ordering and that of the UMST graph structure. One approach is by borrowing378

ideas from Image Foresting Transform (IFT) [19].379

Image Foresting Transform is a unified framework for several image processing operators380

that are based on shortest paths. Some of these operators include watersheds [35, 6], fuzzy-381

connected segmentation [11, 30] and distance transforms [26, 18]. In simple words, IFT is a382

generalization of Dijkstra’s algorithm where an image (with a specified adjacency relation), a383

set of seeds and a path cost function are specified and one needs to assign to every non-seeded384

pixel, a seed label to which it admits a path with smallest cost. The path costs are usually385

application-specific and are not necessarily given by sum of the weights of the edges on the386

path. Hence, a modified Dijkstra’s algorithm is used to handle a general class of path cost387

functions that arise in computer vision applications. We briefly describe the IFT framework388

below as in [19] and then discuss the relations with the SPF’s:389

The IFT takes as an input, an image I, an adjacency relation A (usually given by 4-390

adjacency in case of 2D images), a cost function C for all paths and outputs an optimum391

spanning forest. Note that the seeds can be specified implicitly by the cost function by392

assigning a fixed cost for every path that starts at a certain pixel (finite for seed pixels and393

infinite for non-seed pixels). Although there are no restrictions on the dimension of the394

image and the adjacency relation, the path costs are restricted and the following are sufficient395

conditions for the optimal IFT algorithm [19] to be applicable:396

For any pixel t, there is an optimum path π ending at t which is either trivial or is of the397

form τ · < s, t >, where398

• C(τ) ≤ C(π),399

• τ is an optimum path ending at s,400

• C(τ ′· < s, t >) = C(π) if τ ′ is an optimum path ending at s401

Using a single seed, the optimum-path forest obtained (which is a tree rooted at the seed)402

can be used to compute the shortest path filtering collaborative weights (see (5)). By varying403

the seed s, the SPF can be computed for the whole image. However, such an implementation404

would still take O(|V |2) time. To the best of our knowledge, we do not have any linear-time405

exact algorithms for computing the UMST filter. Thus, it calls a need to develop at least a406

quasi-linear algorithm approximation algorithm.407

5.2. Approximation Algorithms. Single tree-based approximation: As we have developed408

the UMST filter by generalizing the notion of TF in section 2, we can view TF as a heuristic409

approximation of the UMST filter. Note that TF uses only one MST and hence can be410

computed dynamically in linear time by doing an upward aggregation followed by a downward411

aggregation on the tree (see [38] for details). However, the usage of an arbitrary MST makes412

it difficult to analyse the degree of approximation quantitatively.413

Multiple tree-based approximations: One can also uses multiple spanning trees adaptively414

for filtering different pixels. In fact, one can find upper bounds on the approximation factors415

as a consequence of Proposition 5.1.416
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Figure 5. (a) A synthetic image with the edge-weights reflecting the intensity dissimilarities, (b) and (c)
Adaptive spanning trees of the pixels circled in red and blue respectively.

Algorithm 1 Generic Algorithm to Compute UMST Filter

Input: A 4-adjacency graph G of an image I, Adaptive Spanning Trees Ti for each i ∈ V
Output: Filtered image S.

1: for all pixels i ∈ V do
2: Starting from i on Ti, use Sp = Ip +

∑
q∈children of p exp(

−1
σ )Sq recursively to compute

Si
3: end for

Proposition 5.1. For every pixel i in the image I, there exists a spanning tree Ti (termed417

as adaptive spanning tree), such that Ti contains a smallest path with respect to dictionary418

ordering between pixels i and any other pixel j in I.419

Proof. Let i be an arbitrary pixel in I. We shall construct an adaptive spanning tree Ti,420

such that Ti contains a smallest path with respect to dictionary ordering between pixels i and421

any other pixel j in I. The construction is a special case of IFT (see [19]) with the following422

as the inputs: I is the image with 4-adjacency. The path costs are given by: f(π) = ∞ for423

every path π that does not start at i. All paths πl that start at i are completely ordered in424

the order of decreasing lexicographic ordering using their edge-weight distributions. The path425

costs are determined by the order statistics of the path i.e. if π1 ≥ π2 ≥ · · · > πl are all the426

paths starting from i ordered w.r.t. lexicographic ordering then the path cost f is given by427

f(πt) = l− t+1 where 1 ≤ t ≤ l. We remark that the this path cost is monotonic incremental428

(see [19]). The IFT algorithm applied thus yields Ti, an adaptive spanning tree of i with the429

required properties.430

Proposition 5.1 essentially implies that one can decompose the UMST into possibly differ-431

ent spanning trees Ti for each i ∈ V . Using each of the trees independently (see Figure 5 for432

an illustration on a synthetic image), one can obtain the exact UMST filter (see Algorithm 1).433

The exact computation takes O(|V |2) and O(|V |) time and space complexities respectively.434

However, by truncating each of these trees in Algorithm 1, one can obtain fast approximate435
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Algorithm 2 To compute a depth-truncated adaptive spanning tree

Input: UMST of the graph, depth d and pixel i
Output: Depth-Truncated Adaptive Spanning Tree Ti,d

1: Set X = {i} and Ti,d = (i, ∅)
2: while True do
3: break = true
4: for e in shortest edges from X to Xc do
5: if dist(e, i, Ti,d) < d then
6: Ti,d ∪ e
7: break = false
8: end if
9: end for

10: if break = true then
11: return Ti,d.
12: end if
13: end while

solutions. We present two ways to truncate the adaptive trees to obtain approximate UMST436

filter.437

438

Depth-based truncation: For each i ∈ V , we truncate the adaptive spanning tree Ti to Ti,d439

such that it contains only the pixels j that are at most d (user-defined parameter) edges away440

from i on Ti (see Figure 6(b) for an illustration and Algorithm 2 for computing it)441

We rewrite (16) as:442

(19) Ui =
1

C

∑
l

exp(− l
σ

)
∑

j:η(i,j)=l

Ij ,443

where C is the normalizing constant. In (19), we observe that the exponential term rapidly444

converges to 0 and hence one can approximate the above expression by445

(20) Ui ≈ Ui,d =
1

C

d∑
l=1

exp(− l
σ

)
∑

j:η(i,j)=l

Ij ,446

where d is a parameter indicating a fixed depth. This simplification reduces the calculation447

for each pixel drastically and hence Algorithm 2 is practically O(|V |).448

We shall now analyse (20) in more detail. Also as a consequence of Proposition 5.1, any449

two pixels are separated by at most |V | − 1 edges on a spanning tree Ti i.e. η(i, j) ≤ |V | − 1.450

Also, if η(i, j) = l > 0 then for each 0 ≤ l′ ≤ l, there exists at least one pixel j′ such that451

η(i, j′) = l′. Assume that the intensities satisfy 1 ≤ Ij ≤ 255 then we have the following:452
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Figure 6. (a) TF of pixel numbered 14 in Figure 2, here the pixels with significant collaboration (distance
≤ 2) are highlighted in grey (b) Depth-based truncation of UMST filter at pixel numbered 14 in Figure 2, here
the pixels with significant collaboration (depth ≤ 2) are highlighted in grey. Observe that the collaboration within
the object is higher due to the usage of adaptive spanning tree instead of an arbitrary MST.

Ui − Ui,d
Ui

=

∑|V |−1
l=d+1 exp(−

l
σ )
∑

j:η(i,j)=l Ij∑|V |−1
l=0 exp(− l

σ )
∑

j:η(i,j)=l Ij
(21)453

≤
exp(−d+1

σ )
∑

j:η(i,j)≥d+1 Ij

Ii +
∑d

l=1 exp(−
l
σ )
∑

j:η(i,j)=l Ij
(22)454

≤
exp(−d+1

σ )
∑

j:η(i,j)≥d+1 Ij

1 +
∑d

l=1 exp(−
l
σ )

(23)455

=
exp(−d+1

σ )

1 +
∑d

l=1 exp(−
l
σ )

∑
j:η(i,j)≥d+1

Ij(24)456

=
exp(−d+1

σ )

1− exp(−d+1
σ )

(1− exp(− 1

σ
))

∑
j:η(i,j)≥d+1

Ij(25)457

For an image with 106 pixels, setting σ = 0.1, the expression in (25) is bounded above by458
1

100 whenever d ≥ 220. However, the empirical results illustrated by Figure 7 indicate that459

the filtered value of the pixel as a function of depth, d, stabilizes beyond a depth of 15 for460

σ = 0.1.461
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Figure 7. From a color image, many pixels have been chosen randomly and each curve in a sub figure
represents a pixel. The RGB bands are separately processed and plotted in three sub figures. In each of the
sub figures, a curve denotes the first difference of the depth-truncated approximate UMST filtered values as
a function of depth. Note that the differences stabilize to 0 at a depth of 15 indicating that (20) yields good
approximation to UMST filter.

Algorithm 3 To compute an order-truncated adaptive spanning tree

Input: UMST of the graph with vertex set I and edge set E, kernel size N and pixel i, path
cost function f as defined in the proof of Proposition 5.1

Output: Order-Truncated Adaptive Spanning Tree T̂i,N
1: Set T̂i,N = ∅, Q = I, Parent(j) = null for each j ∈ I and count = 0
2: while Q 6= ∅ and count < N do
3: Remove from Q a pixel j such that f(P ∗(j)) is minimum and add it to T̂i,N
4: count+ = 1
5: for each pixel k such that (j, k) ∈ E do
6: if f(P ∗(j)· < j, k >) < f(P ∗(k)) then
7: set Parent(k) = j
8: end if
9: end for

10: end while
11: Return T̂i,N

In what follows, we view a rooted spanning tree T as a directed spanning tree: for every462

pixel j, a path P ∗(j) recursively as < j > if parent of j i.e. Parent(j) = nil, and P ∗(j) =463

P ∗(s)· < s, j > if Parent(j) = s 6= null (notations are borrowed from [19]).464

Order-based truncation: For each i ∈ V , we truncate the adaptive spanning tree Ti to T̂i,N465

such that it contains only the pixels j among the closest N (user-defined parameter) pixels466

w.r.t. the lexicographic ordering from i on Ti. (see Figure 8(b) for an illustration Algorithm 3467

for an computing it)468

The order-based truncation of the adaptive spanning tree would precisely compute the469

Γ-limit of the morphological amoeba filters with λ = 1 in (9). More formally, we have the470

following result:471
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Figure 8. (a) TF of pixel numbered 14 in Figure 2 (b) Order-based truncation of PTF at pixel numbered
14 in Figure 2, here the pixels that are closest w.r.t. lexicographic order from 14 (top 10 including itself) are
highlighted in grey. Observe that the collaboration in the PTF within the object is very high due to the usage of
power spanning tree instead of an arbitrary MST.

Proposition 5.2. As p→∞, we have472

(26) S
(p)
i,N −→ Ûi,N473

where S
(p)
i,N is the morphological amoeba filter at pixel i (with λ = 1 and kernel size N) and474

Ûi,N is the collaborative filter using the closest N pixels to i w.r.t. the lexicographic ordering475

on the adaptive spanning tree Ti.476

Proof. The proof follows directly from Lemma 4.3.477

We remark that the choice of the kernel size N determines the trade-off between the level of478

smoothing and the computational cost. In practice, using N ≈ 100, one can obtain a good479

edge-aware filter. As the kernel size is fixed and small, Algorithm 3 runs practically in O(|V |)480

time. We shall see the comparison of the performance of our approximations with that of tree481

filter in the experiments section.482

5.3. Experiments. In this section, we shall demonstrate some qualitative and quantitative483

comparisons of various edge-preserving filters. For all our experiments, we have used identical484

σ (= 10) parameter for computing the TF and order-based multi-tree approximation (with485

N = 100) of UMSTF. Figure 9 shows the comparison of BF, TF and order-based multi-tree486

approximation on some natural images. We observe that BF yields blurry images and erases487

some object boundaries as expected. On the other hand, TF and our approximations yield488
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 9. Subtle differences of the performance of TF vs our multi-tree approximations of UMSTF on
BSDS500 [3] images are illustrated. (a), (b), (c), (d) original images (e), (f), (g), (h) Bilateral Filter (σ color =
100, σ space = 10) (i), (j), (k), (l) Tree Filter (σ = 10) (m), (n), (o), (p) Depth-based multi-tree truncation
(σ = 10, depth = 15) (q), (r) , (s), (t) Order-based multi-tree truncation (σ = 10, N = 100). In the second
and fourth columns, observe the green patches and the snake’s eye respectively. The leaks are more prominent
in TF when compared to our approximations.
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similar results. However, on a closer look, one can observe that the boundaries are marginally489

better preserved in our approximations (compare green patches in Figure 9 second column,490

snake’s eye in Figure 9 fourth column).491

In order to validate the fact that the TF and our approximation yields similar results,492

we have compared the structural similarity index (SSIM) [9] and PSNR of our multi-tree ap-493

proximations of UMST filter to that of BF and TF on some images corrupted with salt and494

pepper noise. The higher SSIM (close to 1) indicates that the image structures are better495

preserved. The mean SSIM (see table below) quantitatively justify that our approximations496

perform similar to that of TF while both outperforming BF. Figure 10 provides a visual com-497

parison of these filters on images contaminated with salt and pepper noise.498

499
SSIM values obtained on Salt and Pepper Noise

Bilateral Filter Tree Filter PTF Order-based

House 0.69 0.80 0.82

Barbara 0.72 0.66 0.72

Lena 0.69 0.75 0.79

Pepper 0.62 0.74 0.74

Mean 0.68 0.74 0.77

500

501
PSNR values obtained on Salt and Pepper Noise

Bilateral Filter Tree Filter PTF Order-based

House 24.72 25.02 24.66

Barbara 24.07 22.18 22.49

Lena 22.56 22.62 22.67

Pepper 21.69 21.98 20.71

Mean 23.26 22.95 22.63

502

503

6. Conclusions. In this paper, we have analysed the edge-aware filters from scratch by de-504

veloping shortest path filters as a natural extension of Gaussian-like filters. We have provided505

a common optimization framework for the filters based on shortest paths and the ones based506

on minimum spanning trees using the notion of Γ-convergence. We have thus established a507

theoretical justification of the MST heuristic based tree filter by proving that the tree filter508

is an approximate Γ-limit of shortest path filters. Further, we have proposed two different509

approximation algorithms of the Γ-limit by leveraging ideas from shortest paths and minimum510

spanning trees.511

Establishing methods based on principles and/or heuristics as limits of solutions of opti-512

mization problems would enable us to design efficient algorithms. We believe that extending513

the ideas from our paper, one can obtain efficient parallel algorithms for practical applica-514

tions. Further, we believe that one could design novel edge-aware image filters based on these515

theoretical foundations. In this line of research, ultimately we aim to show that Γ-convergence516

serves as a powerful tool in applications beyond image segmentation and filtering.517

Acknowledgments. The authors SD and AC would like to thank Indian Statistical Insti-518

tute for providing fellowship to pursue the above research. BSD and LN acknowledgments to519

be added520

This manuscript is for review purposes only.



EXPLORING THE LINKS BETWEEN EDGE-PRESERVING COLLABORATIVE FILTERS VIA GAMMA
CONVERGENCE 21

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 10. Visual illustration of edge-preserving filters on images contaminated with salt and pepper noise.
BF erases some object boundaries while TF and order-based approximation yield similar results. (a), (b), (c),
(d) Salt and pepper noisy images (e), (f), (g), (h) Bilateral Filter (σ color = 100, σ space = 10) (i), (j), (k),
(l) Tree Filter (σ = 10) (m), (n), (o), (p) Order-based multi-tree truncation (σ = 10, N = 100)
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Paris-Est, LIGM, ESIEE Paris, 2017, https://hal-upec-upem.archives-ouvertes.fr/hal-01428875.578

[28] L. Najman and M. Couprie, Watershed algorithms and contrast preservation, in DGCI, vol. 3, Springer,579
2003, pp. 62–71.580

[29] L. Najman, J.-C. Pesquet, and H. Talbot, When convex analysis meets mathematical morphology on581
graphs, in International Symposium on Mathematical Morphology and Its Applications to Signal and582
Image Processing, Springer, 2015, pp. 473–484.583

[30] P. K. Saha and J. K. Udupa, Relative fuzzy connectedness among multiple objects: theory, algorithms,584
and applications in image segmentation, Computer Vision and Image Understanding, 82 (2001),585
pp. 42–56.586

[31] J. Stawiaski and F. Meyer, Minimum spanning tree adaptive image filtering, in 2009 16th IEEE ICIP,587
IEEE, 2009, pp. 2245–2248.588

[32] R. Szeliski, Computer vision: algorithms and applications, Springer Science & Business Media, 2010.589
[33] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Sixth International590

Conference on Computer Vision, 1998. ICCV 1998, IEEE, 1998, pp. 839–846.591
[34] L. J. Van Vliet, Robust local max-min filters by normalized power-weighted filtering, in Pattern Recog-592

nition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol. 1, IEEE, 2004,593
pp. 696–699.594

[35] L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion595
simulations, IEEE Transactions on Pattern Analysis & Machine Intelligence, (1991), pp. 583–598.596

[36] L. Xu, C. Lu, Y. Xu, and J. Jia, Image smoothing via l 0 gradient minimization, in ACM Transactions597
on Graphics (TOG), vol. 30, ACM, 2011, p. 174.598

[37] L. Xu, Q. Yan, Y. Xia, and J. Jia, Structure extraction from texture via relative total variation, ACM599
Transactions on Graphics (TOG), 31 (2012), p. 139.600

[38] Q. Yang, Stereo matching using tree filtering, IEEE PAMI, 37 (2015), pp. 834–846.601

This manuscript is for review purposes only.

https://hal-upec-upem.archives-ouvertes.fr/hal-01428875

	Introduction
	Union Minimum Spanning Tree Filter
	Tree Filter
	Why UMST filter?
	Lexicographic Ordering and Pass Values
	UMST filter and -convergence

	Shortest Path Filters and Related Methods
	Basic Notions
	Relation to Morphological Amoebas

	UMST Filter: Gamma Limit of Shortest Path Filters
	Some Definitions
	Gamma Limit of Shortest Path Filters
	Optimization Framework for UMST Filter

	Implementation
	Exact Algorithms
	Approximation Algorithms
	Experiments

	Conclusions

