
HAL Id: hal-01617793
https://hal.science/hal-01617793v1

Submitted on 17 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative affordance learning with adaptive action
generation

Carlos Maestre, Ghanim Mukhtar, Christophe Gonzales, Stephane Doncieux

To cite this version:
Carlos Maestre, Ghanim Mukhtar, Christophe Gonzales, Stephane Doncieux. Iterative affordance
learning with adaptive action generation. International Conference on Development and Learning
(ICDL) and the International Conference on Epigenetic Robotics (EpiRob), Sep 2017, Lisbon, Portu-
gal. �hal-01617793�

https://hal.science/hal-01617793v1
https://hal.archives-ouvertes.fr


Iterative affordance learning with
adaptive action generation

Carlos Maestre∗, Ghanim Mukhtar∗, Christophe Gonzales† and Stephane Doncieux∗
∗ UMR 7222, ISIR, Sorbonne Universites, UPMC Univ Paris 06 and CNRS, ISIR, Paris, France

Email: {maestre, mukhtar, doncieux}@isir.upmc.fr
† UMR 7606, LIP6, Sorbonne Universites, UPMC Univ Paris 06 and CNRS, LIP6, Paris, France

Email: christophe.gonzales@lip6.fr

Abstract—A robot designer can provide a robot with knowl-
edge to perform tasks on an environment. However, this approach
can limit the achievement of future tasks executed by the robot.
Providing it with the ability to develop its own skills paves the
way for robots that are not limited by design. In this work a
task consists in reproducing a given set of effects on an object.
A robot must accomplish this task with limited information
about the object, learning affordances to reproduce the effects,
increasing this information throughout consecutive interactions
with the object. We propose a method named Adaptive Affor-
dance Learning (A2L) which endows a robot with the capacity
to learn affordances associated to an object, both adapting the
robot’s actions to the object position, and increasing the robot’s
information about the object when needed.

This paper presents two main contributions: first, an online
adaption of the robot actions to interact with the object, de-
composing each action into a sequence of movements, adapting
each movement, in a close loop, to the object position; and
second, to increase the information about the object, we propose
an iterative process that alternates between (1) exploration of
the environment interacting with the object, (2) affordance
acquisition and (3) affordance validation. These contributions
are assessed in two experiments where a simulated Baxter robot
learns to push a box to different positions on a table.

I. INTRODUCTION

Since the initial stages of their development infants interact
with the objects around them, adapting their movements to the
state of the objects, e.g. position and shape. Those interactions
allow them to learn basic actions, e.g. grasping or pushing,
and to build their model of the world in environments that
constantly change, with limited information [1]. For example,
pushing a toy and observing the change produced improves
the capacity of the infant to interact with the environment and
to predict the outcome of his actions. An affordance correlates
an action to an object to produce a given effect on it [2]. This
basic knowledge is the basis of the development of higher-
level behaviours to perform tasks in posterior developmental
stages, as planning at the age of 9 months or imitation at the
age of 12 months [3].

Robots are expected to perform tasks in similar environ-
ments that those where infants develop their skills, relaying on
affordance knowledge. In these environments, a robot designer
may not know all the tasks that its robot will have to perform.
We propose to define an approach in which the robot learns
by its own the actions to perform a task adapted to its
environment.

Available interactions
New interactions

Short babbling

Learned
affordances

More effects
reproduced?

Bayesian
learning

Validation

Initial babbling

Yes, keep new
interactions

No, discard new
interactions

New robot-object
interactions

Long-term dataset 
of robot-object

interactions

Fig. 1. Iterative process to learn the affordances of an object, enlarging its
information about it. A full explanation is available in Section III-C.

In this work a task consists in reproducing a given set of
effects on an object. A robot must accomplish this task with
limited information about the object, i.e. the changes produced
after the robot interacts with it in a certain way. The robot must
learn the related affordances through the interactions with the
object. We propose two approaches to tackle the execution of
a task: (i) to interact with the object, the robot performs an
online adaptation of its actions to the object position; and (ii)
to increase its information about the object, the robot interacts
with the object exploiting the available information about it.

This paper presents two main contributions addressing,
respectively, the proposed approaches: first, to generate the
online adaption, the robot executes actions composed of
a sequence of movements, adapting each movement, in a
close loop, to the object position; and second, to increase
the information about the object, we propose an iterative
process (Fig. 1) that alternates between (1) exploration of the
environment, producing contacts between the robot and the
object, (2) affordance acquisition and (3) affordance validation.
Both contributions are encapsulated by the proposed method
named Adaptive Affordance Learning (A2L). At the beginning
of each iteration, the method infers some actions executed by
the end-effector of the robot, exploiting the available object
information. An action can produce a change in the position



of the object. This information is stored in a dataset. Then,
different affordances are learned based on the dataset content.
The iterative process entails the validation of the learned
affordances at the end of each iteration. Thus, for each effect
to reproduce the method infers an action, i.e. a sequence of
movements. If at the end of an iteration some effects have
not been properly reproduced a new iteration of the process
is executed.

The affordances generated by A2L are intended to serve
as basis of more complex behaviours in posterior higher
level cognitive processes. These stages are expected to handle
abstract concepts with discrete values instead of raw sensori-
motor information. Therefore, to facilitate the reuse of the af-
fordances generated, our method transforms the raw perception
information of the robot into discrete representations, inferring
discrete movements to interact with the object.

Two experiments are executed to asses each of the proposed
contributions. In both experiments a simulated Baxter robot
tries to push a box in different directions, reproducing a set
of available effects. In the first experiment, given a specific
interaction of the robot’s end-effector with the box to re-
produce each effect, the method is able to learn affordances
adapting the actions to the object position. In the second
experiment these interactions are learned from scratch by the
robot interacting with its environment. Also, a simple test
shows that the learned affordances can be reused in posterior
high-level stages.

II. RELATED WORKS

In most of the works within the affordance literature [4]
an anthropomorphic robot or a robotic arm interacts with
one or more objects to reproduce effects on it, learning their
affordances. Initially the robot is endowed with a set of actions.
Then, three phases are executed sequentially: (i) environment
exploration, where the robot interacts with an object to gather
information of the effects obtained after executing different
actions; (ii) affordance learning, based on different learning
methods, exploiting the previous information obtained; and
(iii) learning assessment, executing a specific task or playing
some imitation games to evaluate the capacity of the robot to
reproduce some effects using the learned affordances.

In some works the set of actions is predefined, built-in to
generate some effects with the objects in front of it. Fiztpatrick
et al. [5] define 4 actions (pull in, side tap, push away
and back slap) to interact with several objects from 4 initial
positions. Their approach relies on the correlation between
the orientation of an initial position and an object to select the
action that it is more likely to make the object roll. Montesano
et al. [6] provide grasp, tap, and touch primitives to play
imitation games. In this work, the execution of the primitives
depends on some free parameters of the action, as the height
of the end effector of a robot related to the object. In other
examples, Ugur et al. [7] propose a robot to learn the grasping
parts of an object using a predefined grasp primitive. In more
recent works, Ugur et al. define a set of primitive actions
(side-poke, top-poke, front-poke, stack) to achieve high-level

behaviours, as the learning of paired-object affordances [8],
or the generalization in complex manipulation scenarios [9].
In these works the actions are adapted to the features of the
objects, e.g. the actions are relative to the object position.
However, a robot does not have the capacity to generate by
itself another action to reproduce a different effect.

Other works endow the robot with skills to generate its
own actions, based on some motion parameters common to
all the actions, as the direction or the velocity of the end-
effector while executing the actions. These actions are learned
before the execution of the three aforementioned phases. Ugur
et al. define a parametrized swipe action [10], [11] executing a
trajectory. Different configurations of the execution parameters
produce different primitives, as push and grasp, based on the
effects produced to an object. In another work [12], different
primitives are learned based on Dynamic Motion Primitives
(DMP), in a pouring task experiment. In this work, affordances
relate to the different subparts of an object, i.e, the robot must
correlate the grasping action with the handle of an object.
This work relies on learning by demonstration, providing a
set of pouring examples using a large watering can, and
generalizing to other objects. Despite the fact that in these
works a robot can generate different actions to reproduce
different effects, all the actions share some motion parameters.
And thus the effects share some features, limiting the capacity
of the robot to accomplish a task, e.g. all the effects are
reproduced interacting with an object from the same side, as
push to the left, poke to the left, etc.

In contrast to the previous works, A2L does not create a set
of primitives in an initial phase to interact with an environment
in posterior sequential phases. In an iterative process, the
method simultaneously learns to infer an action adapted to the
object position while learning affordances. Instead of relying
on some motion parameters, as in previous works, this learning
approach endows a robot with the capacity to infer an action
based on the physical relation between the robot and its
environment, called relation state, e.g. pushing an object in a
specific direction from different initial positions of the robot’s
end-effector. The selection of these relation states relates to the
complexity of the expected effects reproduced, and not to a set
of initial actions. For example, to push an object the relevant
relation values are the distance and orientation between the
robot’s end-effector and the object.

III. ITERATIVE DEVELOPMENTAL FRAMEWORK

Adaptive Affordance Learning (A2L) is an iterative method
to endow a robot with the capacity to learn affordances
associated to an object, both adapting the robot’s actions to the
object position, and increasing the robot’s information about
the object when needed. These features allow the robot to
reproduce effects on the object.

In this work, an action, ae, is a trajectory of the robot’s end-
effector associated to an effect, e. An action is a sequence of
movements. A movement, ∆(x)

t , is a displacement of the robot’s
end-effector between two subsequent instants of time:



xt = end effector position
∆xt = xt - xt-1

ae = { ∆xt }

Actions are effect-oriented. Therefore, given an effect to
reproduce (also called goal) an action generator infers se-
quentially the next movement to be executed to reproduce
the effect until a displacement of the object is observed, or
a maximum number of movements are inferred. The inference
of a movement relies on the available knowledge of the object
affordances, and the states of both the robot and the object at
each instant of time.

The action generator and the affordances are learned within
the execution of an iterative method to reproduce a set of
effects. This method alternates between three steps during
each iteration (see Fig. 1): (1) exploration of the environment,
producing contacts between the robot and the object (gathering
information about these interactions), (2) affordance learning
(based on the previous information) and (3) affordance vali-
dation (trying to reproduce the available set of effects). The
methods stops when all the effects have been reproduced, or
a maximum number of iterations has been reached.

The method relies on available knowledge about (i) the
robot itself, associated with the concept of self and basic
motion skills, i.e. its kinematic model; and (ii) knowledge to
interpret its context, i.e. the position of a surrounding object.

This section is split up into three parts: first, a description
of the initial information available before the execution of
A2L; then, an explanation about how both the adapted actions
and object affordances are simultaneously learned using the
available information about the object (step 2). Then, the
iterative process to increasingly learn to reproduce a set of
effects is described (focusing on steps 1 and 3). The second
and third parts corresponds, respectively, to the contributions
defined in Section I.

A. Initial available information

Before the execution of the method, two sets of information
are required: (i) an initial dataset representing some initial
information about the object, outcome of the interactions of
the robot with it, to bootstrap the learning process and to be
increased in posterior iterations; and (ii) a set of effects to be
reproduced by the robot, to asses the affordance learning at
the end of each iteration.

Initial dataset: The dataset is environment-dependent, and
it must be generated by the robot. It is composed of the raw
perceptions perceived by the robot during an initial random,
goal-free, babbling [13] of its environment (Algo. 1). The
perception of the robot is composed of both the position of
one of its end-effector’s and the object position at an instant
of time:

yt = object position
XYk = { (xk

0, yk
0), . . . , (xk

Ti
, yk

Ti
) }

e = label associated to a specific effect
D = { (XYk, e) }

Algorithm 1 Initial random babbling
nb intp: number of current interaction executed
nb intmax: maximum number of interactions
Db: raw dataset from babbling
yp: position of the object at the end of iteration p
yp-1: position of the object at the end of iteration p-1

1: nb intp is initially set to 1
2: Db is initially empty
3: while nb intp ≤ nb intmax do
4: XYp ← GeneratedRandomTrajectory()
5: yp ← ExecuteTrajectory(XYp)
6: ∆fp ← yp - yp-1)
7: if ∆fp 6= 0 then
8: ep ← IdentifyEffect(∆fp

9: Db ← AddTrajectoryToDataset(XYp, ei)
10: Increase(nb intp)

where XYi represents an interaction between the robot’s end-
effector and the object when executing a trajectory, and D
represents a dataset composed of interactions. Each time the
robot’s end-effector reaches a waypoint of the trajectory the
raw perception of the robot at that instant of time is stored.

The execution of a trajectory by a robot has a high temporal
cost, possibly taking few seconds to complete it. The execution
of an unconstrained random babbling by a robot could entail
the execution of hundreds or thousands of trajectories, most
of them not having any impact on the object. In this work,
this issue has been addressed through the definition of a
virtual setup, where the robot can compute a mathematical
approximation of the possible outcome of the execution of a
random trajectory. Only those trajectories interacting the object
in this virtual space will be executed on the actual robot. An
example of a virtual setup is depicted in Figure 2.

Set of effects: The set of effects to reproduce is externally
provided:

ft = yt

∆ft = yt - yt-1

E = { (e1, ∆̂f 1), . . . , (eN, ∆̂f N) }

where ft represents the object feature vector of the object at
an instant of time, ∆ft represents a variation of the object
feature vector between two instants of time, E represents the
set of effects to reproduce, N is the number of effects, and ∆̂f i
represents the change of the object feature vector associated
to the effect i, which is also provided to the robot.

B. Affordance learning

Actions produce changes in the feature vector of the object:

∆f ae
T = y ae

T - y ae
T-1 ∈ Sf

where Sf represents the set of changes of the object position
produced by the robot during the babbling.

An action is a success, if after its execution the change
produced in the object relates to the desired effect:

∃ i ∈ [1,N], ∃ t ∈ [0,T-1], ∆f ae
t ∈ Sf, ∆ft ≈ ∆̂f i,



a false positive, if the change relates to another effect:

∃ i ∈ [1,N], ∃ t ∈ [0,T-1], ∆f ae
t ∈ Sf, ∆ft 6= ∆̂f i

or a failure, if there is no change in the position of the object:

∀ t ∈ [0,T-1], @ ∆f ae
t

These results guide the extension of the information about
the object within the iterative process (Section III-C). The
dataset consequence of a babbling is composed of actions
touching the object, generating both success and false positive.

At an instant of time, given a dataset of interactions between
the robot’s end-effector and the object, we have defined a
process to learn the object affordances adapting the robot’s
actions to the object position (step 2 of the method). In this
work an affordance is an action generator to reproduce an
effect on an object. The generation of an action entails the
inference of a sequence of movements of the robot’s end-
effector, each of them adapted to the object position:

δt ≡ δt(ft, xt)
∆xt = φ(e, δt)

where δt represents the physical relation between the robot’s
end-effector and the object at each instant of time, called
relation state, and φ represents the action generator.

Therefore, an affordance associates a set of movements to
an expected effect and the state of an object:

α(e, f ) = { ∆xt } = { φ(e, δt) },

where the correlation between the effect, the object and the
action, at each instant of time, relies on the action generator.
This correlation has been extended to include the robot state
in δ to adapt the robot actions to the object position.

In this work the robot learns to push an object to different
positions. Hence the relevant relation state consists of the dis-
tance and orientation between the robot’s end-effector and the
object at each instant of time, i.e. the cylindrical coordinates
of the vector with initial point the end-effector position, and
final point the object position (see Fig. 2.):

δt = cyl(yt - xt)

From continuous actions to discrete affordances: In order
to learn affordances that can be reused in posterior high-level
stages, the method transforms the available raw information
gathered by the robot into discrete representations, inferring
discrete movements to interact with the object. As the effects
are already labeled, only the movements of the robot and its
relation to the object position must be discretized.

The discretization relies on a discretization configuration.
This configuration may have a deep impact in the results
obtained using the method. A suitable configuration must
entail a trade-off between being generic to be suitable for
different sets of effects, and specific enough for the current set
of effects. In this work this configuration has been empirically
designed, being available in Figure 2.

Algorithm 2 Iterative object information acquisition
nb itp: number of current iteration
nb itmax: maximum number of iterations
x1: initial position of the end-effector
ψp: score computed in an iteration
ψmax: maximum score obtained
E: set of available effects
Ds: raw dataset from short babbling
Ds: discrete dataset from short babbling
D*

p: current discrete extended dataset
BNp: BN representing the affordance knowledge

1: nb itp is initially set to 1
2: ψmax is initially set to 0
3: while nb itp ≤ nb itmax do
4: Ds ← ExecuteShortBabbling()
5: Ds ← DiscretizeShortDataset(Ds)
6: D*

p ← AddToCurrentDiscreteDataset(Ds)
7: BNp ← LearnAffordances (D*

p)
8: ψp ← LearningAssessment(E, BNp, x0)
9: if ψp ≥ ψp-1 then

10: ψmax = ψp

11: Dp = D*
p

12: Increase(nb itp)

All movements and the related relation states are discretized.
Then, both are stored together with the correlated effect into
a discrete dataset:

D = { (e, ∆xt , δt) }

The generator of discrete actions, φ, is implemented as
a Bayesian Network (BN) [14], similarly to the work of
Montesano et al. [6]. The reasons for using BN are twofold: (i)
it has a strong inference capability; and (ii) its representation
of affordances as probabilistic dependencies allows one to
analyze and understand the outcomes of learning.

The affordance learning consists in creating a BN rep-
resenting the correlations among action, relation state and
effect within the discrete dataset, comprising two steps: (i) the
generation of a structure representing the causal relations of
the components of an affordance, and (ii) the computation of
their conditional probability distributions (CPDs). Therefore,
the action generator is formalized as:

φ(e, δt) = arg max
∆xt

P (∆xt | e, δt)

C. Iterative object information acquisition

The process presented in Section III-B allows the learning
of the affordances of an object using a dataset representing in-
teractions of the robot’s end-effector with the object. However,
given a set of effects, some of them could not be reproduced at
an instant of time. The learning of new object affordances to
reproduce those effects entails the extension of the information
the robot has about the object. A2L addresses this issue
through an iterative process (Algo. 2) (i) increasing the dataset
of interactions with new trajectories, at the beginning of each



Algorithm 3 Affordance learning validation
E: set of identified effects
BNp: BN representing the current affordance knowledge
ae: action inferred for effect e
x0: initial position of the end-effector
xpq: current position of the end-effector
ypq: current position of the object
N: number of available effects
nb movq: current number of movement
nb movmax: maximum number of movements to execute
θ: available discretization configuration
δpq: relation state based on environment and robot states
∆xpq : discrete movement
virt contact: indicates a prospective contact of the simulated end-

effector with the object (virtual setup)
ê: expected effect
ei: obtained effect
resei : result of an effect
wresei

: weight associated to a result
ψp: score obtained

1: function LEARNINGASSESSMENT(E, BNp, x0)
2: ψp is initially set to 0
3: for ê ∈ E do
4: xpq = x0

5: nb movq is initially set to 0
6: aê is empty
7: while ¬virt contact ∩ nb mov q < nb movmax do
8: ypq ← GetObjectPosition()
9: δpq ← ComputeInteractionFeatures(xpq, ypq)

10: ∆xpq ← InfereMovement(BNp)
11: aê ← AddMovementToAction(aê, ∆xpq)
12: SimulateMovementExecution(xpq, ∆xpq

13: Update end-effector position, xpq+1 = xpq + ∆xpq

14: virt contact ← CheckObjectContact()
15: Increase(nb movq)
16: if virt contact then
17: yaê ← ExecuteInferredAction(aê)
18: eaê ← IdentifyObtainedEffect(yaê )
19: if eaê= ê then:
20: resê = success
21: else
22: resê = false positive
23: else
24: resê = failure
25: The score is updated, ψp = ψp + resê * wresê
26: return ψp * N

iteration (step 1 of the method), and (ii) validating them later
on concerning the number of effects reproduced (step 3).

To increase the dataset the robot executes a short babbling,
i.e. a small number of trajectories, around the object generating
interactions with it1, increasing the available dataset, D*

i .
The short babbling consists in the random modification of
the position of one or more waypoints of the trajectories
within the available dataset, and in their posterior execution
to generate new interactions. Those trajectories generating
unforeseen effects are stored into the extended dataset, which
is discretized, D*

i . Then, the object affordances are learned

1Any change in the object position is assumed to be produced by the robot.

using the extended discrete dataset (Section III-B).
The learning assessment of a extended dataset (Algo. 3)

consists in the comparison of the number of effects reproduced
before and after the extension. This comparison is based on
the computation of a score, ψi:

ψi = (
∑
e∈E

rese ∗Wrese ) ∗N

where rese is the result obtained after the execution of an
action reproducing an effect, W represents the predefined
weight associated to the result, and N the total number of
effects.

If the score associated to the extended dataset (current
iteration) is lower than the score associated to the dataset
before the extension (previous iteration), ψi-1, then the current
score is discarded together to the dataset extension. In contrast,
if the current score is bigger or equal than the previous one, the
extended dataset is used at the beginning of the next iteration
as the available dataset to be increased.

IV. EXPERIMENTS

Two experiments are executed to asses each one of the
contributions of this paper (Sections IV-B and IV-C). In both
experiments a simulated Baxter robot tries to reproduce the
same set of effects, i.e. pushing a box far from it (pushed far),
close to it (pushed close), to the left (pushed left), to the
right (pushed right) and their combinations (pushed far left,
pushed close left, pushed close right and pushed far right).
Thus a maximum of 8 effects can be reproduced. Next, it
is tested if the actions generated in both experiments can
be reused in posterior high-level stages (Section IV-D). The
common features shared by the experiments are explained in
Section IV-A. This sections finishes with an analysis of the
results obtained. The code of the experiments is available
online2.

A. Experimental framework

The scenario simulates a three-dimensional (3-D) Cartesian
setup composed by a table and a box. The robot is located
in front of the table (Fig. 2). The dimensions of the box are
7 x 8.5 x 8 centimeters (cm) of width, length and height,
respectively. The position of the box at the beginning of the
experiment is at 65 cm in front of the robot, and 10 cm to
the left. The origin of coordinates is located at the base of
the robot, and thus the perceptions perceived by the robot are
relative to itself. The only perceptual representation of the
setup available for the robot is the position of the box. The
position of the box is located at the center of the object. The
box can change its position during the experiment. However,
in order to allow the method to infer actions that the robot can
execute, if the box is moved more than 10 centimeters away
of its initial position it is automatically relocated around the
initial position.

In both experiments the robot moves its left end-effector
to interact with the box starting from two initial positions.

2https://github.com/robotsthatdream/a2l exp baxter core

https://github.com/robotsthatdream/a2l_exp_baxter_core


Fig. 2. At the left, a simulated Baxter robot in the setup used for the experiments. This setup is composed of a box on a table in front of the robot. At the
center, top view of the same setup. The white circles represent both initial positions of the end-effector from where the actions are inferred and executed.
The blue triangle and torus represent, respectively, the orientation and distance from the end-effector to the box. At the right, the virtual setup emulating the
previous top view to compute the possible outcome of the execution of an action. In red the initial positions. In this work, the distance is discretized in three
sections (dark blue text), and the orientation in 16 sections (brown text). In this example, the box is at distance 1 and orientation 0 of the end-effector.

These initial positions are located at 20 cm to the left of the
box position and 20 cm to the right, respectively. Due to the
use of a simple random heuristic action generation in Section
III-C, the dimensionality of the actions has been constrained
to a 2D space, i.e. with a constant Z value. Furthermore,
these actions are composed of discrete movements, moving
only a fix distance in horizontal (left, right), vertical (up,
down) or diagonal (left-up, left-down, right-up and right-
down). Examples of movements are shown on Fig. 3.

The displacements of the box are categorized as repre-
senting an effect, or discarded otherwise. A displacement is
categorized within the individual effects (i.e. pushed far, close,
to the left or to the right) if the displacement in one axis is
at least three times bigger than in the other axis; and within
the diagonal effects if the displacement in one axis is at least
bigger than the half of the displacement in the other axis. The
robot can execute a maximum of 16 actions (2 initial positions
* 8 effects) during each iteration of the experiment.

In this work, the learning of affordances relies on two
different methods, with different a priori information about
the dependency among the elements involved in an affordance,
i.e. a movement, the related effect and the relation state. First,
a hard-coded method provides the complete structure of the
BN, directly connecting the movement to each one of the other
elements. Second, K2 [15] provides an order of these elements
to drive the learning of the structure. Once the structure is
available, both methods learn the corresponding Conditional
Probabilistic Distributions (CPDs). Providing the hard-coded
method allows us to build a baseline to measure the learning
capabilities of K2. The Bayesian learning is performed using
the aGrUM3 library.

The weights chosen for the learning assessment must reflect
that a successful result of a trajectory is better than a false
positive, and much better than a failure. Choosing different sets

3http://agrum.gitlab.io/
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Fig. 3. Evolution of the result produced by the action generator, learned using
the hard-coded method, to reproduce the pushed close right effect from an
initial position (red circle). The numbers show the current iteration of the
process when the action (blue line) was inferred. The action generator evolves
from not inferring any movement (top-left) to infer an action producing the
effect (bottom-right), going through intermediary step, as inferring an action
not contacting the box (top-right) or reproducing another effect (bottom-left).

of values based on this principle does not have a relevant im-
pact in the behaviour of the method. Based on experience we
have selected a value of 4 for Wsuccess , 1 for Wfalse positive ,
and 1 for Wfailure . As the number of effects does not change
along the experiment, the computation of the score (Equation
III-C) only depends on the results of the trajectories. The value
of the score is normalized between 0 and 100. Inferring the
16 successful trajectories aforementioned would produce the
highest possible score 64.

http://agrum.gitlab.io/


Fig. 4. Results of the BN structure learning of the K2 method: at the left,
given the predefined interactions (Section IV-B); at the right using the random
interactions obtained at the end of the iterative process (Section IV-C). In both
cases the K2 has identified the direct dependency of the movement with the
effect and the orientation, but it is missing the direct dependency with the
distance.

B. Affordance learning experiment

In the first experiment a dataset of predefined interactions
is provided, each one of them reproducing one of the effects
(e.g. to reproduce the pushed left effect the robot’s end-
effector, from each initial position, moves at a position 15
centimeters to the right of the center of the box, and then it
moves 20 centimeters to the left). This dataset is used to asses
the affordance learning capacity of the process described in
Section III-B. It is expected to obtain very high success ratios,
and thus very high scores.

C. Iterative object information acquisition experiment

In the second experiment the dataset is generated from
scratch. An initial goal-free babbling is executed, before
the execution of the method, generating several interactions
between the robot and the box, stored into an initial dataset.
This dataset is increased and evaluated at each iteration of the
iterative process. An online video is available4.

D. High-level stage example

In this simple test a real Baxter robot reuses the actions
generated to reproduce effects, within the previous experi-
ments, to continuously interact with a box. The interaction
is performed using both end-effectors of the robot, located
randomly at each side of the box, respectively. In each run of
the test the robot identifies, for each end-effector, the effect
with the highest mean probability of being reproduced. The
mean value and the actions are directly computed by the BNs
corresponding to each of the experiments. An online video
is available5 showing the results produced by the K2 method
used in the first experiment.

E. Results

The results obtained for the experiments are available in the
Table I, where S stands for trajectories producing successful
results, FP stands for trajectories producing false-positives, F
stands for trajectories producing failures, and Sc stands for

4https://youtu.be/5a02TkaaaRk
5https://youtu.be/RKJRXmRTHDc

TABLE I
RESULTS OF THE EXPERIMENTS.

Affordance exp.
(predefined actions)

Iterative exp.
(random actions)

Hard-coded

S 16 8
FP 0 2
F 0 6
Sc 100 53.1
∆Sc - 33.1

K2

S 15 4
FP 1 12
F 0 0
Sc 95.3 43.57
∆Sc - 43.57
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Fig. 5. Results of the iterative object information acquisition experiment
experiment (Section IV-C) at the end of each iteration. These results are
composed of the score obtained (yellow/green lines), and the size of the
information related to the interactions between the robot and the box (blue
lines). At the top, results obtained using the hand-coded method; at the
bottom, using K2. The dotted vertical lines represent iterations where the
score improved respect the previous iteration.

the normalized score, and ∆Sc stands for the variation of the
score between the initial and the final iteration.
Affordance learning experiment (left column): based on the
dataset generated using predefined trajectories, the robot re-
produces all the effects for the hand-coded method and most
of them for K2. These results reflect that, given the right
information about the object, i.e. a dataset of interactions to
reproduce all the effects, our model is suitable for learning
affordances to reproduce a set of the effects adapting to the
object position, as described in the first approach defined in
Section I.
Iterative object information acquisition experiment (right col-
umn): the robot has increased the number of effects reproduced
throughout the running of the iterative process with both
available learning methods (Fig. 5), confirming the second
approach defined in Section I. The hard-coded method repro-
duces half of the effects at the end of the iterative process,
meaning that information about the other half of the effects

https://youtu.be/5a02TkaaaRk
https://youtu.be/RKJRXmRTHDc


is missing. Using the same information, K2 only reproduces
4 effects although it produces a high number of false positive
results. This means that the structure of the BN has not
identified the right dependency among the movement, effect
and the relation state (at the right of Fig. 4). Therefore, more
information is needed to both, identify the right structure of
the BN and to reproduce the complete set of effects.
High-level stage example: the real Baxter interacts with the
box using the affordances generated in both experiments, as it
is shown in the related video, until the robot pushes the box
out of the table. This result proves that (i) affordances based
on discrete representations can be reused in posterior high-
level stages; and that (ii) the affordances generated by the
simulated Baxter can be directly executed by a real Baxter, if
their environments share the same features.

V. DISCUSSION AND CONCLUSION

In this paper we have proposed an iterative method, Adap-
tive Affordance Learning (A2L), which endows a robot with
the capacity to learn affordances associated to an object, both
adapting the robot’s actions to the object position; and en-
larging the robot’s information about the object when needed.
These features allow the robot to reproduce effects on the
object. The performance of our method has been assessed in
two experiments where a simulated Baxter robot learns to push
a box to different positions on a table.

On the one hand, the action adaptation relies on the
decomposition of an action into a sequence of movements,
inferring each one of them based on the object position. This
approach allows the robot to reproduce an effect given the
proper information for it. However, the inferred actions are
discrete, based on a predefined discretization. This approach
can limit the reuse of the inferred actions to execute some
tasks. A possible improvement would be to use the values of
a continuous Gaussian function or a force field to compute the
relation state, instead of just a simple trajectory.

On the other hand, to increase the information about the
object, the method executes an iterative process that alternates
between (1) exploration of the environment interacting with
the object, (2) affordance acquisition and (3) affordance vali-
dation. The affordance learning relies on Bayesian techniques.
Two methods, with different a priori knowledge, have been
used for the affordance learning. Both methods have generated
a progressive increase of the number of learned affordances
to reproduce the expected effects. Nevertheless, the number
of effects reproduced is low. Experiments with more iterations
could increase the object information, and thus reach higher
number of effects reproduced. Besides, it could drive the
identification of the right structure of the BN.

Although these big datasets could be built, the use of
randomly generated actions entails the repetition of previously
executed actions, generating a low diversity of actions, and
thus of effects. The babbling of the environment could be
driven by some goal-oriented intrinsic motivation, as novelty
or curiosity, generating action-effect relations related to all the
effects. And thus improving the affordance learning.

A2L needs external information to execute, i.e. the set of
effects to reproduce, the discretization configuration, and the
relation state must be available. This information could have
been computed in an unsupervised fashion within the iterative
process.

The use of more realistic scenarios, with daily objects, and
different actions, as grasp, would challenge the capabilities
of the method. Also, the setup of the experiments could be
extended to more than one object, i.e. multi-object affordance
learning.
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